[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012057797A - Mist diffusion preventing structure of liquefied gas evaporator - Google Patents

Mist diffusion preventing structure of liquefied gas evaporator Download PDF

Info

Publication number
JP2012057797A
JP2012057797A JP2011265632A JP2011265632A JP2012057797A JP 2012057797 A JP2012057797 A JP 2012057797A JP 2011265632 A JP2011265632 A JP 2011265632A JP 2011265632 A JP2011265632 A JP 2011265632A JP 2012057797 A JP2012057797 A JP 2012057797A
Authority
JP
Japan
Prior art keywords
shield
liquefied gas
gas evaporator
mist
fog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011265632A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Sachi
良之 幸
Takahiro Kamihama
敬洋 上濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2011265632A priority Critical patent/JP2012057797A/en
Publication of JP2012057797A publication Critical patent/JP2012057797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent diffusion of mist generated from a liquefied gas evaporator with a simplified structure.SOLUTION: In a mist diffusion preventing structure 50 preventing diffusion of mist from a liquefied gas evaporator 1, the liquefied gas evaporator 1 is supported in a raised state from a reference plane 3, a lower space 5 is formed between the liquefied gas evaporator 1 and the reference plane 3 and a shield 11 erected from the reference plane 3 is provided outside the lower space 5. An induction air flow forming mechanism 51 is further provided, so that an atmosphere rising from the inner side of the shield 11 is induced to the formed induction air flow.

Description

本発明は,液化ガス蒸発器から発生する霧の拡散を防止する構造に関する。   The present invention relates to a structure for preventing diffusion of fog generated from a liquefied gas evaporator.

例えばLNG,LPG,液体窒素,液体酸素等の低温液化ガスを気化させる手段として,いわゆる空温式液化ガス蒸発器が一般的に用いられている。かかる液化ガス蒸発器は,蛇行させた伝熱管の内部に液化ガスを通過させ,伝熱管を介して液化ガスと外気(空気)とを熱交換させ,液化ガスを常温に昇温させる構成となっている。   For example, as a means for vaporizing a low-temperature liquefied gas such as LNG, LPG, liquid nitrogen, or liquid oxygen, a so-called air temperature type liquefied gas evaporator is generally used. Such a liquefied gas evaporator has a configuration in which a liquefied gas is passed through a meandering heat transfer tube, heat is exchanged between the liquefied gas and outside air (air) through the heat transfer tube, and the temperature of the liquefied gas is raised to room temperature. ing.

上記のような液化ガス蒸発器の運転時には,伝熱管の表面温度が,内部の液化ガスによって冷却されることにより,特に液化ガス導入口側において外気よりも大幅に低くなる。そのため,伝熱管の周囲の空気が冷却され,気象条件等によっては,その空気中に含まれる水蒸気が飽和温度以下まで急激に冷却され,白煙状の霧が発生することがある。この霧は空気より重いので,液化ガス蒸発器の下方に自然に沈下し,地面に沿って周辺に拡散しやすく,例えば液化ガス蒸発器の付近に道路が存在すれば,その道路に霧が流出して視界が悪くなり,交通の障害となるおそれがある。また,液化ガス蒸発器の近傍での作業,例えば測定器の監視やバルブの操作等の障害になることもある。さらに,人目に付きやすい場所で煙のようにみえる霧が発生すると,一般住民等に不安や嫌悪感を与え,事故等の誤解を招いてしまうおそれもある。このように,白煙状の霧は周辺環境に好ましくない影響を与えるため,拡散を防止する必要がある。   During the operation of the liquefied gas evaporator as described above, the surface temperature of the heat transfer tube is cooled by the internal liquefied gas, so that it is significantly lower than the outside air, particularly on the liquefied gas inlet side. For this reason, the air around the heat transfer tube is cooled, and depending on the weather conditions, the water vapor contained in the air is rapidly cooled below the saturation temperature, and white smoke mist may be generated. Since this mist is heavier than air, it naturally sinks below the liquefied gas evaporator and easily spreads around the ground. For example, if there is a road near the liquefied gas evaporator, the mist will flow out onto that road. As a result, visibility may deteriorate and traffic may be obstructed. Moreover, it may become an obstacle to work near the liquefied gas evaporator, for example, monitoring of a measuring instrument or operation of a valve. Furthermore, if fog that looks like smoke is generated in a place that is easily visible to the public, it may cause anxiety and disgust to the general population and may lead to misunderstandings such as accidents. In this way, white smoke mist has an undesirable effect on the surrounding environment, so it is necessary to prevent diffusion.

従来,霧の拡散防止対策としては,例えば,液化ガス蒸発器の下方に加熱された空気を吹き込み,液化ガス蒸発器の下方の雰囲気を加熱することで,霧を消去,あるいは,霧の発生を未然に防止する構成が提案されている(特許文献1参照)。また,液化ガス蒸発器の下方の雰囲気を吸引することで,霧(冷気)を回収する構成が提案されている(特許文献2参照)。さらに,液化ガス蒸発器の下方の雰囲気を加熱する加熱器(熱交換器)を設ける構成が提案されている(特許文献3参照)。   Conventionally, as a countermeasure for preventing the diffusion of fog, for example, by blowing heated air below the liquefied gas evaporator and heating the atmosphere below the liquefied gas evaporator, the mist is erased or fog is generated. A configuration for preventing this has been proposed (see Patent Document 1). Moreover, the structure which collect | recovers fog (cold air) by attracting | sucking the atmosphere below a liquefied gas evaporator is proposed (refer patent document 2). Furthermore, the structure which provides the heater (heat exchanger) which heats the atmosphere under the liquefied gas evaporator is proposed (refer patent document 3).

特開平9−165588号公報JP-A-9-165588 特開2002−228096号公報JP 2002-228096 A 特開2003−14195号公報JP 2003-14195 A

しかしながら,従来の構成にあっては,必要な機器や部品数が多く設備コストが高くなる問題,あるいは,ランニングコストが嵩む問題があり,経済的に不利になるおそれがあった。   However, the conventional configuration has a problem that the required equipment and the number of parts are large and the equipment cost is high, or the running cost is high, which may be disadvantageous economically.

本発明は,上記の点に鑑みてなされたものであり,簡単な構成で霧の拡散を防止できる液化ガス蒸発器の霧拡散防止構造を提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a mist diffusion prevention structure for a liquefied gas evaporator that can prevent mist diffusion with a simple configuration.

上記課題を解決するため,本発明によれば,液化ガス蒸発器から霧が拡散することを防止する霧拡散防止構造であって,前記液化ガス蒸発器は,基準面から持ち上げられた状態で支持され,前記液化ガス蒸発器と前記基準面との間に形成された下方空間の外側に,前記基準面から立設された遮蔽体を備え,前記遮蔽体は,前記下方空間の少なくとも一部に対向するように設けられ,誘導気流を形成する誘導気流形成機構を備え,前記遮蔽体の内側から上昇した雰囲気が前記誘導気流に引き寄せられる構成としたことを特徴とする,液化ガス蒸発器の霧拡散防止構造が提供される。   In order to solve the above-described problems, according to the present invention, a mist diffusion preventing structure for preventing mist from diffusing from a liquefied gas evaporator, the liquefied gas evaporator being supported while being lifted from a reference plane. And a shielding member standing upright from the reference surface outside the lower space formed between the liquefied gas evaporator and the reference surface, wherein the shielding member is provided in at least a part of the lower space. The mist of the liquefied gas evaporator is provided with an induced airflow forming mechanism that is provided so as to oppose and that is configured to draw an atmosphere rising from the inside of the shield to the induced airflow. An anti-diffusion structure is provided.

また,前記遮蔽体の外側面に沿って外側に壁体が設けられ,前記誘導気流形成機構は,前記遮蔽体と前記壁体との間の隙間に気体を供給しても良い。   In addition, a wall body may be provided on the outer side along the outer surface of the shield, and the guided airflow forming mechanism may supply gas to a gap between the shield and the wall.

本発明によれば,液化ガス蒸発器の周囲において,霧の拡散を効果的に防止できる。構成が簡単であり,設備コスト,ランニングコスト等を削減することができ,経済的である。   According to the present invention, it is possible to effectively prevent the diffusion of fog around the liquefied gas evaporator. The structure is simple, equipment costs, running costs, etc. can be reduced, which is economical.

液化ガス蒸発器と霧拡散防止構造の構成を説明する概略側面図である。It is a schematic side view explaining the structure of a liquefied gas evaporator and a fog diffusion prevention structure. 液化ガス蒸発器と霧拡散防止構造の構成を説明する概略平面図である。It is a schematic plan view explaining the structure of a liquefied gas evaporator and a fog diffusion prevention structure. 吸引機構を設けた第二の実施形態にかかる霧拡散防止構造の構成を説明する概略側面図である。It is a schematic side view explaining the structure of the fog diffusion prevention structure concerning 2nd embodiment provided with the suction mechanism. 吸引機構を設けた第二の実施形態にかかる霧拡散防止構造の構成を説明する概略平面図である。It is a schematic plan view explaining the structure of the fog diffusion prevention structure concerning 2nd embodiment which provided the suction mechanism. 誘導気流形成機構を設けた第三の実施形態にかかる霧拡散防止構造の構成を説明する概略側面図である。It is a schematic side view explaining the structure of the fog diffusion prevention structure concerning 3rd embodiment provided with the induced airflow formation mechanism. 誘導気流形成機構の概略斜視図である。It is a schematic perspective view of an induced airflow formation mechanism. 別の実施形態にかかる誘導気流形成機構の概略斜視図である。It is a schematic perspective view of the induced airflow formation mechanism concerning another embodiment. 吹上気流形成機構を設けた第四の実施形態にかかる霧拡散防止構造の構成を説明する概略側面図である。It is a schematic side view explaining the structure of the fog diffusion prevention structure concerning 4th embodiment provided with the blowing airflow formation mechanism. 吹上気流形成機構を設けた第四の実施形態にかかる霧拡散防止構造の構成を説明する概略平面図である。It is a schematic plan view explaining the structure of the fog diffusion prevention structure concerning 4th embodiment provided with the blowing airflow formation mechanism. 吹上気流形成機構の吐出ノズルの位置を下げた実施形態にかかる霧拡散防止構造の構成を説明する概略側面図である。It is a schematic side view explaining the structure of the fog diffusion prevention structure concerning embodiment which lowered | hanged the position of the discharge nozzle of a blowing airflow formation mechanism. 複数の液化ガス蒸発器を遮蔽体の内側に設けた実施形態を説明する概略平面図である。It is a schematic plan view explaining embodiment which provided the some liquefied gas evaporator inside the shield. 遮蔽体を略コの字状にした実施形態を説明する概略平面図である。It is a schematic plan view explaining embodiment which made the shield the substantially U shape. 実施例の実験に用いた構成の概略平面図である。It is a schematic plan view of the structure used for the experiment of an Example. 実施例の実験に用いた構成を説明する説明図(図14におけるI−I線による断面図)である。It is explanatory drawing (sectional drawing by the II line | wire in FIG. 14) explaining the structure used for the experiment of an Example. 実験の測定結果を示したグラフである。It is the graph which showed the measurement result of experiment.

以下,本発明にかかる第一の実施形態の一例を,液化ガスの一例としてのLNG(Liquefied Natural Gas:液化天然ガス)をNG(Natural Gas:天然ガス)にする液化ガス蒸発器(LNG気化器)に設けられた霧拡散防止構造に基づいて説明する。図1に示すように,液化ガス蒸発器1は,蒸発器支持体2によって,例えば略水平面状である基準面(地面あるいは床面)3から持ち上げられて支持されており,液化ガス蒸発器1と基準面3との間には,所定の高さH1を有する空間(下方空間)5が形成されている。また,下方空間5の外側には,本実施形態にかかる霧拡散防止構造10を構成する所定の高さH2の遮蔽体11が設けられている。   Hereinafter, an example of the first embodiment of the present invention will be described as an example of a liquefied gas evaporator (LNG vaporizer) in which LNG (Liquid Natural Gas) as an example of liquefied gas is changed to NG (Natural Gas: natural gas). ) Will be described based on the fog diffusion prevention structure provided in (1). As shown in FIG. 1, the liquefied gas evaporator 1 is supported by an evaporator support 2 by being lifted from a reference surface (ground or floor surface) 3 having a substantially horizontal plane, for example. A space (lower space) 5 having a predetermined height H1 is formed between the reference plane 3 and the reference plane 3. In addition, a shield 11 having a predetermined height H2 constituting the fog diffusion preventing structure 10 according to the present embodiment is provided outside the lower space 5.

液化ガス蒸発器1は,液化ガス(LNG)が通過させられる伝熱管21と,伝熱管21を支持する伝熱管支持体22とを備えている。   The liquefied gas evaporator 1 includes a heat transfer tube 21 through which liquefied gas (LNG) is passed, and a heat transfer tube support 22 that supports the heat transfer tube 21.

伝熱管21は,例えば複数の直管部21aと,直管部21aの端部同士を接続する複数の湾曲部21bとを有している。直管部21aは,長さ方向を略鉛直に向けて,間隔を空けて並列に並べて設けられている。湾曲部21bは,隣り合う直管部21aの上端部同士又は下端部同士を接続するように設けられている。伝熱管21の一端部(図示の例では最も左側に位置する直管部21aの下端部)には,液化ガスを導入する液化ガス導入路25が接続されており,他端部(図示の例では最も右側に位置する直管部21aの下端部)には,伝熱管21内で気化(蒸発)したガス(NG)を導出するガス導出路26が接続されている。   The heat transfer tube 21 has, for example, a plurality of straight tube portions 21a and a plurality of curved portions 21b that connect ends of the straight tube portions 21a. The straight pipe portions 21a are arranged side by side in parallel with the interval in the length direction being substantially vertical. The curved portion 21b is provided so as to connect the upper end portions or the lower end portions of the adjacent straight pipe portions 21a. A liquefied gas introduction path 25 for introducing liquefied gas is connected to one end of the heat transfer tube 21 (the lower end of the straight tube portion 21a located on the leftmost side in the illustrated example), and the other end (the illustrated example). Then, a gas outlet path 26 for connecting the gas (NG) vaporized (evaporated) in the heat transfer tube 21 is connected to the lowermost portion of the straight pipe portion 21a located on the rightmost side.

伝熱管支持体22は,各直管部21aの下端部側に設けられている下枠31,及び,各直管部21aの上端部側に設けられている上枠32を備えている。下枠31,上枠32は,例えば略方形をなし,それぞれ略水平に設けられている。伝熱管21は,直管部21aの下端部が下枠31によって固定され,また,直管部21aの上端部が上枠32によって固定された状態で保持されている。   The heat transfer tube support 22 includes a lower frame 31 provided on the lower end side of each straight tube portion 21a and an upper frame 32 provided on the upper end portion side of each straight tube portion 21a. The lower frame 31 and the upper frame 32 have, for example, a substantially square shape and are provided substantially horizontally. The heat transfer tube 21 is held in a state where the lower end portion of the straight tube portion 21 a is fixed by the lower frame 31 and the upper end portion of the straight tube portion 21 a is fixed by the upper frame 32.

蒸発器支持体2は,例えば下枠31の4つの角部にそれぞれ1つずつ対応させて設けられた4つの支持脚35を備えている。各支持脚35は基準面3から立設させられている。この支持脚35によって,伝熱管支持体22は,基準面3から持ち上げられた状態で固定支持されている。   The evaporator support 2 includes, for example, four support legs 35 provided in correspondence with the four corners of the lower frame 31, respectively. Each support leg 35 is erected from the reference plane 3. The heat transfer tube support 22 is fixedly supported by the support legs 35 while being lifted from the reference plane 3.

なお,本実施形態において,下方空間5とは,基準面3,下枠31,及び,4つの支持脚35によって囲まれた空間である。液化ガス蒸発器1の下端部と基準面3との間の高さ,即ち,下方空間5の高さH1は,例えば約2m程度であっても良い。   In the present embodiment, the lower space 5 is a space surrounded by the reference plane 3, the lower frame 31, and the four support legs 35. The height between the lower end of the liquefied gas evaporator 1 and the reference surface 3, that is, the height H1 of the lower space 5 may be about 2 m, for example.

図1及び図2に示すように,遮蔽体11は,例えば下方空間5の周囲全体を取り囲むように設けられており,例えば平面視において略方形をなすように,即ち,略角筒状に形成されている。遮蔽体11の4つの内側面は,それぞれ例えば基準面3から略鉛直方向に向けて立設させられており,また,下枠31の4つの辺とそれぞれ略平行になるように設けられている。   As shown in FIGS. 1 and 2, the shield 11 is provided so as to surround the entire periphery of the lower space 5, for example, so as to form a substantially square shape in a plan view, that is, a substantially rectangular tube shape. Has been. For example, the four inner side surfaces of the shield 11 are erected from the reference plane 3 in a substantially vertical direction, and are provided so as to be substantially parallel to the four sides of the lower frame 31, respectively. .

なお,遮蔽体11は,例えば金属板,あるいはコンクリート板等,剛性が高い材質のものによって,壁状に形成しても良いが,例えば布,ビニール等の柔軟性を有する材質のものを,鋼管等によって形成された支持枠によって支持することにより形成しても良い。即ち,遮蔽体11を空気が透過しないような材質によって形成すれば良い。   The shield 11 may be formed in a wall shape with a material having high rigidity, such as a metal plate or a concrete plate. For example, a material having flexibility such as cloth or vinyl is used for the steel pipe. You may form by supporting by the support frame formed by etc. That is, the shield 11 may be formed of a material that does not allow air to pass therethrough.

この遮蔽体11は,液化ガス蒸発器1,蒸発器支持体2及び下方空間5から所定の間隔を空けた位置に配置されている。例えば,遮蔽体11の内側面と下方空間5との間の水平方向における距離L(即ち,下枠31の側面とその側面に対向して設けられている遮蔽体11の内側面との間の水平方向における距離)が,約0.5m以上かつ5m以下程度(即ち,おおよそ0.5m≦L≦5m),より好ましくは約3m程度であるように設定されている。   The shield 11 is disposed at a position spaced apart from the liquefied gas evaporator 1, the evaporator support 2 and the lower space 5. For example, the distance L in the horizontal direction between the inner surface of the shield 11 and the lower space 5 (that is, between the side surface of the lower frame 31 and the inner surface of the shield 11 provided facing the side surface). The distance in the horizontal direction is set to be about 0.5 m or more and about 5 m or less (that is, about 0.5 m ≦ L ≦ 5 m), more preferably about 3 m.

また,遮蔽体11の高さ,即ち,基準面3から遮蔽体11の上縁までの高さH2は,所定の範囲の高さに設定されている。例えば,前述した下方空間5の高さH1と高さH2との差が,約1.5m以下(即ち,おおよそ|H1−H2|≦1.5m)程度になるように設定されている。従って,例えばH1=2mであれば,おおよそ0.5m≦H2≦3.5m程度であれば良い。また,例えばH1=H2としても良い。   Further, the height of the shield 11, that is, the height H <b> 2 from the reference surface 3 to the upper edge of the shield 11 is set to a height within a predetermined range. For example, the difference between the height H1 and the height H2 of the lower space 5 described above is set to be about 1.5 m or less (that is, approximately | H1−H2 | ≦ 1.5 m). Therefore, for example, if H1 = 2 m, it may be about 0.5 m ≦ H2 ≦ 3.5 m. For example, it is good also as H1 = H2.

以上のような構成を有する液化ガス蒸発器1によって液化ガスを蒸発させる際には,先ず,液化ガス導入路25から伝熱管21内に,低温状態の液化ガスとして例えばLNGが導入される。液化ガスは,直管部21a,湾曲部21bを交互に流れながら,ガス導出路26側に向かう。こうして伝熱管21内を液化ガスが通る間に,伝熱管21を介して,液化ガスと伝熱管21の外部の空気との間で熱交換が行われる。即ち,液化ガスは伝熱管21の外部の空気の熱によって昇温され,蒸発してガス状に,即ちNGに戻された後,ガス導出口2dから導出される。   When the liquefied gas is evaporated by the liquefied gas evaporator 1 having the above-described configuration, first, for example, LNG is introduced as a low-temperature liquefied gas from the liquefied gas introduction path 25 into the heat transfer tube 21. The liquefied gas is directed toward the gas outlet path 26 while alternately flowing through the straight pipe portion 21a and the curved portion 21b. Thus, while the liquefied gas passes through the heat transfer tube 21, heat exchange is performed between the liquefied gas and the air outside the heat transfer tube 21 via the heat transfer tube 21. That is, the liquefied gas is heated by the heat of the air outside the heat transfer tube 21, evaporated and returned to gas, that is, returned to NG, and then led out from the gas outlet 2d.

一方,伝熱管21の表面と,伝熱管21の近傍の空気は,内部の液化ガスの冷熱によって冷却される。すると,気象条件によっては,伝熱管21の近傍の空気中に含まれる水分が飽和温度以下まで急激に冷却されて霧状となり,白煙状の霧が発生する。   On the other hand, the surface of the heat transfer tube 21 and the air in the vicinity of the heat transfer tube 21 are cooled by the cold heat of the internal liquefied gas. Then, depending on the weather conditions, moisture contained in the air near the heat transfer tube 21 is rapidly cooled to the saturation temperature or lower to form a mist, and white smoke mist is generated.

発生した白煙状の霧,及び,伝熱管21によって冷却された空気(冷気)は,液化ガス蒸発器1から下方空間5に向かって自然に沈下する。下方空間5中に溜まった雰囲気(霧及び冷気)は,支持脚35の間を通過して,下方空間5から外側に流出し,下方空間5の周囲に拡散するが,遮蔽体11によって堰き止められる。一方,遮蔽体11よりも上方や外側には,遮蔽体11の内側の霧及び冷気よりも温かい外気(空気)が存在しており,この温かい外気の熱によって,遮蔽体11の内側の霧が飽和温度以上に昇温されて,未飽和の状態に戻される。こうして,白煙状の霧が消滅させられた(消霧された)状態の雰囲気が,遮蔽体11の上縁部からオーバーフローして(溢れ出て),遮蔽体11の外側に流出させられる。   The generated white smoke mist and the air (cold air) cooled by the heat transfer tube 21 naturally sinks from the liquefied gas evaporator 1 toward the lower space 5. The atmosphere (fog and cold air) accumulated in the lower space 5 passes between the support legs 35, flows out from the lower space 5, and diffuses around the lower space 5, but is blocked by the shield 11. It is done. On the other hand, above and outside the shield 11, there is mist inside the shield 11 and outside air (air) that is warmer than the cold air. The heat inside the shield 11 causes the mist inside the shield 11 to be heated. The temperature is raised above the saturation temperature and returned to the unsaturated state. Thus, the atmosphere in which the white smoke mist has been extinguished (disappeared) overflows (overflows) from the upper edge of the shield 11 and flows out of the shield 11.

なお,本発明者らの実験によれば,液化ガス蒸発器1によって液化ガスが蒸発させられているときの下方空間5における温度分布は,液化ガス蒸発器1に近い上側ほど冷却されて低温になり,また,基準面3に近い下側ほど上側よりも相対的に温かいことが分かっている。しかし,下方空間5の外側において,例えば高さH2以下における温度分布は,基準面3に近い下側の温度変化は小さく,下方空間5と同程度の低温のままであるが,上側の温度は,上側にあった冷気がより上方にある空気と混合させられることにより,下側よりも相対的に温かくなることが確かめられている。   According to the experiments of the present inventors, the temperature distribution in the lower space 5 when the liquefied gas is evaporated by the liquefied gas evaporator 1 is cooled to the lower temperature as the upper side closer to the liquefied gas evaporator 1 is cooled. Further, it is known that the lower side closer to the reference plane 3 is relatively warmer than the upper side. However, outside the lower space 5, for example, the temperature distribution below the height H <b> 2 has a small lower temperature change near the reference plane 3, and remains at a low temperature similar to the lower space 5, but the upper temperature is It has been confirmed that the cold air on the upper side is mixed with the air on the upper side, so that it is relatively warmer than the lower side.

即ち,下方空間5においては,伝熱管21に近い上側に霧が多く存在するが,下方空間5の外側に流出すると,基準面3に近い下側に霧が多く溜まると考えられる。しかしながら,霧及び冷気が遮蔽体11によって堰き止められ,横方向に流出できなくなると,霧及び冷気が遮蔽体11の上縁部の高さ付近まで到達し,遮蔽体11の内側に充満した状態になる。一方,遮蔽体11よりも上方や外側には,遮蔽体11の内側の冷気よりも温かい外気(空気)が存在している。上記のように遮蔽体11の内側に霧及び冷気が溜められた状態では,基準面3に近い下側(低所側)よりも遮蔽体11の上縁部の高さに近い上側(高所側)のほうが風通しが良いので,この高所側において,霧及び冷気が温かい外気と接触して混合され易くなる。そのため,高所側においては霧及び冷気が温かい外気によって温められ,霧が飽和温度以上に昇温されて,未飽和の状態に戻されると考えられる。また,遮蔽体11内の雰囲気が遮蔽体11の上縁部からオーバーフローして流出する際にも,流出する雰囲気が,遮蔽体11の上縁部よりも上方や外側に存在する相対的に温かい外気に接触して混合させられる。即ち,遮蔽体11の上縁部近傍においても,流出する雰囲気を外気によって昇温させることができる。従って,流出する雰囲気中に霧が残留していたとしても,その霧を遮蔽体11の上縁部近傍において,即ち遮蔽体11から流出する時点で,未飽和の状態に戻し,消滅させることができると考えられる。   That is, in the lower space 5, a lot of mist exists on the upper side near the heat transfer tube 21, but if it flows out of the lower space 5, it is considered that a lot of mist accumulates on the lower side near the reference surface 3. However, when fog and cold are blocked by the shield 11 and cannot flow out in the lateral direction, the fog and cold reach the vicinity of the height of the upper edge of the shield 11 and fill the inside of the shield 11. become. On the other hand, outside air (air) warmer than the cool air inside the shield 11 exists above and outside the shield 11. In the state where fog and cold are accumulated inside the shield 11 as described above, the upper side (high place) closer to the height of the upper edge of the shield 11 than the lower side (low side) close to the reference plane 3. The side) is more ventilated, and at this high side, fog and cold air are likely to come into contact with warm outside air and be mixed. For this reason, at high altitudes, the fog and cold are warmed by warm outside air, and the mist is heated to the saturation temperature or higher and returned to the unsaturated state. Further, when the atmosphere in the shield 11 overflows and flows out from the upper edge portion of the shield 11, the outflow atmosphere is relatively warm existing above and outside the upper edge portion of the shield 11. Mixing in contact with outside air. That is, even in the vicinity of the upper edge of the shield 11, the temperature of the flowing out atmosphere can be raised by the outside air. Accordingly, even if mist remains in the flowing atmosphere, the mist can be returned to an unsaturated state and extinguished near the upper edge of the shield 11, that is, when it flows out of the shield 11. It is considered possible.

かかる霧拡散防止構造10によれば,液化ガス蒸発器1の周囲の適切な位置に,適切な高さの遮蔽体11を設置するだけで,液化ガス蒸発器1から白煙状の霧が発生しても,霧を自然に消滅させることができ,霧の拡散を効果的に防止できる。遮蔽体11の内側(遮蔽体11より低い高さ,または遮蔽体11の上縁とほぼ同じ高さ)において,あるいは,遮蔽体11の上縁部から外側に流出する時点で霧を消滅させるので,霧が人目に付きにくく,周辺環境に悪影響を与えることを防止できる。   According to the fog diffusion preventing structure 10, white smoke-like mist is generated from the liquefied gas evaporator 1 simply by installing a shield 11 having an appropriate height at an appropriate position around the liquefied gas evaporator 1. Even so, the fog can be extinguished naturally and the fog can be effectively prevented from spreading. Because the fog disappears inside the shield 11 (at a lower height than the shield 11 or almost the same height as the upper edge of the shield 11) or when it flows out from the upper edge of the shield 11 to the outside. , Fog is not easily noticeable and can prevent the surrounding environment from being adversely affected.

また,遮蔽体11を設置するだけの簡単な構成であるため,設備コストが安価である。さらに,気流の自然な流れを利用することで,霧を自然に消滅させることができ,霧の消滅のために特別な動力等を使う必要が無い。従って,ランニングコストがかからず,経済的である。   Moreover, since it is a simple structure which only installs the shield 11, installation cost is cheap. Furthermore, by using the natural flow of the air current, the mist can be extinguished naturally, and there is no need to use special power for the disappearance of the mist. Therefore, there is no running cost and it is economical.

次に,本発明にかかる第二の実施形態の一例について説明する。図3及び図4に例示されている霧拡散防止構造40は,上記の第一の実施形態にかかる霧拡散防止構造10と同様に,液化ガス蒸発器1を囲む所定位置に設けられた遮蔽体11を備えている。さらに,この遮蔽体11の内側の雰囲気を吸引する吸引機構41を備えている。   Next, an example of the second embodiment according to the present invention will be described. The fog diffusion prevention structure 40 illustrated in FIG. 3 and FIG. 4 is a shield provided at a predetermined position surrounding the liquefied gas evaporator 1 as in the fog diffusion prevention structure 10 according to the first embodiment. 11 is provided. Furthermore, a suction mechanism 41 that sucks the atmosphere inside the shield 11 is provided.

吸引機構41は,例えば,遮蔽体11の上縁部に沿って設けられた吸引ノズル42と,吸引ノズル42に接続された吸引路43とを備えた構成になっている。吸引ノズル42の側面には,複数の吸引口42aが,例えば遮蔽体11の上縁部に沿った方向において一列に並べて設けられている。吸引路43には,例えばブロワ等の送風機45が介設されている。吸引路43の下流端部は,液化ガス蒸発器1や遮蔽体11から十分に離れた位置に,即ち,吸引路43の下流端部から排出される排気が,液化ガス蒸発器1や遮蔽体11付近の気流の流れに影響を与えないような位置に設けられている。   The suction mechanism 41 includes, for example, a suction nozzle 42 provided along the upper edge portion of the shield 11 and a suction path 43 connected to the suction nozzle 42. On the side surface of the suction nozzle 42, a plurality of suction ports 42a are provided in a line in a direction along the upper edge of the shield 11, for example. A blower 45 such as a blower is interposed in the suction path 43. The downstream end of the suction path 43 is located at a position sufficiently away from the liquefied gas evaporator 1 and the shield 11, that is, exhaust gas discharged from the downstream end of the suction path 43 is transferred to the liquefied gas evaporator 1 and the shield. 11 is provided at a position that does not affect the flow of airflow in the vicinity of 11.

かかる構成においては,液化ガス蒸発器1の運転中,上記の第一の実施形態における作用とほぼ同様にして,遮蔽体11の内側又は遮蔽体11の上縁部近傍において大部分の霧が消滅させられた後,送風機45の駆動により,遮蔽体11の内側の雰囲気が,遮蔽体11の上縁部において,吸引ノズル42の各吸引口42aによって強制的に吸引される。そして,吸引路43を通って,液化ガス蒸発器1や遮蔽体11から十分に離れた位置に排出され,大気中に放散される。このようにすれば,遮蔽体11の内側の冷気を確実に排出することができ,霧を効率的に消滅させることができる。例えば風が弱すぎる場合,風向きが悪い場合等,気象条件等によっては,上記の第一の実施形態において,遮蔽体11の上側での霧や冷気と相対的に温かい外気との接触が不十分になるおそれがあり,また,霧の量が多いために,相対的に温かい外気との接触だけでは霧を消滅させにくい場合もあると考えられるが,そのような場合においても,吸引ノズル42の吸引力によって,遮蔽体11の内側や遮蔽体11の上縁部付近に気流を強制的に形成させ,霧及び冷気と相対的に温かい外気との混合を促進させることで,霧を確実かつ効率的に消滅させることができる。また,遮蔽体11の外側や上方の外気の湿度が高い場合であっても,霧を吸引して系外に排出又は回収することにより,効率的に消滅させることができる。   In such a configuration, during operation of the liquefied gas evaporator 1, most of the mist disappears inside the shield 11 or in the vicinity of the upper edge of the shield 11 in substantially the same manner as in the first embodiment. After that, the atmosphere inside the shield 11 is forcibly sucked by the suction ports 42 a of the suction nozzle 42 at the upper edge of the shield 11 by driving the blower 45. Then, it passes through the suction path 43 and is discharged to a position sufficiently away from the liquefied gas evaporator 1 and the shield 11 and diffused into the atmosphere. In this way, the cool air inside the shield 11 can be reliably discharged, and the mist can be efficiently extinguished. For example, when the wind is too weak, the wind direction is bad, or the like, depending on weather conditions and the like, in the first embodiment, the contact between fog and cold air on the upper side of the shield 11 and relatively warm outside air is insufficient. In addition, since there is a large amount of mist, it may be difficult to eliminate the mist only by contact with relatively warm outside air. The air force is forcibly formed inside the shield 11 or near the upper edge of the shield 11 by the suction force, and the mixing of the fog and cold air with the relatively warm outside air is promoted, so that the fog can be reliably and efficiently produced. Can be extinguished. Further, even when the outside air outside or above the shield 11 is high in humidity, it can be efficiently extinguished by sucking the mist and discharging or collecting it outside the system.

なお,上記の吸引機構は,吸引ノズル42,吸引路43を備え,送風機45の動力によって吸引を行う構成としたが,吸引力を発生させる手段としては,例えばエジェクタ等を利用しても良い。例えば遮蔽体11の上縁部に,吸引ノズル42に代えて,エジェクタを備えるようにしても良い。   The suction mechanism includes the suction nozzle 42 and the suction passage 43 and performs suction by the power of the blower 45. However, as a means for generating the suction force, for example, an ejector may be used. For example, an ejector may be provided at the upper edge of the shield 11 instead of the suction nozzle 42.

次に,本発明にかかる第三の実施形態の一例について説明する。図5及び図6に例示されている霧拡散防止構造50は,上記の第一の実施形態にかかる霧拡散防止構造10と同様に,液化ガス蒸発器1を囲む所定位置に設けられた遮蔽体11を備えている。さらに,遮蔽体11の外側面に沿って横向きの気流を形成する誘導気流形成機構51を備えている。この誘導気流形成機構51は,例えば,遮蔽体11の外側面に沿って外側に設けられた壁体52,及び,遮蔽体11と壁体52との間の隙間53に例えば空気等の気体を供給する供給路55を備えた構成になっている。   Next, an example of the third embodiment according to the present invention will be described. The fog diffusion preventing structure 50 illustrated in FIGS. 5 and 6 is a shield provided at a predetermined position surrounding the liquefied gas evaporator 1, similarly to the fog diffusion preventing structure 10 according to the first embodiment. 11 is provided. Furthermore, a guided airflow forming mechanism 51 that forms a lateral airflow along the outer surface of the shield 11 is provided. For example, the induced airflow forming mechanism 51 supplies a gas such as air to a wall body 52 provided outside along the outer surface of the shield body 11 and a gap 53 between the shield body 11 and the wall body 52. The supply path 55 is provided.

外側の壁体52は,例えば内側の遮蔽体11の4つの外面からそれぞれ所定間隔を空けた位置において,遮蔽体11の外面に対して略平行に,基準面3から立設させて備えられている。また,壁体52は,遮蔽体11よりも低く形成されている。即ち,遮蔽体11の下部を囲むように設けられており,遮蔽体11の上端部は,壁体52の上方に突出させられている。   The outer wall body 52 is provided so as to be erected from the reference surface 3 so as to be substantially parallel to the outer surface of the shielding body 11, for example, at a position spaced apart from each of the four outer surfaces of the inner shielding body 11. Yes. The wall body 52 is formed lower than the shield body 11. That is, it is provided so as to surround the lower portion of the shielding body 11, and the upper end portion of the shielding body 11 is protruded above the wall body 52.

供給路55は,例えば隙間53の一端部側に接続されており,隙間53の一端部側から他端部側に向かって,隙間53に沿って横向きに気体を吐出するように指向させられている。この供給路55には,例えばブロワ等の送風機57が介設されている。   The supply path 55 is connected to, for example, one end side of the gap 53, and is directed to discharge gas laterally along the gap 53 from one end side to the other end side of the gap 53. Yes. For example, a blower 57 such as a blower is interposed in the supply path 55.

かかる構成においては,液化ガス蒸発器1の運転中,上記の第一の実施形態における作用とほぼ同様にして,遮蔽体11の内側又は遮蔽体11の上縁部近傍において大部分の霧が消滅させられる。一方,遮蔽体11の外側においては,送風機57の駆動により,供給路55から気体が吐出され,隙間53内に横向きの気流が形成される。すると,遮蔽体11の内側から上昇して外側に流出した雰囲気は,この隙間53内に形成された誘導気流に引き寄せられて,遮蔽体11の上端部の外側から下降する。そして,遮蔽体11の外側面に沿って,隙間53の気流と共に横向きに流され,隙間53の他端部側において遮蔽体11から離隔して,大気中に放散される。このようにして,遮蔽体11から流出する雰囲気を,隙間53内の誘導気流によって誘導することで,遮蔽体11の上縁部付近に,遮蔽体11から流出する雰囲気の気流を形成させ,遮蔽体11から流出する雰囲気と相対的に温かい外気との接触を促進させることができる。例えば風が弱すぎる場合,風向きが悪い場合等においても,遮蔽体11の上縁部付近に気流を強制的に形成させ,霧を確実に消滅させることができる。また,例えば供給路55から吐出される気体の湿度を予め低減させ,乾燥した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合であっても,霧を乾燥した気体に接触させることで,効率的に消滅させることができる。また,例えば供給路55から吐出される気体を予め加温した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合や,気温が低い場合であっても,霧を加温した気体に接触させることで,効率的に温めて消滅させることができる。   In such a configuration, during operation of the liquefied gas evaporator 1, most of the mist disappears inside the shield 11 or in the vicinity of the upper edge of the shield 11 in substantially the same manner as in the first embodiment. Be made. On the other hand, on the outside of the shield 11, gas is discharged from the supply path 55 by driving the blower 57, and a lateral airflow is formed in the gap 53. Then, the atmosphere rising from the inside of the shield 11 and flowing out to the outside is attracted to the induced airflow formed in the gap 53 and falls from the outside of the upper end portion of the shield 11. Then, along the outer surface of the shield 11, it flows sideways along with the airflow in the gap 53, and is separated from the shield 11 on the other end side of the gap 53 and diffused into the atmosphere. In this way, by guiding the atmosphere flowing out from the shield 11 by the induced air flow in the gap 53, an air flow of the atmosphere flowing out from the shield 11 is formed in the vicinity of the upper edge of the shield 11, thereby shielding the shielding. Contact between the atmosphere flowing out from the body 11 and the relatively warm outside air can be promoted. For example, even when the wind is too weak or the wind direction is bad, an air current can be forcibly formed in the vicinity of the upper edge of the shield 11 and the mist can be reliably extinguished. For example, if the humidity of the gas discharged from the supply path 55 is reduced in advance and discharged in a dry state, for example, even when the humidity of the outside air existing outside or above the shield 11 is high. It can be effectively extinguished by bringing the mist into contact with the dry gas. Further, for example, if the gas discharged from the supply path 55 is discharged in a preheated state, for example, when the outside air existing outside or above the shield 11 has a high humidity or when the temperature is low. However, by bringing the mist into contact with the heated gas, it can be efficiently warmed and extinguished.

なお,以上の誘導気流形成機構においては,隙間53の一端部側から気流を吐出させるとしたが,例えば図7に示すように,隙間53の両端部にそれぞれ供給路55を接続させ,隙間53の両端部側から互いに逆向きに気体を吐出させるようにしても良い。この場合,隙間53の両端部側から吐出された誘導気流は,例えば隙間53の長手方向における中間部付近において,互いに衝突して合流し,隙間53から上昇する誘導気流が形成される。かかる構成においては,遮蔽体11の内側から外側に流出する雰囲気は,上昇する誘導気流の両側においては,隙間53内に形成された横向きの誘導気流に引き寄せられて下降する。隙間53の長手方向における中間部付近においては,隙間53から上昇する誘導気流に引き寄せられて上昇させられ,遮蔽体11の上方において,大気中に放散される。この場合も,遮蔽体11から流出する気流を誘導気流によって誘導し,遮蔽体11の近傍に気流を強制的に形成させ,霧を効率的に消滅させることができる。   In the above-described guided airflow forming mechanism, the airflow is discharged from one end of the gap 53. For example, as shown in FIG. Alternatively, the gas may be discharged in opposite directions from both ends. In this case, the induced air currents discharged from both ends of the gap 53 collide with each other in the vicinity of the intermediate portion in the longitudinal direction of the gap 53 and merge to form an induced air current rising from the gap 53. In such a configuration, the atmosphere flowing out from the inner side to the outer side of the shield 11 is attracted to the laterally induced airflow formed in the gap 53 on both sides of the rising induced airflow and descends. In the vicinity of the intermediate portion in the longitudinal direction of the gap 53, the gap is drawn up by the induced airflow rising from the gap 53 and diffused into the atmosphere above the shield 11. Also in this case, the airflow flowing out from the shield 11 can be guided by the induced airflow, the airflow can be forcibly formed in the vicinity of the shield 11, and the fog can be efficiently extinguished.

また,壁体52及び隙間53は,必ずしも設けなくても良く,遮蔽体11の外側に沿った横方向に気体を吐出させるだけでも良い。この場合も,遮蔽体11の外側に横向きの誘導気流を形成することができ,遮蔽体11から流出した気流を,遮蔽体11の外側において誘導することができる。   In addition, the wall body 52 and the gap 53 are not necessarily provided, and gas may be discharged only in the lateral direction along the outside of the shield body 11. Also in this case, a laterally directed airflow can be formed outside the shield 11, and the airflow flowing out from the shield 11 can be guided outside the shield 11.

次に,本発明にかかる第四の実施形態の一例について説明する。図8及び図9に例示されている霧拡散防止構造60は,上記の第一の実施形態にかかる霧拡散防止構造10と同様に,液化ガス蒸発器1を囲む所定位置に設けられた遮蔽体11を備えている。さらに,この遮蔽体11の上方に向かって気流を吹き上げる吹上気流形成機構61を備えている。   Next, an example of the fourth embodiment according to the present invention will be described. The fog diffusion preventing structure 60 illustrated in FIG. 8 and FIG. 9 is a shield provided at a predetermined position surrounding the liquefied gas evaporator 1 in the same manner as the fog diffusion preventing structure 10 according to the first embodiment. 11 is provided. Furthermore, a blowing airflow forming mechanism 61 is provided for blowing an airflow upward of the shield 11.

吹上気流形成機構61は,例えば,遮蔽体11の上縁部に沿って設けられた吐出ノズル62と,吐出ノズル62に接続された供給路63とを備えた構成になっている。吐出ノズル62の上面には,遮蔽体11の上方に向かって例えば空気等の気体を吐出する複数の吐出口62aが,例えば遮蔽体11の上縁部に沿った横方向において,一列に並べて設けられている。各吐出口62aは,例えば略鉛直方向に気体を吐出するように指向させられている。供給路63には,例えばブロワ等の送風機65が介設されている。   The blow-up airflow forming mechanism 61 is configured to include, for example, a discharge nozzle 62 provided along the upper edge portion of the shield 11 and a supply path 63 connected to the discharge nozzle 62. On the upper surface of the discharge nozzle 62, a plurality of discharge ports 62a for discharging a gas such as air toward the upper side of the shield 11 are provided in a line in the horizontal direction along the upper edge of the shield 11, for example. It has been. Each discharge port 62a is directed to discharge gas in a substantially vertical direction, for example. A blower 65 such as a blower is interposed in the supply path 63.

かかる構成においては,液化ガス蒸発器1の運転中,上記の第一の実施形態における作用とほぼ同様にして,遮蔽体11の内側又は遮蔽体11の上縁部近傍において大部分の霧が消滅させられる。一方,送風機65の駆動により,供給路63から吐出ノズル62内に気体が供給され,この気体が,各吐出口62aから一斉に吐出される。これにより,遮蔽体11の上縁部の上方には,略鉛直方向に向かって吹き上げられる上昇気流(例えばエアカーテン)が形成される。すると,遮蔽体11の内側の雰囲気(冷気)は,吐出口62aから吐出される気流に伴って,遮蔽体11から上昇させられ,遮蔽体11より上方の高い位置において,大気中に放散される。このようにすると,遮蔽体11の上端部付近の雰囲気を,吐出ノズル62から上向きに吐出される誘導気流によって誘導し,遮蔽体11から流出する雰囲気と相対的に温かい外気との接触を促進させ,霧を効率的に消滅させることができる。例えば風が弱すぎる場合,風向きが悪い場合等においても,霧を確実に消滅させることができる。また,例えば吐出口62aから吐出される気体の湿度を予め低減させ,乾燥した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合であっても,霧を乾燥した気体に接触させることで,効率的に消滅させることができる。また,例えば吐出口62aから吐出される気体を予め加温した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合や,気温が低い場合であっても,霧を加温した気体に接触させることで,効率的に温めて消滅させることができる。   In such a configuration, during operation of the liquefied gas evaporator 1, most of the mist disappears inside the shield 11 or in the vicinity of the upper edge of the shield 11 in substantially the same manner as in the first embodiment. Be made. On the other hand, by driving the blower 65, gas is supplied from the supply path 63 into the discharge nozzle 62, and this gas is discharged from the discharge ports 62a all at once. Thereby, an upward air flow (for example, an air curtain) blown up in a substantially vertical direction is formed above the upper edge portion of the shield 11. Then, the atmosphere (cold air) inside the shield 11 is raised from the shield 11 along with the airflow discharged from the discharge port 62a, and is diffused into the atmosphere at a high position above the shield 11. . In this way, the atmosphere near the upper end of the shield 11 is guided by the induced airflow discharged upward from the discharge nozzle 62, and the contact between the atmosphere flowing out of the shield 11 and the relatively warm outside air is promoted. , The fog can be extinguished efficiently. For example, when the wind is too weak or the wind direction is bad, the fog can be reliably extinguished. Further, for example, if the humidity of the gas discharged from the discharge port 62a is reduced in advance and discharged in a dry state, for example, even when the humidity of outside air existing outside or above the shield 11 is high. It can be effectively extinguished by bringing the mist into contact with the dry gas. For example, if the gas discharged from the discharge port 62a is discharged in a preheated state, for example, when the outside air existing outside or above the shield 11 has a high humidity or when the temperature is low. However, by bringing the mist into contact with the heated gas, it can be efficiently warmed and extinguished.

なお,上記の吹上気流形成機構では,吐出ノズル62は遮蔽体11の上縁部に設けるとしたが,吐出ノズル62の位置はかかる場所には限定されず,例えば,遮蔽体11より外側において,遮蔽体11の外側面に沿って横向きに設け,吐出口62aを上向きに指向させ,気体を遮蔽体11の外側面に沿って,遮蔽体11の上縁部よりも上方まで吹き上げるように備えても良い。この場合も,遮蔽体11の上方にカーテン状の誘導気流を形成することができる。即ち,遮蔽体11の内側の雰囲気を遮蔽体11の上方に誘導させながら,遮蔽体11から流出する雰囲気と相対的に温かい外気との接触を促進させることができる。   In the above-described blowing airflow formation mechanism, the discharge nozzle 62 is provided at the upper edge portion of the shield 11. However, the position of the discharge nozzle 62 is not limited to such a location. Provided sideways along the outer surface of the shield 11, directing the discharge port 62a upward, so as to blow up the gas along the outer surface of the shield 11 above the upper edge of the shield 11. Also good. Also in this case, a curtain-shaped induced airflow can be formed above the shield 11. That is, it is possible to promote contact between the atmosphere flowing out from the shield 11 and the relatively warm outside air while guiding the atmosphere inside the shield 11 to the upper side of the shield 11.

また,上記の吹上気流形成機構では,遮蔽体11よりも上方まで気体を吹き上げて誘導気流を形成するとしたが,例えば図10に示すように,吐出ノズル62を遮蔽体11の下側に備え,吐出口62aから吐出される気体が吹き上げられる高さが,遮蔽体11の上縁部に対して低くなるようにしても良い。かかる構成においては,液化ガス蒸発器1の運転中,上記の第一の実施形態における作用とほぼ同様にして,遮蔽体11の内側又は遮蔽体11の上縁部近傍において大部分の霧が消滅させられる。一方,遮蔽体11の外側においては,気体が各吐出口62aから一斉に吐出される。これにより,遮蔽体11の上縁部下方には,略鉛直方向に向かってカーテン状に吹き上げられる上昇気流が形成される。この場合,遮蔽体11内の雰囲気が遮蔽体11の上縁部から流出して下降しようとすると,この気流に対して,吐出口62aから吐出された気体が逆流するような向きに吹き上げられて衝突し,混合させられる。また,吐出口62aから吐出された気体との衝突で拡散されることによって,遮蔽体11の周囲の外気とも混合させられる。こうして,遮蔽体11から流出しようとする気流が,吐出口62aから吐出された気体や遮蔽体11の周囲の外気と効率的に接触させられることで,確実に温められる。従って,気流中の霧を効率的に消滅させることができる。例えば風が弱すぎる場合,風向きが悪い場合等においても,霧を効率的に温めて消滅させることができる。また,例えば吐出口62aから吐出される気体の湿度を予め低減させ,乾燥した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合であっても,霧を乾燥した気体に接触させることで,効率的に消滅させることができる。また,この場合も,例えば吐出口62aから吐出される気体を予め加温した状態で吐出させるようにすれば,例えば遮蔽体11の外側や上方に存在する外気の湿度が高い場合や,気温が低い場合であっても,霧を加温した気体に接触させることで,効率的に温めて消滅させることができる。   Further, in the above blowing airflow formation mechanism, the gas is blown up above the shield 11 to form the induced airflow. For example, as shown in FIG. 10, the discharge nozzle 62 is provided below the shield 11, The height at which the gas discharged from the discharge port 62a is blown up may be lower than the upper edge of the shield 11. In such a configuration, during operation of the liquefied gas evaporator 1, most of the mist disappears inside the shield 11 or in the vicinity of the upper edge of the shield 11 in substantially the same manner as in the first embodiment. Be made. On the other hand, on the outside of the shield 11, gas is discharged from the discharge ports 62a all at once. As a result, an updraft that is blown up in the form of a curtain toward the substantially vertical direction is formed below the upper edge of the shield 11. In this case, when the atmosphere in the shield 11 flows out from the upper edge of the shield 11 and descends, the gas discharged from the discharge port 62a is blown up in a direction in which this gas flows backward. Collide and be mixed. Further, it is mixed with the ambient air around the shield 11 by being diffused by collision with the gas discharged from the discharge port 62a. In this way, the airflow that is about to flow out from the shield 11 is reliably warmed by being brought into efficient contact with the gas discharged from the discharge port 62 a and the outside air around the shield 11. Therefore, the fog in the air current can be efficiently extinguished. For example, when the wind is too weak or the wind direction is bad, the fog can be efficiently warmed and extinguished. Further, for example, if the humidity of the gas discharged from the discharge port 62a is reduced in advance and discharged in a dry state, for example, even when the humidity of outside air existing outside or above the shield 11 is high. It can be effectively extinguished by bringing the mist into contact with the dry gas. Also in this case, for example, if the gas discharged from the discharge port 62a is discharged in a preheated state, for example, the humidity of the outside air existing outside or above the shield 11 is high, or the temperature is Even if it is low, it can be efficiently warmed and extinguished by bringing the mist into contact with a heated gas.

以上,本発明の好適な第一の実施形態〜第四の実施形態の一例をそれぞれ説明したが,本発明はここで説明した形態には限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although the example of suitable 1st embodiment-4th embodiment of this invention was each demonstrated, this invention is not limited to the form demonstrated here. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば以上の実施形態では,液化ガス蒸発器1はLNGをNGにする蒸発器であるとしたが,液化ガス蒸発器の種類や構造は,以上の実施形態に示したものに限定されない。例えば,液化ガス蒸発器において処理される液化ガスあるいはガスの種類,即ち,伝熱管21に通過させられる被処理流体は,LNGとNGには限定されず,他の種類の流体,例えば,LPG(Liquefied Petroleum Gas:液化石油ガス)とPG,液体窒素(N)と窒素ガス,あるいは,液体酸素(O)と酸素ガス等であっても良い。即ち,LPGをPGに戻す液化ガス蒸発器,液体窒素を窒素ガスに戻す液化ガス蒸発器,また,液体酸素を酸素ガスに戻す液化ガス蒸発器等であっても良い。 For example, in the above embodiment, the liquefied gas evaporator 1 is an evaporator that changes LNG to NG, but the type and structure of the liquefied gas evaporator are not limited to those shown in the above embodiment. For example, the type of liquefied gas or gas to be processed in the liquefied gas evaporator, that is, the fluid to be processed that is passed through the heat transfer tube 21 is not limited to LNG and NG, but other types of fluids such as LPG ( Liquid Petroleum Gas (liquefied petroleum gas) and PG, liquid nitrogen (N 2 ) and nitrogen gas, or liquid oxygen (O 2 ) and oxygen gas may be used. That is, a liquefied gas evaporator that returns LPG to PG, a liquefied gas evaporator that returns liquid nitrogen to nitrogen gas, a liquefied gas evaporator that returns liquid oxygen to oxygen gas, and the like may be used.

以上の実施形態では,遮蔽体11の内側に一台の液化ガス蒸発器1が設置されている場合を説明したが,遮蔽体11の内側には,複数の液化ガス蒸発器1を備えても良い。例えば図11に示すように,三台の液化ガス蒸発器1A,1B,1Cを,横方向(図11においてX軸方向(水平方向))において一列に並べて備えても良い。また,各液化ガス蒸発器1A,1B,1Cと基準面3との間には,下方空間5がそれぞれ形成されている。この場合も,遮蔽体11は,各液化ガス蒸発器1A,1B,1Cから一定の間隔を空けた位置に配置することが好ましい。   In the above embodiment, the case where one liquefied gas evaporator 1 is installed inside the shield 11 has been described, but a plurality of liquefied gas evaporators 1 may be provided inside the shield 11. good. For example, as shown in FIG. 11, three liquefied gas evaporators 1A, 1B, and 1C may be arranged in a row in the horizontal direction (X-axis direction (horizontal direction in FIG. 11)). Further, a lower space 5 is formed between each liquefied gas evaporator 1A, 1B, 1C and the reference plane 3. Also in this case, it is preferable to arrange the shield 11 at a position spaced apart from each of the liquefied gas evaporators 1A, 1B, 1C.

なお,図11に示す例では,三台の液化ガス蒸発器1A,1B,1Cは,互いに同様の構成を有し,X軸方向においてこの順に並べて,また所定間隔を空けて設けられている。各液化ガス蒸発器1A,1B,1Cは,下枠31の4つの側面がそれぞれX軸方向,Y軸方向(X軸方向と垂直な水平方向)に沿った方向に向けられた状態で備えられている。そして,液化ガス蒸発器1Aの下方空間5と遮蔽体11の内側面(Y軸方向に向けられた面)との間のX軸方向における距離L1,液化ガス蒸発器1Cの下方空間5と遮蔽体11の内側面(Y軸方向に向けられた面)との間のX軸方向における距離L2が,それぞれ約0.5m以上かつ5m以下程度,好ましくは3m程度になるように配置されている。また,各液化ガス蒸発器1A,1B,1Cの下方空間5と各下方空間5の両側に位置する遮蔽体11の内側面(X軸方向に向けられた面)との間のY軸方向における距離L3,L4が,それぞれ約0.5m以上かつ5m以下程度,好ましくは3m程度になるように配置されている。このようにしても,各液化ガス蒸発器1A,1B,1Cから発生する霧を効果的に消滅させ,霧の拡散を防止できる。   In the example shown in FIG. 11, the three liquefied gas evaporators 1A, 1B, and 1C have the same configuration, are arranged in this order in the X-axis direction, and are provided at predetermined intervals. Each liquefied gas evaporator 1A, 1B, 1C is provided with the four side surfaces of the lower frame 31 oriented in the direction along the X-axis direction and the Y-axis direction (horizontal direction perpendicular to the X-axis direction), respectively. ing. Then, the distance L1 in the X-axis direction between the lower space 5 of the liquefied gas evaporator 1A and the inner side surface (the surface oriented in the Y-axis direction) of the shield 11 and the lower space 5 of the liquefied gas evaporator 1C and the shield. The distance L2 in the X-axis direction between the inner surface of the body 11 (the surface oriented in the Y-axis direction) is about 0.5 m to about 5 m, and preferably about 3 m. . Further, in the Y-axis direction between the lower space 5 of each of the liquefied gas evaporators 1A, 1B, 1C and the inner side surface (surface directed in the X-axis direction) of the shield 11 located on both sides of each lower space 5 The distances L3 and L4 are arranged to be about 0.5 m or more and about 5 m or less, preferably about 3 m, respectively. Even if it does in this way, the fog which generate | occur | produces from each liquefied gas evaporator 1A, 1B, 1C can be extinguished effectively, and the spreading | diffusion of fog can be prevented.

また,上記のように遮蔽体11の内側に複数の液化ガス蒸発器1を備えた場合も,以上の第一の実施形態〜第四の実施形態において説明した各種の霧拡散防止構造10,40,50,60の構成を適用しても良い。   In addition, when the plurality of liquefied gas evaporators 1 are provided inside the shield 11 as described above, the various fog diffusion preventing structures 10 and 40 described in the first to fourth embodiments described above. , 50, 60 may be applied.

以上の実施形態では,遮蔽体11の形状は平面視において略方形状であるとしたが,かかる形状には限定されず,例えば円形等であっても良い。また,遮蔽体11は液化ガス蒸発器1の下方空間5の周囲全体を囲むように設けるとしたが,下方空間5の周囲の一部のみに対向させるように設けても良い。例えば図12に示すように,平面視において略コの字状をなす遮蔽体11’を形成し,遮蔽体11’の3つの内側面を下方空間5の周囲の3方向においてそれぞれ対向させるようにしても良い。なお,この場合も,遮蔽体11の3つの内側面と下方空間5との間の水平方向における距離Lは,それぞれ約0.5m以上かつ5m以下程度,より好ましくは約3m程度にすることが好ましい。また,例えば平面視において略L字状をなす遮蔽体を形成し,2つの内側面を下方空間5の周囲の2方向に対向させるようにしても良く,あるいは,遮蔽体を一枚の平板状にして,下方空間5の周囲の一側部のみに対面させるように備えても良い。これらの場合も,遮蔽体が設けられている側において,液化ガス蒸発器1から発生する霧を消滅させ,遮蔽体の外側に霧が流出することを防止できる。例えば液化ガス蒸発器1の片側のみに道路や民家等が存在し,反対側は工場の敷地になっている場合,少なくとも道路や民家が存在する側に遮蔽体を設ければ良く,他の方向においては遮蔽体を設けず,開放させたままにしても良い。なお,遮蔽体の形状や配置は,例えば下方空間5と遮蔽体との間に,液化ガス蒸発器1から発生した霧や冷気が一時的に溜められる空間が十分に形成されるように設定すれば良い。例えば液化ガス蒸発器1の近傍に,他の工場用の設備や建築物等が隣接して存在するときは,当該機器あるいは建築物等によって霧や冷気を堰き止めることが可能な場合,即ち,当該機器あるいは建築物が,霧や冷気に対する遮蔽物としても機能する場合が考えられるが,このような場合は,当該機器あるいは建築物等が存在する側には遮蔽体を設けなくても良い。また,例えば外気の風向きが特定の方向に偏向しやすい条件の場所に液化ガス蒸発器1が設置されている場合は,遮蔽体の形状や配置は,その風向きを考慮して設定することが望ましく,例えば,液化ガス蒸発器1に対して風下に遮蔽体が配置されるようにしても良い。そうすれば,液化ガス蒸発器1の風下に流されやすい霧や冷気を,確実に堰き止めることができる。   In the above embodiment, the shape of the shield 11 is substantially rectangular in plan view, but is not limited to this shape, and may be, for example, a circle. Further, although the shield 11 is provided so as to surround the entire periphery of the lower space 5 of the liquefied gas evaporator 1, it may be provided so as to face only a part of the periphery of the lower space 5. For example, as shown in FIG. 12, a shield 11 ′ having a substantially U shape in plan view is formed, and the three inner surfaces of the shield 11 ′ are opposed to each other in three directions around the lower space 5. May be. Also in this case, the horizontal distance L between the three inner surfaces of the shield 11 and the lower space 5 should be about 0.5 m to 5 m, more preferably about 3 m, respectively. preferable. Further, for example, a shielding body having a substantially L shape in a plan view may be formed, and two inner side surfaces may be opposed to each other in two directions around the lower space 5, or the shielding body may be a single flat plate. Thus, it may be provided so as to face only one side portion around the lower space 5. In these cases also, the fog generated from the liquefied gas evaporator 1 can be eliminated on the side where the shield is provided, and the fog can be prevented from flowing out of the shield. For example, when roads and private houses exist only on one side of the liquefied gas evaporator 1, and the other side is a factory site, a shield should be provided at least on the side where the roads and private houses exist. In, the shield may not be provided and may be left open. The shape and arrangement of the shield are set so that, for example, a sufficient space is formed between the lower space 5 and the shield so that fog and cold air generated from the liquefied gas evaporator 1 can be temporarily stored. It ’s fine. For example, when there are other factory equipment or buildings in the vicinity of the liquefied gas evaporator 1, it is possible to block mist or cold air with the equipment or buildings, that is, Although the case where the said apparatus or building functions also as a shielding object with respect to fog and cold air is considered, in such a case, it is not necessary to provide a shielding body in the side in which the said apparatus or building exists. For example, when the liquefied gas evaporator 1 is installed in a place where the wind direction of the outside air is easily deflected in a specific direction, it is desirable to set the shape and arrangement of the shield in consideration of the wind direction. For example, a shield may be arranged leeward with respect to the liquefied gas evaporator 1. If it does so, the mist and cold which are easy to be flowed in the lee of the liquefied gas evaporator 1 can be blocked reliably.

なお,例えば液化ガス蒸発器1の状態を監視するために設けられる測定器,操作用のバルブ等,液化ガス蒸発器1の周辺に設置される機器は,遮蔽体の外側に設けても良い。そうすれば,作業員による測定器の目視やバルブの操作等が霧の存在によって邪魔されることを防止できる。また,作業員が遮蔽体の内部に入るために遮蔽体の一部を開放させたり遮蔽体を迂回したりする手間を省略でき,作業性を向上させることができる。   Note that, for example, devices installed around the liquefied gas evaporator 1, such as a measuring instrument and an operation valve provided for monitoring the state of the liquefied gas evaporator 1, may be provided outside the shield. By doing so, it is possible to prevent the operator from visually observing the measuring instrument and operating the valve from being disturbed by the presence of fog. In addition, it is possible to eliminate the trouble of opening a part of the shield or bypassing the shield because the worker enters the shield, and the workability can be improved.

本発明者らは,遮蔽体の霧拡散防止効果を確認するため,以下のような実験を行った。図13に示すように,平面視において略方形をなす囲い70を基準面3から立設させ,囲い70の4つの側部がそれぞれX軸方向,Y軸方向に沿って備えられるように設け,囲い70の内側には,三台の液化ガス蒸発器1A,1B,1Cを,X軸方向に所定間隔を空けて並べて設置した。この囲い70は網状,即ち,空気が網目を通過して囲い70の内側と外側とに移動できるものとし,さらに,Y軸方向の正方向に位置する囲い70の一側部のみを,ビニール製のシート71によって覆った状態にした。即ち,網目がシート71によって遮蔽され,空気が網目を通過できずに堰き止められるようにし,このシート71が設けられた囲い70の一側部のみが遮蔽体72を構成するようにした。囲い70の基準面3からの高さ(Z軸方向(鉛直方向)の高さ)は2m,Y軸方向(正方向)における液化ガス蒸発器1Bの真下(下方空間5の中央部)からの距離は4.55m,Y軸方向(負方向)における液化ガス蒸発器1Bの真下からの距離は3.35mとした。   The present inventors performed the following experiment in order to confirm the fog diffusion preventing effect of the shield. As shown in FIG. 13, an enclosure 70 having a substantially square shape in plan view is erected from the reference plane 3, and four sides of the enclosure 70 are provided along the X-axis direction and the Y-axis direction, respectively. Inside the enclosure 70, three liquefied gas evaporators 1A, 1B, and 1C were placed side by side at a predetermined interval in the X-axis direction. The enclosure 70 is net-like, that is, air can move to the inside and outside of the enclosure 70 through the mesh, and only one side of the enclosure 70 located in the positive direction of the Y-axis direction is made of vinyl. The sheet 71 was covered. That is, the mesh is shielded by the sheet 71 so that air cannot be passed through the mesh and is blocked, and only one side of the enclosure 70 provided with the sheet 71 constitutes the shield 72. The height of the enclosure 70 from the reference plane 3 (the height in the Z-axis direction (vertical direction)) is 2 m, and the height from the liquefied gas evaporator 1B (the central portion of the lower space 5) in the Y-axis direction (positive direction). The distance was 4.55 m, and the distance from directly below the liquefied gas evaporator 1B in the Y-axis direction (negative direction) was 3.35 m.

また,温度計として測温抵抗体を複数箇所に設置した。具体的には,図13及び図14に示すように,中央に備えられた液化ガス蒸発器1Bの真下に位置し,基準面3からの高さが0.5mである測定位置P1,液化ガス蒸発器1Bの真下に位置し,基準面3からの高さが1.5mである(測定位置P1より鉛直方向において1.0m高い)測定位置P1,測定位置P1からY軸方向(正方向)において3.0mの間隔を空けた位置であって,基準面3からの高さが0.5mである測定位置P2,測定位置P1からY軸方向(正方向)において4.3mの間隔を空けた位置(シート71の内面近傍)であって,基準面3からの高さが0.5mである測定位置P3,測定位置P1からY軸方向(正方向)において4.3mの間隔を空けた位置であって,基準面3からの高さが1.5mである測定位置P3,測定位置P1からY軸方向(正方向)において4.8mの間隔を空けた位置(シート71の外面近傍)であって,基準面3からの高さが0.5mである測定位置P4,測定位置P1からY軸方向(正方向)において4.8mの間隔を空けた位置であって,基準面3からの高さが1.5mである測定位置P4,測定位置P1からY軸方向(負方向)において3.1mの間隔を空けた位置(囲い70においてシート71が設けられていない側の内側近傍)であって,基準面3からの高さが0.5mである測定位置P5,測定位置P1からY軸方向(負方向)において3.1mの間隔を空けた位置であって,基準面3からの高さが1.5mである測定位置P5,測定位置P1からY軸方向(負方向)において3.6mの間隔を空けた位置(囲い70においてシート71が設けられていない側の外側近傍)であって,基準面3からの高さが0.5mである測定位置P6,測定位置P1からY軸方向(負方向)において3.6mの間隔を空けた位置であって,基準面3からの高さが1.5mである測定位置P6の,合計12箇所に,測温抵抗体をそれぞれ1つずつ設置した。 Resistance thermometers were installed at multiple locations as thermometers. Specifically, as shown in FIGS. 13 and 14, the measurement position P1 L , which is located directly below the liquefied gas evaporator 1B provided at the center and has a height of 0.5 m from the reference plane 3, Positioned directly below the gas evaporator 1B, the height from the reference plane 3 is 1.5 m (1.0 m higher in the vertical direction than the measurement position P1 L ), the measurement position P1 H and the measurement position P1 L in the Y-axis direction The measurement position P2 L is a position spaced by 3.0 m in the (positive direction) and the height from the reference plane 3 is 0.5 m, and 4 in the Y-axis direction (positive direction) from the measurement position P1 L. .3 m in the position (near the inner surface of the sheet 71) at a measurement position P3 L at a height of 0.5 m from the reference surface 3 and the measurement position P1 H in the Y-axis direction (positive direction) 4.3m apart from the reference plane 3 at a distance of 3m 1.5m at a measurement position P3 H, a Y-axis direction from the measuring position P1 L spaced locations of 4.8m in (forward) (outer surface near the seat 71), the height from the reference plane 3 Is a position spaced by 4.8 m in the Y-axis direction (positive direction) from the measurement position P4 L and the measurement position P1 H, where the height from the reference plane 3 is 1.5 m. The measurement position P4 H and the measurement position P1 L are positions spaced by 3.1 m in the Y-axis direction (negative direction) (near the inner side on the side where the sheet 71 is not provided in the enclosure 70), and the reference plane 3 The measurement position P5 L is 0.5 m from the measurement position P1 H and the measurement position P1 H is a position spaced by 3.1 m in the Y-axis direction (negative direction), and the height from the reference plane 3 is 1 a .5m measurement position P5 H, from the measured position P1 L Y A measurement position at a distance of 3.6 m in the direction (negative direction) (near the outside on the side where the sheet 71 is not provided in the enclosure 70) and having a height of 0.5 m from the reference plane 3 A total of 12 measurement positions P6 H at a distance of 3.6 m in the Y-axis direction (negative direction) from P6 L and measurement position P1 H and having a height of 1.5 m from the reference plane 3 One RTD was installed at each location.

上記のような構成において,液化ガス蒸発器1A,1B,1Cのうち2つの液化ガス蒸発器1A,1Bをそれぞれ稼動させ,液化ガスの蒸発を行いながら,各測温抵抗体による測定を行った。なお,実験を行った時間は,7月の午後であった。外気の温度は22℃,湿度は68%であった。その結果を図15のグラフに示す。   In the configuration as described above, the two liquefied gas evaporators 1A, 1B out of the liquefied gas evaporators 1A, 1B, 1C are operated, and the liquefied gas is evaporated, and measurement is performed by each resistance temperature detector. . The experiment was conducted in the afternoon of July. The temperature of the outside air was 22 ° C. and the humidity was 68%. The result is shown in the graph of FIG.

図15に示すように,囲い70及び遮蔽体72の内側(液化ガス蒸発器1B側のエリア)における各測定点,即ち,測定位置P1,P3,P5,P1L,P2,P3,P5における測定温度は,−7.6℃から12.6℃の間にあり,温度22℃,湿度68%における露点温度(15.8℃)以下であることから,囲い70及び遮蔽体72の内側では,霧が発生していることがわかる。 As shown in FIG. 15, each measurement point inside the enclosure 70 and the shield 72 (area on the liquefied gas evaporator 1B side), that is, measurement positions P1 H , P3 H , P5 H , P1 L , P2 L , P3 The measured temperature at L and P5 L is between −7.6 ° C. and 12.6 ° C., and is below the dew point temperature (15.8 ° C.) at a temperature of 22 ° C. and a humidity of 68%. It can be seen that fog is generated inside the body 72.

次に,ビニールシート71が設けられていない側における高さ0.5mの状況,即ち,囲い70の内側と外側の測定位置P5L,P6Lにおける測定温度に着目すると,測定温度はいずれも露点温度以下の0℃付近であり,霧が発生することがわかる。即ち,大量の霧が下方に滞留し,囲い70の網目を霧と冷気が透過して外側に流出することがわかる。これに対して,ビニールシート71で覆った遮蔽体72側における高さ0.5mの状況,即ち,遮蔽体72の内側と外側の測定位置P3,P4における測定温度に着目すると,遮蔽体72の内側の測定位置P3では測定温度は露点温度以下の3.4℃であり,霧が発生するのに対して,遮蔽体72の外側の測定位置P4では測定温度は露点温度以上の16.5℃であり,消霧されることがわかる。同様に,遮蔽体72側の高さ1.5mの測定位置P3,P4における測定温度に着目すると,内側の測定位置P3では測定温度は10.0℃であり,霧が発生するのに対して,外側の測定位置P4では測定温度は16.4℃であり,消霧されることがわかる。 Next, when attention is paid to the situation where the height is 0.5 m on the side where the vinyl sheet 71 is not provided, that is, the measurement temperatures at the measurement positions P5 L and P6 L inside and outside the enclosure 70, the measurement temperatures are all dew points. It can be seen that fog is generated at around 0 ° C below the temperature. That is, it can be seen that a large amount of mist stays downward, and the mist and cold air permeate through the mesh of the enclosure 70 and flow outward. On the other hand, when focusing on the situation of the height of 0.5 m on the side of the shield 72 covered with the vinyl sheet 71, that is, the measurement temperatures at the measurement positions P3 L and P4 L on the inside and outside of the shield 72, the shield At the measurement position P3 L inside 72, the measurement temperature is 3.4 ° C. below the dew point temperature, and fog is generated, whereas at the measurement position P4 L outside the shield 72, the measurement temperature is above the dew point temperature. It can be seen that the temperature is 16.5 ° C. and the fog is eliminated. Similarly, paying attention to the measurement temperature at the measurement positions P3 H and P4 H with a height of 1.5 m on the shield 72 side, the measurement temperature is 10.0 ° C. at the inner measurement position P3 H , and fog is generated. On the other hand, at the outer measurement position P4 H , the measurement temperature is 16.4 ° C. and it can be seen that the fog is eliminated.

また,囲い70の内側と遮蔽体72の内側における高さ1.5mの状況,即ち,測定位置P3,P5における測定温度を比較すると,液化ガス蒸発器1Bの真下から3.1m離れている測定位置P5の測定温度は12.6℃であるのに対して,液化ガス蒸発器1Bの真下から4.3m,即ち,測定位置P5よりも液化ガス蒸発器1Bから離れている測定位置P3での測定温度は,10.0℃であり,測定位置P5よりも低温である。このことから,遮蔽体72側においては,霧及び冷気が遮蔽体72によって堰き止められ,測定位置P3よりも上方まで滞留していることがわかる。 In addition, when the situation of the height of 1.5 m inside the enclosure 70 and the inside of the shield 72, that is, the measurement temperatures at the measurement positions P3 H and P5 H , is compared, it is 3.1 m away from just below the liquefied gas evaporator 1B. The measurement temperature at the measurement position P5 H is 12.6 ° C., whereas the measurement temperature is 4.3 m from directly below the liquefied gas evaporator 1B, that is, the measurement is farther from the liquefied gas evaporator 1B than the measurement position P5 H. The measurement temperature at the position P3 H is 10.0 ° C., which is lower than the measurement position P5 H. Therefore, in the shield 72 side, fog and cold air dammed by the shielding body 72, it is understood that staying up above the measurement position P3 H.

以上のことから,シート71を設けて遮蔽体72を構成することにより,液化ガス蒸発器1Bの運転によって発生した霧及び冷気は,遮蔽体72の内側において上方まで充満され,遮蔽体72からオーバーフローする際に,相対的に温かい外気と混合され,外気によって露点温度以上に加温されることで,消霧されると考えられる。   From the above, by providing the sheet 71 with the shield 71, fog and cold air generated by the operation of the liquefied gas evaporator 1 </ b> B are filled up inside the shield 72 and overflow from the shield 72. In this case, it is considered that the air is mixed with the relatively warm outside air and is heated to a dew point temperature or more by the outside air so that the fog is eliminated.

本発明は,例えばLNG,LPG等の液化ガスを蒸発させる液化ガス蒸発器において発生する霧の拡散防止に適用できる。   The present invention can be applied to prevent diffusion of fog generated in a liquefied gas evaporator that evaporates liquefied gas such as LNG and LPG.

H1 下方空間の高さ
H2 遮蔽体の高さ
L 下方空間と遮蔽体との間の距離
1 液化ガス蒸発器
2 蒸発器支持体
3 基準面
5 下方空間
10 霧拡散防止構造
11 遮蔽体
21 伝熱管
31 下枠
35 支持脚

















H1 Height of lower space H2 Height of shield L Distance between lower space and shield 1 Liquefied gas evaporator 2 Evaporator support 3 Reference surface 5 Lower space 10 Fog diffusion prevention structure 11 Shield 21 Heat transfer tube 31 Lower frame 35 Support legs

















Claims (2)

液化ガス蒸発器から霧が拡散することを防止する霧拡散防止構造であって,
前記液化ガス蒸発器は,基準面から持ち上げられた状態で支持され,
前記液化ガス蒸発器と前記基準面との間に形成された下方空間の外側に,前記基準面から立設された遮蔽体を備え,
前記遮蔽体は,前記下方空間の少なくとも一部に対向するように設けられ,
誘導気流を形成する誘導気流形成機構を備え,
前記遮蔽体の内側から上昇した雰囲気が前記誘導気流に引き寄せられる構成としたことを特徴とする,液化ガス蒸発器の霧拡散防止構造。
A mist diffusion prevention structure that prevents mist from diffusing from the liquefied gas evaporator,
The liquefied gas evaporator is supported while being lifted from a reference plane,
Provided with a shield standing from the reference surface outside the lower space formed between the liquefied gas evaporator and the reference surface,
The shield is provided to face at least a part of the lower space;
It has a guided airflow formation mechanism that forms a guided airflow,
A fog diffusion preventing structure for a liquefied gas evaporator, characterized in that the atmosphere rising from the inside of the shield is drawn to the induced airflow.
前記遮蔽体の外側面に沿って外側に壁体が設けられ,前記誘導気流形成機構は,前記遮蔽体と前記壁体との間の隙間に気体を供給することを特徴とする,請求項1に記載の液化ガス蒸発器の霧拡散防止構造。





















The wall is provided outside along the outer surface of the shield, and the guided airflow forming mechanism supplies gas to a gap between the shield and the wall. The mist diffusion prevention structure of the liquefied gas evaporator as described in 1.





















JP2011265632A 2011-12-05 2011-12-05 Mist diffusion preventing structure of liquefied gas evaporator Pending JP2012057797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265632A JP2012057797A (en) 2011-12-05 2011-12-05 Mist diffusion preventing structure of liquefied gas evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011265632A JP2012057797A (en) 2011-12-05 2011-12-05 Mist diffusion preventing structure of liquefied gas evaporator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006116188A Division JP4922652B2 (en) 2006-04-19 2006-04-19 Mist diffusion prevention structure of liquefied gas evaporator

Publications (1)

Publication Number Publication Date
JP2012057797A true JP2012057797A (en) 2012-03-22

Family

ID=46055120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265632A Pending JP2012057797A (en) 2011-12-05 2011-12-05 Mist diffusion preventing structure of liquefied gas evaporator

Country Status (1)

Country Link
JP (1) JP2012057797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277667A (en) * 2013-05-13 2013-09-04 无锡特莱姆气体设备有限公司 Demisting device of gasifier
CN106989628A (en) * 2017-04-25 2017-07-28 全讯射频科技(无锡)有限公司 A kind of demister of Nitrogen Station

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181294A (en) * 2000-12-18 2002-06-26 Ishii Iron Works Co Ltd Vaporization facility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181294A (en) * 2000-12-18 2002-06-26 Ishii Iron Works Co Ltd Vaporization facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277667A (en) * 2013-05-13 2013-09-04 无锡特莱姆气体设备有限公司 Demisting device of gasifier
CN106989628A (en) * 2017-04-25 2017-07-28 全讯射频科技(无锡)有限公司 A kind of demister of Nitrogen Station

Similar Documents

Publication Publication Date Title
KR101201873B1 (en) Hot radiator storing yard generating-apparatus
JP4922652B2 (en) Mist diffusion prevention structure of liquefied gas evaporator
WO2017082714A1 (en) V-shaped adiabatic cooling system
ES2389155T3 (en) Air conditioning system for enclosures
JP2012057797A (en) Mist diffusion preventing structure of liquefied gas evaporator
CN106403230A (en) Air deflector and wall-mounted type air conditioner indoor unit provided with same
JP2016094755A (en) Ventilation system and ventilation method for factory building
KR200176664Y1 (en) The induced draft fan for the ventilation equipment
US20110287706A1 (en) Diffuser for aircraft heating and air conditioning system
CN101501606A (en) Cooling apparatus and methods for cooling
US8776535B1 (en) Ambient air vaporizer fog dispersal system
JP4594343B2 (en) Low temperature liquefied gas vaporizer
JP2003294269A (en) Arrangement system of outdoor machine
CN208566965U (en) A kind of packing shop cooling system
KR100377507B1 (en) Combined flow type cooling tower
US11192040B2 (en) Free fall simulator cooling system
JP2006029356A (en) Low temperature liquefied gas vaporizing device
KR101368551B1 (en) Floor-standing air conditioner for one span
JP2007205574A5 (en)
JP2009270663A (en) Vaporization apparatus for low-temperature liquefied gas and operating method of vaporization apparatus for low-temperature liquefied gas
JP2013076519A (en) Support member for closing valve in outdoor unit, and outdoor unit including the same
JP5777254B2 (en) Air conditioning system and clean room
CN103324601A (en) Data center
JP2007303529A (en) Fog extinguishing method and fog extinguishing equipment
JP2002181294A (en) Vaporization facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514