[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012052686A - Fuel cell cogeneration system - Google Patents

Fuel cell cogeneration system Download PDF

Info

Publication number
JP2012052686A
JP2012052686A JP2010193447A JP2010193447A JP2012052686A JP 2012052686 A JP2012052686 A JP 2012052686A JP 2010193447 A JP2010193447 A JP 2010193447A JP 2010193447 A JP2010193447 A JP 2010193447A JP 2012052686 A JP2012052686 A JP 2012052686A
Authority
JP
Japan
Prior art keywords
heat recovery
fuel cell
hot water
relief valve
pressure relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010193447A
Other languages
Japanese (ja)
Inventor
Satoshi Matsumoto
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010193447A priority Critical patent/JP2012052686A/en
Publication of JP2012052686A publication Critical patent/JP2012052686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell cogeneration system having high reliability, by securing safety with a simple structure.SOLUTION: The fuel cell cogeneration system includes a heat recovery passage 8 for sequentially and annularly connecting a heat exchanger 4 for heat recovery, which recovers waste heat during power generation of a fuel cell 7, with a hot water storage tank 1 by heat recovery piping 3. The heat recovery piping 3 is provided with a pressure relief valve 18 for the heat recovery passage, which is configured to open when the pressure in the heat recovery piping 3 exceeds a predetermined pressure. Thereby, the safety is secured and the fuel cell cogeneration system with high reliability is obtained.

Description

本発明は、燃料電池の排熱を回収利用して温水を生成する燃料電池コージェネレーションシステムに関する。   The present invention relates to a fuel cell cogeneration system that recovers and uses exhaust heat of a fuel cell to generate hot water.

近年、水素と酸素の直接反応により電気エネルギーを生成する燃料電池は、発電効率が高く、大気汚染物質もほとんど排出しないため、クリーンな発電装置として期待されている。特に、燃料電池の発電時に発生する排熱も回収利用する燃料電池コージェネレーションシステムは、総合的なエネルギー効率が高く、省エネルギー機器としての普及が望まれている。そして、燃料電池の排熱を回収利用する方法としては、熱回収用の熱交換器を用いて、貯湯タンクの水を加熱し、温水として利用するのが一般的である。   In recent years, fuel cells that generate electrical energy by direct reaction of hydrogen and oxygen are expected to be clean power generators because they have high power generation efficiency and emit almost no air pollutants. In particular, a fuel cell cogeneration system that collects and uses exhaust heat generated during power generation of a fuel cell has high overall energy efficiency and is expected to spread as an energy saving device. As a method for recovering and utilizing the exhaust heat of the fuel cell, it is common to use the heat exchanger for heat recovery to heat the water in the hot water storage tank and use it as hot water.

図3に示すように、従来の燃料電池コージェネレーションシステムは、例えば燃料電池7および熱回収用熱交換器4を収納する燃料電池ユニット21と、貯湯タンク1を収納する貯湯ユニット22とから構成される(例えば、特許文献1参照)。   As shown in FIG. 3, the conventional fuel cell cogeneration system includes, for example, a fuel cell unit 21 that houses the fuel cell 7 and the heat exchanger 4 for heat recovery, and a hot water storage unit 22 that houses the hot water storage tank 1. (For example, see Patent Document 1).

また、図3に示すように、貯湯タンク1と、貯湯循環ポンプ2と、熱回収用熱交換器4とを熱回収配管3で順次環状に連接することにより、熱回収経路8が形成されている。一方、燃料電池7と、冷却水循環ポンプ5と、熱回収用熱交換器4とを冷却水配管6で順次環状に連接することにより、冷却水経路20が形成されている。   Further, as shown in FIG. 3, the heat recovery path 8 is formed by sequentially connecting the hot water storage tank 1, the hot water circulation pump 2, and the heat recovery heat exchanger 4 in an annular manner through the heat recovery pipe 3. Yes. On the other hand, the cooling water passage 20 is formed by sequentially connecting the fuel cell 7, the cooling water circulation pump 5, and the heat recovery heat exchanger 4 in an annular manner through the cooling water pipe 6.

そして、燃料電池7が発電するときなどで発生する排熱は、冷却水に回収される。この冷却水は、冷却水循環ポンプ5により、熱回収用熱交換器4に搬送され、ここで貯湯タンク1からの水が加熱される。このとき、貯湯タンク1内の水は、貯湯循環ポンプ2により熱回収経路8を循環し、熱回収用熱交換器4で燃料電池7の冷却水などにより加熱されて、再び貯湯タンク1に貯えられる。   And the waste heat which generate | occur | produces when the fuel cell 7 generates electric power etc. is collect | recovered by cooling water. The cooling water is conveyed to the heat recovery heat exchanger 4 by the cooling water circulation pump 5, where water from the hot water storage tank 1 is heated. At this time, the water in the hot water storage tank 1 circulates in the heat recovery path 8 by the hot water storage circulation pump 2, is heated by the cooling water of the fuel cell 7 in the heat recovery heat exchanger 4, and is stored in the hot water storage tank 1 again. It is done.

また、燃料電池コージェネレーションシステムは、貯湯タンク1への給水や貯湯タンク1から外部への給湯を行うために、給水入口管9、減圧弁10、第1給水管11および第2給水管12、出湯管13、混合弁14、給湯出口管15を備えている。   The fuel cell cogeneration system also includes a water supply inlet pipe 9, a pressure reducing valve 10, a first water supply pipe 11 and a second water supply pipe 12, in order to supply water to the hot water storage tank 1 and to supply hot water from the hot water storage tank 1 to the outside. A hot water discharge pipe 13, a mixing valve 14, and a hot water supply outlet pipe 15 are provided.

そして、貯湯タンク1への給水は、一般の上水管に接続された給水入口管9から、減圧弁10、第1給水管11を経由して行われる。また、貯湯タンク1からの給湯は、給水入口管9、減圧弁10、第2給水管12を経由して供給された水と、貯湯タンク1の上部から出湯管13を経由して出湯された湯とが、混合弁14で適温に混合され、給湯出口管15を介して外部に供給される。   Water supply to the hot water storage tank 1 is performed via a pressure reducing valve 10 and a first water supply pipe 11 from a water supply inlet pipe 9 connected to a general water supply pipe. Hot water from the hot water storage tank 1 was discharged from the water supplied via the water supply inlet pipe 9, the pressure reducing valve 10, and the second water supply pipe 12 and from the upper part of the hot water storage tank 1 via the hot water discharge pipe 13. Hot water is mixed at an appropriate temperature by the mixing valve 14 and supplied to the outside through the hot water supply outlet pipe 15.

上記構成の燃料電池コージェネレーションシステムでは、一般に、貯湯タンク1と連通するように貯湯タンク用圧力逃がし弁19が設置されている。   In the fuel cell cogeneration system configured as described above, a hot water tank pressure relief valve 19 is generally installed so as to communicate with the hot water tank 1.

この貯湯タンク用圧力逃がし弁19の作用としては、特許文献1によれば、密閉構造を有する貯湯タンク1内に貯湯された水は、燃料電池7の排熱で加熱されて膨張し、水の加熱膨張により貯湯タンク1の内圧が上昇する。そこで、貯湯タンク用圧力逃がし弁19が所定の圧力で開放されることにより、膨張した水の一部が外部に開放する。その結果、貯湯タンク1の圧力上昇が抑制され、貯湯タンク1を保護することができる。   According to Patent Document 1, water stored in the hot water storage tank 1 having a hermetically sealed structure is heated by the exhaust heat of the fuel cell 7 and expands. The internal pressure of the hot water storage tank 1 rises due to thermal expansion. Accordingly, when the hot water tank pressure relief valve 19 is opened at a predetermined pressure, a part of the expanded water is opened to the outside. As a result, the pressure increase in the hot water storage tank 1 is suppressed, and the hot water storage tank 1 can be protected.

特開2002−280031号公報JP 2002-280031 A

しかしながら、上記従来の構成では、貯湯タンク用圧力逃がし弁19が固着等により故障した場合、貯湯タンク1、熱回収経路8および第1給水管11、第2給水管12、出湯管13の内部が閉空間となるため、燃料電池7の運転とともに、水の膨張によりこれらの内部が異常に高圧となる。その結果、貯湯タンク1や各経路内の配管、ポンプ、熱交換器などの部品が損傷するという課題があった。   However, in the above conventional configuration, when the hot water tank pressure relief valve 19 fails due to sticking or the like, the hot water storage tank 1, the heat recovery path 8, the first water supply pipe 11, the second water supply pipe 12, and the hot water discharge pipe 13 are Since this is a closed space, the inside of the fuel cell 7 becomes abnormally high pressure due to the expansion of water as the fuel cell 7 is operated. As a result, there has been a problem that parts such as the hot water storage tank 1 and pipes, pumps, and heat exchangers in each path are damaged.

本発明は、上記従来の課題を解決するもので、簡単な構成で、貯湯タンク用圧力逃がし弁の故障に起因する不具合を回避して安全性を確保し、信頼性の高い燃料電池コージェネレーションシステムを提供することを目的とする。   The present invention solves the above-described conventional problems, and has a simple structure, avoids problems caused by failure of a pressure relief valve for a hot water storage tank, ensures safety, and has a highly reliable fuel cell cogeneration system. The purpose is to provide.

上記従来の課題を解決するために、本発明の燃料電池コージェネレーションシステムは、燃料電池の排熱を回収する熱回収用熱交換器と、貯湯タンクとを熱回収配管により順次環状に連接した熱回収経路を備えた燃料電池コージェネレーションシステムであって、前記熱回収配管において、前記熱回収配管内の圧力が所定圧力を超えた場合に開く熱回収経路用圧力逃がし弁を設けた構成を有する。   In order to solve the above-described conventional problems, the fuel cell cogeneration system of the present invention is a heat recovery heat exchanger that recovers exhaust heat from a fuel cell and a hot water storage tank that are sequentially connected in an annular shape by a heat recovery pipe. A fuel cell cogeneration system including a recovery path, wherein the heat recovery pipe includes a heat recovery path pressure relief valve that opens when a pressure in the heat recovery pipe exceeds a predetermined pressure.

これにより、貯湯タンク用圧力逃がし弁が固着等により故障した場合でも、所定の圧力で熱回収経路を開放することができる。そのため、燃料電池の運転時に、貯湯タンク、熱回収経路および冷却水経路内の圧力上昇を抑制できる。その結果、貯湯タンクや各経路内の配管、ポンプ、熱交換器などの部品の損傷を防止できる安全性を確保した信頼性の高い燃料電池コージェネレーションシステムを実現できる。   Thereby, even when the pressure relief valve for the hot water storage tank fails due to sticking or the like, the heat recovery path can be opened with a predetermined pressure. Therefore, it is possible to suppress an increase in pressure in the hot water storage tank, the heat recovery path, and the cooling water path during operation of the fuel cell. As a result, it is possible to realize a highly reliable fuel cell cogeneration system that ensures safety and can prevent damage to parts such as hot water storage tanks, piping in each path, pumps, heat exchangers, and the like.

本発明によれば、簡単な構成で、安全性と信頼性が向上した燃料電池コージェネレーションシステムを実現できる。   According to the present invention, a fuel cell cogeneration system with improved safety and reliability can be realized with a simple configuration.

本発明の実施の形態1における燃料電池コージェネレーションシステムの構成図1 is a configuration diagram of a fuel cell cogeneration system according to Embodiment 1 of the present invention. 本発明の実施の形態2における燃料電池コージェネレーションシステムの構成図Configuration diagram of fuel cell cogeneration system in Embodiment 2 of the present invention 従来の燃料電池コージェネレーションシステムの構成図Configuration diagram of conventional fuel cell cogeneration system

第1の発明は、燃料電池の排熱を回収する熱回収用熱交換器と、貯湯タンクとを熱回収配管により順次環状に連接した熱回収経路を備えた燃料電池コージェネレーションシステムであって、前記熱回収配管において、前記熱回収配管内の圧力が所定圧力を超えた場合に開く熱回収経路用圧力逃がし弁を設けた構成を有する。これにより、貯湯タンク用圧力逃がし弁が固着等により故障した場合でも、所定の圧力で熱回収経路を開放することができる。そのため、燃料電池の運転時に、貯湯タンク、熱回収経路および冷却水経路内の圧力上昇を抑制できる。その結果、貯湯タンクや各経路内の配管、ポンプ、熱交換器などの部品の損傷を防止できる安全性を確保した信頼性の高い燃料電池コージェネレーションシステムを実現できる。   A first invention is a fuel cell cogeneration system including a heat recovery path in which a heat recovery heat exchanger for recovering exhaust heat of a fuel cell and a hot water storage tank are sequentially connected in an annular manner by a heat recovery pipe, The heat recovery pipe has a configuration in which a heat recovery path pressure relief valve that opens when the pressure in the heat recovery pipe exceeds a predetermined pressure is provided. Thereby, even when the pressure relief valve for the hot water storage tank fails due to sticking or the like, the heat recovery path can be opened with a predetermined pressure. Therefore, it is possible to suppress an increase in pressure in the hot water storage tank, the heat recovery path, and the cooling water path during operation of the fuel cell. As a result, it is possible to realize a highly reliable fuel cell cogeneration system that ensures safety and can prevent damage to parts such as hot water storage tanks, piping in each path, pumps, heat exchangers, and the like.

第2の発明は、第1の発明において、貯湯タンク内の圧力が所定圧力を超えた場合に開く貯湯タンク用圧力逃がし弁を備え、熱回収経路用圧力逃がし弁が開動作する所定圧力を貯湯タンク用圧力逃がし弁が開動作する所定圧力より高くした。これにより、万が一、貯湯タンク用圧力逃がし弁が故障した場合でも、熱回収経路用圧力逃がし弁が二重の安全装置として作用し、異常な圧力上昇を回避できる。さらに、通常の燃料電池の運転時には、貯湯タンク用圧力逃がし弁を開放し、熱膨張した水を外部に逃がすことで、熱回収経路内を循環する貯湯水の流量の変動を引き起こすことなく、燃料電池コージェネレーションシステムの安定した運転を実現できる。   According to a second invention, in the first invention, a hot water storage tank pressure relief valve is provided that opens when the pressure in the hot water storage tank exceeds a predetermined pressure, and the predetermined pressure at which the heat recovery path pressure relief valve opens is stored. The pressure was higher than the predetermined pressure at which the tank pressure relief valve opened. Thereby, even if the pressure relief valve for the hot water storage tank breaks down, the pressure relief valve for the heat recovery path acts as a double safety device, and an abnormal pressure increase can be avoided. Furthermore, during normal fuel cell operation, the pressure relief valve for the hot water storage tank is opened and the thermally expanded water is allowed to escape to the outside without causing fluctuations in the flow rate of the hot water circulating in the heat recovery path. Stable operation of the battery cogeneration system can be realized.

第3の発明は、第1または第2の発明において、熱回収経路用圧力逃がし弁を、熱回収経路内の水を排出する水抜き栓としても機能するように構成する。これにより、メンテナンス時の水抜きと、貯湯水の膨張により発生する圧力逃がしとを、きわめて簡単な構成で実現できる。   According to a third aspect, in the first or second aspect, the pressure recovery valve for the heat recovery path is configured to function also as a drain plug for discharging water in the heat recovery path. As a result, drainage during maintenance and pressure relief generated by the expansion of the hot water storage can be realized with a very simple configuration.

第4の発明は、第3の発明において、熱回収経路用圧力逃がし弁は、熱回収用熱交換器の上流側で、熱回収配管における比較的低い領域に設けられる。これにより、メンテナンス時に、水の自重を利用して、熱回収配管および熱回収用熱交換器の水抜きを容易に行うことができる。   In a fourth aspect based on the third aspect, the heat recovery path pressure relief valve is provided in a relatively low region of the heat recovery pipe on the upstream side of the heat recovery heat exchanger. Thereby, water can be easily drained from the heat recovery pipe and the heat exchanger for heat recovery by utilizing the weight of water during maintenance.

第5の発明は、第1または第2の発明において、熱回収経路用圧力逃がし弁を、熱回収経路内の空気を排出するエア抜き栓としても機能するように構成する。これにより、水の加熱時に発生するエア抜きと、貯湯水の膨張により発生する圧力逃がしとを、きわめて簡単な構成で実現できる。   According to a fifth invention, in the first or second invention, the heat recovery path pressure relief valve is configured to function also as an air vent plug for discharging air in the heat recovery path. Accordingly, it is possible to realize air venting generated during the heating of water and pressure relief generated due to the expansion of the hot water storage with an extremely simple configuration.

第6の発明は、第5の発明において、熱回収経路用圧力逃がし弁は、熱回収用熱交換器の下流側で、熱回収配管における比較的高い領域に設けられる。これにより、水の加熱時に発生するエアの密度が小さいことを利用して、熱回収配管および熱回収用熱交換器のエア抜きを容易に行うことができる。   In a sixth aspect based on the fifth aspect, the heat recovery path pressure relief valve is provided in a relatively high region of the heat recovery pipe on the downstream side of the heat recovery heat exchanger. Thereby, the air recovery of the heat recovery pipe and the heat recovery heat exchanger can be easily performed by utilizing the fact that the density of the air generated when heating the water is small.

第7の発明は、第1の発明において、燃料電池および熱回収用熱交換器を収納する燃料電池ユニットと、貯湯タンクを収納する貯湯ユニットとを備え、熱回収経路用圧力逃がし弁は、燃料電池ユニットと貯湯ユニットとを接続する熱回収配管に配置される。これにより、熱回収配管内の圧力を開放した際に流出する水やエアを、各ユニットの外部に容易に放出して、不要な水の貯留を防止できる。   According to a seventh invention, in the first invention, the fuel cell unit includes a fuel cell unit that stores a fuel cell and a heat recovery heat exchanger, and a hot water storage unit that stores a hot water storage tank. It arrange | positions at the heat recovery piping which connects a battery unit and a hot water storage unit. Thereby, the water and air which flow out when the pressure in the heat recovery pipe is released can be easily released to the outside of each unit, and unnecessary water can be prevented from being stored.

以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した従来の構成と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as the conventional configurations described above, and the detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池コージェネレーションシステムの構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a fuel cell cogeneration system according to Embodiment 1 of the present invention.

図1に示すように、本実施の形態の燃料電池コージェネレーションシステムは、燃料電池7および熱回収用熱交換器4を収納する燃料電池ユニット21と、貯湯タンク1を収納する貯湯ユニット22とを備え、燃料電池ユニット21と貯湯ユニット22とを接続する熱回収配管3に、熱回収経路用圧力逃がし弁18を配置して構成されている。   As shown in FIG. 1, the fuel cell cogeneration system of the present embodiment includes a fuel cell unit 21 that houses a fuel cell 7 and a heat exchanger 4 for heat recovery, and a hot water storage unit 22 that houses a hot water storage tank 1. The heat recovery pipe 3 for connecting the fuel cell unit 21 and the hot water storage unit 22 is provided with a heat recovery path pressure relief valve 18.

そして、貯湯タンク1と、貯湯循環ポンプ2と、燃料電池7の発電時などの排熱を回収する熱回収用熱交換器4とを熱回収配管3で順次環状に連接して、熱回収経路8が形成さ
れている。また、燃料電池7と、冷却水循環ポンプ5と、熱回収用熱交換器4とを冷却水配管6で順次環状に連接することにより、冷却水経路20が形成されている。
Then, a hot water storage tank 1, a hot water circulation pump 2, and a heat recovery heat exchanger 4 that recovers exhaust heat during power generation of the fuel cell 7 are sequentially connected in an annular manner by a heat recovery pipe 3, and a heat recovery path 8 is formed. In addition, the cooling water passage 20 is formed by sequentially connecting the fuel cell 7, the cooling water circulation pump 5, and the heat recovery heat exchanger 4 in an annular manner through the cooling water pipe 6.

そして、燃料電池7の発電時などで発生する排熱は、冷却水経路20中の冷却水に回収され、冷却水循環ポンプ5により熱回収用熱交換器4に搬送されて貯湯タンク1からの水を加熱する。また、貯湯タンク1内の水は、貯湯循環ポンプ2により熱回収経路8を循環して、熱回収用熱交換器4で燃料電池7の排熱を吸収した冷却水などにより加熱され、再び貯湯タンク1に貯えられる。   The exhaust heat generated during the power generation of the fuel cell 7 is recovered in the cooling water in the cooling water passage 20, and is transferred to the heat recovery heat exchanger 4 by the cooling water circulation pump 5, and the water from the hot water storage tank 1. Heat. The water in the hot water storage tank 1 is circulated through the heat recovery path 8 by the hot water storage circulation pump 2 and heated by the cooling water or the like that has absorbed the exhaust heat of the fuel cell 7 by the heat recovery heat exchanger 4. Stored in tank 1.

また、熱回収配管3には、熱回収配管3の圧力が所定圧力を超える場合に開いて、熱回収配管3内の圧力を所定圧力以下に保持する熱回収経路用圧力逃がし弁18が設けられている。さらに、貯湯タンク1には、貯湯タンク1内の圧力が所定圧力を超えた場合に開いて、貯湯タンク1内の圧力を所定圧力以下に保持する貯湯タンク用圧力逃がし弁19が接続されている。   Further, the heat recovery pipe 3 is provided with a heat recovery path pressure relief valve 18 which opens when the pressure of the heat recovery pipe 3 exceeds a predetermined pressure and holds the pressure in the heat recovery pipe 3 below a predetermined pressure. ing. Further, the hot water storage tank 1 is connected to a hot water storage tank pressure relief valve 19 which opens when the pressure in the hot water storage tank 1 exceeds a predetermined pressure and holds the pressure in the hot water storage tank 1 below a predetermined pressure. .

このとき、熱回収経路用圧力逃がし弁18が開動作する所定圧力は、貯湯タンク用圧力逃がし弁19が開動作する所定圧力より高く設定している。   At this time, the predetermined pressure at which the heat recovery path pressure relief valve 18 opens is set higher than the predetermined pressure at which the hot water tank pressure relief valve 19 opens.

また、熱回収経路用圧力逃がし弁18に、熱回収経路8内の水を排出する水抜き栓と兼用できる機能を持たせてもよい。   Further, the heat recovery path pressure relief valve 18 may have a function that can also be used as a drain plug for discharging water in the heat recovery path 8.

これらの機能を有する熱回収経路用圧力逃がし弁18や貯湯タンク用圧力逃がし弁19しては、例えば両端を開放した中空のシリンダ形状を有し、その内部で弁体をバネ力により付勢する構造のものを用いることが好ましい。このとき、内圧の上昇でバネ力に抗して自動的に弁体が移動することにより、熱回収経路8の一部を開放し、シリンダを通じて外部に内圧が開放される。このとき、以下で説明するように、熱回収経路用圧力逃がし弁18の外周を、例えばネジ込み可能な形状に形成し、手動で熱回収経路8の一部を開放できるようにしてもよい。これにより、熱回収経路用圧力逃がし弁18を取り外して、熱回収配管3の水抜きを行う水抜き栓として用いることもできる。   The heat recovery path pressure relief valve 18 and the hot water storage tank pressure relief valve 19 having these functions have, for example, a hollow cylinder shape with both ends open, and the valve body is biased by a spring force therein. It is preferable to use a structure. At this time, when the internal pressure rises, the valve body automatically moves against the spring force, thereby opening a part of the heat recovery path 8 and releasing the internal pressure to the outside through the cylinder. At this time, as will be described below, the outer periphery of the heat recovery path pressure relief valve 18 may be formed into a screwable shape, for example, so that a part of the heat recovery path 8 can be manually opened. Thus, the heat recovery path pressure relief valve 18 can be removed and used as a drain plug for draining the heat recovery pipe 3.

そして、熱回収経路用圧力逃がし弁18を水抜き栓として使用する場合は、図1に示すように、熱回収用熱交換器4の上流側で、熱回収配管3における比較的低い領域18Aに設けるのが望ましい。例えば、燃料電池ユニット21外部の熱回収配管3を燃料電池ユニット21に接続するための配管継手(図示せず)に直接設けたり、配管継手と燃料電池ユニット21内部の熱回収用熱交換器4とを接続する配管の最下部に設ければよい。ここで、比較的低い領域18Aとは、貯湯ユニット22や燃料電池ユニット21が静置された状態で、貯湯タンク1と貯湯循環ポンプ2間で熱回収配管3の下側の領域である。このとき、熱回収経路用圧力逃がし弁18を比較的低い領域18Aの最下部に設けることが好ましい。   When the heat recovery path pressure relief valve 18 is used as a drain plug, as shown in FIG. 1, on the upstream side of the heat recovery heat exchanger 4, the heat recovery pipe 3 has a relatively low region 18 </ b> A. It is desirable to provide it. For example, the heat recovery pipe 3 outside the fuel cell unit 21 is directly provided in a pipe joint (not shown) for connecting to the fuel cell unit 21, or the heat recovery heat exchanger 4 inside the pipe joint and the fuel cell unit 21. May be provided at the lowermost part of the pipe connecting the two. Here, the relatively low region 18A is a region below the heat recovery pipe 3 between the hot water storage tank 1 and the hot water circulation pump 2 in a state where the hot water storage unit 22 and the fuel cell unit 21 are stationary. At this time, it is preferable to provide the pressure relief valve 18 for heat recovery path at the lowermost part of the relatively low region 18A.

なお、熱回収経路用圧力逃がし弁18で水抜きすることにより、比較的低い領域18Aの熱回収配管3内を循環する水が満水状態とならなければ、特に最下部に設ける必要はない。これにより、熱回収経路8、特に、熱回収用熱交換器4内部の水が自重により落下するため、内部に残留する水の量を極力少なくできる。さらに、特に、燃料電池コージェネレーションシステムを寒冷地で使用する場合、水の凍結による熱回収配管3の破損を未然に防止できる。   If the water circulating through the heat recovery pipe 3 in the relatively low region 18A does not become full by draining with the pressure relief valve 18 for the heat recovery path, it is not particularly necessary to provide it at the lowermost part. Thereby, since the water inside the heat recovery path 8, in particular, the heat exchanger for heat recovery 4 falls due to its own weight, the amount of water remaining inside can be reduced as much as possible. Further, particularly when the fuel cell cogeneration system is used in a cold region, the heat recovery pipe 3 can be prevented from being damaged due to water freezing.

また、本実施の形態の燃料電池コージェネレーションシステムは、貯湯タンク1への給水や貯湯タンク1から外部への給湯を行うために、給水入口管9、減圧弁10、第1給水管11および第2給水管12、出湯管13、混合弁14、給湯出口管15を備えている。   In addition, the fuel cell cogeneration system of the present embodiment includes a water supply inlet pipe 9, a pressure reducing valve 10, a first water supply pipe 11 and a first water supply pipe for supplying water to the hot water storage tank 1 and supplying hot water from the hot water storage tank 1 to the outside. 2 A water supply pipe 12, a hot water discharge pipe 13, a mixing valve 14 and a hot water supply outlet pipe 15 are provided.

そして、貯湯タンク1への給水は、一般の上水管に接続された給水入口管9から、減圧弁10、第1給水管11を経由して行われる。また、貯湯タンク1からの給湯は、給水入口管9、減圧弁10、第2給水管12を経由して供給された水と、貯湯タンク1の上部から出湯管13を経由して出湯された湯とが、混合弁14で適温に混合され、給湯出口管15を介して外部に供給される。   Water supply to the hot water storage tank 1 is performed via a pressure reducing valve 10 and a first water supply pipe 11 from a water supply inlet pipe 9 connected to a general water supply pipe. Hot water from the hot water storage tank 1 was discharged from the water supplied via the water supply inlet pipe 9, the pressure reducing valve 10, and the second water supply pipe 12 and from the upper part of the hot water storage tank 1 via the hot water discharge pipe 13. Hot water is mixed at an appropriate temperature by the mixing valve 14 and supplied to the outside through the hot water supply outlet pipe 15.

本実施の形態においても、従来と同様に、貯湯タンク1と連通するように貯湯タンク用圧力逃がし弁19が設置されている。そして、密閉構造を有する貯湯タンク1内の水が燃料電池7の排熱で加熱されて膨張することにより上昇した内圧を、貯湯タンク用圧力逃がし弁19が所定圧力で開弁することにより開放する。これにより、膨張した水の一部を外部に開放して、貯湯タンク1の圧力上昇を抑制し、貯湯タンク1を保護することができる。   Also in the present embodiment, a hot water tank pressure relief valve 19 is provided so as to communicate with the hot water tank 1 as in the prior art. And the internal pressure which rose when the water in the hot water storage tank 1 which has a sealing structure is heated and expanded by the exhaust heat of the fuel cell 7 is opened when the hot water tank pressure relief valve 19 opens at a predetermined pressure. . Thereby, a part of the expanded water can be opened to the outside, the pressure increase in the hot water storage tank 1 can be suppressed, and the hot water storage tank 1 can be protected.

本実施の形態の燃料電池コージェネレーションシステムによれば、貯湯タンク用圧力逃がし弁19が固着等により故障した場合でも、熱回収経路用圧力逃がし弁18が所定圧力で開弁して、熱回収経路8を開放する。そのため、燃料電池7の運転時に、貯湯タンク1、熱回収経路8および冷却水経路20内の圧力上昇を抑制できる。その結果、貯湯タンク1や各経路内の配管、ポンプ、熱交換器などの部品の損傷を防止できる。   According to the fuel cell cogeneration system of the present embodiment, even if the hot water tank pressure relief valve 19 fails due to sticking or the like, the heat recovery path pressure relief valve 18 opens at a predetermined pressure, and the heat recovery path 8 is released. Therefore, when the fuel cell 7 is operated, an increase in pressure in the hot water storage tank 1, the heat recovery path 8, and the cooling water path 20 can be suppressed. As a result, it is possible to prevent damage to parts such as the hot water storage tank 1 and pipes, pumps, and heat exchangers in each path.

また、本実施の形態の燃料電池コージェネレーションシステムによれば、熱回収経路用圧力逃がし弁18が開動作する所定圧力を、貯湯タンク用圧力逃がし弁19が開動作する所定圧力より高くする。これにより、万が一、貯湯タンク用圧力逃がし弁19が故障しても、熱回収経路用圧力逃がし弁18が二重の安全装置として作用させ、貯湯タンク1内の異常な圧力上昇を回避することができるとともに、通常の燃料電池7の運転時には、貯湯タンク用圧力逃がし弁19を開放し、熱膨張した水を外部に逃がすことで、熱回収経路8内を循環する貯湯水の流量の変動を引き起こすことなく、燃料電池コージェネレーションシステムの安定した運転を実現できる。   Further, according to the fuel cell cogeneration system of the present embodiment, the predetermined pressure at which the heat recovery path pressure relief valve 18 opens is set higher than the predetermined pressure at which the hot water tank pressure relief valve 19 opens. As a result, even if the hot water tank pressure relief valve 19 fails, the heat recovery path pressure relief valve 18 can act as a double safety device to avoid an abnormal pressure rise in the hot water tank 1. In addition, during normal operation of the fuel cell 7, the hot water storage tank pressure relief valve 19 is opened to allow the thermally expanded water to escape to the outside, thereby causing fluctuations in the flow rate of the hot water circulating in the heat recovery path 8. Without this, stable operation of the fuel cell cogeneration system can be realized.

また、本実施の形態の燃料電池コージェネレーションシステムによれば、熱回収経路用圧力逃がし弁18を、熱回収経路8内の水を排出する水抜き栓としての機能を持たせている。これにより、メンテナンス時の水抜きと、貯湯水の膨張により発生する圧力逃がしとを、きわめて簡単な構成で行うことができる。   Further, according to the fuel cell cogeneration system of the present embodiment, the heat recovery path pressure relief valve 18 has a function as a drain plug for discharging water in the heat recovery path 8. Thereby, drainage at the time of maintenance and pressure relief generated by expansion of the hot water storage can be performed with a very simple configuration.

さらに、熱回収経路用圧力逃がし弁18を、熱回収用熱交換器4の上流側で、熱回収配管3における比較的低い領域18Aに設ける。これにより、メンテナンス時に、水の自重により、熱回収配管3および熱回収用熱交換器4の水抜きを容易に行うことができる。   Further, a heat recovery path pressure relief valve 18 is provided in a relatively low region 18 </ b> A of the heat recovery pipe 3 on the upstream side of the heat recovery heat exchanger 4. Thereby, water can be easily drained from the heat recovery pipe 3 and the heat recovery heat exchanger 4 by the weight of water during maintenance.

また、本実施の形態の燃料電池コージェネレーションシステムによれば、熱回収経路用圧力逃がし弁18を、燃料電池ユニット21と貯湯ユニット22とを接続する熱回収配管3に配置している。これにより、熱回収配管3内を所定圧力で開放した際に流出する水やエアを、燃料電池ユニット21および貯湯ユニット22の外部に放出して、不要な水が貯留することを防止できる。   Further, according to the fuel cell cogeneration system of the present embodiment, the heat recovery path pressure relief valve 18 is arranged in the heat recovery pipe 3 connecting the fuel cell unit 21 and the hot water storage unit 22. Thereby, it is possible to prevent water and air flowing out when the inside of the heat recovery pipe 3 is opened at a predetermined pressure to the outside of the fuel cell unit 21 and the hot water storage unit 22 and to store unnecessary water.

上記で説明したように、本実施の形態によれば、簡単な構成で安全性を確保し、信頼性の高い燃料電池コージェネレーションシステムを提供できる。   As described above, according to the present embodiment, it is possible to provide a highly reliable fuel cell cogeneration system that ensures safety with a simple configuration.

(実施の形態2)
図2は、本発明の実施の形態2における燃料電池コージェネレーションシステムの構成図である。
(Embodiment 2)
FIG. 2 is a configuration diagram of a fuel cell cogeneration system according to Embodiment 2 of the present invention.

図2に示すように、本実施の形態の燃料電池コージェネレーションシステムは、熱回収経路用圧力逃がし弁18を、熱回収経路8内の空気を排出するエア抜き栓として機能するように構成した点で、実施の形態1とは異なる。なお、本実施の形態の燃料電池コージェネレーションシステムの構成とその作用は、実施の形態1で説明したものと略同一であるので、ここでは詳細な説明を省略する。   As shown in FIG. 2, the fuel cell cogeneration system of the present embodiment is configured such that the heat recovery path pressure relief valve 18 functions as an air vent plug for discharging the air in the heat recovery path 8. Thus, it is different from the first embodiment. The configuration and operation of the fuel cell cogeneration system according to the present embodiment are substantially the same as those described in the first embodiment, and thus detailed description thereof is omitted here.

つまり、図2に示すように、本実施の形態の燃料電池コージェネレーションシステムは、燃料電池7および熱回収用熱交換器4を収納する燃料電池ユニット21と、貯湯タンク1を収納する貯湯ユニット22とを備え、燃料電池ユニット21と貯湯ユニット22とを接続する熱回収配管3に、熱回収経路用圧力逃がし弁18を配置して構成されている。このとき、熱回収経路用圧力逃がし弁18を、熱回収用熱交換器4の下流側で、熱回収配管3における比較的高い領域18Bに設けるものである。具体的には、例えば、熱回収経路用圧力逃がし弁18は、貯湯タンク1から送られた水が鉛直方向の下から上に流れるように燃料電池ユニット21内に配置された熱回収用熱交換器4の出口に接続した配管近傍に設ける。ここで、比較的高い領域18Bとは、貯湯ユニット22や燃料電池ユニット21が静置された状態で、貯湯タンク1と熱回収用熱交換器4間で熱回収配管3の上側の領域である。このとき、熱回収経路用圧力逃がし弁18を比較的高い領域18Bの最上部に設けることが好ましいが、比較的高い領域18B内であれば、特に最上部に設ける必要はない。これにより、熱回収経路8内の空気を排出するエア抜き栓としての機能を付与できる。   That is, as shown in FIG. 2, the fuel cell cogeneration system of the present embodiment includes a fuel cell unit 21 that houses the fuel cell 7 and the heat exchanger 4 for heat recovery, and a hot water storage unit 22 that houses the hot water storage tank 1. The heat recovery pipe 3 for connecting the fuel cell unit 21 and the hot water storage unit 22 is provided with a pressure recovery valve 18 for the heat recovery path. At this time, the heat recovery path pressure relief valve 18 is provided in a relatively high region 18B of the heat recovery pipe 3 on the downstream side of the heat recovery heat exchanger 4. Specifically, for example, the heat recovery path pressure relief valve 18 is arranged in the fuel cell unit 21 so that the water sent from the hot water storage tank 1 flows from the bottom to the top in the vertical direction. It is provided in the vicinity of the pipe connected to the outlet of the vessel 4. Here, the relatively high region 18B is a region above the heat recovery pipe 3 between the hot water storage tank 1 and the heat recovery heat exchanger 4 in a state where the hot water storage unit 22 and the fuel cell unit 21 are stationary. . At this time, it is preferable to provide the pressure relief valve 18 for the heat recovery path at the top of the relatively high region 18B, but it is not necessary to provide it at the top as long as it is within the relatively high region 18B. Thereby, the function as an air vent plug which discharges | emits the air in the heat recovery path | route 8 can be provided.

これらの機能を有する熱回収経路用圧力逃がし弁18としては、実施の形態1と同様に、例えば両端を開放した中空のシリンダ形状を有し、その内部で弁体をバネ力により付勢する構造のものを用いることが好ましい。このとき、内圧の上昇でバネ力に抗して自動的に弁体が移動することにより、熱回収経路8の一部を開放し、シリンダを通じて外部に内圧が開放される。   As in the first embodiment, the heat recovery path pressure relief valve 18 having these functions has, for example, a hollow cylinder shape with both ends open, and a structure in which the valve body is biased by a spring force therein. It is preferable to use those. At this time, when the internal pressure rises, the valve body automatically moves against the spring force, thereby opening a part of the heat recovery path 8 and releasing the internal pressure to the outside through the cylinder.

以下に、熱回収経路用圧力逃がし弁18をエア抜き栓として兼用する効果について説明する。   The effect of using the heat recovery path pressure relief valve 18 as an air vent plug will be described below.

通常、貯湯タンク1から送られた比較的低温の水には若干の空気が溶存している。そのため、この水を熱回収用熱交換器4で加熱すると、溶存した空気が細かい気泡となって発生する場合がある。そして、熱回収経路8内に残留した空気は、水の流れを阻害したり、熱回収用熱交換器4の伝熱面に付着して熱交換性能を劣化させる場合がある。そこで、熱回収経路用圧力逃がし弁18をエア抜き栓として用いることにより、上記課題を解消できるものである。   Usually, some air is dissolved in the relatively low temperature water sent from the hot water storage tank 1. Therefore, when this water is heated by the heat recovery heat exchanger 4, dissolved air may be generated as fine bubbles. The air remaining in the heat recovery path 8 may obstruct the flow of water or may adhere to the heat transfer surface of the heat recovery heat exchanger 4 to deteriorate the heat exchange performance. Then, the said subject can be eliminated by using the pressure relief valve 18 for heat recovery paths as an air vent plug.

本実施の形態の燃料電池コージェネレーションシステムによれば、水の加熱時に発生するエアの排出と、メンテナンス異常時の圧力逃がしとを、きわめて簡単な構成で実現できる。また、熱回収経路用圧力逃がし弁18を熱回収配管の高い位置に配置することにより、熱回収配管3および熱回収用熱交換器4のエア抜きを容易に行うことができる。なぜなら、水の加熱時に発生するエアは、その密度が水より小さいため、熱回収配管内を上昇し、かつ上方に溜まりやすいことによるものである。その結果、信頼性の高い燃料電池コージェネレーションシステムを提供することができる。   According to the fuel cell cogeneration system of the present embodiment, the discharge of air generated when water is heated and the pressure relief when maintenance is abnormal can be realized with a very simple configuration. Further, by disposing the pressure relief valve 18 for the heat recovery path at a high position of the heat recovery pipe, the heat recovery pipe 3 and the heat recovery heat exchanger 4 can be easily vented. This is because the air generated during the heating of water has a density lower than that of water, and therefore rises in the heat recovery pipe and tends to accumulate upward. As a result, a highly reliable fuel cell cogeneration system can be provided.

なお、上記実施の形態では、熱回収経路用圧力逃がし弁18を水抜き栓またはエア抜き栓と兼用する構成および設置する例で説明したが、これに限られない。例えば、単に熱回収経路用圧力逃がし弁18として用いてもよい。その場合、熱回収経路用圧力逃がし弁18は、熱回収経路8であれば、燃料電池ユニット21内部、貯湯ユニット22内部、また
はこれらを接続する熱回収配管3内のいずれの位置に設けても構わない。
In the above-described embodiment, the heat recovery path pressure relief valve 18 has been described as being configured and used as a drain plug or an air drain plug, but is not limited thereto. For example, it may be used simply as the pressure recovery valve 18 for the heat recovery path. In that case, if the heat recovery path pressure relief valve 18 is the heat recovery path 8, it may be provided at any position within the fuel cell unit 21, the hot water storage unit 22, or the heat recovery pipe 3 connecting them. I do not care.

なお、各実施の形態では、熱回収用熱交換器4が、燃料電池7の排熱を回収する例で説明したが、これに限られない。例えば、燃料電池コージェネレーションシステム内に設けられた水素製造装置(図示せず)の排ガスの排熱や、燃料電池7のアノードやカソードの排熱を回収する構成としてよい。   In each embodiment, the heat recovery heat exchanger 4 has been described as an example of recovering the exhaust heat of the fuel cell 7, but the present invention is not limited to this. For example, the exhaust heat of exhaust gas from a hydrogen production apparatus (not shown) provided in the fuel cell cogeneration system and the exhaust heat of the anode and cathode of the fuel cell 7 may be recovered.

本発明によれば、簡単な構成で安全性を確保し、高い信頼性が要望される燃料電池コージェネレーションシステムなどの技術分野に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful in technical fields such as a fuel cell cogeneration system in which safety is ensured with a simple configuration and high reliability is required.

1 貯湯タンク
2 貯湯循環ポンプ
3 熱回収配管
4 熱回収用熱交換器
5 冷却水循環ポンプ
6 冷却水配管
7 燃料電池
8 熱回収経路
9 給水入口管
10 減圧弁
11 第1給水管
12 第2給水管
13 出湯管
14 混合弁
15 給湯出口管
18 熱回収経路用圧力逃がし弁
18A,18B 領域
19 貯湯タンク用圧力逃がし弁
20 冷却水経路
21 燃料電池ユニット
22 貯湯ユニット
DESCRIPTION OF SYMBOLS 1 Hot water storage tank 2 Hot water storage circulation pump 3 Heat recovery piping 4 Heat exchanger for heat recovery 5 Cooling water circulation pump 6 Cooling water piping 7 Fuel cell 8 Heat recovery path 9 Feed water inlet pipe 10 Pressure reducing valve 11 First feed pipe 12 Second feed pipe 13 Hot water outlet pipe 14 Mixing valve 15 Hot water supply outlet pipe 18 Pressure relief valve for heat recovery path 18A, 18B area 19 Pressure relief valve for hot water storage tank 20 Cooling water path 21 Fuel cell unit 22 Hot water storage unit

Claims (7)

燃料電池の排熱を回収する熱回収用熱交換器と、貯湯タンクとを熱回収配管により順次環状に連接した熱回収経路を備えた燃料電池コージェネレーションシステムであって、
前記熱回収配管において、前記熱回収配管内の圧力が所定圧力を超えた場合に開く熱回収経路用圧力逃がし弁を設けた燃料電池コージェネレーションシステム。
A fuel cell cogeneration system having a heat recovery path in which a heat recovery heat exchanger for recovering exhaust heat of a fuel cell and a hot water storage tank are sequentially connected in an annular manner by a heat recovery pipe,
A fuel cell cogeneration system provided with a pressure relief valve for a heat recovery path that opens when the pressure in the heat recovery pipe exceeds a predetermined pressure in the heat recovery pipe.
前記貯湯タンク内の圧力が所定圧力を超えた場合に開く貯湯タンク用圧力逃がし弁を備え、
前記熱回収経路用圧力逃がし弁が開動作する所定圧力を前記貯湯タンク用圧力逃がし弁が開動作する所定圧力より高くした請求項1に記載の燃料電池コージェネレーションシステム。
A hot water storage tank pressure relief valve that opens when the pressure in the hot water tank exceeds a predetermined pressure;
2. The fuel cell cogeneration system according to claim 1, wherein a predetermined pressure at which the heat recovery path pressure relief valve is opened is higher than a predetermined pressure at which the hot water tank pressure relief valve is opened.
前記熱回収経路用圧力逃がし弁を、前記熱回収経路内の水を排出する水抜き栓としても機能するように構成した請求項1または2に記載の燃料電池コージェネレーションシステム。 The fuel cell cogeneration system according to claim 1 or 2, wherein the heat recovery path pressure relief valve functions also as a drain plug for discharging water in the heat recovery path. 前記熱回収経路用圧力逃がし弁は、前記熱回収用熱交換器の上流側で、前記熱回収配管における比較的低い領域に設けられる請求項3に記載の燃料電池コージェネレーションシステム。 4. The fuel cell cogeneration system according to claim 3, wherein the heat recovery path pressure relief valve is provided in a relatively low region of the heat recovery pipe upstream of the heat recovery heat exchanger. 前記熱回収経路用圧力逃がし弁を、前記熱回収経路内の空気を排出するエア抜き栓としても機能するように構成した請求項1または2に記載の燃料電池コージェネレーションシステム。 The fuel cell cogeneration system according to claim 1 or 2, wherein the pressure relief valve for the heat recovery path is configured to function also as an air vent plug for discharging air in the heat recovery path. 前記熱回収経路用圧力逃がし弁は、前記熱回収用熱交換器の下流側で、前記熱回収配管における比較的高い領域に設けられる請求項5に記載の燃料電池コージェネレーションシステム。 6. The fuel cell cogeneration system according to claim 5, wherein the heat recovery path pressure relief valve is provided in a relatively high region of the heat recovery pipe on the downstream side of the heat recovery heat exchanger. 前記燃料電池および前記熱回収用熱交換器を収納する燃料電池ユニットと、
前記貯湯タンクを収納する貯湯ユニットとを備え、
前記熱回収経路用圧力逃がし弁は、前記燃料電池ユニットと前記貯湯ユニットとを接続する前記熱回収配管に配置される請求項1に記載の燃料電池コージェネレーションシステム。
A fuel cell unit housing the fuel cell and the heat recovery heat exchanger;
A hot water storage unit for storing the hot water storage tank,
2. The fuel cell cogeneration system according to claim 1, wherein the heat recovery path pressure relief valve is disposed in the heat recovery pipe connecting the fuel cell unit and the hot water storage unit.
JP2010193447A 2010-08-31 2010-08-31 Fuel cell cogeneration system Pending JP2012052686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193447A JP2012052686A (en) 2010-08-31 2010-08-31 Fuel cell cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193447A JP2012052686A (en) 2010-08-31 2010-08-31 Fuel cell cogeneration system

Publications (1)

Publication Number Publication Date
JP2012052686A true JP2012052686A (en) 2012-03-15

Family

ID=45906215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193447A Pending JP2012052686A (en) 2010-08-31 2010-08-31 Fuel cell cogeneration system

Country Status (1)

Country Link
JP (1) JP2012052686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221701A (en) * 2012-04-18 2013-10-28 Denso Corp Heat pump unit
JP2015137838A (en) * 2014-01-24 2015-07-30 東芝キヤリア株式会社 Hot water storage water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221701A (en) * 2012-04-18 2013-10-28 Denso Corp Heat pump unit
JP2015137838A (en) * 2014-01-24 2015-07-30 東芝キヤリア株式会社 Hot water storage water heater

Similar Documents

Publication Publication Date Title
JP4650577B2 (en) Fuel cell cogeneration system
CN206282930U (en) Thermal control system and application in a kind of hydrogen energy-storage system
KR20150049399A (en) Fuel cell system with excellent eliminating effect on freezing material throughout air purging and method of controlling the same
JP2012052686A (en) Fuel cell cogeneration system
US11152628B2 (en) Fuel cell system
JP2009026718A (en) Fuel cell cogeneration system
JP6304601B2 (en) Fuel cell cogeneration system
JP2010113967A (en) Fuel cell system
JP2016110723A (en) Fuel battery cogeneration system
KR101675675B1 (en) Fuel cell system with excellent cooling efficiency and method of operating the same
JP7248492B2 (en) cogeneration system
JP2008084590A (en) Fuel battery module and fuel battery system
JP5854369B2 (en) Cogeneration system
JP2013114849A (en) Fuel cell system
JP5251312B2 (en) Fuel cell system
JP2010021061A (en) Fuel cell power generation system
JP6051402B2 (en) Fuel cell system
JP2014123523A (en) Fuel cell system
JP2009170111A (en) Fuel-cell power generation system
JP2018037300A (en) Fuel battery device
JP2017216242A (en) Fuel battery cogeneration system
JP2016217670A (en) Cogeneration system
JP2016207581A (en) Fuel cell cogeneration system
KR20220150888A (en) hydrogen power generation system
JP2022039555A (en) Fuel cell device