[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012047872A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2012047872A
JP2012047872A JP2010188150A JP2010188150A JP2012047872A JP 2012047872 A JP2012047872 A JP 2012047872A JP 2010188150 A JP2010188150 A JP 2010188150A JP 2010188150 A JP2010188150 A JP 2010188150A JP 2012047872 A JP2012047872 A JP 2012047872A
Authority
JP
Japan
Prior art keywords
light
dichroic mirror
light source
led
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010188150A
Other languages
Japanese (ja)
Other versions
JP5648372B2 (en
Inventor
Takeo Matsushima
竹夫 松島
Kiyoyuki Kaburagi
清幸 蕪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2010188150A priority Critical patent/JP5648372B2/en
Priority to TW100123668A priority patent/TWI521162B/en
Priority to KR1020110071476A priority patent/KR101444508B1/en
Priority to CN201110237000.XA priority patent/CN102385162B/en
Publication of JP2012047872A publication Critical patent/JP2012047872A/en
Application granted granted Critical
Publication of JP5648372B2 publication Critical patent/JP5648372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Projection Apparatus (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source device which has a configuration to emit light by combining radiation light beams of multiple LED light sources and which emits light of a continuous wide wavelength range including a plurality of wavelength peaks and further provides a high luminance.SOLUTION: The light source device emits light by combining radiation light beams of three or more LED light sources having different peak wavelengths. The light source device includes a first dichroic mirror that combines a radiation light beam from a first LED light source with a radiation light beam from a second LED light source, and a second dichroic mirror that combines the combined light beam from the first dichroic mirror with a radiation light beam from a third LED light source. The second dichroic mirror reflects the combined light beam provided by the first dichroic mirror and transmits the radiation light beam from the third LED light source so as to obtain the combined light beam.

Description

本発明は、例えば、半導体や液晶基板、カラーフィルター等の製造工程における露光処理を行うに際しての露光用光源、あるいは、プロジェクタ装置における光源として用いられる光源装置に関する。   The present invention relates to a light source for exposure when performing an exposure process in a manufacturing process of a semiconductor, a liquid crystal substrate, a color filter, or the like, or a light source device used as a light source in a projector apparatus.

例えば、半導体や液晶基板、カラーフィルター等の製造工程における露光処理を行うに際して用いられる露光用光源として、図4に示すような、紫外線波長域のLED素子の複数のものが面状に配置されてなるLED発光部80を有し、当該LED発光部80から放射される放射光を適宜の集光光学系により集光して露光面Sに出射する構成とされた光源装置が知られている(例えば特許文献1参照。)。図4において、符号81は楕円面反射鏡、82は球面レンズ、83は円錐反射鏡、84は透光性ロッド、85はコンデンサレンズ、86はリレーレンズである。   For example, as an exposure light source used when performing an exposure process in a manufacturing process of a semiconductor, a liquid crystal substrate, a color filter or the like, a plurality of LED elements in an ultraviolet wavelength region as shown in FIG. There is known a light source device that has an LED light emitting unit 80, and that is configured to condense radiated light emitted from the LED light emitting unit 80 by an appropriate condensing optical system and emit it to the exposure surface S ( For example, see Patent Document 1.) In FIG. 4, reference numeral 81 is an elliptical reflecting mirror, 82 is a spherical lens, 83 is a conical reflecting mirror, 84 is a translucent rod, 85 is a condenser lens, and 86 is a relay lens.

しかしながら、このような構成の光源装置では、LED素子のピーク波長を中心とした比較的波長範囲の狭い単色の光しか出射することができないので、例えば感光樹脂の個々の露光感度に応じた波長光が必要とされる、カラーフィルター等の製造工程における露光処理を行うための露光用光源として利用することはできない、という問題がある。
また、LED素子から放射された光が集光光学系により集光していく過程において種々のロスが生ずることとなって光の利用効率が低下し、十分に高い輝度の光を得ることができない、という問題がある。
However, since the light source device having such a configuration can emit only monochromatic light having a relatively narrow wavelength range centered on the peak wavelength of the LED element, for example, wavelength light corresponding to the individual exposure sensitivity of the photosensitive resin. Therefore, there is a problem that it cannot be used as an exposure light source for performing an exposure process in a manufacturing process of a color filter or the like.
In addition, various losses occur in the process of condensing the light emitted from the LED element by the condensing optical system, so that the light use efficiency is lowered and it is not possible to obtain sufficiently high luminance light. There is a problem.

一方、可視域の波長範囲において選ばれた互いに異なるピーク波長を有する複数のLED光源の各々から放射される光を例えばダイクロイックミラーを用いて合成して出射する構成とされた光源装置が提案されている(例えば特許文献2参照。)。
この光源装置は、図5に示すように、可視域の所定の波長範囲内において互いに異なるピーク波長を有する3つのLED光源90A,90B,90Cと、互いに波長選択特性の異なる第1のダイクロイックミラー91および第2のダイクロイックミラー92と、第1のLED光源90A、第2のLED光源90Bおよび第3のLED光源90Cの各々の光放射方向前方側に配置された、LED光源からの放射光を平行光としてダイクロイックミラーに出射するコリメータレンズ93とを有する。
この光源装置においては、第1のLED光源90Aからの放射光が第1のダイクロイックミラー91を透過した透過光に、第2のLED光源90Bからの放射光が第1のダイクロイックミラー91により反射された反射光が合成され、さらに、第1のダイクロイックミラー91による合成光が第2のダイクロイックミラー92を透過した透過光に、第3のLED光源90Cからの放射光が第2のダイクロイックミラー92により反射された反射光が合成される。
On the other hand, there has been proposed a light source device configured to synthesize and emit light emitted from each of a plurality of LED light sources having different peak wavelengths selected in a visible wavelength range using, for example, a dichroic mirror. (For example, refer to Patent Document 2).
As shown in FIG. 5, the light source device includes three LED light sources 90A, 90B, and 90C having different peak wavelengths within a predetermined wavelength range in the visible range, and a first dichroic mirror 91 having different wavelength selection characteristics. The second dichroic mirror 92 and the emitted light from the LED light source arranged in front of the light emitting direction of each of the first LED light source 90A, the second LED light source 90B, and the third LED light source 90C are parallel. A collimator lens 93 that emits light to the dichroic mirror.
In this light source device, the radiated light from the first LED light source 90A is reflected by the transmitted light that has passed through the first dichroic mirror 91, and the radiated light from the second LED light source 90B is reflected by the first dichroic mirror 91. The reflected light is combined, the combined light from the first dichroic mirror 91 is transmitted through the second dichroic mirror 92, and the emitted light from the third LED light source 90C is transmitted through the second dichroic mirror 92. The reflected reflected light is synthesized.

しかしながら、各々、ピーク波長が互いに異なる複数のLED光源の各々から放射される放射光をダイクロイックミラーにより合成する場合には、複数個のLED光源およびダイクロイックミラーを、単に、上記構成の光学系を構成するよう配置するだけでは、十分に高い輝度の光を出射することができないことが判明した。   However, when the emitted light emitted from each of the plurality of LED light sources having different peak wavelengths is synthesized by the dichroic mirror, the plurality of LED light sources and the dichroic mirror are simply configured as the optical system having the above configuration. It has been found that it is not possible to emit light having a sufficiently high luminance by simply arranging the light emitting elements.

特開2007−041467号公報JP 2007-041467 A 特開2001−042431号公報JP 2001-042431 A

本発明は、以上のような事情に基づいてなされたものであり、複数個のLED光源の放射光を合成して出射する構成のものにおいて、複数のピーク波長を有する連続した広範囲の波長範囲の光を出射することができると共に高い輝度を得ることのできる光源装置を提供することを目的とする。   The present invention has been made on the basis of the above circumstances, and in a configuration that synthesizes and emits the emitted light of a plurality of LED light sources, a continuous wide wavelength range having a plurality of peak wavelengths. It is an object of the present invention to provide a light source device that can emit light and obtain high luminance.

本発明の光源装置は、ピーク波長が互いに異なる3つ以上のLED光源と、
第1のLED光源から放射された放射光と、第2のLED光源から放射された放射光とを合成する第1のダイクロイックミラーと、
当該第1のダイクロイックミラーにより合成された合成光と、第3のLED光源から放射される放射光とを合成する、前記第1のダイクロイックミラーと波長選択特性が異なる第2のダイクロイックミラーと
を有し、
前記第2のダイクロイックミラーは、前記第1のダイクロイックミラーにより得られる合成光を反射すると共に前記第3のLED光源からの放射光を透過するものであることを特徴とする。
The light source device of the present invention includes three or more LED light sources having different peak wavelengths,
A first dichroic mirror that combines the emitted light emitted from the first LED light source and the emitted light emitted from the second LED light source;
A second dichroic mirror having a wavelength selection characteristic different from that of the first dichroic mirror, which combines the synthesized light synthesized by the first dichroic mirror and the radiated light emitted from the third LED light source; And
The second dichroic mirror reflects the combined light obtained by the first dichroic mirror and transmits the emitted light from the third LED light source.

本発明の光源装置によれば、第2のダイクロイックミラーが、第1のダイクロイックミラーにより得られる、第1のLED光源からの放射光および第2のLED光源からの放射光の合成光を反射すると共に第3のLED光源からの放射光を透過するものであることにより、各々のLED光源からの放射光がダイクロイックミラーを透過する透過回数の合計を可及的に少なくすることができるので、各々のダイクロイックミラーにおいては、光がダイクロイックミラーにより反射されることによる放射光量の減衰の程度に比して、光がダイクロイックミラーを透過することによる放射光量の減衰の程度は大きいことから、光の利用効率を一層高くすることができて十分に高い輝度を得ることができる。   According to the light source device of the present invention, the second dichroic mirror reflects the combined light of the emitted light from the first LED light source and the emitted light from the second LED light source, which is obtained by the first dichroic mirror. In addition, by transmitting the radiated light from the third LED light source, the total number of times the radiated light from each LED light source transmits through the dichroic mirror can be reduced as much as possible. In dichroic mirrors, the amount of attenuation of the amount of radiant light due to the light passing through the dichroic mirror is greater than the amount of attenuation of the radiant amount due to the light reflected by the dichroic mirror. Efficiency can be further increased and sufficiently high luminance can be obtained.

本発明の光源装置に係る光学系の一例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in an example of the optical system which concerns on the light source device of this invention. 第1のLED素子からの放射光、第2のLED素子からの放射光および第3のLED素子からの放射光の合成光の分光分布曲線を概略的に示す説明図である。It is explanatory drawing which shows roughly the spectral distribution curve of the synthetic | combination light of the emitted light from a 1st LED element, the emitted light from a 2nd LED element, and the emitted light from a 3rd LED element. 本発明の光源装置に係る光学系の他の例における構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure in the other example of the optical system which concerns on the light source device of this invention. 従来におけるLED素子を用いた光源装置の一例における光学系の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the optical system in an example of the light source device using the conventional LED element. 従来におけるLED素子を用いた光源装置の他の例における光学系の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the optical system in the other example of the light source device using the conventional LED element.

以下、本発明の実施の形態について詳細に説明する。
図1は、本発明の光源装置に係る光学系の一例における構成の概略を示す説明図である。
この光学系は、各々、互いに異なるピーク波長λ1 〔nm〕,λ2 〔nm〕およびλ3 〔nm〕(λ1 >λ2 >λ3 )を有する光を放射する第1のLED光源、第2のLED光源および第3のLED光源の3つのLED光源の各々の放射光を合成するものである。
この光学系においては、(円)板状の第1のダイクロイックミラー51および(円)板状の第2のダイクロイックミラー56が、一方が他方に対して面方向に変位した位置において、第1のダイクロイックミラー51の一面51Aと第2のダイクロイックミラー56の他面56Bとが互いに対向するよう配置されており、第1のLED光源を構成する第1のLED素子10が、第1のダイクロイックミラー51の一面側において、第1のLED素子10の光出射面10Aの中心軸C1が第1のダイクロイックミラー51の一面51Aに対して傾斜した状態で、配置されている。
そして、第2のLED光源を構成する第2のLED素子20が、第1のダイクロイックミラー51の他面側において、第2のLED素子20の光出射面20Aの中心軸C2が、第1のダイクロイックミラー51の一面51Aにおける、第1のLED素子10の光出射面10Aの中心軸C1上の位置と交わる状態で、第1のダイクロイックミラー51の他面51Bに対して傾斜して伸びるよう、配置されていると共に、第3のLED光源を構成する第3のLED素子30が、第2のダイクロイックミラー56の一面側において、第3のLED素子30の光出射面30Aの中心軸C3が、第2のダイクロイックミラー56の他面56Bにおける、第2のLED素子20の光出射面20Aの中心軸C2上の位置と交わる状態で、第2のダイクロイックミラー56の一面56Aに対して傾斜して伸びるよう、配置されている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an explanatory diagram showing an outline of a configuration in an example of an optical system according to the light source device of the present invention.
The optical system includes a first LED light source that emits light having different peak wavelengths λ 1 [nm], λ 2 [nm] and λ 3 [nm] (λ 1 > λ 2 > λ 3 ), respectively. The emitted light of each of the three LED light sources of the second LED light source and the third LED light source is synthesized.
In this optical system, the first (circular) plate-shaped first dichroic mirror 51 and the second (circular) plate-shaped second dichroic mirror 56 are arranged in a position where one is displaced in the plane direction with respect to the other. One surface 51A of the dichroic mirror 51 and the other surface 56B of the second dichroic mirror 56 are arranged to face each other, and the first LED element 10 constituting the first LED light source is the first dichroic mirror 51. Is arranged in a state where the central axis C1 of the light emitting surface 10A of the first LED element 10 is inclined with respect to the one surface 51A of the first dichroic mirror 51.
And the 2nd LED element 20 which comprises a 2nd LED light source has the central axis C2 of 20 A of light-projection surfaces of the 2nd LED element 20 in the other surface side of the 1st dichroic mirror 51, 1st In a state where it intersects with the position on the central axis C1 of the light emitting surface 10A of the first LED element 10 on one surface 51A of the dichroic mirror 51, it extends so as to be inclined with respect to the other surface 51B of the first dichroic mirror 51. The third LED element 30 constituting the third LED light source is disposed on one surface side of the second dichroic mirror 56, and the central axis C3 of the light emitting surface 30A of the third LED element 30 is The second dichroic mirror 56 intersects with the position on the central axis C2 of the light emitting surface 20A of the second LED element 20 on the other surface 56B of the second dichroic mirror 56. So as to extend inclined to the one surface 56A of the mirror 56, it is disposed.

また、各々のLED素子のエタンデュ(放射の面積×立体角)は、互いに同じ大きさとされていることが好ましく、これにより、各々のLED素子からの放射光を効率よく合成することができる。   In addition, the etendue (radiation area × solid angle) of each LED element is preferably set to the same size, so that the emitted light from each LED element can be efficiently synthesized.

各々のLED素子10,20,30の光放射方向前方の位置には、それぞれ、LED素子10(20,30)からの放射光を平行光として出射するコリメータレンズ61(62,63)がその光軸がLED素子10(20,30)の光出射面10A(20A,30A)の中心軸C1(C2,C3)上に位置されるよう配置されており、第1のLED素子10からの放射光は、第1のコリメータレンズ61によって略平行光とされて第1のダイクロイックミラー51の一面51Aに照射される。また、第2のLED素子20からの放射光は、第2のコリメータレンズ62によって略平行光とされて第1のダイクロイックミラー51の他面51Bに、第2のLED素子20からの放射光が第1のダイクロイックミラー51を透過した透過光の出射領域が第1のLED素子10の放射光の照射領域に重なるよう、照射され、第3のLED素子30からの放射光は、第3のコリメータレンズ63によって略平行光とされて第2のダイクロイックミラー56の一面56Aに、第3のLED素子30からの放射光が第2のダイクロイックミラー56を透過した透過光の出射領域が第1のダイクロイックミラー51により合成された第1のLED素子10の放射光および第2のLED素子20の放射光の合成光の照射領域に重なるよう、照射される。   A collimator lens 61 (62, 63) that emits radiated light from the LED element 10 (20, 30) as parallel light is located at a position in front of the light emitting direction of each LED element 10, 20, 30. The axis is disposed so as to be positioned on the central axis C1 (C2, C3) of the light emitting surface 10A (20A, 30A) of the LED element 10 (20, 30), and the emitted light from the first LED element 10 Is collimated by the first collimator lens 61 and is irradiated onto one surface 51A of the first dichroic mirror 51. Also, the emitted light from the second LED element 20 is made substantially parallel light by the second collimator lens 62, and the emitted light from the second LED element 20 is applied to the other surface 51B of the first dichroic mirror 51. The transmitted light that has passed through the first dichroic mirror 51 is irradiated so that the emission area of the transmitted light overlaps the irradiation area of the emitted light of the first LED element 10, and the emitted light from the third LED element 30 is emitted from the third collimator. The first dichroic light is transmitted through the second dichroic mirror 56 on one surface 56A of the second dichroic mirror 56, which is made substantially parallel light by the lens 63, and is transmitted through the second dichroic mirror 56. It irradiates so that it may overlap with the irradiation area of the synthetic light of the radiation light of the 1st LED element 10 and the radiation light of the 2nd LED element 20 compounded by mirror 51

第1のダイクロイックミラー51は、第1のLED素子10のピーク波長λ1 と第2のLED素子20のピーク波長λ2 との間の波長範囲内において反射−透過変換波長(境界波長)λ01(λ2 <λ01<λ1 )を有し、反射−透過変換波長λ01より長波長の光を反射し、反射−透過変換波長λ01より短波長の光を透過する波長選択特性を有する。
第2のダイクロイックミラー56は、第2のLED素子20のピーク波長λ2 と第3のLED素子30のピーク波長λ3 との間の波長範囲内において反射−透過変換波長(境界波長)λ02(λ3 <λ02<λ2 )を有し、反射−透過変換波長λ02より長波長の光を反射し、反射−透過変換波長λ02より短波長の光を透過する波長選択特性を有する。
The first dichroic mirror 51 is reflected in the wavelength range between the peak wavelength lambda 1 and the peak wavelength lambda 2 of the second LED element 20 of the first LED element 10 - transparent translation Wavelength (boundary wavelength) lambda 01 (λ 2 <λ 01 <λ 1) has a reflection - from transparent translation wavelength lambda 01 reflects light of a long wavelength, the reflected - a wavelength selection characteristics for transmitting light having a shorter wavelength than the transmission conversion wavelength lambda 01 .
The second dichroic mirror 56, the reflection in the wavelength range between the peak wavelength lambda 2 and the peak wavelength lambda 3 of third LED elements 30 of the second LED element 20 - transparent translation Wavelength (boundary wavelength) lambda 02 (λ 3 <λ 02 <λ 2) has a reflection - from transparent translation wavelength lambda 02 reflects light of a long wavelength, the reflected - a wavelength selection characteristics for transmitting light having a shorter wavelength than the transmission conversion wavelength lambda 02 .

この光学系においては、第1のLED素子10からの放射光が第1のダイクロイックミラー51の一面51Aによって反射された反射光に、第2のLED素子20からの放射光が第1のダイクロイックミラー51を透過した透過光が合成され、第1のダイクロイックミラー51による合成光が第2のダイクロイックミラー56の他面56Bによって反射された反射光に、第3のLED素子30からの放射光が第2のダイクロイックミラー56を透過した透過光が合成され、これにより、図2に示すような、波長λ1 〔nm〕、λ2 〔nm〕およびλ3 〔nm〕の3つのピーク波長を有する連続した広い波長範囲の分光分布特性を有する合成光が出射される。 In this optical system, the emitted light from the first LED element 10 is reflected by the one surface 51A of the first dichroic mirror 51, and the emitted light from the second LED element 20 is reflected by the first dichroic mirror. The transmitted light that has passed through 51 is combined, the combined light from the first dichroic mirror 51 is reflected by the other surface 56B of the second dichroic mirror 56, and the emitted light from the third LED element 30 is the first light. The transmitted light that has passed through the two dichroic mirrors 56 is synthesized, and as a result, as shown in FIG. 2, continuous light having three peak wavelengths of wavelengths λ 1 [nm], λ 2 [nm], and λ 3 [nm] are obtained. The combined light having the spectral distribution characteristics in the wide wavelength range is emitted.

而して、このような光学系を備えた光源装置によれば、第2のダイクロイックミラー56により、第1のLED素子10の放射光および第2のLED素子20の放射光の合成光を反射させると共に第3のLED素子30からの放射光を透過させて、第1のLED素子10の放射光、第2のLED素子20の放射光および第3のLED素子30からの放射光を合成する構成とされていることにより、第1のLED素子10の放射光、第2のLED素子20の放射光および第3のLED素子30の各々が第1のダイクロイックミラー51および第2のダイクロイックミラー56を透過する透過回数の合計を、例えば図5に示す構成のものに比して少なくすることができる。すなわち、図5に示す構成の光学系では、第1のLED光源90Aの放射光がダイクロイックミラーを透過する回数が2回、第2のLED光源90Bの放射光がダイクロイックミラーを透過する回数が1回、第3のLED光源90Cの放射光がダイクロイックミラーを透過する回数が0回で、透過回数の合計が3回であるのに対して、上記の構成の光学系では、第1のLED素子10の放射光がダイクロイックミラーを透過する回数が0回、第2のLED素子20の放射光がダイクロイックミラーを透過する回数が1回、第3のLED素子30の放射光がダイクロイックミラーを透過する回数が1回で、透過回数の合計が2回となる。
従って、各々のダイクロイックミラーにおいては、光がダイクロイックミラーにより反射されることによる放射光量の減衰の程度に比して、光がダイクロイックミラーを透過することによる放射光量の減衰の程度は大きいので、ダイクロイックミラーを透過する透過回数の合計が可及的に少なくなる状態で構成されていることにより、光の利用効率を一層高くすることができて十分に高い輝度を得ることができる。
Thus, according to the light source device having such an optical system, the second dichroic mirror 56 reflects the combined light of the emitted light of the first LED element 10 and the emitted light of the second LED element 20. And transmitting the emitted light from the third LED element 30 to synthesize the emitted light of the first LED element 10, the emitted light of the second LED element 20, and the emitted light of the third LED element 30. By being configured, the first LED element 10 radiated light, the second LED element 20 radiated light, and the third LED element 30 are respectively the first dichroic mirror 51 and the second dichroic mirror 56. For example, the total number of times of transmission can be reduced as compared with the configuration shown in FIG. That is, in the optical system having the configuration shown in FIG. 5, the number of times that the emitted light of the first LED light source 90A passes through the dichroic mirror is 2, and the number of times that the emitted light of the second LED light source 90B passes through the dichroic mirror is 1. The number of times the emitted light of the third LED light source 90C passes through the dichroic mirror is zero, and the total number of times of transmission is three, whereas in the optical system configured as described above, the first LED element The number of times 10 emitted light passes through the dichroic mirror is 0, the number of times the emitted light of the second LED element 20 passes through the dichroic mirror is 1, and the emitted light of the third LED element 30 passes through the dichroic mirror. The number of times is 1, and the total number of times of transmission is 2.
Therefore, in each dichroic mirror, the amount of attenuation of the amount of radiant light caused by light passing through the dichroic mirror is greater than the amount of attenuation of the amount of radiant light reflected by the dichroic mirror. By being configured in a state where the total number of times of transmission through the mirror is as small as possible, the light utilization efficiency can be further increased and sufficiently high luminance can be obtained.

以上、本発明の光源装置の一実施形態について説明したが、本発明は、上記構成のものに限定されるものではない。   As mentioned above, although one Embodiment of the light source device of this invention was described, this invention is not limited to the thing of the said structure.

図3は、本発明の光源装置に係る光学系の他の例における構成の概略を示す説明図である。
この光学系は、各々、互いに異なるピーク波長λ1 〔nm〕,λ2 〔nm〕,λ3 〔nm〕およびλ4 〔nm〕(λ1 >λ2 >λ3 >λ4 )を有する光を放射する第1のLED光源101からの放射光、第2のLED光源201からの放射光、第3のLED光源301からの放射光および第4のLED光源401からの放射光を合成するものである。
FIG. 3 is an explanatory diagram showing an outline of the configuration of another example of the optical system according to the light source device of the present invention.
This optical system has light having different peak wavelengths λ 1 [nm], λ 2 [nm], λ 3 [nm] and λ 4 [nm] (λ 1 > λ 2 > λ 3 > λ 4 ), respectively. The light emitted from the first LED light source 101, the light emitted from the second LED light source 201, the light emitted from the third LED light source 301 and the light emitted from the fourth LED light source 401. It is.

第1のLED光源101は、第1のLED素子10と、光軸が第1のLED素子10の光出射面の中心軸に一致する状態で配置された、第1のLED素子10からの放射光を略平行光として照射する例えばパラボラミラー102とにより構成されている。また、第2のLED光源201、第3のLED光源301および第4のLED光源401の各々も、第1のLED光源101と同様の構成を有し、LED素子(20,30,40)とパラボラミラー(202,302,402)とにより構成されている。   The first LED light source 101 is radiated from the first LED element 10 and the first LED element 10 arranged in a state where the optical axis coincides with the central axis of the light emitting surface of the first LED element 10. For example, it is configured by a parabolic mirror 102 that emits light as substantially parallel light. In addition, each of the second LED light source 201, the third LED light source 301, and the fourth LED light source 401 has the same configuration as the first LED light source 101, and the LED element (20, 30, 40). It is comprised by the parabolic mirror (202,302,402).

この光学系においては、円板状の第1のダイクロイックミラー51、円板状の第2のダイクロイックミラー56および円板状の第3のダイクロイックミラー58が、例えば同一の平面(ダイクロイックミラー配置面)上に並んで、配置されており、第1のLED光源101、第2のLED光源201、第3のLED光源301および第4のLED光源401が、ダイクロイックミラー配置面の一面側における、ダイクロイックミラー配置面の面方向に離間して並んだ位置において、パラボラミラー102,202,302,402の光軸が例えば互いに平行に伸びるよう配置されている。また、ダイクロイックミラー配置面の他面側には、3つの反射ミラー70,71,72が、それぞれ対応する3つのダイクロイックミラー51,56,58の各々に対してダイクロイックミラー配置面の面方向に変位した位置において、反射面70A,71A,72Aがダイクロイックミラー配置面に対向するよう配置されている。   In this optical system, the disk-shaped first dichroic mirror 51, the disk-shaped second dichroic mirror 56, and the disk-shaped third dichroic mirror 58 are, for example, the same plane (dichroic mirror arrangement surface). The first LED light source 101, the second LED light source 201, the third LED light source 301, and the fourth LED light source 401 are arranged side by side on the one side of the dichroic mirror arrangement surface. The optical axes of the parabolic mirrors 102, 202, 302, and 402 are arranged so as to extend in parallel with each other, for example, at positions arranged side by side in the surface direction of the arrangement surface. In addition, on the other surface side of the dichroic mirror arrangement surface, the three reflection mirrors 70, 71, 72 are displaced in the surface direction of the dichroic mirror arrangement surface with respect to the corresponding three dichroic mirrors 51, 56, 58, respectively. At the positions, the reflecting surfaces 70A, 71A, 72A are arranged to face the dichroic mirror arrangement surface.

第1のダイクロイックミラー51は、第1のLED素子10のピーク波長λ1 と第2のLED素子20のピーク波長λ2 との間の波長範囲内において反射−透過変換波長(境界波長)λ01(λ2 <λ01<λ1 )を有し、反射−透過変換波長λ01より長波長の光を反射し、反射−透過変換波長λ01より短波長の光を透過する波長選択特性を有する。
第2のダイクロイックミラー56は、第2のLED素子20のピーク波長λ2 と第3のLED素子30のピーク波長λ3 との間の波長範囲内において反射−透過変換波長(境界波長)λ02(λ3 <λ02<λ2 )を有し、反射−透過変換波長λ02より長波長の光を反射し、反射−透過変換波長λ02より短波長の光を透過する波長選択特性を有する。
第3のダイクロイックミラー58は、第3のLED素子30のピーク波長λ3 と第4のLED素子40のピーク波長λ4 との間の波長範囲内において反射−透過変換波長(境界波長)λ03(λ4 <λ03<λ3 )を有し、反射−透過変換波長λ03より長波長の光を反射し、反射−透過変換波長λ03より短波長の光を透過する波長選択特性を有する。
The first dichroic mirror 51 is reflected in the wavelength range between the peak wavelength lambda 1 and the peak wavelength lambda 2 of the second LED element 20 of the first LED element 10 - transparent translation Wavelength (boundary wavelength) lambda 01 (λ 2 <λ 01 <λ 1) has a reflection - from transparent translation wavelength lambda 01 reflects light of a long wavelength, the reflected - a wavelength selection characteristics for transmitting light having a shorter wavelength than the transmission conversion wavelength lambda 01 .
The second dichroic mirror 56, the reflection in the wavelength range between the peak wavelength lambda 2 and the peak wavelength lambda 3 of third LED elements 30 of the second LED element 20 - transparent translation Wavelength (boundary wavelength) lambda 02 (λ 3 <λ 02 <λ 2) has a reflection - from transparent translation wavelength lambda 02 reflects light of a long wavelength, the reflected - a wavelength selection characteristics for transmitting light having a shorter wavelength than the transmission conversion wavelength lambda 02 .
The third dichroic mirror 58 is reflected in the wavelength range between the peak wavelength lambda 3 of third LED elements 30 and the peak wavelength lambda 4 of the fourth LED elements 40 - transparent translation Wavelength (boundary wavelength) lambda 03 has a (λ 4 <λ 03 <λ 3), the reflection - from transparent translation wavelength lambda 03 reflects light of a long wavelength, the reflected - a wavelength selection characteristics for transmitting light having a shorter wavelength than the transmission conversion wavelength lambda 03 .

この光学系においては、第1のダイクロイックミラー51の他面51Bに所定の入射角で入射される、第1のLED光源101からの放射光が反射ミラー70によって反射された反射光が、第1のダイクロイックミラー51の他面51Bによって反射されると共に、第1のダイクロイックミラー51の一面51Aに所定の大きさの入射角で入射される第2のLED光源201からの放射光が第1のダイクロイックミラー51を透過し、これにより、第1のLED光源101からの放射光および第2のLED光源201からの放射光が合成される。
そして、第2のダイクロイックミラー56の他面56Bに所定の大きさの入射角で入射される、第1のダイクロイックミラー51による合成光が第2の反射ミラー71により反射された反射光が、第2のダイクロイックミラー56の他面56Bによって反射されると共に、第2のダイクロイックミラー56の一面56Aに所定の大きさの入射角で入射される、第3のLED光源301からの放射光が第2のダイクロイックミラー56を透過し、これにより、第1のLED光源101からの放射光および第2のLED光源201からの放射光の合成光と、第3のLED光源301からの放射光が合成される。
さらに、第3のダイクロイックミラー58の他面58Bに所定の大きさの入射角で入射される、第2のダイクロイックミラー56による合成光が第3の反射ミラー72により反射された反射光が、第3のダイクロイックミラー58の他面58Bによって反射されると共に、第3のダイクロイックミラー58の一面58Aに所定の大きさの入射角で入射される、第4のLED光源401からの放射光が第3のダイクロイックミラー58を透過し、これにより、第1のLED光源101からの放射光、第2のLED光源201からの放射光および第3のLED光源301からの放射光の合成光と、第4のLED光源401からの放射光が合成される。
In this optical system, the reflected light that is incident on the other surface 51B of the first dichroic mirror 51 at a predetermined incident angle and is reflected by the reflection mirror 70 from the first LED light source 101 is reflected by the first optical system. The radiant light from the second LED light source 201 that is reflected by the other surface 51B of the dichroic mirror 51 and incident on the one surface 51A of the first dichroic mirror 51 at an incident angle of a predetermined magnitude is the first dichroic mirror. Through the mirror 51, the emitted light from the first LED light source 101 and the emitted light from the second LED light source 201 are combined.
Then, the reflected light, which is incident on the other surface 56B of the second dichroic mirror 56 at an incident angle of a predetermined magnitude and is reflected by the second reflecting mirror 71, is reflected by the first reflecting mirror 71. The radiated light from the third LED light source 301 is reflected by the other surface 56B of the second dichroic mirror 56 and incident on the one surface 56A of the second dichroic mirror 56 at an incident angle of a predetermined magnitude. Thus, the combined light of the emitted light from the first LED light source 101 and the emitted light from the second LED light source 201 and the emitted light from the third LED light source 301 are combined. The
Further, the reflected light, which is incident on the other surface 58B of the third dichroic mirror 58 at an incident angle of a predetermined magnitude and is reflected by the third reflecting mirror 72, is reflected by the second reflecting mirror 72. The radiated light from the fourth LED light source 401 is reflected by the other surface 58B of the third dichroic mirror 58 and incident on the one surface 58A of the third dichroic mirror 58 at an incident angle of a predetermined magnitude. Of the first LED light source 101, the combined light of the second LED light source 201 and the third LED light source 301, and the fourth light. The emitted light from the LED light source 401 is synthesized.

このような構成の光学系を有する光源装置においても、図1に示す構成の光学系を有するものと同様の効果、すなわち、ダイクロイックミラーを透過する透過回数の合計が可及的に少なくなる状態で構成されていることにより、光の利用効率を一層高くすることができて十分に高い輝度を得ることができる。   In the light source device having the optical system having such a configuration, the same effect as that having the optical system having the configuration shown in FIG. 1, that is, in a state where the total number of times of transmission through the dichroic mirror is as small as possible. By being configured, the light utilization efficiency can be further increased, and sufficiently high luminance can be obtained.

10 第1のLED素子
10A 光出射面
20 第2のLED素子
20A 光出射面
30 第3のLED素子
30A 光出射面
40 第4のLED素子
C1 基準軸(第1のLED素子の光出射面の中心軸)
C2 第2のLED素子の光出射面の中心軸
C3 第3のLED素子の光出射面の中心軸
51 第1のダイクロイックミラー
51A 一面
51B 他面
56 第2のダイクロイックミラー
56A 一面
56B 他面
58 第3のダイクロイックミラー
58A 一面
58B 他面
61 第1のコリメータレンズ
62 第2のコリメータレンズ
63 第3のコリメータレンズ
70 第1の反射ミラー
71 第2の反射ミラー
72 第3の反射ミラー
70A,71A,72A 反射面
80 LED発光部
81 楕円面反射鏡
82 球面レンズ
83 円錐反射鏡
84 透光性ロッド
85 コンデンサレンズ
86 リレーレンズ
90A 第1のLED光源
90B 第2のLED光源
90C 第3のLED光源
91 第1のダイクロイックミラー
92 第2のダイクロイックミラー
93 コリメータレンズ
S 露光面
101 第1のLED光源
201 第2のLED光源
301 第3のLED光源
401 第4のLED光源
102,202,302,402 パラボラミラー
DESCRIPTION OF SYMBOLS 10 1st LED element 10A Light-emission surface 20 2nd LED element 20A Light-emission surface 30 3rd LED element 30A Light-emission surface 40 4th LED element C1 Reference axis (light-emission surface of 1st LED element) Center axis)
C2 Center axis of light emitting surface of second LED element C3 Center axis of light emitting surface of third LED element 51 First dichroic mirror 51A One surface 51B Other surface 56 Second dichroic mirror 56A One surface 56B Other surface 58 First 3 dichroic mirror 58A one surface 58B other surface 61 first collimator lens 62 second collimator lens 63 third collimator lens 70 first reflection mirror 71 second reflection mirror 72 third reflection mirror 70A, 71A, 72A Reflective surface 80 LED light emitting portion 81 Ellipsoidal reflector 82 Spherical lens 83 Conical reflector 84 Translucent rod 85 Condenser lens 86 Relay lens 90A First LED light source 90B Second LED light source 90C Third LED light source 91 First Dichroic Mirror 92 Second Dichroic Mi Over 93 collimator lens S exposed surface 101 first LED light source 201 and the second LED light source 301 third LED light source 401 a fourth LED light sources 102, 202, 302, and 402 parabolic mirror

Claims (1)

ピーク波長が互いに異なる3つ以上のLED光源と、
第1のLED光源から放射された放射光と第2のLED光源から放射された放射光とを合成する第1のダイクロイックミラーと、
当該第1のダイクロイックミラーにより合成された合成光と第3のLED光源から放射される放射光とを合成する、前記第1のダイクロイックミラーと波長選択特性が異なる第2のダイクロイックミラーと
を有し、
前記第2のダイクロイックミラーは、前記第1のダイクロイックミラーにより得られる合成光を反射すると共に前記第3のLED光源からの放射光を透過するものであることを特徴とする光源装置。
Three or more LED light sources having different peak wavelengths,
A first dichroic mirror that combines the emitted light emitted from the first LED light source and the emitted light emitted from the second LED light source;
A first dichroic mirror for synthesizing synthesized light synthesized by the first dichroic mirror and radiated light emitted from a third LED light source; and a second dichroic mirror having a wavelength selection characteristic different from that of the first dichroic mirror. ,
The second dichroic mirror reflects the combined light obtained by the first dichroic mirror and transmits the emitted light from the third LED light source.
JP2010188150A 2010-08-25 2010-08-25 Light source device Expired - Fee Related JP5648372B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010188150A JP5648372B2 (en) 2010-08-25 2010-08-25 Light source device
TW100123668A TWI521162B (en) 2010-08-25 2011-07-05 Light source device
KR1020110071476A KR101444508B1 (en) 2010-08-25 2011-07-19 Light source apparatus
CN201110237000.XA CN102385162B (en) 2010-08-25 2011-08-18 Light supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010188150A JP5648372B2 (en) 2010-08-25 2010-08-25 Light source device

Publications (2)

Publication Number Publication Date
JP2012047872A true JP2012047872A (en) 2012-03-08
JP5648372B2 JP5648372B2 (en) 2015-01-07

Family

ID=45824726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010188150A Expired - Fee Related JP5648372B2 (en) 2010-08-25 2010-08-25 Light source device

Country Status (4)

Country Link
JP (1) JP5648372B2 (en)
KR (1) KR101444508B1 (en)
CN (1) CN102385162B (en)
TW (1) TWI521162B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140123421A (en) * 2013-04-12 2014-10-22 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
WO2017148656A1 (en) * 2016-03-03 2017-09-08 Asml Netherlands B.V. Wavelength combining of multiple sources

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10754165B2 (en) * 2014-11-07 2020-08-25 PhotonX TherapeutX, Inc. High efficiency optical combiner for multiple non-coherent light sources
CN106151999A (en) * 2015-01-30 2016-11-23 欧帝尔光学镀膜有限公司 Use LED or the projection system of fluorescent material converted light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313114A (en) * 1992-05-06 1993-11-26 Canon Inc Image forming device and projection type display device with the same
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2005242364A (en) * 2004-02-27 2005-09-08 Lumileds Lighting Us Llc Illumination system with aligned light emitting diodes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335952A (en) 2002-12-27 2004-11-25 Nikon Corp Illumination light source, lighting system, exposure device, and exposure method
TWI359282B (en) * 2007-10-09 2012-03-01 Coretronic Corp Projector
TWI375108B (en) * 2007-12-14 2012-10-21 Young Optics Inc Light projection apparatus and light-mixing module thereof
JP5077086B2 (en) * 2008-06-13 2012-11-21 コニカミノルタアドバンストレイヤー株式会社 Illumination optical system and image projection apparatus
CN101950083B (en) * 2010-07-30 2012-07-04 广东威创视讯科技股份有限公司 Light-emitting diode (LED) illuminating light path for projector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313114A (en) * 1992-05-06 1993-11-26 Canon Inc Image forming device and projection type display device with the same
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2005242364A (en) * 2004-02-27 2005-09-08 Lumileds Lighting Us Llc Illumination system with aligned light emitting diodes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140123421A (en) * 2013-04-12 2014-10-22 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
JP2014207300A (en) * 2013-04-12 2014-10-30 株式会社オーク製作所 Light source device and exposure apparatus
TWI600975B (en) * 2013-04-12 2017-10-01 Orc Manufacturing Co Ltd Light source device and exposure device
KR102144597B1 (en) * 2013-04-12 2020-08-13 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
WO2017148656A1 (en) * 2016-03-03 2017-09-08 Asml Netherlands B.V. Wavelength combining of multiple sources
JP2019512716A (en) * 2016-03-03 2019-05-16 エーエスエムエル ネザーランズ ビー.ブイ. Wavelength synthesis of multiple light sources
US10520824B2 (en) 2016-03-03 2019-12-31 Asml Netherlands B.V. Wavelength combining of multiple source

Also Published As

Publication number Publication date
CN102385162B (en) 2015-09-02
TW201209321A (en) 2012-03-01
JP5648372B2 (en) 2015-01-07
TWI521162B (en) 2016-02-11
KR101444508B1 (en) 2014-09-24
KR20120019367A (en) 2012-03-06
CN102385162A (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP6186752B2 (en) Light source device and projection device
KR101825537B1 (en) Light-emitting device and projection system
KR101766710B1 (en) Light Emitting Device and Projection System Adopting same
JP5411910B2 (en) Light source system
US11604401B2 (en) Light source device and projection apparatus
EP3229072B1 (en) Illumination system and projection apparatus
US9279987B2 (en) Optical element and lighting device
JP6697765B2 (en) Light source device and light projecting device
JP6195321B2 (en) Light source device and projection display device
JP2011065979A (en) Light source device
JP6189338B2 (en) Light emitting device, light emitting device assembly and projection system related thereto
TWI459122B (en) Optical system
JP5648372B2 (en) Light source device
KR100565075B1 (en) Illuminating unit and projection type image display apparatus employing the same
CN108073025B (en) Projection device and illumination system
JP5280502B2 (en) Light source device
CN113272705B (en) Collimator lens, light source device, and image display device
JP2010091846A (en) Projection display device
US9904161B2 (en) Lighting device for generating light by means of wavelength conversion
JP2012049226A (en) Light source device
CN109254485B (en) Light source device and projection system
JP2009238990A (en) Light source device
JP6995122B2 (en) Laser lighting module for vehicle headlights
JP2019045529A (en) Light source device, illumination device and projector
JP2008275867A (en) Hologram optical element, its facturing method, and light source unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5648372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees