[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012042250A - Vibration type angular velocity sensor - Google Patents

Vibration type angular velocity sensor Download PDF

Info

Publication number
JP2012042250A
JP2012042250A JP2010181839A JP2010181839A JP2012042250A JP 2012042250 A JP2012042250 A JP 2012042250A JP 2010181839 A JP2010181839 A JP 2010181839A JP 2010181839 A JP2010181839 A JP 2010181839A JP 2012042250 A JP2012042250 A JP 2012042250A
Authority
JP
Japan
Prior art keywords
spring
spring constant
angular velocity
velocity sensor
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010181839A
Other languages
Japanese (ja)
Inventor
Hironori Sato
優典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2010181839A priority Critical patent/JP2012042250A/en
Publication of JP2012042250A publication Critical patent/JP2012042250A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration type angular velocity sensor that is compact, and has high sensitivity and quick response.SOLUTION: The vibration type angular velocity sensor includes a support part, a weight part, a plurality of beam parts extended from the weight part to the support part and supporting the weight part respectively, excitation means of exciting the weight part in a plurality of directions by time-division driving, detection means of detecting motion of the weight part relative to the support part, spring constant stabilization means formed nearby a boundary with the beam parts of at least one of the support part and weight part, and elastically deforming in an extension direction of the beam parts according to tension of the beam parts, but substantially not deforming in a main deformation direction of the beam parts, and a damper coupled to the spring constant stabilization means and damping vibration of the spring constant stabilization means.

Description

本発明は振動型角速度センサに関し、特にMEMS(Micro Electro Mechanical Systems)として構成される振動型角速度センサに関する。   The present invention relates to a vibration type angular velocity sensor, and more particularly to a vibration type angular velocity sensor configured as MEMS (Micro Electro Mechanical Systems).

従来、MEMSとして構成される振動型角速度センサが知られている。振動型角速度センサでは、参照振動の振幅が大きくなるほど感度が高くなる。したがって錘部は錘部の形態と錘部を支持する弾性体の形態とで決まる固有振動数の近傍の振動数において励振される。しかし、錘部を支持する弾性体が延びると弾性体のばね定数が変化し、それにともなって固有振動数が変化する。このような固有振動数の変化はハードスプリング効果といわれる。一定の振幅に対しては弾性体が小型化するほどハードスプリング効果が起こりやすい。ハードスプリング効果による固有振動数の変化に追従して励振することは困難であるため、振動型角速度センサが小型化するほど振幅の大きな参照振動を実現することは困難になる。特許文献1、2,3に記載されているように、錘部を支持する弾性体としての梁部が例えばT字形である等、錘部を支持する弾性体としての梁部に屈曲部があるとハードスプリング効果による固有振動数の変化は起こりにくくなる。   Conventionally, a vibration type angular velocity sensor configured as a MEMS is known. In the vibration type angular velocity sensor, the sensitivity increases as the amplitude of the reference vibration increases. Therefore, the weight portion is excited at a frequency near the natural frequency determined by the shape of the weight portion and the shape of the elastic body supporting the weight portion. However, when the elastic body supporting the weight portion extends, the spring constant of the elastic body changes, and the natural frequency changes accordingly. Such a change in natural frequency is called a hard spring effect. For a certain amplitude, the hard spring effect tends to occur as the elastic body becomes smaller. Since it is difficult to excite following the change of the natural frequency due to the hard spring effect, it becomes difficult to realize a reference vibration having a large amplitude as the vibration type angular velocity sensor is downsized. As described in Patent Documents 1, 2, and 3, the beam portion as the elastic body that supports the weight portion has a bent portion, for example, the beam portion as the elastic body that supports the weight portion, such as a T-shape. And the natural frequency change due to the hard spring effect is less likely to occur.

特開2000−199714号公報JP 2000-199714 A 特開2007−333665号公報JP 2007-333665 A 国際公開WO00−079288号パンフレットInternational Publication WO00-079288 Pamphlet 特開2002−55117号公報JP 2002-55117 A

しかし、屈曲部を形成するなどして梁部自体を柔らかくするとばね定数と固有振動数が大幅に低下する。したがって、従来の方法では、目標とする固有振動数を維持しながら弾性体のハードスプリング効果を低減することはできない。すなわち、振動型角速度センサには、小型化するほど、振幅の大きな参照振動を実現することは困難になるとともに感度を高めにくくなるという問題がある。
また、時分割駆動によって錘部を2方向に振動させることで角速度の直交する3成分を検出する振動型角速度センサでは、1方向の振動が十分減衰するまで振動方向を切り変えることができないため、応答性が悪くなるという問題がある。
However, if the beam portion itself is softened by forming a bent portion or the like, the spring constant and the natural frequency are greatly reduced. Therefore, the conventional method cannot reduce the hard spring effect of the elastic body while maintaining the target natural frequency. That is, the vibration type angular velocity sensor has a problem that, as the size of the vibration type angular velocity sensor is reduced, it is difficult to realize a reference vibration having a large amplitude and it is difficult to increase sensitivity.
In addition, in a vibration type angular velocity sensor that detects three components whose angular velocities are orthogonal by vibrating the weight portion in two directions by time-division driving, the vibration direction cannot be switched until the vibration in one direction is sufficiently attenuated. There is a problem that responsiveness deteriorates.

本発明は、この問題を解決するために創作されたものであって、小型で感度と応答性が高い振動型角速度センサを提供することを目的の1つとする。   The present invention has been created to solve this problem, and an object thereof is to provide a vibration type angular velocity sensor that is small in size and has high sensitivity and responsiveness.

(1)上記目的を達成するための振動型角速度センサは、支持部と、錘部と、前記錘部からそれぞれ前記支持部まで延伸し前記錘部を支持している複数の梁部と、前記錘部を時分割駆動によって複数方向に励振する励振手段と、前記支持部に対する前記錘部の運動を検出する検出手段と、前記支持部および前記錘部の少なくとも一方の前記梁部との境界近傍に形成され、前記梁部の張力に応じて前記梁部の延伸方向に弾性変形し前記梁部の主撓み方向には実質的に変形しないばね定数安定化手段と、前記ばね定数安定化手段と結合し前記ばね定数安定化手段の振動を減衰させるダンパーと、を備える。   (1) A vibration type angular velocity sensor for achieving the above object includes a support portion, a weight portion, a plurality of beam portions extending from the weight portion to the support portion and supporting the weight portion, Near the boundary between excitation means for exciting the weight part in a plurality of directions by time-division driving, detection means for detecting movement of the weight part with respect to the support part, and the beam part of at least one of the support part and the weight part A spring constant stabilizing means that is elastically deformed in the extending direction of the beam part according to the tension of the beam part and does not substantially deform in the main bending direction of the beam part, and the spring constant stabilizing means, And a damper for coupling and damping the vibration of the spring constant stabilizing means.

本発明によると梁部の張力に応じてばね定数安定化手段が梁部の延伸方向に弾性変形することによって梁部の伸びが抑制される。このため本発明によると、錘部の参照振動の振幅を大きくしても、ハードスプリング効果による固有振動数の変化を抑えることができる。すなわち本発明によると感度が高い振動型角速度センサを実現できる。また梁部の延伸方向のばね定数は梁部の主撓み方向のばね定数に比べて格段に大きい。したがって梁部の延伸方向におけるばね定数安定化手段のばね定数が相当大きくても、梁部のハードスプリング効果を抑制できる。梁部の延伸方向におけるばね定数安定化手段のばね定数を十分大きく設定することによって、ばね定数安定化手段によって錘部の固有振動数が大幅に低くなることを防止できる。さらに、ダンパーによってばね定数安定化手段の振動を減衰させるため、時分割駆動において錘部の振動方向の切換に要する時間を短縮し、応答性を高めることができる。なお、本明細書において、主撓み方向とは、板状の構造体を厚さ方向に撓ませる任意の変位方向である。また、厚さ方向とは板状の構造体の寸法について最も長さが短くなる方向である。   According to the present invention, the spring constant stabilizing means elastically deforms in the extending direction of the beam portion according to the tension of the beam portion, thereby suppressing the extension of the beam portion. For this reason, according to the present invention, even if the amplitude of the reference vibration of the weight portion is increased, a change in the natural frequency due to the hard spring effect can be suppressed. That is, according to the present invention, a vibration type angular velocity sensor with high sensitivity can be realized. Further, the spring constant in the extending direction of the beam portion is significantly larger than the spring constant in the main deflection direction of the beam portion. Therefore, even if the spring constant of the spring constant stabilizing means in the extending direction of the beam portion is considerably large, the hard spring effect of the beam portion can be suppressed. By setting the spring constant of the spring constant stabilizing means in the extending direction of the beam part sufficiently large, it is possible to prevent the natural frequency of the weight part from being significantly lowered by the spring constant stabilizing means. Further, since the vibration of the spring constant stabilizing means is attenuated by the damper, the time required for switching the vibration direction of the weight portion in the time-division driving can be shortened and the responsiveness can be improved. In this specification, the main bending direction is an arbitrary displacement direction that causes the plate-like structure to be bent in the thickness direction. The thickness direction is the direction in which the length is the shortest with respect to the dimensions of the plate-like structure.

(2)上記目的を達成するための振動型角速度センサにおいて、前記ばね定数安定化手段は、主撓み方向が前記梁部の延伸方向に一致するとともに当該主撓み方向において前記梁部と結合している板ばねの形態を有してもよい。
本発明によると板ばねの形態を有するばね定数安定化手段が梁部の延伸方向に撓むことによって梁部の伸びが抑制される。このため感度が高い振動型角速度センサを実現できる。また板ばねの形態を有するばね定数安定化手段の主撓み方向のばね定数を十分大きく設定することによって、錘部の固有振動数が大幅に低くなることを防止できる。
(2) In the vibration-type angular velocity sensor for achieving the above object, the spring constant stabilizing means includes a main bending direction coinciding with an extending direction of the beam portion and a coupling with the beam portion in the main bending direction. It may have the form of a leaf spring.
According to the present invention, the spring constant stabilizing means having the form of a leaf spring is bent in the extending direction of the beam portion, thereby suppressing the extension of the beam portion. Therefore, a vibration type angular velocity sensor with high sensitivity can be realized. In addition, by setting the spring constant in the main deflection direction of the spring constant stabilizing means having the form of a leaf spring to a sufficiently large value, it is possible to prevent the natural frequency of the weight portion from being significantly lowered.

(3)上記目的を達成するための振動型角速度センサにおいて、前記支持部と前記錘部と前記梁部とは積層構造体からなり、前記積層構造体の積層方向において前記支持部または前記錘部を貫通する穴によって前記ばね定数安定化手段が形成され、前記ダンパーは前記穴の内部に充填された樹脂材料からなってもよい。
本発明によると、ばね定数安定化手段と支持部または錘部の残部との積層構造が同一になるため、ばね定数安定化手段を簡素な製造プロセスの中で形成することができる。また穴の内部に樹脂材料を充填することによってダンパーを形成するため、簡素な製造プロセスの中でダンパーを形成することができる。
(3) In the vibration-type angular velocity sensor for achieving the above object, the support portion, the weight portion, and the beam portion are formed of a laminated structure, and the support portion or the weight portion in the lamination direction of the laminated structure. The spring constant stabilizing means may be formed by a hole penetrating through the damper, and the damper may be made of a resin material filled in the hole.
According to the present invention, since the laminated structure of the spring constant stabilizing means and the rest of the support portion or the weight portion is the same, the spring constant stabilizing means can be formed in a simple manufacturing process. Further, since the damper is formed by filling the hole with a resin material, the damper can be formed in a simple manufacturing process.

図1Aは本発明の実施形態にかかる斜視図。図1Bおよび図1Cは本発明の実施形態にかかる側面図。FIG. 1A is a perspective view according to an embodiment of the present invention. 1B and 1C are side views according to an embodiment of the present invention. 本発明の実施形態にかかるグラフ。The graph concerning embodiment of this invention. 本発明の実施形態にかかるグラフ。The graph concerning embodiment of this invention. 本発明の実施形態にかかる斜視図。The perspective view concerning the embodiment of the present invention. 図5Aは本発明の実施形態にかかる上面図。図5Bは図5Aに示すBB線断面図。図5Cは図5Aに示すCC線断面図。図5Dは図5Aの部分図。FIG. 5A is a top view according to the embodiment of the present invention. 5B is a cross-sectional view taken along line BB shown in FIG. 5A. FIG. 5C is a cross-sectional view taken along line CC shown in FIG. 5A. FIG. 5D is a partial view of FIG. 5A. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる上面図。The top view concerning the embodiment of the present invention. 本発明の実施形態にかかる上面図。The top view concerning the embodiment of the present invention. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention. 本発明の実施形態にかかる断面図。Sectional drawing concerning embodiment of this invention.

以下、本発明の実施の形態を添付図面を参照しながら説明する。尚、各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。
1.ハードスプリング効果とその抑制原理
図1Aに示すように梁Rの両端が2つの支持体S1、S2に固定されているとき、梁Rの厚さ方向について変位aと復元力Fの関係を考える。梁Rの中間点の変位aが小さい範囲ではフックの法則F=kaが近似的に成立する。ばね定数kは変位aの関数であって、変位aが大きくなるとばね定数kは大きくなり梁Rはばねとして硬くなる。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the corresponding component in each figure, and the overlapping description is abbreviate | omitted.
1. Hard Spring Effect and Its Suppression Principle As shown in FIG. 1A, when both ends of the beam R are fixed to the two supports S1 and S2, the relationship between the displacement a and the restoring force F in the thickness direction of the beam R will be considered. In the range where the displacement a of the intermediate point of the beam R is small, the Hooke's law F = ka is approximately established. The spring constant k is a function of the displacement a. When the displacement a increases, the spring constant k increases and the beam R becomes hard as a spring.

図2は梁Rを励振する駆動電圧の大きさ(振幅)毎に梁Rの中間点の振幅と振動数の関係を示したグラフである。駆動電圧Vが大きくなるほど梁Rの振幅は増大する。また駆動電圧Vの振動数が固有振動数に近くなるほど梁Rの振幅は増大する。相対的に高い駆動電圧Vにおいて励振する場合、相対的に低い駆動電圧Vにおいて励振するよりも高い振動数において梁Rの振幅が極大になる。すなわち、梁Rの中間点の振幅が大きくなると梁Rの中間点の固有振動数が高くなる。これは梁Rの中間点の変位aの増大に伴って梁Rの主撓み方向である厚さ方向のばね定数kが大きくなるからである。これをハードスプリング効果という。 FIG. 2 is a graph showing the relationship between the amplitude and frequency of the intermediate point of the beam R for each magnitude (amplitude) of the drive voltage for exciting the beam R. As the drive voltage V increases, the amplitude of the beam R increases. Further, the amplitude of the beam R increases as the frequency of the drive voltage V approaches the natural frequency. When excitation is performed at a relatively high drive voltage V 4 , the beam R has a maximum amplitude at a higher frequency than excitation at a relatively low drive voltage V 1 . That is, as the amplitude of the intermediate point of the beam R increases, the natural frequency of the intermediate point of the beam R increases. This is because the spring constant k in the thickness direction, which is the main bending direction of the beam R, increases as the displacement a of the intermediate point of the beam R increases. This is called the hard spring effect.

相対的に低い駆動電圧Vにおいて励振する場合、梁Rの中間点の振幅が極大になる固有振動数を境にして梁Rの中間点の振幅と振動数の関係は対称である。一方、相対的に高い駆動電圧Vにおいて励振する場合、図3において実線によって示すように、梁Rの中間点の振幅が極大になる固有振動数よりも高い振動数において振動する範囲では振動数に対する振幅の変化率の絶対値が、振幅が極大になる固有振動数よりも低い振動数において振動する範囲に比べて大きくなる。振動数に対する振幅の変化率の絶対値が大きくなると、駆動電圧によって振幅を制御することが困難になる。すなわち大きな振幅で梁Rを安定して励振することは困難である。なお、図3に示すグラフにおいて、実線は駆動電圧Vにおいて梁Rを励振するときに梁Rの中間点の振幅と振動数の関係を示し、破線は振幅が極大となる振動数を境にして梁Rの中間点の振動数と振幅の関係が対称である関係を示している。 When exciting the relatively low driving voltages V 1, the amplitude and frequency of the relationship between the midpoint of the beam to the boundary of the natural frequency where the amplitude of the midpoint of the beam R becomes maximal R is symmetric. On the other hand, when excitation is performed at a relatively high drive voltage V 4 , as shown by a solid line in FIG. 3, the frequency is within a range where the vibration occurs at a frequency higher than the natural frequency at which the amplitude of the intermediate point of the beam R is maximized. The absolute value of the rate of change of the amplitude with respect to is larger than the range of vibration at a frequency lower than the natural frequency at which the amplitude is maximized. If the absolute value of the change rate of the amplitude with respect to the frequency becomes large, it becomes difficult to control the amplitude by the drive voltage. That is, it is difficult to stably excite the beam R with a large amplitude. In the graph shown in FIG. 3, the solid line indicates the relationship between the amplitude and the frequency of the intermediate point of the beam R when the beam R is excited at the drive voltage V 4 , and the broken line is the frequency at which the amplitude is maximized. The relationship between the vibration frequency and the amplitude of the intermediate point of the beam R is symmetric.

ところで図1Bに示すように支持体S1、S2の位置が相対的に固定されているとき、変位aが大きくなるほど梁Rが延びる。そこで変位aに伴う梁Rの単位長さあたりの伸びを小さくすることにより、ハードスプリング効果を抑制する。   By the way, as shown in FIG. 1B, when the positions of the supports S1 and S2 are relatively fixed, the beam R extends as the displacement a increases. Therefore, the hard spring effect is suppressed by reducing the elongation per unit length of the beam R accompanying the displacement a.

図1Cに示すように、梁Rの両端が固定されている支持体S1、S2の距離dが変位aの増加に伴って減少するように梁Rを支持すると、変位aに伴う梁Rの単位長さあたりの伸びを小さくすることができる。すなわち、梁Rの張力に応じて支持体S1、S2の距離dが縮むとき、変位aに伴う梁Rの単位長さあたりの伸びを小さくすることができる。したがって、支持体S1および支持体S2の少なくとも一方を、梁Rの延伸方向においてばねとして機能させることによってハードスプリング効果を抑制できる。   As shown in FIG. 1C, when the beam R is supported so that the distance d between the supports S1 and S2 to which both ends of the beam R are fixed decreases as the displacement a increases, the unit of the beam R associated with the displacement a The elongation per length can be reduced. That is, when the distance d between the supports S1 and S2 is reduced according to the tension of the beam R, the elongation per unit length of the beam R accompanying the displacement a can be reduced. Therefore, the hard spring effect can be suppressed by causing at least one of the support S1 and the support S2 to function as a spring in the extending direction of the beam R.

ただし、支持体S1および支持体S2の少なくとも一方を、梁Rの延伸方向においてばねとして機能させると、支持体S1、S2の位置を相対的に固定する場合に比べて梁Rの中間点の固有振動数は低くなる。したがって、梁Rの中間点の固有振動数を維持するには、梁Rの長さ方向における支持体S1および支持体S2のばね定数は大きいほど好ましい。また、変位aに伴う梁Rの単位長さあたりの伸びを小さくするためには、梁Rの長さ方向における支持体S1および支持体S2のばね定数は、梁Rの延伸方向における梁Rのばね定数よりも小さいことが好ましい。   However, if at least one of the support S1 and the support S2 is made to function as a spring in the extending direction of the beam R, the intermediate point of the beam R is more specific than when the positions of the supports S1 and S2 are relatively fixed. The frequency will be low. Therefore, in order to maintain the natural frequency of the intermediate point of the beam R, it is preferable that the spring constants of the support S1 and the support S2 in the length direction of the beam R are larger. Further, in order to reduce the elongation per unit length of the beam R due to the displacement a, the spring constants of the support S1 and the support S2 in the length direction of the beam R are set such that the spring constant of the beam R in the extending direction of the beam R is It is preferably smaller than the spring constant.

なお、支持体S1、S2が梁Rの中間点の振動方向と同じ方向にばねとして振動するように構成すると、梁Rの中間点の固有振動数が大きく変動する。したがって、支持体S1、S2は、梁Rの延伸方向においてはばねとして機能し、梁Rの中間点の振動方向においては実質的な剛体として機能するように構成される。すなわち、支持体S1、S2は、主撓み方向が梁Rの延伸方向に一致するとともに主撓み方向において梁Rと結合している板ばねの形態とする。板ばねは、厚さ方向に成分を持つ主撓み方向についてはばね定数が小さく、厚さ方向と垂直な面と平行な方向についてはばね定数は実質的に無限大として扱えるほど大きい。したがって、支持体S1、S2は、厚さ方向が梁Rの延伸方向に一致するとともに厚さ方向において梁Rと結合している板ばねの形態とすればよい。   If the supports S1 and S2 are configured to vibrate as springs in the same direction as the vibration direction of the intermediate point of the beam R, the natural frequency of the intermediate point of the beam R varies greatly. Therefore, the supports S1 and S2 are configured to function as springs in the extending direction of the beam R and to function as substantial rigid bodies in the vibration direction of the intermediate point of the beam R. That is, the supports S1 and S2 are in the form of leaf springs in which the main bending direction coincides with the extending direction of the beam R and is coupled to the beam R in the main bending direction. The leaf spring has a small spring constant in the main deflection direction having a component in the thickness direction, and is so large that the spring constant can be treated as substantially infinite in the direction parallel to the plane perpendicular to the thickness direction. Accordingly, the supports S1 and S2 may be in the form of a leaf spring in which the thickness direction coincides with the extending direction of the beam R and is coupled to the beam R in the thickness direction.

2.第一実施例
図4および図5は本発明による振動型角速度センサの第一実施例を示している。説明の便宜のために図4および図5に示すように直交するxyz軸を定める。振動型角速度センサ1は、MEMSとして構成され、単結晶珪素、酸化珪素、白金、PZT(チタン酸ジルコン酸鉛)などの積層構造体であって、図示しないパッケージに収容される。振動型角速度センサ1には、枠形の支持部10、底面が十字形の柱体である錘部15、梁部12a,12b,12c,12dなどが形成されている。
2. First Embodiment FIGS. 4 and 5 show a first embodiment of a vibration type angular velocity sensor according to the present invention. For convenience of description, orthogonal xyz axes are defined as shown in FIGS. The vibration type angular velocity sensor 1 is configured as a MEMS and is a laminated structure of single crystal silicon, silicon oxide, platinum, PZT (lead zirconate titanate), etc., and is accommodated in a package (not shown). The vibration type angular velocity sensor 1 includes a frame-shaped support portion 10, a weight portion 15 having a cross-shaped bottom body, beam portions 12a, 12b, 12c, and 12d.

支持部10はパッケージに固定され、梁部12に比べて十分厚いため、実質的に剛体として振る舞う。支持部10は内側に梁部12および錘部15が収まる空間を形成し実質的に剛体として振る舞う形態であればどのような形態であっても良い。   Since the support part 10 is fixed to the package and is sufficiently thicker than the beam part 12, it behaves substantially as a rigid body. The support part 10 may have any form as long as it forms a space in which the beam part 12 and the weight part 15 are accommodated and behaves substantially as a rigid body.

4つの梁部12は、いずれも一端が支持部10に他端が錘部15に結合している。具体的には梁部12を構成する2つの層104と106とが支持部10および錘部15をも構成し、層104,106が錘部15、梁部12および支持部10にわたって連続していることによって梁部12が支持部10と錘部15とに結合している。4つの梁部12は、錘部15と支持部10とを構成している複数の層のうち突出して厚い層100を含まないため、錘部15と支持部10に対して十分z方向に薄い。したがって4つの梁部12は、それぞれ一端が支持部10に固定された弾性梁として振る舞う。4つの梁部12は、xy平面と平行に整列し、いずれもx軸と平行な方向に延伸している。梁部12a、12bの対はx方向において整列し、錘部15のy方向の一端部から互いに逆方向(x軸正方向およびx軸負方向)にそれぞれ支持部10まで延伸している。梁部12c、12dの対はx方向において整列し、錘部15のy方向の他端部から互いに逆方向(x軸正方向およびx軸負方向)にそれぞれ支持部10まで延伸している。梁部12と支持部10と錘部15は一方の主面がxy平面と平行に整列している。すなわちz方向において相対的に厚い支持部10と錘部15のz方向の端部に対して、z方向において相対的に薄い梁部12が結合している。   Each of the four beam portions 12 has one end coupled to the support portion 10 and the other end coupled to the weight portion 15. Specifically, the two layers 104 and 106 constituting the beam portion 12 also constitute the support portion 10 and the weight portion 15, and the layers 104 and 106 are continuous over the weight portion 15, the beam portion 12 and the support portion 10. As a result, the beam portion 12 is coupled to the support portion 10 and the weight portion 15. Since the four beam portions 12 do not include the thick layer 100 that protrudes from the plurality of layers constituting the weight portion 15 and the support portion 10, the four beam portions 12 are sufficiently thin in the z direction with respect to the weight portion 15 and the support portion 10. . Therefore, each of the four beam portions 12 behaves as an elastic beam having one end fixed to the support portion 10. The four beam portions 12 are aligned in parallel to the xy plane, and all extend in a direction parallel to the x-axis. The pair of beam portions 12a and 12b are aligned in the x direction, and extend from the one end portion of the weight portion 15 in the y direction to the support portion 10 in the opposite directions (x axis positive direction and x axis negative direction). The pair of beam portions 12c and 12d are aligned in the x direction, and extend from the other end portion of the weight portion 15 in the y direction to the support portion 10 in opposite directions (x axis positive direction and x axis negative direction). One main surface of the beam portion 12, the support portion 10, and the weight portion 15 is aligned in parallel with the xy plane. That is, the relatively thin beam portion 12 in the z direction is coupled to the z-direction ends of the support portion 10 and the weight portion 15 that are relatively thick in the z direction.

錘部15は、支持部10に対して運動可能に4つの梁部12によって支持されている。錘部15は、支持部10に対して固定されたxyz座標系において3次元運動する剛体として振る舞う。z方向において相対的に厚い錘部15のz方向の端部に対して、z方向において相対的に薄い梁部12が結合しているため、錘部15の重心は梁部12を含む平面からz方向に離間している。したがって、錘部15にx方向またはy方向の慣性力が作用すると、錘部15の重心の運動はx軸またはy軸周りの回転を伴う運動となる。   The weight portion 15 is supported by the four beam portions 12 so as to be movable with respect to the support portion 10. The weight portion 15 behaves as a rigid body that moves three-dimensionally in an xyz coordinate system fixed to the support portion 10. Since the beam portion 12 that is relatively thin in the z direction is coupled to the end portion in the z direction of the weight portion 15 that is relatively thick in the z direction, the center of gravity of the weight portion 15 is from the plane including the beam portion 12. Separated in the z direction. Therefore, when an inertial force in the x direction or the y direction acts on the weight portion 15, the motion of the center of gravity of the weight portion 15 becomes a motion accompanied by rotation around the x axis or the y axis.

それぞれの梁部12の表面の支持部10との境界近傍に励振手段として駆動用圧電素子13が設けられる。駆動用圧電素子13に交流の駆動電圧を印加することによって錘部15を振動させる。本実施形態では、x軸方向の参照振動とy軸方向の参照振動とを時分割駆動によって異なる時に発生させる。なおx軸方向の参照振動とy軸方向の参照振動とを同時に発生させるには、たとえば駆動用圧電素子13aおよび駆動用圧電素子13dに印加する駆動信号と駆動用圧電素子13bおよび駆動用圧電素子13cに印加する駆動信号との位相をずらせばよい。   A driving piezoelectric element 13 is provided as an excitation means in the vicinity of the boundary between the surface of each beam portion 12 and the support portion 10. The weight 15 is vibrated by applying an alternating drive voltage to the drive piezoelectric element 13. In the present embodiment, the reference vibration in the x-axis direction and the reference vibration in the y-axis direction are generated at different times by time-division driving. In order to simultaneously generate the reference vibration in the x-axis direction and the reference vibration in the y-axis direction, for example, a drive signal applied to the driving piezoelectric element 13a and the driving piezoelectric element 13d, the driving piezoelectric element 13b, and the driving piezoelectric element. What is necessary is just to shift the phase with the drive signal applied to 13c.

梁部12および錘部15は、錘部15の重心の固有振動数がx軸方向とy軸方向とz軸方向とで異なるように構成されている。これはx軸方向の参照振動がy軸およびz軸に漏れたり、z軸方向の参照振動がx軸及びy軸に漏れる、所謂メカニカルカップリングを防止するためである。本実施例ではz軸方向、x軸方向、y軸方向の順に固有振動数が高くなるように梁部12および錘部15が構成されている(後記の表2参照)。   The beam portion 12 and the weight portion 15 are configured such that the natural frequency of the center of gravity of the weight portion 15 is different in the x-axis direction, the y-axis direction, and the z-axis direction. This is to prevent so-called mechanical coupling in which the reference vibration in the x-axis direction leaks to the y-axis and the z-axis, or the reference vibration in the z-axis direction leaks to the x-axis and the y-axis. In this embodiment, the beam portion 12 and the weight portion 15 are configured so that the natural frequency increases in the order of the z-axis direction, the x-axis direction, and the y-axis direction (see Table 2 below).

それぞれの梁部12の表面の錘部15との境界近傍に検出手段として検出用圧電素子14が設けられる。検出用圧電素子14は支持部10に対する錘部15の運動を検出する。   A detecting piezoelectric element 14 is provided as a detecting means in the vicinity of the boundary with the weight portion 15 on the surface of each beam portion 12. The detection piezoelectric element 14 detects the movement of the weight portion 15 relative to the support portion 10.

振動型角速度センサ1がx軸周りに回転するとz軸方向に進行する錘部15の重心に対してy軸と平行なコリオリ力が作用する。錘部15がz軸方向に振動している場合、x軸周りの回転に伴うy軸と平行なコリオリ力も振動するため、振動型角速度センサ1がx軸周りに回転すると錘部15の重心はz軸の参照振動と同じ振動数においてy軸と平行に振動する。錘部15の重心がy軸と平行に変位するとき、錘部15のx軸周りの回転に伴って検出用圧電素子14a、14bの対と検出用圧電素子14c、14dの対とは伸縮が逆になる。すなわち、検出用圧電素子14a、14bの対が延びるとき検出用圧電素子14c、14dの対は縮み、検出用圧電素子14a、14bの対が縮むとき検出用圧電素子14c、14dの対は延びる。   When the vibration type angular velocity sensor 1 rotates around the x axis, a Coriolis force parallel to the y axis acts on the center of gravity of the weight portion 15 traveling in the z axis direction. When the weight portion 15 vibrates in the z-axis direction, the Coriolis force parallel to the y-axis accompanying the rotation around the x-axis also vibrates. Therefore, when the vibration type angular velocity sensor 1 rotates around the x-axis, the center of gravity of the weight portion 15 becomes It vibrates parallel to the y axis at the same frequency as the reference vibration of the z axis. When the center of gravity of the weight portion 15 is displaced parallel to the y-axis, the pair of detection piezoelectric elements 14a and 14b and the pair of detection piezoelectric elements 14c and 14d expand and contract as the weight portion 15 rotates about the x-axis. Vice versa. That is, when the pair of detection piezoelectric elements 14a and 14b extends, the pair of detection piezoelectric elements 14c and 14d contracts, and when the pair of detection piezoelectric elements 14a and 14b contracts, the pair of detection piezoelectric elements 14c and 14d extends.

振動型角速度センサ1がy軸周りに回転するとx軸方向に進行する錘部15の重心に対してz軸と平行なコリオリ力が作用する。錘部15がx軸方向に振動している場合、y軸周りの回転に伴うz軸と平行なコリオリ力も振動するため、振動型角速度センサ1がy軸周りに回転すると錘部15の重心はx軸の参照振動と同じ振動数においてz軸と平行に振動する。錘部15の重心がz軸と平行に変位するとき、4つの検出用圧電素子14a、14b、14c、14dは伸縮方向が揃う。すなわち4つの検出用圧電素子14a、14b、14c、14dは同時に延びるとともに同時に縮む。   When the vibration-type angular velocity sensor 1 rotates around the y-axis, a Coriolis force parallel to the z-axis acts on the center of gravity of the weight portion 15 traveling in the x-axis direction. When the weight portion 15 vibrates in the x-axis direction, the Coriolis force parallel to the z-axis accompanying the rotation around the y-axis also vibrates. Therefore, when the vibration type angular velocity sensor 1 rotates around the y-axis, the center of gravity of the weight portion 15 becomes It vibrates parallel to the z axis at the same frequency as the reference vibration of the x axis. When the center of gravity of the weight portion 15 is displaced parallel to the z-axis, the four detection piezoelectric elements 14a, 14b, 14c, and 14d are aligned in the expansion / contraction direction. That is, the four detection piezoelectric elements 14a, 14b, 14c, and 14d simultaneously extend and contract simultaneously.

振動型角速度センサ1がz軸周りに回転するとx軸方向に進行する錘部15の重心に対してy軸と平行なコリオリ力が作用する。錘部15がx軸方向に振動している場合、z軸周りの回転に伴うy軸と平行なコリオリ力も振動するため、振動型角速度センサ1がz軸周りに回転すると錘部15の重心はx軸の参照振動と同じ振動数においてy軸と平行に振動する。   When the vibration type angular velocity sensor 1 rotates around the z-axis, a Coriolis force parallel to the y-axis acts on the center of gravity of the weight portion 15 that advances in the x-axis direction. When the weight portion 15 vibrates in the x-axis direction, the Coriolis force parallel to the y-axis accompanying the rotation around the z-axis also vibrates. Therefore, when the vibration type angular velocity sensor 1 rotates around the z-axis, the center of gravity of the weight portion 15 becomes It vibrates parallel to the y-axis at the same frequency as the reference vibration of the x-axis.

4つの検出用圧電素子14の出力信号と駆動用圧電素子13に印加する駆動信号とに基づいてxyzの各軸周りの角速度を検出する回路と、駆動用圧電素子13に印加する駆動信号を出力して時分割駆動する回路とは、振動型角速度センサ1を構成するダイに形成しても良いし、振動型角速度センサ1を構成するダイとは別のダイに形成しても良い。   A circuit for detecting an angular velocity around each axis of xyz based on the output signals of the four detection piezoelectric elements 14 and the drive signal applied to the drive piezoelectric element 13 and the drive signal applied to the drive piezoelectric element 13 are output. The time-division driving circuit may be formed on a die constituting the vibration type angular velocity sensor 1 or may be formed on a die different from the die constituting the vibration type angular velocity sensor 1.

上述したように4つの梁部12の固有振動数を維持しつつハードスプリング効果を抑制するために、ばね定数安定化手段として梁部12毎にばね部11が支持部10に形成されている。ばね部11は支持部10の内周面近傍に形成された穴10hと支持部10の内周面との間に位置するL字形に屈曲した板状の部分であって、図5において等間隔のハッチングによって示されている部分である。ばね部11と支持部10の残部とを隔てる穴10hは支持部10を貫通している。支持部10を貫通している穴10hによって支持部10の残部と隔てられているばね部11は、支持部10の残部と同一の積層構造を有する。したがって、ばね部11のz方向の長さWは支持部10の残部のz方向の長さと等しく一定である。ばね部11は屈曲部を境にして一方がy軸と平行に延び他方がx軸と平行に延び、両端が支持部10の残部と結合している。   As described above, in order to suppress the hard spring effect while maintaining the natural frequencies of the four beam portions 12, a spring portion 11 is formed on the support portion 10 for each beam portion 12 as a spring constant stabilizing means. The spring portion 11 is an L-shaped plate-like portion located between the hole 10h formed in the vicinity of the inner peripheral surface of the support portion 10 and the inner peripheral surface of the support portion 10, and is equally spaced in FIG. This is the part indicated by hatching. A hole 10 h that separates the spring portion 11 and the remaining portion of the support portion 10 passes through the support portion 10. The spring portion 11 separated from the remaining portion of the support portion 10 by a hole 10 h penetrating the support portion 10 has the same laminated structure as the remaining portion of the support portion 10. Accordingly, the length W of the spring portion 11 in the z direction is constant and equal to the length of the remaining portion of the support portion 10 in the z direction. One of the spring portions 11 extends in parallel with the y-axis with the bent portion as a boundary, and the other extends in parallel with the x-axis, and both ends are coupled to the remaining portion of the support portion 10.

ばね部11のy軸と平行に延びる部分においてz方向の一端に梁部12の一端が結合している。具体的には梁部12を構成する2つの層104、106とがばね部11をも構成し、層104、106がばね部11および梁部12わたって連続していることによって梁部12がばね部11に結合している。梁部12との結合部においてばね部11の主撓み方向はばね部11の厚さ方向(x方向)であって、梁部12の延伸方向(錘部15に結合する端と支持部10に結合する端とを結ぶ方向)と一致している。梁部12の張力に伴ってばね部11の梁部12との結合部がx軸方向に変位する。ばね部11の梁部12との結合部のx軸方向の変位とこの変位に伴うばね部11のx軸方向の復元力との関係、すなわちばね部11のx軸方向(梁部12の延伸方向)のばね定数は、図5Bおよび図5Dに示す各部位の寸法T、T、L、L、LおよびWに相関する。ばね部11のx軸方向のばね定数とL、L、Lとの関係は負の相関である。ばね部11のx軸方向のばね定数とT、T、Wとの関係は正の相関である。すなわちばね部11のx軸方向のばね定数を大きくするには、板ばねの厚さに対応するTおよびTならびに板ばねの幅に対応するWを大きくし、板ばねの長さに対応するL、L、およびLを小さくすればよい。ばね部11の形態は支持部10に形成する穴10hの位置および寸法によって設定される。穴10hは支持部10を貫通しているため、ばね部11は二辺が支持部10の残部に固定されている。穴10hは支持部10を貫通しない形態にしてもよく、この場合、ばね部11は三辺が支持部10の残部に固定される形態となる。ばね部11の厚さT、Tは屈曲部を境にして変えても良い。ばね部11のx軸と平行に延びる部分を十分厚く(Tを大きく)かつ十分短く(Lを小さく)設計すると、ばね部11のy軸と平行に延びる部分のみが実質的にばねとして機能する。ばね部11のz方向の長さ(幅)Wは厚さT、Tに比べて十分大きいため、ばね部11のz方向のばね定数は実質的に無限大と考えられる。すなわち、ばね部11は梁部12の延伸方向であるx方向には弾性変形するが、梁部12の主撓み方向であるz方向においては変形しない。ばね部11と梁部12との結合部が梁部12の主撓み方向であるz方向に固定されている場合、その結合部がz方向に変位する場合に比べて錘部15の固有振動数を高くすることができる。 One end of the beam portion 12 is coupled to one end in the z direction at a portion extending in parallel with the y-axis of the spring portion 11. Specifically, the two layers 104 and 106 constituting the beam portion 12 also constitute the spring portion 11, and the layers 104 and 106 are continuous over the spring portion 11 and the beam portion 12. The spring portion 11 is coupled. The main deflection direction of the spring portion 11 in the joint portion with the beam portion 12 is the thickness direction (x direction) of the spring portion 11, and the extending direction of the beam portion 12 (the end coupled to the weight portion 15 and the support portion 10). (The direction connecting the joining ends). Along with the tension of the beam portion 12, the joint portion of the spring portion 11 with the beam portion 12 is displaced in the x-axis direction. The relationship between the displacement in the x-axis direction of the joint portion of the spring portion 11 with the beam portion 12 and the restoring force in the x-axis direction of the spring portion 11 accompanying this displacement, that is, the x-axis direction of the spring portion 11 (the extension of the beam portion 12 (Direction) spring constant correlates with the dimensions T 1 , T 2 , L 1 , L 2 , L 3 and W of each part shown in FIGS. 5B and 5D. The relationship between the spring constant of the spring part 11 in the x-axis direction and L 1 , L 2 , L 3 is a negative correlation. The relationship between the spring constant of the spring portion 11 in the x-axis direction and T 1 , T 2 , W is a positive correlation. That is, in order to increase the spring constant of the spring portion 11 in the x-axis direction, T 1 and T 2 corresponding to the thickness of the leaf spring and W corresponding to the width of the leaf spring are increased to correspond to the length of the leaf spring. L 1 , L 2 , and L 3 to be performed may be reduced. The form of the spring portion 11 is set by the position and size of the hole 10 h formed in the support portion 10. Since the hole 10 h penetrates the support part 10, the spring part 11 is fixed to the remaining part of the support part 10 on both sides. The hole 10 h may be configured so as not to penetrate the support portion 10, and in this case, the spring portion 11 has a configuration in which three sides are fixed to the remaining portion of the support portion 10. The thicknesses T 1 and T 2 of the spring part 11 may be changed with the bent part as a boundary. When the x-axis and extending in parallel portions of the spring portion 11 sufficiently thick (the T 2 greater) and sufficiently short (reduced L 3) design, only a portion extending parallel to the y-axis of the spring portion 11 as a substantially spring Function. Since the length (width) W in the z direction of the spring portion 11 is sufficiently larger than the thicknesses T 1 and T 2 , the spring constant in the z direction of the spring portion 11 is considered to be substantially infinite. That is, the spring portion 11 is elastically deformed in the x direction, which is the extending direction of the beam portion 12, but is not deformed in the z direction, which is the main bending direction of the beam portion 12. When the coupling portion between the spring portion 11 and the beam portion 12 is fixed in the z direction, which is the main deflection direction of the beam portion 12, the natural frequency of the weight portion 15 is compared to when the coupling portion is displaced in the z direction. Can be high.

図5Bに示すように支持部10と梁部12と錘部15のz方向の端面がxy平面と平行に整列し、梁部12が全く撓んでいない状態を初期状態とするとき、錘部15が支持部10に対して運動すると4つの梁部12a,12b,12c,12dの少なくともいずれか1つの張力が増大する。この張力の増大に応じてばね部11が撓むため、張力の増大に伴う梁部12の伸びとばね定数の増大が抑制される。具体的には例えば錘部15の重心が初期状態からz方向に変位すると、4つの梁部12a,12b,12c,12dの張力がいずれも増大し、梁部12a,12b,12c,12dにそれぞれ結合しているばね部11a,11b、11c、11dは梁部12a,12b,12c,12dの張力の増大に伴ってx軸方向に撓む。すなわち、梁部12aの伸びに伴う梁部12aのz方向のばね定数の増大はばね部11aによって、梁部12bの伸びに伴う梁部12bのz方向のばね定数の増大はばね部11bによって、梁部12cの伸びに伴う梁部12cのz方向のばね定数の増大はばね部11cによって、梁部12dの伸びに伴う梁部12dのz方向のばね定数の増大はばね部11dによって、それぞれ抑制される。   As shown in FIG. 5B, when the end portions in the z direction of the support portion 10, the beam portion 12, and the weight portion 15 are aligned parallel to the xy plane, and the beam portion 12 is not bent at all, the weight portion 15 When the frame moves with respect to the support portion 10, the tension of at least one of the four beam portions 12a, 12b, 12c, and 12d increases. Since the spring part 11 bends according to this increase in tension, the extension of the beam part 12 and the increase in the spring constant accompanying the increase in tension are suppressed. Specifically, for example, when the center of gravity of the weight portion 15 is displaced in the z direction from the initial state, the tensions of the four beam portions 12a, 12b, 12c, and 12d all increase, and the beam portions 12a, 12b, 12c, and 12d respectively The coupled spring portions 11a, 11b, 11c, and 11d bend in the x-axis direction as the tension of the beam portions 12a, 12b, 12c, and 12d increases. That is, the increase in the spring constant in the z direction of the beam portion 12a accompanying the extension of the beam portion 12a is caused by the spring portion 11a, and the increase in the spring constant in the z direction of the beam portion 12b accompanying the extension of the beam portion 12b is caused by the spring portion 11b. An increase in the spring constant in the z direction of the beam portion 12c due to the extension of the beam portion 12c is suppressed by the spring portion 11c, and an increase in the spring constant in the z direction of the beam portion 12d due to the extension of the beam portion 12d is suppressed by the spring portion 11d, respectively. Is done.

一方、梁部12の主撓み方向であるz方向における梁部12のばね定数に比べると、梁部12の延伸方向であるx方向における梁部12のばね定数は十分大きい。したがって、梁部12のz方向のばね定数に比べてばね部11のx方向のばね定数を十分大きく設定しても、梁部12の伸びを抑制し、梁部12のz方向のばね定数の増大を抑制できる。そして、梁部12のz方向のばね定数に比べてばね部11のx方向のばね定数を十分大きく設定することにより、錘部15の重心の固有振動数の変化を抑制できる。   On the other hand, the spring constant of the beam portion 12 in the x direction, which is the extending direction of the beam portion 12, is sufficiently larger than the spring constant of the beam portion 12 in the z direction, which is the main deflection direction of the beam portion 12. Therefore, even if the spring constant in the x direction of the spring portion 11 is set to be sufficiently larger than the spring constant in the z direction of the beam portion 12, the extension of the beam portion 12 is suppressed and the spring constant in the z direction of the beam portion 12 is reduced. The increase can be suppressed. Then, by setting the spring constant in the x direction of the spring portion 11 to be sufficiently larger than the spring constant in the z direction of the beam portion 12, changes in the natural frequency of the center of gravity of the weight portion 15 can be suppressed.

x軸方向およびz軸方向の参照振動を時分割駆動によって個別に実現するには、参照振動の方向を切り換えるために素早く振動を減衰させる必要がある。そこでダンパー20によって穴10hの内部を埋めるとともに支持部10にダンパー20を結合する。なお図5においてダンパー20は樹脂ハッチングによって示されている。ダンパー20の材料としては、梁部12よりもばね部11よりも弾性率やQ値が小さいポリイミドなどの樹脂を用いる。このようなダンパー20をばね部12に設けることによってQ値を下げることができる。   In order to realize the reference vibration in the x-axis direction and the z-axis direction individually by time-division driving, it is necessary to quickly attenuate the vibration in order to switch the direction of the reference vibration. Therefore, the inside of the hole 10 h is filled with the damper 20 and the damper 20 is coupled to the support portion 10. In FIG. 5, the damper 20 is indicated by resin hatching. As a material of the damper 20, a resin such as polyimide having a smaller elastic modulus and Q value than the beam portion 12 than the spring portion 11 is used. By providing such a damper 20 in the spring portion 12, the Q value can be lowered.

3.製造方法
図6から図9は図4に示した振動型角速度センサ1の製造方法を示す断面図である。なお、図8Aおよび図9Aは図5に示すBB線断面を示し、図8Bおよび図9Bは図5に示すCC線断面を示す。
3. Manufacturing Method FIGS. 6 to 9 are cross-sectional views showing a manufacturing method of the vibration type angular velocity sensor 1 shown in FIG. 8A and 9A show a cross section taken along line BB shown in FIG. 5, and FIGS. 8B and 9B show a cross section taken along line CC shown in FIG.

はじめに図6に示すように、厚さ625μmの単結晶珪素層100と厚さ1μmの酸化珪素層102と厚さ10μmの単結晶珪素層104からなるSOI(Silicon On Insulator)基板を熱酸化することによって厚さ0.5μmの絶縁層106を形成する。続いて絶縁層106の上にスパッタ法によって厚さ0.1μmの白金からなる電極層108、厚さ3μmのPZTからなる圧電層110、厚さ0.1μmの白金からなる電極層112を順に積層する。   First, as shown in FIG. 6, an SOI (Silicon On Insulator) substrate composed of a single crystal silicon layer 100 having a thickness of 625 μm, a silicon oxide layer 102 having a thickness of 1 μm, and a single crystal silicon layer 104 having a thickness of 10 μm is thermally oxidized. Thus, an insulating layer 106 having a thickness of 0.5 μm is formed. Subsequently, an electrode layer 108 made of platinum having a thickness of 0.1 μm, a piezoelectric layer 110 made of PZT having a thickness of 3 μm, and an electrode layer 112 made of platinum having a thickness of 0.1 μm are sequentially stacked on the insulating layer 106 by sputtering. To do.

次に図7に示すようにフォトレジストからなる2種類の図示しない保護膜部を用いたミリング法によって電極層108、112および圧電層110を所定形状にパターニングする。その結果、電極層108、112および圧電層110からなる駆動用圧電素子13および検出用圧電素子14、並びにおよび電極層108、112からなる図示しない配線要素(導線およびボンディングパッド)が形成される。   Next, as shown in FIG. 7, the electrode layers 108 and 112 and the piezoelectric layer 110 are patterned into a predetermined shape by a milling method using two types of protective film portions (not shown) made of photoresist. As a result, the driving piezoelectric element 13 and the detection piezoelectric element 14 including the electrode layers 108 and 112 and the piezoelectric layer 110 and the wiring elements (conductive wires and bonding pads) (not illustrated) including the electrode layers 108 and 112 are formed.

次に図8に示すようにフォトレジストからなる図示しない保護膜部を用いた反応性イオンエッチングによって絶縁層106および単結晶珪素層104を所定形状にパターニングする。その結果、絶縁層106および単結晶珪素層104からなる梁部12のパターンが形成されるとともにばね部11および錘部15の上層部が形成される。また、支持部10にばね部11を形成するための穴10hの上層部が形成される。   Next, as shown in FIG. 8, the insulating layer 106 and the single crystal silicon layer 104 are patterned into a predetermined shape by reactive ion etching using a protective film portion (not shown) made of a photoresist. As a result, a pattern of the beam portion 12 composed of the insulating layer 106 and the single crystal silicon layer 104 is formed, and an upper layer portion of the spring portion 11 and the weight portion 15 is formed. Moreover, the upper layer part of the hole 10h for forming the spring part 11 in the support part 10 is formed.

次に図9に示すようにフォトレジストからなる図示しない保護膜部を用いたDeep−RIE(Reactive Ion Etching)によって単結晶珪素層100を所定形状にパターニングする。その結果、ばね部11および錘部15の下層部が形成される。また、支持部10にばね部11を形成するための穴10hの下層部が形成される。   Next, as shown in FIG. 9, the single crystal silicon layer 100 is patterned into a predetermined shape by Deep-RIE (Reactive Ion Etching) using a protective film portion (not shown) made of a photoresist. As a result, the lower layer part of the spring part 11 and the weight part 15 is formed. In addition, a lower layer portion of the hole 10 h for forming the spring portion 11 is formed in the support portion 10.

次に酸化珪素層102の露出している部分をエッチングによって除去する。その結果、支持部10の穴10hが貫通し、梁部12、ばね部11および錘部15がリリースされる。   Next, the exposed portion of the silicon oxide layer 102 is removed by etching. As a result, the hole 10h of the support part 10 penetrates, and the beam part 12, the spring part 11, and the weight part 15 are released.

次にばね部11にダンパー20を結合する。具体的には例えば、ディスペンサーなどを用いて樹脂材料を穴10hに充填した後に硬化させてもよいし、感光性樹脂を塗布して穴10hに充填した後にフォトリソグラフィ技術によって不要部を除去するとともに穴10h内に残存させてもよい。   Next, the damper 20 is coupled to the spring portion 11. Specifically, for example, the resin material may be filled after filling the hole 10h using a dispenser or the like, and after the photosensitive resin is applied and filled into the hole 10h, unnecessary portions are removed by a photolithography technique. It may be left in the hole 10h.

その後、ダイシング等の後工程を実施すると、図4および図5に示す振動型角速度センサ1が完成する。   Thereafter, when a post-process such as dicing is performed, the vibration type angular velocity sensor 1 shown in FIGS. 4 and 5 is completed.

支持部10の穴10hが支持部10を貫通しているためにばね部11が支持部10の残部と同一の層構造を有する場合、ばね部11が無い支持部10を製造する場合と保護膜部のパターンが異なるだけでその他は全く同一である上記の製造方法によって、ばね部11を形成することができる。すなわち、支持部10を貫通する穴10hによってばね部11が形成される場合には、プロセスを追加すること無しにばね部11を形成することができる。   When the spring portion 11 has the same layer structure as the remaining portion of the support portion 10 because the hole 10h of the support portion 10 penetrates the support portion 10, the case where the support portion 10 without the spring portion 11 is manufactured and the protective film The spring part 11 can be formed by the above-described manufacturing method, which is the same except that the pattern of the part is different. That is, when the spring part 11 is formed by the hole 10h penetrating the support part 10, the spring part 11 can be formed without adding a process.

8.他の実施形態
尚、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、図10に示すように2つのばね部11a、11bに4つの梁部12a、12b、12c、12dを結合し、ばね部11a、11bを形成している穴10h内にダンパー20を設けても良い。また例えば、図11に示すようにばね部16a、16b、16c、16dを錘部15に形成し、ばね部16a、16b、16c、16dを形成している穴15h内にダンパー20を設けても良い。
8). Other Embodiments The technical scope of the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the scope of the present invention.
For example, as shown in FIG. 10, four beam portions 12a, 12b, 12c, and 12d are coupled to two spring portions 11a and 11b, and a damper 20 is provided in a hole 10h that forms the spring portions 11a and 11b. Also good. Further, for example, as shown in FIG. 11, spring portions 16a, 16b, 16c and 16d are formed in the weight portion 15, and the damper 20 is provided in the hole 15h forming the spring portions 16a, 16b, 16c and 16d. good.

また、ダンパー20で支持部10の穴10hを完全に埋めずに、図12、図13に示すように穴10hの一部をダンパー20で埋めても良い。穴10hの壁面を構成しているばね部11a、11bの幅方向(z方向)の端部に梁部12a、12bが結合しているため、梁部12a、12bがz方向に撓むとばね部11a、11bはねじれる。このとき、穴10hをxy平面と平行に切断した断面積の増減は梁部12a、12bに近い側の端部と遠い側の端部とで逆になる。したがって、ダンパー20で支持部10の穴10hを完全に埋めた場合には、ダンパー20の体積変化が内部で一部相殺される。これに対し、図12、図13に示すように穴10hの一端から半分程度までをダンパー20で埋める場合には、ダンパー20の体積変化が内部で相殺されないため、ダンパー20による振動の減衰効果を高めることができる。   Further, instead of completely filling the hole 10 h of the support portion 10 with the damper 20, a part of the hole 10 h may be filled with the damper 20 as shown in FIGS. 12 and 13. Since the beam portions 12a and 12b are coupled to the ends in the width direction (z direction) of the spring portions 11a and 11b constituting the wall surface of the hole 10h, when the beam portions 12a and 12b are bent in the z direction, the spring portions 11a and 11b are twisted. At this time, the increase / decrease in the cross-sectional area obtained by cutting the hole 10h in parallel with the xy plane is reversed between the end portion closer to the beam portions 12a and 12b and the end portion farther away. Accordingly, when the hole 10h of the support portion 10 is completely filled with the damper 20, the volume change of the damper 20 is partially offset internally. On the other hand, as shown in FIG. 12 and FIG. 13, when the damper 10 is filled up to about half from one end of the hole 10 h, the volume change of the damper 20 is not offset internally, so the vibration damping effect by the damper 20 is reduced. Can be increased.

また、図13に示すように穴10hの両端をダンパー材20a、20bによって閉塞し、穴10hの内部に空気を密封してもよい。この場合、ダンパー材20a、20b自体がダンパーとして機能するだけでなく、穴10hの内部に密封された空気もダンパーとして機能する。主に穴10hの内部に密封された空気をダンパーとして機能させる場合には、感光性ドライフィルムなどの樹脂膜によって穴10hの両端を閉塞すればよい。なお、図13に示すように穴10hの内部にダンパー材20bを充填するとともにダンパー材20aによって穴10hの一端を閉塞するには次の方法を実施すればよい。すなわち、まずフォトレジストなどの感光性樹脂を穴10hに充填した後に露光深さを制御したフォトリソグラフィ技術によって不要部を除去してダンパー材20bを形成する。次に感光性ドライフィルムを貼り付けて穴10hの一端を閉塞し、感光性ドライフィルムの不要部を露光・現像によって除去し、ダンパー材20aを形成すればよい。   Moreover, as shown in FIG. 13, both ends of the hole 10h may be closed with damper materials 20a and 20b, and air may be sealed inside the hole 10h. In this case, the damper materials 20a and 20b themselves function not only as a damper, but also the air sealed inside the hole 10h functions as a damper. When air sealed mainly inside the hole 10h is caused to function as a damper, both ends of the hole 10h may be closed with a resin film such as a photosensitive dry film. As shown in FIG. 13, the following method may be used to fill the inside of the hole 10h with the damper material 20b and to close one end of the hole 10h with the damper material 20a. That is, first, after filling the hole 10h with a photosensitive resin such as a photoresist, unnecessary portions are removed by a photolithography technique in which the exposure depth is controlled to form the damper material 20b. Next, a photosensitive dry film is attached to close one end of the hole 10h, and unnecessary portions of the photosensitive dry film are removed by exposure / development to form the damper material 20a.

また、ばね定数安定化手段は板ばねの形態に限らず、例えば梁部との境界近傍において支持部または錘部を積層方向に貫通する穴によって梁部の延伸方向において剛性が低下した領域をばね定数安定化手段として構成しても良いし、支持部または錘部を積層方向に貫通する複数の穴によって形成されるハニカム構造をばね定数安定化手段として構成しても良い。また錘部を励振する励振手段は、静電引力や電磁力を用いて実現しても良い。また錘部の運動を検出する検出手段は、静電容量やピエゾ抵抗効果を用いて実現しても良い。また上記実施形態で示した材質や寸法や製造方法はあくまで例示であるし、当業者であれば自明である変形例については説明が省略されている。   Further, the spring constant stabilizing means is not limited to the form of a leaf spring. For example, in the vicinity of the boundary with the beam portion, a region in which the rigidity is reduced in the extending direction of the beam portion by a hole penetrating the support portion or the weight portion in the stacking direction is used as a spring. It may be configured as a constant stabilizing means, or a honeycomb structure formed by a plurality of holes penetrating the support portion or the weight portion in the stacking direction may be configured as the spring constant stabilizing means. Further, the excitation means for exciting the weight portion may be realized using electrostatic attraction or electromagnetic force. Further, the detection means for detecting the movement of the weight portion may be realized using a capacitance or a piezoresistance effect. The materials, dimensions, and manufacturing methods shown in the above embodiment are merely examples, and descriptions of modifications that are obvious to those skilled in the art are omitted.

1:振動型角速度センサ、2:振動型角速度センサ、3:振動型角速度センサ、10:支持部、10h:穴、11a:ばね部、11b:ばね部、11c:ばね部、11d:ばね部、12a:梁部、12b:梁部、12c:梁部、12d:梁部、13a:駆動用圧電素子、13b:駆動用圧電素子、13c:駆動用圧電素子、13d:駆動用圧電素子、14a:検出用圧電素子、14b:検出用圧電素子、14c:検出用圧電素子、14d:検出用圧電素子、15:錘部、16b:ばね部、16c:ばね部、16d:ばね部、16e:ばね部、100:単結晶珪素層、102:酸化珪素層、104:単結晶珪素層、106:絶縁層、108:電極層、110:圧電層、112:電極層、R:梁、S1:支持体、S2:支持体 1: vibration type angular velocity sensor, 2: vibration type angular velocity sensor, 3: vibration type angular velocity sensor, 10: support part, 10h: hole, 11a: spring part, 11b: spring part, 11c: spring part, 11d: spring part, 12a: beam part, 12b: beam part, 12c: beam part, 12d: beam part, 13a: driving piezoelectric element, 13b: driving piezoelectric element, 13c: driving piezoelectric element, 13d: driving piezoelectric element, 14a: Piezoelectric element for detection, 14b: Piezoelectric element for detection, 14c: Piezoelectric element for detection, 14d: Piezoelectric element for detection, 15: Weight part, 16b: Spring part, 16c: Spring part, 16d: Spring part, 16e: Spring part , 100: single crystal silicon layer, 102: silicon oxide layer, 104: single crystal silicon layer, 106: insulating layer, 108: electrode layer, 110: piezoelectric layer, 112: electrode layer, R: beam, S1: support, S2: Support

Claims (3)

支持部と、
錘部と、
前記錘部からそれぞれ前記支持部まで延伸し前記錘部を支持している複数の梁部と、
前記錘部を時分割駆動によって複数方向に励振する励振手段と、
前記支持部に対する前記錘部の運動を検出する検出手段と、
前記支持部および前記錘部の少なくとも一方の前記梁部との境界近傍に形成され、前記梁部の張力に応じて前記梁部の延伸方向に弾性変形し前記梁部の主撓み方向には実質的に変形しないばね定数安定化手段と、
前記ばね定数安定化手段と結合し前記ばね定数安定化手段の振動を減衰させるダンパーと、
を備える振動型角速度センサ。
A support part;
A weight part;
A plurality of beam portions extending from the weight portion to the support portion and supporting the weight portion;
Excitation means for exciting the weight part in a plurality of directions by time-division driving;
Detecting means for detecting movement of the weight portion with respect to the support portion;
It is formed in the vicinity of the boundary between at least one of the support part and the weight part with the beam part, elastically deforms in the extending direction of the beam part according to the tension of the beam part, and substantially in the main bending direction of the beam part. Spring constant stabilizing means that does not deform
A damper that is coupled to the spring constant stabilizing means to damp vibrations of the spring constant stabilizing means;
A vibration type angular velocity sensor comprising:
前記ばね定数安定化手段は、主撓み方向が前記梁部の延伸方向に一致するとともに当該主撓み方向において前記梁部と結合している板ばねの形態を有する、
請求項1に記載の振動型角速度センサ。
The spring constant stabilizing means has a form of a leaf spring in which the main bending direction coincides with the extending direction of the beam portion and is coupled to the beam portion in the main bending direction.
The vibration type angular velocity sensor according to claim 1.
前記支持部と前記錘部と前記梁部とは積層構造体からなり、
前記積層構造体の積層方向において前記支持部または前記錘部を貫通する穴によって前記ばね定数安定化手段が形成され、
前記ダンパーは前記穴の内部に充填された樹脂材料からなる、
請求項1または2に記載の振動型角速度センサ。
The support portion, the weight portion, and the beam portion are made of a laminated structure,
The spring constant stabilizing means is formed by a hole penetrating the support portion or the weight portion in the stacking direction of the stacked structure,
The damper is made of a resin material filled in the hole.
The vibration type angular velocity sensor according to claim 1 or 2.
JP2010181839A 2010-08-16 2010-08-16 Vibration type angular velocity sensor Withdrawn JP2012042250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181839A JP2012042250A (en) 2010-08-16 2010-08-16 Vibration type angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181839A JP2012042250A (en) 2010-08-16 2010-08-16 Vibration type angular velocity sensor

Publications (1)

Publication Number Publication Date
JP2012042250A true JP2012042250A (en) 2012-03-01

Family

ID=45898762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181839A Withdrawn JP2012042250A (en) 2010-08-16 2010-08-16 Vibration type angular velocity sensor

Country Status (1)

Country Link
JP (1) JP2012042250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488201B2 (en) 2016-12-08 2019-11-26 Kabushiki Kaisha Toshiba Vibration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488201B2 (en) 2016-12-08 2019-11-26 Kabushiki Kaisha Toshiba Vibration device

Similar Documents

Publication Publication Date Title
JP4887034B2 (en) Inertial sensor
JP5822177B2 (en) Gyro sensor, electronic equipment
JP5716827B2 (en) Vibrator and vibratory gyro
JP5807344B2 (en) Angular velocity sensor and electronic device
WO2007145113A1 (en) Inertial sensor
JP2010096538A (en) Angular velocity sensor
JP6881532B2 (en) MEMS frequency tuning spring
WO2018003692A1 (en) Physical quantity sensor
JP5397171B2 (en) Vibration type angular velocity sensor
JP2012042250A (en) Vibration type angular velocity sensor
US11365970B2 (en) Vibration type angular velocity sensor with piezoelectric film
JP4983107B2 (en) Inertial sensor and method of manufacturing inertial sensor
JP6146592B2 (en) Physical quantity sensor, electronic equipment
JP2010145315A (en) Vibration gyroscope
JP4466283B2 (en) Gyro sensor
JP6620886B2 (en) Electrodes for microelectromechanical devices
JP6740965B2 (en) Vibration type angular velocity sensor
JP2010266321A (en) Multiaxial angular speed sensor
JP2012037282A (en) Oscillation type angular velocity sensor
WO2016067543A1 (en) Vibration-type angular velocity sensor
JP5810685B2 (en) Vibrator and vibratory gyro
JP2011075418A (en) Vibration type physical quantity sensor
JP2008096139A (en) Angular velocity sensor and its driving method
JP6657842B2 (en) Angular velocity sensor device
WO2017204057A1 (en) Gyro sensor and electronic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105