[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012042177A - Heat pump type hot water generator - Google Patents

Heat pump type hot water generator Download PDF

Info

Publication number
JP2012042177A
JP2012042177A JP2010186415A JP2010186415A JP2012042177A JP 2012042177 A JP2012042177 A JP 2012042177A JP 2010186415 A JP2010186415 A JP 2010186415A JP 2010186415 A JP2010186415 A JP 2010186415A JP 2012042177 A JP2012042177 A JP 2012042177A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
hot water
compressor
temperature
side refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010186415A
Other languages
Japanese (ja)
Inventor
Mitsuru Komatsu
満 小松
Koji Ito
浩二 伊藤
Fumihiko Sugiyama
文彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010186415A priority Critical patent/JP2012042177A/en
Publication of JP2012042177A publication Critical patent/JP2012042177A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump type hot water generator achieving high efficiency and high stability of the temperature of hot water.SOLUTION: The heat pump type hot water generator includes: a low temperature-side refrigerating cycle A successively connecting a compressor 1, a condenser 2, an expansion valve 3 and an evaporator 4 with a refrigerant pipeline; a high temperature-side refrigerating cycle B successively connecting a compressor 5, a condenser 6, an expansion valve 7 and an evaporator 8 with a refrigerant pipeline; and an intermediate heat exchanger 15 for heat exchanging between the evaporator of the high temperature-side refrigerating cycle and the condenser of the low temperature-side refrigerating cycle. The heat pump type hot water generator is configured to generate hot water by the condenser in the high temperature-side refrigerating cycle. The compressor of the low temperature-side refrigerating cycle includes a volume controllable compressor, and the volume of the compressor in the low temperature-side refrigerating cycle is controlled to obtain a target temperature of the compressor in the low temperature-side refrigerating cycle.

Description

本発明は、2元冷凍サイクルを用いたヒートポンプ式温水発生装置に関し、特に高温の温水を製造するものに関する。   The present invention relates to a heat pump type hot water generator using a two-way refrigeration cycle, and particularly relates to one that produces hot hot water.

ヒートポンプ式温水発生装置において、高温の温水を製造するために、高元側冷凍サイクルと低元側冷凍サイクルを備えた2元冷凍サイクルを用いたものがある。このような2元冷凍サイクルの運転制御において、高効率且つ安定した運転をさせるために、高元側冷凍サイクルと低元側冷凍サイクルにおける各圧縮機の圧力比の比率が所定の割合になるように制御するものが知られている(例えば、特許文献1参照)。   Some heat pump type hot water generators use a two-way refrigeration cycle having a high-side refrigeration cycle and a low-side refrigeration cycle in order to produce high-temperature hot water. In such operation control of the two-way refrigeration cycle, in order to perform highly efficient and stable operation, the ratio of the pressure ratios of the compressors in the high-side refrigeration cycle and the low-side refrigeration cycle is set to a predetermined ratio. (See, for example, Patent Document 1).

特開2009−133539号公報JP 2009-133539 A

上記特許文献1に記載されている2元冷凍サイクルの運転制御では、一般に高元側冷凍サイクルと低元側冷凍サイクルでは冷媒が異なるため、適正な圧力比がそれぞれ異なる。また、冷媒或いは圧縮機自体の特性によっても適正な圧力比が異なってくる。これらのことから、複数の冷媒回路の圧力比どうしの比率を所定の割合に維持しても、各冷媒回路が適正な圧力比で運転されるとは限らない。また、複数の冷媒回路の圧力比どうしの適正な比率も各種組合せに応じて異なってしまう。このため2元冷凍サイクルを用いた高効率なヒートポンプ式高温水発生装置を得ることは難しい。   In the operation control of the two-way refrigeration cycle described in Patent Document 1, since the refrigerant is generally different between the high-side refrigeration cycle and the low-side refrigeration cycle, appropriate pressure ratios are different. Also, the appropriate pressure ratio varies depending on the characteristics of the refrigerant or the compressor itself. For these reasons, even if the ratio between the pressure ratios of the plurality of refrigerant circuits is maintained at a predetermined ratio, each refrigerant circuit is not always operated at an appropriate pressure ratio. In addition, an appropriate ratio of the pressure ratios of the plurality of refrigerant circuits varies depending on various combinations. For this reason, it is difficult to obtain a high-efficiency heat pump type hot water generator using a two-way refrigeration cycle.

低元側冷凍サイクルの蒸発器を負荷側に接続するような冷凍装置としての用途の場合、所定の圧力範囲に制御することが目的となり、圧力比を基に運転状態を制御することを行いながら、負荷に追従する圧力の制御も同時に行うことは不可能ではない。   In the case of use as a refrigeration system in which an evaporator of a low-source side refrigeration cycle is connected to the load side, the purpose is to control to a predetermined pressure range, while controlling the operating state based on the pressure ratio It is not impossible to control the pressure following the load at the same time.

しかしながら、高元側冷凍サイクルの凝縮器を負荷側に接続して高温水を作り出すヒートポンプ式温水発生装置の場合、所定の温度範囲に温水温度を制御することが必要であるが、必ずしも一義的には連動しない温水温度と冷媒圧力の関係にあって、その冷媒圧力を用いた圧力比を基にして、運転状態の制御と温水温度の制御を同時に行うことは難しく、特許文献1に記載の発明をヒートポンプ式温水発生装置へ適用することは困難である。   However, in the case of a heat pump type hot water generator that generates high-temperature water by connecting the condenser of the high-end refrigeration cycle to the load side, it is necessary to control the hot water temperature within a predetermined temperature range, but it is not necessarily unique. Are not related to each other, and it is difficult to simultaneously control the operation state and the hot water temperature based on the pressure ratio using the refrigerant pressure. The invention described in Patent Document 1 Is difficult to apply to a heat pump hot water generator.

また、圧縮機の運転状態に伴う温水出口温度と冷媒圧力の応答速度は異なり、冷媒圧力の変化速度の方が速いため、冷媒圧力による圧力比を基にした制御を行った場合、温水温度の安定性を損なうという課題もある。   Also, the response speed of the hot water outlet temperature and the refrigerant pressure according to the operating state of the compressor is different, and the change speed of the refrigerant pressure is faster.Therefore, when the control based on the pressure ratio by the refrigerant pressure is performed, the hot water temperature There is also a problem of impairing stability.

本発明の目的は、高効率化を図れると共に、温水温度の安定性を高めることもできるヒートポンプ式温水発生装置を得ることにある。   An object of the present invention is to obtain a heat pump type hot water generator capable of improving efficiency and improving the stability of hot water temperature.

上記問題を解決するために、本発明は、圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管で接続した低元側冷凍サイクルと、圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管で接続した高元側冷凍サイクルと、前記低元側冷凍サイクルの凝縮器と前記高元側冷凍サイクルの蒸発器とを熱交換させる中間熱交換器とを備え、前記高元側冷凍サイクルの凝縮器により温水を発生させるように構成したヒートポンプ式温水発生装置において、前記低元側冷凍サイクルの圧縮機は容量制御可能な圧縮機とし、前記低元側冷凍サイクルの凝縮器の温度が目標温度になるように前記低元側冷凍サイクルの圧縮機の容量制御を行うことを特徴とする。   In order to solve the above problems, the present invention sequentially includes a low-source side refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected by a refrigerant pipe, and a compressor, a condenser, an expansion means, and an evaporator. A high-source side refrigeration cycle connected by refrigerant piping; and an intermediate heat exchanger for exchanging heat between the condenser of the low-source side refrigeration cycle and the evaporator of the high-source-side refrigeration cycle, and the high-source side refrigeration cycle In the heat pump type hot water generator configured to generate hot water using a condenser, a compressor of the low-source side refrigeration cycle is a compressor whose capacity can be controlled, and a condenser temperature of the low-source side refrigeration cycle is a target. The capacity control of the compressor of the low-source side refrigeration cycle is performed so as to reach a temperature.

本発明によれば、高効率化を図れると共に、温水温度の安定性を高めることもできるヒートポンプ式温水発生装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to achieve high efficiency, the heat pump type hot water generator which can also improve stability of warm water temperature can be obtained.

本発明のヒートポンプ式温水発生装置の実施例1を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 1 of the heat pump type hot water generator of this invention. 低元側冷凍サイクルにおける凝縮器の凝縮温度と低元側冷凍サイクルの運転効率(COP)の関係を示す線図。The diagram which shows the relationship between the condensing temperature of the condenser in a low element side refrigerating cycle, and the operating efficiency (COP) of a low element side refrigerating cycle. 高元側冷凍サイクルにおける蒸発器の蒸発温度と高元側冷凍サイクルの運転効率(COP)の関係を示す線図。The diagram which shows the relationship between the evaporation temperature of the evaporator in a high refrigeration cycle, and the operating efficiency (COP) of a high refrigeration cycle. 高元側冷凍サイクルと低元側冷凍サイクルの運転効率(COP)を同一図に表わすと共に、高元側と低元側の運転効率を合わせた合計の運転効率も示した線図。The diagram which showed the driving | operation efficiency (COP) of the high yuan side refrigeration cycle and the low yuan side refrigeration cycle on the same figure, and also showed the total operation efficiency which combined the driving efficiency of the high yuan side and the low yuan side. 本発明のヒートポンプ式温水発生装置の実施例2を示す冷凍サイクル構成図。The refrigeration cycle block diagram which shows Example 2 of the heat pump type hot water generator of this invention.

以下、本発明の具体的実施例を図面に基づき説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明のヒートポンプ式温水発生装置の実施例1を示す冷凍サイクル構成図である。図において、Aは低元側冷凍サイクルで、圧縮機1、凝縮器2、膨張弁3、蒸発器4が順次配管接続され構成されている。Bは高元側冷凍サイクルで、圧縮機5、凝縮器6、膨張弁7、蒸発器8が順次配管接続され構成されている。また、低元側冷凍サイクルの凝縮器2と高元側冷凍サイクルの蒸発器8とは中間熱交換器15の中で互いに熱交換するようにされ、これによって2元冷凍サイクルとして構成されている。
なお、前記低元側冷凍サイクルAの冷媒としてはR410Aなどが好適であり、また前記高元側冷凍サイクルBの冷媒としてはR134aなどが好適である。
FIG. 1 is a configuration diagram of a refrigeration cycle showing Example 1 of the heat pump type hot water generator of the present invention. In the figure, A is a low-source side refrigeration cycle, and a compressor 1, a condenser 2, an expansion valve 3, and an evaporator 4 are sequentially connected by piping. B is a high-end refrigeration cycle, and is composed of a compressor 5, a condenser 6, an expansion valve 7, and an evaporator 8 sequentially connected by piping. Further, the condenser 2 in the low refrigeration cycle and the evaporator 8 in the high refrigeration cycle are configured to exchange heat with each other in the intermediate heat exchanger 15, thereby constituting a two-way refrigeration cycle. .
In addition, R410A etc. are suitable as a refrigerant | coolant of the said low side refrigeration cycle A, and R134a etc. are suitable as a refrigerant | coolant of the said high side refrigeration cycle B.

前記低元側冷凍サイクルAでは、圧縮機1で圧縮された高温高圧のガス冷媒は、凝縮器2において高元側冷凍サイクルBの蒸発器8と熱交換して冷却され、凝縮液化される。この凝縮液化された高圧液冷媒は、膨張弁(膨張手段)3により減圧された後、蒸発器4で外気と熱交換されて蒸発され、低温低圧のガス冷媒となって、再び前記圧縮機1に戻る冷凍サイクルを構成している。   In the low-source side refrigeration cycle A, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is cooled by heat exchange with the evaporator 8 of the high-source side refrigeration cycle B in the condenser 2 to be condensed and liquefied. The condensed and liquefied high-pressure liquid refrigerant is decompressed by an expansion valve (expansion means) 3 and then evaporated and exchanged with the outside air in an evaporator 4 to form a low-temperature and low-pressure gas refrigerant. This constitutes the refrigeration cycle.

同様に、高元側冷凍サイクルBにおいても、圧縮機5で圧縮された高温高圧のガス冷媒は、凝縮器6において、負荷側の温度の低下した温水に冷却されて凝縮液化される。この凝縮液化された高圧液冷媒は、膨張弁(膨張手段)7により減圧された後、蒸発器8で低元側冷凍サイクルAの凝縮器2と熱交換して蒸発され、低温低圧のガス冷媒となって、再び前記圧縮機5に戻る冷凍サイクルを構成している。   Similarly, also in the high-source side refrigeration cycle B, the high-temperature and high-pressure gas refrigerant compressed by the compressor 5 is cooled and condensed into hot water whose load-side temperature is reduced in the condenser 6. The condensed and liquefied high-pressure liquid refrigerant is decompressed by an expansion valve (expansion means) 7 and then evaporated by exchanging heat with the condenser 2 of the low-source side refrigeration cycle A by an evaporator 8 to produce a low-temperature and low-pressure gas refrigerant. Thus, a refrigeration cycle returning to the compressor 5 is configured again.

前記低元側冷凍サイクルAの圧縮機1としては、インバータ9により回転数を制御できる回転数可変形の圧縮機が使用されている。また、12は外気温度を検出する外気温度センサ、13は低元側冷凍サイクルの凝縮器2から出た冷媒の温度を検出するための低元側凝縮温度センサ、14は高元側冷凍サイクルBの凝縮器6で加熱された温水の出口温度を検出するための高元側温水出口温度センサである。これらの温度センサ12〜14で検出された温度データは制御装置11に送られ、制御装置11ではこれらの温度情報を基にし、前記インバータ9を介して低元側の圧縮機1の回転数を制御したり、高元側の圧縮機5をON/OFF制御する。   As the compressor 1 of the low-source side refrigeration cycle A, a variable-speed compressor that can control the rotational speed by an inverter 9 is used. Further, 12 is an outside air temperature sensor for detecting the outside air temperature, 13 is a low side condensing temperature sensor for detecting the temperature of the refrigerant discharged from the condenser 2 of the low side refrigeration cycle, and 14 is a high side refrigeration cycle B. This is a high-side hot water outlet temperature sensor for detecting the outlet temperature of hot water heated by the condenser 6. The temperature data detected by these temperature sensors 12 to 14 is sent to the control device 11, and the control device 11 determines the rotational speed of the low-source compressor 1 via the inverter 9 based on these temperature information. Control or ON / OFF control of the compressor 5 on the high side.

即ち、前記低元側圧縮機1は、前記低元側凝縮温度センサ13で検出された温度データに基づき、低元側凝縮器2の温度が目標温度になるように回転数制御(容量制御)が為される。また、前記高元側圧縮機5は、前記高元側温水出口温度センサ14で検出された温度データに基づき、温水の出口温度が所定の範囲(設定温度)になるように、ON/OFF制御される。このように本実施例では、前記低元側冷凍サイクルの凝縮器の温度が目標温度になるように前記低元側冷凍サイクルの圧縮機の容量制御が行われ、また前記高元側冷凍サイクルにおける圧縮機は、高元側冷凍サイクルの凝縮器からの温水の出口温度に応じて運転制御が行なわれ、前記高元側冷凍サイクルの圧縮機と低元側冷凍サイクルの圧縮機はそれぞれ独立した制御が行なわれる。   That is, the low-side compressor 1 controls the rotational speed (capacity control) so that the temperature of the low-side condenser 2 becomes the target temperature based on the temperature data detected by the low-side condensation temperature sensor 13. Is done. Further, the high-end compressor 5 is controlled to turn on / off so that the outlet temperature of the hot water falls within a predetermined range (set temperature) based on the temperature data detected by the high-end hot water outlet temperature sensor 14. Is done. As described above, in this embodiment, the capacity control of the compressor of the low-side refrigeration cycle is performed so that the temperature of the condenser of the low-side refrigeration cycle becomes the target temperature, and in the high-side refrigeration cycle, The compressor is operated and controlled according to the outlet temperature of the hot water from the condenser of the high refrigeration cycle, and the compressor of the high refrigeration cycle and the compressor of the low refrigeration cycle are controlled independently. Is done.

図2は低元側冷凍サイクルAにおける凝縮器3の凝縮温度と低元側冷凍サイクルの運転効率(COP)の関係を示す線図である。ヒートポンプ式温水発生装置として、温水を供給する運転を行う場合、低元側冷凍サイクルAにおける運転効率(COP)は、この図2の曲線Cに示すように、凝縮温度を下げるほど、効率が高くなることがわかる。   FIG. 2 is a graph showing the relationship between the condensation temperature of the condenser 3 in the low-side refrigeration cycle A and the operating efficiency (COP) of the low-side refrigeration cycle. When performing operation to supply hot water as a heat pump type hot water generator, the operation efficiency (COP) in the low-source side refrigeration cycle A is higher as the condensation temperature is lowered, as shown by the curve C in FIG. I understand that

図3は高元側冷凍サイクルBにおける蒸発器8の蒸発温度と高元側冷凍サイクルの運転効率(COP)の関係を示す線図である。ヒートポンプ式温水発生装置として、温水を供給する運転を行う場合、高元側冷凍サイクルBにおける運転効率(COP)は、この図3の曲線Dに示すように、蒸発温度を上げるほど、効率が高くなることがわかる。   FIG. 3 is a diagram showing the relationship between the evaporation temperature of the evaporator 8 in the high-side refrigeration cycle B and the operating efficiency (COP) of the high-side refrigeration cycle. When performing operation to supply hot water as a heat pump type hot water generator, the operation efficiency (COP) in the high-side refrigeration cycle B increases as the evaporation temperature increases, as shown by the curve D in FIG. I understand that

図4は図1に示す高元側冷凍サイクルの運転効率(COP)と低元側冷凍サイクルの運転効率(COP)を同一図に表わすと共に、高元側と低元側の運転効率を合わせた合計の運転効率(COP)も示した線図である。図4において、曲線C1は図2に示した低元側冷凍サイクルAにおける運転効率を示す曲線Cに相当するものであり、外気温度が5℃の場合の運転効率曲線である。曲線D1は図3に示した高元側冷凍サイクルBにおける運転効率を示す曲線Dに相当するものであり、温水出口温度が60℃の場合の運転効率を示す曲線である。また、低元側の運転効率(曲線C1)と高元側の運転効率(曲線D1)を合わせた合計の運転効率(COP)は曲線Eで示すようになる。この合計運転効率曲線Eから、ヒートポンプ式温水発生装置として、機器全体の運転効率(COP)が最適になる運転条件は、低元側冷凍サイクルの運転効率曲線Cと高元側冷凍サイクルの運転効率曲線Dとが交わった運転点αの周辺となることがわかる。即ち、運転点αで運転するためには、そのときの低元側冷凍サイクルの凝縮温度(高元側冷凍サイクルの蒸発温度に略等しい)がt1になるようにその目標温度を設定して、低元側の圧縮機1を回転数制御すれば機器全体の運転効率(COP)をほぼ最大にすることが可能となる。   FIG. 4 shows the operation efficiency (COP) of the high-source side refrigeration cycle and the operation efficiency (COP) of the low-source side refrigeration cycle shown in FIG. It is the diagram which also showed the total operation efficiency (COP). In FIG. 4, a curve C1 corresponds to the curve C indicating the operation efficiency in the low-source side refrigeration cycle A shown in FIG. 2, and is an operation efficiency curve when the outside air temperature is 5 ° C. A curve D1 corresponds to the curve D indicating the operation efficiency in the high-side refrigeration cycle B shown in FIG. 3, and is a curve indicating the operation efficiency when the hot water outlet temperature is 60 ° C. Further, the total operating efficiency (COP) of the operating efficiency (curve C1) on the low element side and the operating efficiency (curve D1) on the high element side is represented by a curve E. From this total operating efficiency curve E, the operating conditions that optimize the operating efficiency (COP) of the entire device as a heat pump hot water generator are the operating efficiency curve C of the low-source side refrigeration cycle and the operating efficiency of the high-source side refrigeration cycle. It turns out that it becomes the circumference | surroundings of the driving point (alpha) where the curve D crossed. That is, in order to operate at the operating point α, the target temperature is set so that the condensation temperature of the low-source side refrigeration cycle at that time (approximately equal to the evaporation temperature of the high-source side refrigeration cycle) is t1, By controlling the number of revolutions of the compressor 1 on the low-source side, it is possible to substantially maximize the operating efficiency (COP) of the entire device.

また、ヒートポンプ式温水発生装置では、負荷の状況に応じて、負荷に供給すべき温水温度の設定温度(或いは設定温度の範囲)を変える場合がある。この際、高元側冷凍サイクルの運転効率は、温水出口温度を上げた場合、高元側冷凍サイクルにおける凝縮温度を上げることになるので、図2に示す関係と同様に、凝縮温度を上げるほど効率が低くなる。即ち、図4に示すように、温水出口温度を70℃に設定した場合には運転効率曲線はD2に、80℃に設定した場合には運転効率曲線はD3に変わる。このように温水の設定温度を変えた場合には運転効率曲線も変化するので、機器全体の運転効率が最適になる運転条件も変化する。例えば、外気温度は5℃のままで、温水の設定温度が70℃に上げられた場合、機器全体の運転効率が最適になる運転条件は、低元側冷凍サイクルの運転効率曲線C1と、高元側冷凍サイクルの運転効率曲線D2とが交わった運転点βの周辺となるので、運転点をαからβに変更すれば機器全体の運転効率を向上することが可能となる。運転点をβに変更して運転するには、低元側冷凍サイクルの凝縮温度がt2になるようにその目標温度を設定し、低元側の圧縮機1を回転数制御すれば良い。   In the heat pump hot water generator, the set temperature (or set temperature range) of the hot water temperature to be supplied to the load may be changed depending on the load condition. At this time, the operating efficiency of the high-source side refrigeration cycle increases the condensation temperature in the high-side refrigeration cycle when the hot water outlet temperature is increased, so that the higher the condensation temperature is, as in the relationship shown in FIG. Efficiency is lowered. That is, as shown in FIG. 4, when the hot water outlet temperature is set to 70 ° C., the operating efficiency curve changes to D2, and when it is set to 80 ° C., the operating efficiency curve changes to D3. When the set temperature of the hot water is changed in this way, the operating efficiency curve also changes, so that the operating conditions that optimize the operating efficiency of the entire device also change. For example, when the outside air temperature remains at 5 ° C. and the set temperature of the hot water is raised to 70 ° C., the operating conditions that optimize the operating efficiency of the entire device are the operating efficiency curve C1 of the low-source side refrigeration cycle, Since it is in the vicinity of the operating point β where the operating efficiency curve D2 of the former-side refrigeration cycle intersects, it is possible to improve the operating efficiency of the entire device by changing the operating point from α to β. In order to operate with the operating point changed to β, the target temperature may be set so that the condensation temperature of the low-source side refrigeration cycle becomes t2, and the low-side compressor 1 may be controlled in rotational speed.

一方、温水の設定温度は60℃のままで、外気温度が5℃から10℃に変化した場合、機器全体の運転効率が最適になる運転条件は、低元側冷凍サイクルの運転効率曲線C2と高元側冷凍サイクルの運転効率曲線D1とが交わった運転点γの周辺となるので、運転点をαからγに変更すれば機器全体の運転効率を向上することが可能となる。運転点をγに変更して運転するには、低元側冷凍サイクルの凝縮温度がt1からt2になるように目標温度を変更して低元側の圧縮機1を回転数制御する。   On the other hand, when the set temperature of the hot water remains at 60 ° C. and the outside air temperature changes from 5 ° C. to 10 ° C., the operating condition that optimizes the operating efficiency of the entire device is the operating efficiency curve C2 of the low-source side refrigeration cycle. Since it is around the operating point γ where the operating efficiency curve D1 of the high-source side refrigeration cycle intersects, the operating efficiency of the entire device can be improved by changing the operating point from α to γ. In order to operate with the operating point changed to γ, the target temperature is changed so that the condensation temperature of the low-side refrigeration cycle is changed from t1 to t2, and the rotational speed of the low-side compressor 1 is controlled.

以上説明した本実施例によれば、低元側冷凍サイクルにおける凝縮器の前記目標温度は、外気温度と、前記高元側冷凍サイクルの凝縮器で製造する温水の設定温度に基づいて決められ、前記低元側冷凍サイクルの運転効率と前記高元側冷凍サイクルの運転効率を合わせた合計の運転効率(COP)が最も高くなる運転点となるように、前記低元側冷凍サイクルの凝縮温度が決められ、この凝縮温度になるように前記低元側冷凍サイクルの圧縮機が回転数制御されるので、高効率化を図ることのできると共に、圧力比を基にした制御ではなく、凝縮温度に基づいて制御されるから、温水温度の安定性も高めることができるヒートポンプ式温水発生装置を得ることができる。   According to the present embodiment described above, the target temperature of the condenser in the low refrigeration cycle is determined based on the outside air temperature and the set temperature of hot water produced by the condenser of the high refrigeration cycle, The condensing temperature of the low-source side refrigeration cycle is such that the total operating efficiency (COP) that combines the operating efficiency of the low-source side refrigeration cycle and the operating efficiency of the high-source-side refrigeration cycle is the highest operating point. Since the compressor of the low-source side refrigeration cycle is controlled so as to reach this condensation temperature, it is possible to achieve high efficiency and not to control based on the pressure ratio but to the condensation temperature. Since it is controlled based on this, a heat pump hot water generator capable of enhancing the stability of the hot water temperature can be obtained.

また、本実施例によれば、高元側冷凍サイクルAと低元側冷凍サイクルBの圧縮機1,5を、それぞれの凝縮器に関わる温度を基にして独立した運転制御を行うので、高元側冷凍サイクルBにおいては、負荷側の状況に合わせて所定の温度範囲(目標温度)に温水温度を制御することが可能となる。一方、低元側冷凍サイクルAにおいては、低元側冷凍サイクルにおける凝縮器の凝縮温度を所定の温度に維持するように圧縮機1の回転数制御が行なわれる。従って、低元側冷凍サイクルA及び高元側冷凍サイクルBを共に運転効率がより高い運転状態となるように制御することが可能となる。即ち、高元側冷凍サイクルBについては負荷の状態に追従することを優先して圧縮機5を運転し、低元側冷凍サイクルAについては、機器全体として効率がより高くなる凝縮温度を設定してその凝縮温度を維持するように圧縮機1を制御することにより、負荷状況に応じた運転と、機器の高効率化の両立を図ることが可能となる。   Further, according to the present embodiment, the compressors 1 and 5 of the high-side refrigeration cycle A and the low-side refrigeration cycle B are independently controlled based on the temperatures related to the respective condensers. In the former-side refrigeration cycle B, the hot water temperature can be controlled within a predetermined temperature range (target temperature) in accordance with the load-side situation. On the other hand, in the low source side refrigeration cycle A, the rotation speed control of the compressor 1 is performed so as to maintain the condensation temperature of the condenser in the low source side refrigeration cycle at a predetermined temperature. Therefore, it is possible to control both the low-source side refrigeration cycle A and the high-source side refrigeration cycle B so as to be in an operating state with higher operating efficiency. That is, the compressor 5 is operated with priority given to following the state of the load for the high-source side refrigeration cycle B, and the condensation temperature at which the efficiency of the entire device becomes higher is set for the low-source side refrigeration cycle A. By controlling the compressor 1 so as to maintain the condensing temperature, it is possible to achieve both the operation according to the load condition and the high efficiency of the equipment.

特に本実施例によれば、低元側冷凍サイクルAの圧縮機1は、低元側冷凍サイクルにおける凝縮器の凝縮温度が所定の温度に維持されるように、回転数をきめ細かく調整できるので、より高精度な制御が容易に可能となり、従来のように運転状態によって変動する圧力比を基に制御するものに比べ、制御の安定性を更に高めた運転が可能となる。   In particular, according to this embodiment, the compressor 1 of the low-source side refrigeration cycle A can finely adjust the rotational speed so that the condensation temperature of the condenser in the low-source side refrigeration cycle is maintained at a predetermined temperature. Higher-accuracy control can be easily performed, and operation with further improved control stability is possible as compared with the conventional control based on the pressure ratio that varies depending on the operation state.

図5は本発明の実施例2を示す冷凍サイクル構成図で、図1と同一符号を付した部分は同一または相当する部分を示す。この実施例は、高元側冷凍サイクルBの圧縮機5もインバータ10で駆動される回転数可変形圧縮機として回転数制御を行うようにしたものである。即ち、前記高元側冷凍サイクルの凝縮器からの温水の出口温度を高元側温水出口温度センサにより検出し、この温水出口温度が所定の範囲になるように、前記高元側冷凍サイクルにおける圧縮機を回転数制御するものである。他の構成や制御は実施例1と同様であり、説明を省略する。   FIG. 5 is a configuration diagram of a refrigeration cycle showing Embodiment 2 of the present invention, and the portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. In this embodiment, the compressor 5 of the high-side refrigeration cycle B is also controlled as a variable speed compressor driven by an inverter 10. That is, the hot water outlet temperature from the condenser of the high-side refrigeration cycle is detected by a high-side hot water outlet temperature sensor, and compression in the high-side refrigeration cycle is performed so that the hot water outlet temperature falls within a predetermined range. The number of revolutions of the machine is controlled. Other configurations and controls are the same as those in the first embodiment, and a description thereof will be omitted.

本実施例によれば、図1に示した実施例と同様の効果を得ることができると共に、高元側冷凍サイクルの圧縮機5も回転数をきめ細かく調整できるので、より安定化した温度の温水を負荷へ供給することが可能となる。また、負荷側の状況に応じて圧縮機容量をきめ細かく調整可能となるので、機器全体の運転効率(COP)をより向上できる。   According to the present embodiment, the same effect as that of the embodiment shown in FIG. 1 can be obtained, and the compressor 5 of the high-side refrigeration cycle can also finely adjust the rotation speed, so that the hot water having a more stabilized temperature can be obtained. Can be supplied to the load. In addition, since the compressor capacity can be finely adjusted according to the load-side situation, the operation efficiency (COP) of the entire device can be further improved.

なお、上述した実施例1、2では、低元側冷凍サイクル及び高元側冷凍サイクル共に、四方切替弁をもたない運転モードが単一の冷凍サイクルのもので説明したが、低元側または高元側の少なくとも何れかの冷凍サイクルを、四方切替弁を有する冷凍サイクルで構成したものにも本発明は同様に実施できるものである。   In Examples 1 and 2 described above, both the low-side refrigeration cycle and the high-side refrigeration cycle have been described with the operation mode having no four-way switching valve as a single refrigeration cycle. The present invention can be similarly implemented even when at least one of the refrigeration cycles on the high-end side is configured by a refrigeration cycle having a four-way switching valve.

A 低元側冷凍サイクル
B 高元側冷凍サイクル
1,5 圧縮機
2 低元側冷凍サイクルの凝縮器
3,7 膨張弁(膨張手段)
4 蒸発器
6 凝縮器
8 高元側冷凍サイクルの蒸発器
9,10 インバータ
11 制御装置
12 外気温度センサ
13 低元側凝縮温度センサ
14 高元側温水出口温度センサ
15 中間熱交換器。
A Low refrigeration cycle B High refrigeration cycle 1, 5 Compressor 2 Low refrigeration cycle condenser 3, 7 Expansion valve (expansion means)
4 Evaporator 6 Condenser 8 Evaporators 9 and 10 in the high-end refrigeration cycle Inverter 11 Control device 12 Outside air temperature sensor 13 Low-end side condensing temperature sensor 14 High-end hot water outlet temperature sensor 15 Intermediate heat exchanger.

Claims (7)

圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管で接続した低元側冷凍サイクルと、圧縮機、凝縮器、膨張手段、蒸発器を順次冷媒配管で接続した高元側冷凍サイクルと、前記低元側冷凍サイクルの凝縮器と前記高元側冷凍サイクルの蒸発器とを熱交換させる中間熱交換器とを備え、前記高元側冷凍サイクルの凝縮器により温水を発生させるように構成したヒートポンプ式温水発生装置において、
前記低元側冷凍サイクルの圧縮機は容量制御可能な圧縮機とし、
前記低元側冷凍サイクルの凝縮器の温度が目標温度になるように前記低元側冷凍サイクルの圧縮機の容量制御を行う
ことを特徴とするヒートポンプ式温水発生装置。
A low-source side refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected by a refrigerant pipe; and a high-source side refrigeration cycle in which a compressor, a condenser, an expansion means, and an evaporator are sequentially connected by a refrigerant pipe; An intermediate heat exchanger for exchanging heat between the condenser of the low original refrigeration cycle and the evaporator of the high original refrigeration cycle is configured to generate hot water by the condenser of the high original refrigeration cycle. In the heat pump hot water generator,
The compressor of the low-source side refrigeration cycle is a compressor whose capacity can be controlled,
The heat pump hot water generator is characterized in that the capacity of the compressor of the low-source side refrigeration cycle is controlled so that the temperature of the condenser of the low-side refrigeration cycle becomes a target temperature.
請求項1に記載のヒートポンプ式温水発生装置において、低元側冷凍サイクルにおける凝縮器の前記目標温度は、外気温度と、前記高元側冷凍サイクルの凝縮器で製造する温水の設定温度に基づいて決められることをことを特徴とするヒートポンプ式温水発生装置。   The heat pump hot water generator according to claim 1, wherein the target temperature of the condenser in the low-source side refrigeration cycle is based on an outside air temperature and a set temperature of hot water produced by the condenser of the high-source side refrigeration cycle. A heat pump type hot water generator characterized by being determined. 請求項2に記載のヒートポンプ式温水発生装置において、前記高元側冷凍サイクルの運転効率と前記低元側冷凍サイクルの運転効率を合わせた合計の運転効率が最も高くなる運転点となるように前記低元側冷凍サイクルの凝縮温度が決められ、この凝縮温度になるように前記低元側冷凍サイクルの圧縮機が容量制御されることを特徴とするヒートポンプ式温水発生装置。   The heat pump hot water generator according to claim 2, wherein the total operating efficiency of the operating efficiency of the high-source-side refrigeration cycle and the operating efficiency of the low-source-side refrigeration cycle is the operating point where the total operating efficiency is the highest. A heat pump type hot water generator characterized in that the condensation temperature of the low-source side refrigeration cycle is determined, and the capacity of the compressor of the low-source side refrigeration cycle is controlled so as to reach this condensation temperature. 請求項1〜3の何れかに記載のヒートポンプ式温水発生装置において、前記低元側冷凍サイクルにおける圧縮機をインバータ駆動される回転数可変形圧縮機とし、低元側冷凍サイクルにおける凝縮器の温度を検出し、この検出された凝縮器の温度が所定の温度に維持されるように前記圧縮機の回転数を制御することを特徴とするヒートポンプ式温水発生装置。   The heat pump type hot water generator according to any one of claims 1 to 3, wherein the compressor in the low-source side refrigeration cycle is an inverter-driven variable speed compressor, and the condenser temperature in the low-source side refrigeration cycle And the number of revolutions of the compressor is controlled so that the detected temperature of the condenser is maintained at a predetermined temperature. 請求項1〜4の何れかに記載のヒートポンプ式温水発生装置において、前記高元側冷凍サイクルにおける圧縮機を、高元側冷凍サイクルの凝縮器からの温水の出口温度に応じて運転制御を行い、高元側冷凍サイクルの圧縮機と低元側冷凍サイクルの圧縮機がそれぞれ独立した制御が行なわれることを特徴とするヒートポンプ式温水発生装置。   The heat pump type hot water generator according to any one of claims 1 to 4, wherein the compressor in the high-source side refrigeration cycle is controlled in accordance with an outlet temperature of hot water from a condenser in the high-source side refrigeration cycle. A heat pump type hot water generator, wherein the compressor of the high-end side refrigeration cycle and the compressor of the low-end side refrigeration cycle are independently controlled. 請求項5に記載のヒートポンプ式温水発生装置において、高元側冷凍サイクルの凝縮器からの温水の出口温度を検出し、この温水出口温度が所定の範囲になるように、前記高元側冷凍サイクルにおける圧縮機をON/OFF制御することを特徴とするヒートポンプ式温水発生装置。   6. The heat pump hot water generator according to claim 5, wherein an outlet temperature of hot water from a condenser of the high-end refrigeration cycle is detected, and the high-end refrigeration cycle is set so that the hot water outlet temperature falls within a predetermined range. A heat pump type hot water generator characterized by ON / OFF control of a compressor in 請求項5に記載のヒートポンプ式温水発生装置において、前記高元側冷凍サイクルにおける圧縮機をインバータ駆動される回転数可変形圧縮機とし、前記高元側冷凍サイクルの凝縮器からの温水の出口温度を検出し、この温水出口温度が所定の範囲になるように、前記高元側冷凍サイクルにおける圧縮機を回転数制御することを特徴とするヒートポンプ式温水発生装置。   The heat pump hot water generator according to claim 5, wherein the compressor in the high-side refrigeration cycle is an inverter-driven variable speed compressor, and the outlet temperature of hot water from the condenser in the high-side refrigeration cycle , And the number of revolutions of the compressor in the high-side refrigeration cycle is controlled so that the temperature of the hot water outlet is within a predetermined range.
JP2010186415A 2010-08-23 2010-08-23 Heat pump type hot water generator Withdrawn JP2012042177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186415A JP2012042177A (en) 2010-08-23 2010-08-23 Heat pump type hot water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186415A JP2012042177A (en) 2010-08-23 2010-08-23 Heat pump type hot water generator

Publications (1)

Publication Number Publication Date
JP2012042177A true JP2012042177A (en) 2012-03-01

Family

ID=45898714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186415A Withdrawn JP2012042177A (en) 2010-08-23 2010-08-23 Heat pump type hot water generator

Country Status (1)

Country Link
JP (1) JP2012042177A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257105A (en) * 2012-06-14 2013-12-26 Panasonic Corp Refrigeration cycle device and hot water generating device having the same
JP2014037954A (en) * 2012-08-17 2014-02-27 Yutaka Takahashi Combined heat pump system
KR20150009201A (en) * 2013-07-16 2015-01-26 엘지전자 주식회사 A heat pump system and a control method the same
JP2015215109A (en) * 2014-05-08 2015-12-03 三菱重工冷熱株式会社 Capacity control method for compressor of cascade freezing device
WO2017195275A1 (en) 2016-05-10 2017-11-16 三菱電機株式会社 Heat pump system
CN109780748A (en) * 2019-03-14 2019-05-21 哈尔滨工业大学 Air-supplemented ultra-low ambient temperature air source heat pump unit and its heating and cooling operation method
CN114738867A (en) * 2022-03-22 2022-07-12 青岛海尔空调电子有限公司 Evaporative cooling combined air conditioning unit and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013257105A (en) * 2012-06-14 2013-12-26 Panasonic Corp Refrigeration cycle device and hot water generating device having the same
JP2014037954A (en) * 2012-08-17 2014-02-27 Yutaka Takahashi Combined heat pump system
KR20150009201A (en) * 2013-07-16 2015-01-26 엘지전자 주식회사 A heat pump system and a control method the same
KR102059047B1 (en) * 2013-07-16 2019-12-24 엘지전자 주식회사 A heat pump system and a control method the same
JP2015215109A (en) * 2014-05-08 2015-12-03 三菱重工冷熱株式会社 Capacity control method for compressor of cascade freezing device
WO2017195275A1 (en) 2016-05-10 2017-11-16 三菱電機株式会社 Heat pump system
CN109780748A (en) * 2019-03-14 2019-05-21 哈尔滨工业大学 Air-supplemented ultra-low ambient temperature air source heat pump unit and its heating and cooling operation method
CN114738867A (en) * 2022-03-22 2022-07-12 青岛海尔空调电子有限公司 Evaporative cooling combined air conditioning unit and control method thereof
CN114738867B (en) * 2022-03-22 2023-11-24 青岛海尔空调电子有限公司 Evaporation and cooling combined air conditioning unit and control method thereof

Similar Documents

Publication Publication Date Title
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JP6595205B2 (en) Refrigeration cycle equipment
WO2012066763A1 (en) Freezer
US20150292777A1 (en) Air-conditioning apparatus
JP2012042177A (en) Heat pump type hot water generator
EP2955462B1 (en) Heat pump apparatus
JP2009243793A (en) Heat pump type hot water supply outdoor unit
WO2007110908A9 (en) Refrigeration air conditioning device
JP5263522B2 (en) Refrigeration equipment
JP5300806B2 (en) Heat pump equipment
JPWO2017006474A1 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP6067178B2 (en) Heat source side unit and air conditioner
JP2005226950A (en) Refrigerating air conditioner
JP2013245867A (en) Dual refrigeration device
JP5316457B2 (en) Air conditioner
JP4999530B2 (en) Air conditioner
WO2016001958A1 (en) Air-conditioning device
JP4999531B2 (en) Air conditioner
JP2012202581A (en) Refrigeration cycle device and control method thereof
JP2012141070A (en) Refrigerating device
JP2016114299A (en) Air conditioner
JP2005249384A (en) Refrigerating cycle device
JP6766239B2 (en) Refrigeration cycle equipment
JP6509047B2 (en) Air conditioner
KR20210026645A (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131105