[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012040940A - Failure discrimination device and failure discrimination method for tire pneumatic pressure monitor - Google Patents

Failure discrimination device and failure discrimination method for tire pneumatic pressure monitor Download PDF

Info

Publication number
JP2012040940A
JP2012040940A JP2010183644A JP2010183644A JP2012040940A JP 2012040940 A JP2012040940 A JP 2012040940A JP 2010183644 A JP2010183644 A JP 2010183644A JP 2010183644 A JP2010183644 A JP 2010183644A JP 2012040940 A JP2012040940 A JP 2012040940A
Authority
JP
Japan
Prior art keywords
radio wave
vehicle
receiver
equal
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010183644A
Other languages
Japanese (ja)
Other versions
JP5609415B2 (en
Inventor
Ken Ishikawa
謙 石川
Takahiro Maekawa
貴洋 前川
Masashi Terada
昌司 寺田
Naoki Shida
尚基 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010183644A priority Critical patent/JP5609415B2/en
Publication of JP2012040940A publication Critical patent/JP2012040940A/en
Application granted granted Critical
Publication of JP5609415B2 publication Critical patent/JP5609415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately discriminate between electronic jamming and a receiver failure.SOLUTION: This failure discrimination device for a tire pneumatic pressure monitor includes a transmitter installed in a tire and the receiver for receiving the radio wave including the information on tire pneumatic pressure transmitted from the transmitter. The failure discrimination device detects the intensity of the radio wave received by the receiver, detects the traveling conditions of a vehicle including the steering state and the traveling speed of the vehicle (S320, S330), and based on the traveling conditions, calculates three or more positions of the vehicle varying with the elapse of time (S342). The distance from the position of the vehicle to a radio wave transmission source which is in inverse proportion to a radio wave intensity detected by a radio wave intensity detection means is obtained at each of the three or more positions of the vehicle. An equal intensity area in which estimated distances from the positions of the vehicle to the radio wave transmission source are equal to each other is obtained at each position of the vehicle. When the equal intensity area at each position of the vehicle is brought into a predetermined matched state, the equal intensity area in the matched state is specified as a radio wave transmission source (S363). When the equal intensity area in matched state is absent and the radio wave transmission source cannot be specified, the receiver 3 is determined to be failed (S390).

Description

本発明は、タイヤ空気圧モニターの故障判別装置及びその故障判別方法に関する。   The present invention relates to a tire pressure monitor failure determination device and a failure determination method thereof.

従来から、外来電波による障害の対策手段として、特許文献1に開示された車載用レーダ装置が知られている。特許文献1では、先ず、ビーム受信手段で被検出物体から反射された受信信号を検出して相対距離及び相対速度を検出するレーダ観測期間後からビーム送信手段で次の送信信号を送出するまでの間のレーダ観測期間外を電波障害判定期間と定めている。   2. Description of the Related Art Conventionally, an in-vehicle radar device disclosed in Patent Document 1 is known as a countermeasure against an obstacle caused by external radio waves. In Patent Document 1, first, after a radar observation period in which a reception signal reflected from an object to be detected is detected by a beam receiving unit to detect a relative distance and a relative speed, a beam transmission unit transmits a next transmission signal. The period outside the radar observation period is defined as the radio wave interference determination period.

そして、この電波障害判定期間において閾値を超える周波数成分が観測された場合、現在から過去に遡ってノイズ成分の連続性を検証し、予め設定した条件以上の連続性が認められた場合、外来電波による障害下にあると判断している。   If a frequency component exceeding the threshold is observed during this radio disturbance determination period, the continuity of the noise component is verified retroactively from the present. Judging by the obstacles.

さらに、自車両の走行距離をモニターすると共に、カウンタからの信号で電波障害の連続性をモニターし、ある走行距離以上連続して電波障害検知が続いた場合に限り、回路系に異常があると判断している。   In addition to monitoring the distance traveled by the vehicle, the signal from the counter monitors the continuity of the radio disturbance. Deciding.

特開2008−111773号公報JP 2008-111173 A

したがって、回路系の異常(故障)か或いは電波妨害かの判別は可能だが、車両の走行状態に関わらず、単に時間や距離だけで判別しているため、必ずしも故障判別の精度が十分に高いとはいえない。   Therefore, it is possible to determine whether the circuit system is abnormal (failure) or radio wave interference, but because the determination is based only on time and distance regardless of the running state of the vehicle, the accuracy of the failure determination is not necessarily high enough. I can't say that.

本発明は、このような従来の課題に鑑みてなされたものであり、その目的は、電波妨害と受信機の故障とを高精度に判別できるタイヤ空気圧モニターの故障判別装置及び故障判別方法を提供することである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a tire pressure monitor failure determination device and failure determination method capable of accurately determining radio wave interference and receiver failure. It is to be.

本発明の特徴は、タイヤ内に設けられた送信機と、送信機が発するタイヤ空気圧情報を含んだ電波を受信する受信機とを含むタイヤ空気圧モニターの故障判別装置である。この故障判別装置は、受信機が受信した電波強度を検出し、車両の操舵状態と走行速度を含む走行状況を検出し、走行状況に基づいて、車両の時間経過による位置を3つ以上算出する。そして、3つ以上の車両位置で、電波強度検出手段で検出した電波強度に反比例する車両位置から電波発信源までの想定距離を各車両位置で求め、更に、この想定距離が等しい等強度範囲を各車両位置で求め、各車両位置での等強度範囲が所定の一致状態となる場合に、その一致状態にある等強度範囲を電波発信源として特定する。そして、電波発信源を特定できないときには、受信機の故障と判別する。   A feature of the present invention is a failure determination device for a tire pressure monitor including a transmitter provided in a tire and a receiver that receives a radio wave including tire pressure information emitted from the transmitter. This failure determination device detects the radio field intensity received by the receiver, detects a driving situation including a steering state and a driving speed of the vehicle, and calculates three or more positions of the vehicle over time based on the driving situation. . Then, at three or more vehicle positions, an estimated distance from the vehicle position to the radio wave transmission source that is inversely proportional to the radio wave intensity detected by the radio wave intensity detecting means is obtained at each vehicle position, and an equal intensity range in which the assumed distance is equal is obtained. When the equal intensity range at each vehicle position is in a predetermined coincidence state, the equal intensity range in the coincidence state is specified as a radio wave transmission source. When the radio wave source cannot be specified, it is determined that the receiver is out of order.

本発明に係わるタイヤ空気圧モニターの故障判別装置及び故障判別方法によれば、車両の操舵状態と走行速度を含む走行状況に基づいて、電波発生源を高精度に予測して、電波妨害と受信機の故障とを高精度に判別することができる。   According to the failure determination device and the failure determination method of the tire pressure monitor according to the present invention, the radio wave generation source is predicted with high accuracy based on the driving situation including the steering state and the driving speed of the vehicle, and the radio wave interference and the receiver. Can be determined with high accuracy.

本発明の実施の形態に係わるタイヤ空気圧モニターの故障判別装置を含むシステム全体の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an entire system including a tire air pressure monitor failure determination apparatus according to an embodiment of the present invention. 図1の受信機3の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the receiver 3 of FIG. 図2の信号出力回路16の動作を説明する為のグラフである。3 is a graph for explaining the operation of the signal output circuit 16 of FIG. 2. 図1の制御部6の詳細な構成を示すブロック図である。It is a block diagram which shows the detailed structure of the control part 6 of FIG. 図1のタイヤ空気圧モニターがタイヤ5の空気圧の状態を判断する処理手順の一例を示すフローチャートである。3 is a flowchart showing an example of a processing procedure for the tire pressure monitor of FIG. タイヤ空気圧モニターの故障判別装置が電波発生源を予測して、電波妨害と受信機3の故障とを判別する処理手順の一例を示すフローチャートである。7 is a flowchart illustrating an example of a processing procedure in which a failure determination device of a tire pressure monitor predicts a radio wave generation source and determines a radio wave interference and a failure of the receiver 3. 図7(a)は、受信した電波の電界強度の時間変化の一例を示すグラフであり、図7(b)は、S320段階でプロットした操舵角の時間変化の一例を示すグラフである。図7(c)は、車両の挙動(向き)の時間変化の一例を示すグラフである。図7(d)は、xy座標上における車両の走行軌跡TGの一例を示すグラフである。そして、図7(e)は、走行軌跡TGに重ね合わせて描画した半径の円Cb〜Cdの一例を示す図である。FIG. 7A is a graph showing an example of the time change of the electric field intensity of the received radio wave, and FIG. 7B is a graph showing an example of the time change of the steering angle plotted in step S320. FIG.7 (c) is a graph which shows an example of the time change of the behavior (direction) of a vehicle. FIG. 7D is a graph showing an example of the vehicle travel locus TG on the xy coordinates. FIG. 7E is a diagram illustrating an example of radius circles Cb to Cd drawn in an overlapping manner on the travel locus TG. 円Ca〜Ccの交点が交差領域α内にある場合の一例を示す図である。It is a figure which shows an example when the intersection of circle | round | yen Ca-Cc exists in the intersection area | region (alpha). 図9(a)は、操舵状態に所定値以上の変化があるにもかかわらず、電波強度の変化が所定値以下である場合の一例を示すグラフであり、図9(b)は、図9(a)の例を描画し、円Ca〜Ccの交点が交差領域α内に入らない例である。FIG. 9A is a graph showing an example of a case where the change in the radio wave intensity is equal to or less than a predetermined value despite the change in the steering state being equal to or greater than the predetermined value, and FIG. In this example, the example of (a) is drawn, and the intersections of the circles Ca to Cc do not fall within the intersection region α. 車両の電波放射特性の一例を示すグラフである。It is a graph which shows an example of the electric wave radiation characteristic of vehicles. 電界強度検出回路15により検出された電界強度と、電波発信源までの想定距離の反比例関係を示すグラフである。It is a graph which shows the inversely proportional relationship of the electric field strength detected by the electric field strength detection circuit 15, and the assumed distance to a radio wave transmission source.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.

(第1の実施の形態)
図1を参照して、本発明の実施の形態に係わるタイヤ空気圧モニター及び故障判別装置を含むシステム全体の構成を説明する。このシステムは、自動車のタイヤ空気圧を常時モニタリングするタイヤ・プレッシャー・モニタリング・システム(TPMS)である。このTPMSは、まず、各タイヤ5やホイール内部にセンサー(送信機2)を搭載し、タイヤ5の空気圧や温度を検知し、車体1に搭載された受信機3へ電波で空気圧情報や状態コード等を送信する。そして、空気圧が基準外になっている場合は警報を発する、いわゆる直接式TPMSである。
(First embodiment)
With reference to FIG. 1, the configuration of the entire system including a tire pressure monitor and a failure determination device according to an embodiment of the present invention will be described. This system is a tire pressure monitoring system (TPMS) that constantly monitors the tire pressure of an automobile. This TPMS first mounts a sensor (transmitter 2) inside each tire 5 and wheel, detects the air pressure and temperature of the tire 5, and transmits air pressure information and a status code to the receiver 3 mounted on the vehicle body 1 by radio waves. Etc. And it is what is called direct TPMS which issues an alarm when the air pressure is out of the standard.

送信機2は、タイヤ5内の空気圧等の情報を検出して、UHF帯の電波で発信する。受信機3は、ハーネスなどにより制御部6に接続されている。受信機3が受信した空気圧情報や状態コード等はこのハーネスを介して制御部6へ伝達される。制御部6は、表示器4にも接続され、タイヤ5の空気圧の状態を判断する。空気圧が基準外になっていると判断した場合、制御部6は、表示器4を通じて、ドライバに対して警報を発する。また、制御部6は、車両の操舵状態を検出する操舵角センサ8、及び車両の速度を検出する車速センサ9にも接続されている。   The transmitter 2 detects information such as the air pressure in the tire 5 and transmits it by radio waves in the UHF band. The receiver 3 is connected to the control unit 6 by a harness or the like. Air pressure information, a status code, and the like received by the receiver 3 are transmitted to the control unit 6 via this harness. The control unit 6 is also connected to the display 4 and determines the state of air pressure of the tire 5. When it is determined that the air pressure is out of the reference, the control unit 6 issues an alarm to the driver through the display 4. The control unit 6 is also connected to a steering angle sensor 8 that detects the steering state of the vehicle and a vehicle speed sensor 9 that detects the speed of the vehicle.

なお、操舵角センサ8及び車速センサ9は、車両の操舵状態と走行速度を含む走行状況を検出する「走行状況検出手段」の一例に相当する。   The steering angle sensor 8 and the vehicle speed sensor 9 correspond to an example of “traveling state detection means” that detects a traveling state including the steering state of the vehicle and the traveling speed.

図2を参照して、受信機3の詳細な構成を説明する。受信機3は、UHF帯の電波で受信
するアンテナ10と、アンテナ10が受信した電波から所定の周波数成分を抽出するフィルタ11と、抽出された電波の振幅の絶対値を増幅する増幅器12と、増幅された電波の波形を整える検波/発振回路13と、整形された電波の電界強度(電波強度の一例)を検出する電界強度検出回路15と、認識閾値以上の電界強度が流れた場合に電界強度を信号へ変換する信号出力回路16と、検波/発振回路13へ電力を供給する電源回路14とを備える。
The detailed configuration of the receiver 3 will be described with reference to FIG. The receiver 3 includes an antenna 10 that receives a UHF band radio wave, a filter 11 that extracts a predetermined frequency component from the radio wave received by the antenna 10, an amplifier 12 that amplifies the absolute value of the amplitude of the extracted radio wave, A detection / oscillation circuit 13 for adjusting the waveform of the amplified radio wave, an electric field strength detection circuit 15 for detecting the electric field strength of the shaped radio wave (an example of the radio wave strength), and an electric field when an electric field strength equal to or higher than a recognition threshold flows. A signal output circuit 16 for converting the intensity into a signal and a power supply circuit 14 for supplying power to the detection / oscillation circuit 13 are provided.

電界強度検出回路15により検出された電界強度、及び信号出力回路16により変換された電界強度の信号は、制御部6へ送信される。   The electric field intensity detected by the electric field intensity detection circuit 15 and the electric field intensity signal converted by the signal output circuit 16 are transmitted to the control unit 6.

なお、電界強度検出回路15は、受信機3が受信した電波強度を検出する「電波強度検出手段」の一例に相当する。   The electric field intensity detection circuit 15 corresponds to an example of “radio wave intensity detection means” that detects the radio wave intensity received by the receiver 3.

図3に示すように、信号出力回路16は、認識閾値以上の電界強度が電界強度検出回路15で検出された場合、電界強度データを信号に変換して制御部6へ出力する。   As shown in FIG. 3, the signal output circuit 16 converts the electric field intensity data into a signal and outputs it to the control unit 6 when the electric field intensity equal to or higher than the recognition threshold is detected by the electric field intensity detection circuit 15.

図4を参照して、図1の制御部6の詳細な構成を説明する。制御部6としては、データの演算装置、データを一時的に記憶するレジスタやメモリ装置、及び周辺機器とのインターフェースを行う入出力装置を備えるマイクロプロセッシングユニット(MPU)を用いることができる。制御部6は、これを機能的に捉えた場合、信号出力回路16により変換された電界強度の信号を読取る信号読取部25と、読取られた信号を圧力などのデータへ変換するデータ処理部26と、電界強度検出回路15により検出された電界強度を読取る電界強度読取部18と、読取られた電界強度、操舵角情報27及び車速情報28に基づいて、車両の走行位置を予測する走行位置予測部19と、電界強度及び予測された車両の走行位置に基づいて、妨害電波の発信源を特定する電波発信源特定部20と、電波発信源の特定有無に基づき、電波妨害と受信機3の故障とを判断する妨害電波/故障判別部21と、妨害電波/故障判別部21による判別結果の表示指令を表示器4に対して出力する表示指令部22と、妨害電波と判別した場合に機器の故障を検知する検知時間を延長する故障検知時間延長部24とを有する。   A detailed configuration of the control unit 6 in FIG. 1 will be described with reference to FIG. As the control unit 6, a data processing device, a register or memory device that temporarily stores data, and a microprocessing unit (MPU) including an input / output device that interfaces with peripheral devices can be used. When the control unit 6 grasps this functionally, the signal reading unit 25 that reads the electric field strength signal converted by the signal output circuit 16 and the data processing unit 26 that converts the read signal into data such as pressure. And an electric field strength reading unit 18 for reading the electric field strength detected by the electric field strength detection circuit 15 and a traveling position prediction for predicting the traveling position of the vehicle based on the read electric field strength, steering angle information 27 and vehicle speed information 28. Unit 19, radio wave source identifying unit 20 that identifies the source of the jamming radio wave based on the electric field strength and the predicted traveling position of the vehicle, and radio wave jamming and receiver 3 based on whether or not the radio wave source is identified. An interference radio wave / fault determination unit 21 that determines a failure, a display command unit 22 that outputs a display command of a determination result by the interference radio wave / fault determination unit 21 to the display 4, and a device that is determined to be a disturbance radio wave And a failure detection time extension unit 24 for extending the detection time for detecting the fault.

なお、走行位置予測部19は、車両の操舵状態と走行速度を含む走行状況に基づいて、車両の時間経過による位置を3つ以上算出する「車両位置算出手段」の一例に相当する。   The travel position prediction unit 19 corresponds to an example of “vehicle position calculation means” that calculates three or more positions of the vehicle over time based on a travel situation including the steering state and travel speed of the vehicle.

また、電波発信源特定部20は、3つ以上の車両位置で、電界強度検出回路15により検出された電界強度に基づいて、電界強度が車両位置から電波発信源までの距離に反比例する関係に従って、車両位置から電波発信源までの想定距離を各車両位置で求め、更に、車両位置を中心とし、想定距離を半径とした等しい強度範囲(等強度範囲)を各車両位置で求める。この等強度範囲が交差する領域が一致状態、すなわち交差領域が所定の領域内にある場合に、その一致状態にある等強度範囲を電波発信源として特定する「電波発信源特定手段」に相当する。   In addition, the radio wave source specifying unit 20 is based on the electric field strength detected by the electric field strength detection circuit 15 at three or more vehicle positions according to a relationship in which the electric field strength is inversely proportional to the distance from the vehicle position to the radio wave source. Then, an assumed distance from the vehicle position to the radio wave transmission source is obtained at each vehicle position, and an equal intensity range (equal intensity range) with the assumed distance as a radius and at the vehicle position is obtained at each vehicle position. Corresponding to “radio wave source specifying means” for specifying the equal intensity range in the coincidence state as a radio wave source when the region where the equal intensity ranges intersect is in a coincidence state, that is, when the cross region is within a predetermined region. .

図11は、電界強度検出回路15により検出された電界強度を横軸として、この電界強度と、この電界強度から電波発信源までの想定距離との関係を示す。この電界強度と電波発信源までの想定距離との関係は、電界強度が強くなる程、電波発信源までの想定距離は短くなる反比例の関係となっている。   FIG. 11 shows the relationship between the electric field strength detected by the electric field strength detection circuit 15 and the estimated distance from the electric field strength to the radio wave transmission source. The relationship between the electric field strength and the assumed distance to the radio wave transmission source is an inversely proportional relationship in which the assumed distance to the radio wave transmission source becomes shorter as the electric field strength increases.

妨害電波/故障判別部21は、電波発信源特定部20により電波発信源が特定されると、妨害電波と判別し、電波発信源が特定できないときには受信機3の故障と判別する。この判別結果によって、故障なら表示器4への表示指示を行うよう表示指示部22に指令する「受信機故障判別手段」に相当する。   When the radio wave source is specified by the radio wave source specifying unit 20, the jamming radio wave / fault determination unit 21 determines that the radio wave source is a jamming radio wave, and determines that the receiver 3 is faulty when the radio wave source cannot be specified. According to this determination result, it corresponds to “receiver failure determination means” that instructs the display instruction unit 22 to issue a display instruction to the display 4 if a failure occurs.

次に、図5を参照して、図1のTPMSがタイヤ5の空気圧の状態を判別する処理手順の一例を説明する。   Next, an example of a processing procedure in which the TPMS in FIG. 1 determines the air pressure state of the tire 5 will be described with reference to FIG.

(イ)先ず、S10段階において、受信機3がUHF帯の電波を受信することを待機する。受信機3がUHF帯の電波を受信した場合(S10でYES)、S20段階に進み、受信機3が受信したUHF帯の電波の電界強度を検出する。   (A) First, in step S10, the receiver 3 waits for reception of radio waves in the UHF band. When the receiver 3 receives a UHF band radio wave (YES in S10), the process proceeds to step S20, and the field intensity of the UHF band radio wave received by the receiver 3 is detected.

(ロ)S30段階に進み、電波の電界強度データを制御部6へ送信する。S40段階に進み、電界強度データの初期値が認識閾値以上であるか否かを判断する。認識閾値未満である場合(S40でNO)、S10段階に戻る。一方、認識閾値以上である場合(S40でYES)、S50段階に進み、電界強度データを信号(デジタルデータ)へ変換して、制御部6へ送信する。   (B) Proceeding to step S30, the radio field strength data is transmitted to the control unit 6. In step S40, it is determined whether or not the initial value of the electric field strength data is equal to or greater than a recognition threshold value. If it is less than the recognition threshold (NO in S40), the process returns to S10. On the other hand, if it is equal to or greater than the recognition threshold (YES in S40), the process proceeds to step S50, where the electric field strength data is converted into a signal (digital data) and transmitted to the control unit 6.

(ハ)S60段階に進み、電界強度のデジタルデータを各タイヤ5の空気圧などのデータへ変換して、表示器4へタイヤ空気圧などの情報を表示する(S70)。以上の手順を繰返し実施することにより、図1のTPMSは、タイヤ5の空気圧の状態を常時モニターすることができる。   (C) Proceeding to step S60, the digital data of the electric field strength is converted into data such as the air pressure of each tire 5, and information such as the tire air pressure is displayed on the display 4 (S70). By repeatedly performing the above procedure, the TPMS in FIG. 1 can constantly monitor the air pressure state of the tire 5.

次に、図6を参照して、タイヤ空気圧モニターの故障判別装置が等強度範囲を予測して、電波妨害と受信機3の故障とを判別する処理手順の一例を説明する。図6に示すフローチャートは、電波の電界強度データを受信した後(図5のS30段階の後)に開始される。   Next, with reference to FIG. 6, an example of a processing procedure in which the failure determination device of the tire pressure monitor predicts the equi-intensity range to determine the radio wave interference and the failure of the receiver 3 will be described. The flowchart shown in FIG. 6 is started after receiving the electric field strength data of radio waves (after step S30 in FIG. 5).

(い)先ず、S310段階において、受信した電波の電界強度が閾値(妨害電波検出閾値Va)を超えたか否かを判断する。妨害電波検出閾値Vaを超えた場合(S310でYES)、制御部6が備えるタイマ機能を用いて、電波妨害継続時間タイマtをスタートさせる(S315段階)。   (I) First, in step S310, it is determined whether or not the electric field strength of the received radio wave exceeds a threshold value (interference radio wave detection threshold value Va). If the jamming radio wave detection threshold value Va is exceeded (YES in S310), the radio wave jamming duration timer t is started using the timer function provided in the control unit 6 (step S315).

(ろ)S320段階に進み、妨害電波検出閾値Vaを超えた時点の車両向きを0°に設定し、操舵角センサ8により検出された車両の操舵状態から、操舵角をプロットする。その後、S330段階に進む。図7(a)は、受信した電波の電界強度の時間変化の一例を示すグラフであり、図7(b)は、S320段階でプロットした操舵角の時間変化の一例を示すグラフである。   (B) Proceeding to step S320, the vehicle orientation at the time of exceeding the jamming wave detection threshold Va is set to 0 °, and the steering angle is plotted from the steering state of the vehicle detected by the steering angle sensor 8. Thereafter, the process proceeds to step S330. FIG. 7A is a graph showing an example of the time change of the electric field intensity of the received radio wave, and FIG. 7B is a graph showing an example of the time change of the steering angle plotted in step S320.

(は)一方、電波の電界強度が妨害電波検出閾値Vaを超えていない場合(S310でNO)、S317段階に進み、既に、電波妨害継続時間タイマtがカウント中であるか否かを判断する。タイマtがカウント中であれば(S317でYES)、タイマtをリセットし(S318)、S310段階に戻る。タイマtがカウント中でなければ(S317でNO)、直接、S310段階に戻る。   On the other hand, if the electric field strength of the radio wave does not exceed the jamming radio wave detection threshold Va (NO in S310), the process proceeds to step S317, and it is determined whether the radio wave jamming duration timer t is already counting. . If the timer t is counting (YES in S317), the timer t is reset (S318), and the process returns to step S310. If the timer t is not counting (NO in S317), the process directly returns to S310.

(に)S330段階において、操舵角を積分して車両の挙動をzy座標上へプロットする。図7(c)は、車両の挙動(向き)の時間変化の一例を示すグラフである。併せて、図7(d)に示すように、車両の挙動(向き)と車速情報28とから、xy座標上における車両の走行軌跡TGをプロットする。その後、S341段階に進み、タイマtが10分をカウントしているか否かを判断する。タイマtが10分をカウントしている場合(S431でYES)、S342段階に進み、タイマtが10分に達していない場合(S431でNO)、S310段階に戻る。   (Ii) In step S330, the steering angle is integrated and the vehicle behavior is plotted on the zy coordinates. FIG.7 (c) is a graph which shows an example of the time change of the behavior (direction) of a vehicle. In addition, as shown in FIG. 7D, the vehicle travel locus TG on the xy coordinates is plotted from the vehicle behavior (direction) and the vehicle speed information 28. Thereafter, the process proceeds to step S341, and it is determined whether or not the timer t has counted 10 minutes. If the timer t has counted 10 minutes (YES in S431), the process proceeds to step S342, and if the timer t has not reached 10 minutes (NO in S431), the process returns to step S310.

(ほ)S342段階において、xy座標上における車両の走行軌跡TGの中で、次のよ
うに、A位置〜C位置を車両位置として設定する。A位置は、電界強度が妨害電波検出閾値(妨害電波を検出する下限値)Vaを超えた時の車両位置である。C位置は、妨害電波検出閾値Va以上の電界強度が継続する期間(10分間)において、A位置から最も離れた車両位置である。B位置は、A位置〜C位置の間で最も電界強度が強くなる車両位置である。A位置〜C位置における電界強度をそれぞれVa(妨害電波検出閾値)、Vb、Vcとする。図7(d)は、xy座標上における車両の走行軌跡TGの一例を示すグラフである。
(E) In step S342, the A position to the C position are set as the vehicle position in the traveling locus TG of the vehicle on the xy coordinates as follows. The A position is a vehicle position when the electric field intensity exceeds a jamming radio wave detection threshold (a lower limit value for detecting jamming radio waves) Va. The position C is the vehicle position farthest from the position A during the period (10 minutes) in which the electric field intensity equal to or greater than the jamming wave detection threshold value Va continues. The B position is a vehicle position where the electric field strength is strongest between the A position and the C position. The electric field strengths at positions A to C are Va (interference wave detection threshold), Vb, and Vc, respectively. FIG. 7D is a graph showing an example of the vehicle travel locus TG on the xy coordinates.

このように、受信機3で受信した電波強度が所定値(妨害電波検出閾値Va)以上となる時期を電波発信源の特定開始時期とし、この特定開始時期での車両位置をA位置(第1位置)とする。その後、所定値以上の電波強度が継続する期間において、A位置から最も離れた位置をC位置(第2位置)とし、妨害電波検出閾値Va以上の電波強度が継続する期間において、最も電波強度が強くなる時の車両位置をB位置(第3位置)とする。   Thus, the time when the radio wave intensity received by the receiver 3 is equal to or greater than a predetermined value (interference radio wave detection threshold Va) is set as the specific start time of the radio wave source, and the vehicle position at the specific start time is set to the A position (first Position). Thereafter, the position farthest from the A position is the C position (second position) during a period in which the radio field intensity of a predetermined value or more continues, and the radio field intensity is the highest in the period in which the radio field intensity of the jamming radio wave detection threshold Va or more continues. The vehicle position when it becomes stronger is defined as a B position (third position).

(へ)S350段階において、A位置〜C位置をそれぞれ中心とする、電波強度Va〜Vcと距離の関係から求められる半径の円Ca〜Ccを走行軌跡TGに重ね合わせて描画する。図7(e)は、走行軌跡TGに重ね合わせて描画した半径の円Ca〜Ccの一例を示す図である。円Ca〜Ccの半径Ra〜Rcは、図11を参照すると、電界強度Va〜Vcに反比例する関係によって決まる車両位置から電波発信源までの想定距離である。ここで電界強度Vaは、妨害電波検出閾値であり、これを元に算出した半径Raは電波発信源からの最大距離を示す。   (F) In step S350, the circles Ca to Cc having radii obtained from the relationship between the radio wave intensities Va to Vc and the distance, each centered on the A position to the C position, are superimposed on the travel locus TG. FIG. 7E is a diagram illustrating an example of circles Ca to Cc having a radius drawn to overlap the travel locus TG. Referring to FIG. 11, the radii Ra to Rc of the circles Ca to Cc are assumed distances from the vehicle position to the radio wave source determined by the relationship inversely proportional to the electric field strengths Va to Vc. Here, the electric field intensity Va is an interference radio wave detection threshold value, and the radius Ra calculated based on the threshold value indicates the maximum distance from the radio wave source.

(と)S361段階において、円Ca〜Ccの各交点の集合が所定領域としての交差領域α内にあるか否かを判断する。具体的には、図7(e)に示すように、円CaとCbとが交差する場合に作られる最大2つの交点のうち1つの交点について注目し、円CbとCcとの交差、円CcとCaとの交差についても同様に1つの交点について注目し、これら3つの交点が所定半径の円を外縁とする交差領域α内に集合しているか否かを判断する。図8は、円Ca〜Ccの交点の集合が交差領域α内にある場合の一例を示す図である。各交点が交差領域α内にある場合(S361でYES)、S363段階に進み、電波妨害があると判断して、タイマtを10分に設定する。その後、S310段階に戻る。一方、各交点が交差領域α内にない場合(S361でNO)、S390段階に進み、受信機3の故障であると判別して、その旨を表示器4に表示させる。このように、A位置〜C位置におけるそれぞれの電波強度をもとに、電波強度に反比例する各車両位置から電波発信源までの想定距離Ra〜Rcをそれぞれ求め、更に、各車両位置を中心とし、電波発信源までの想定距離が等強度範囲となる半径とした円Ca〜Ccを求めて、この等強度範囲となる円の交点の集合が交差領域α内にある場合に、この交点の集合の中央部を電波発信源として特定する。   (And) In step S361, it is determined whether or not the set of intersections of the circles Ca to Cc is within the intersection area α as a predetermined area. Specifically, as shown in FIG. 7E, attention is paid to one of the maximum two intersections created when the circles Ca and Cb intersect, and the intersection of the circles Cb and Cc, the circle Cc. Similarly, attention is paid to one intersection at the intersection of Ca and Ca, and it is determined whether or not these three intersections are gathered in an intersection region α having a circle with a predetermined radius as an outer edge. FIG. 8 is a diagram illustrating an example when the set of intersections of the circles Ca to Cc is within the intersection region α. If each intersection is within the intersection area α (YES in S361), the process proceeds to step S363, where it is determined that there is radio interference, and the timer t is set to 10 minutes. Thereafter, the process returns to step S310. On the other hand, if each intersection is not within the intersection region α (NO in S361), the process proceeds to step S390, where it is determined that the receiver 3 is out of order, and that effect is displayed on the display 4. As described above, based on the respective radio wave intensities at the A position to the C position, the estimated distances Ra to Rc from the respective vehicle positions to the radio wave transmission sources that are inversely proportional to the radio wave intensity are obtained, respectively. The circles Ca to Cc having a radius with which the assumed distance to the radio wave transmission source is in the equiintensity range are obtained, and the intersection set of the circles in the equiintensity range is within the intersection region α. The central part of is identified as a radio wave source.

(ち)妨害電波/故障判断部21は、妨害電波と特定するために、電波発信源PEが特定できたら(S361でYES)、妨害電波/故障判断部21は、妨害電波と判断する。そして、故障検知時間延長部24は、受信機3の故障を検知する検知時間を所定時間、例えば10分間、延長する。妨害電波で正しい信号の受信ができないことを告知してしまうと、誤って故障とみなしてしまうユーザがいるので、そのユーザの不安を解消することができる。一方、S361の条件が満足できない場合(S361でNO)、S390段階に進み、受信機3の故障であると判別して、その旨を表示器4に表示させる。   (C) The jamming radio wave / fault determination unit 21 determines that the jamming radio wave / fault determination unit 21 is a jamming radio wave if the radio wave transmission source PE can be identified in order to identify the jamming radio wave (YES in S361). The failure detection time extension unit 24 extends the detection time for detecting a failure of the receiver 3 by a predetermined time, for example, 10 minutes. If a user is informed that the correct signal cannot be received by the jamming radio wave, there is a user who mistakenly considers it as a failure, so that the user's anxiety can be resolved. On the other hand, if the condition of S361 cannot be satisfied (NO in S361), the process proceeds to step S390, where it is determined that the receiver 3 is out of order, and that fact is displayed on the display 4.

図9(a),図9(b)を参照して、電波妨害ではなく、受信機3の故障であると判断される例を説明する。操舵状態に所定値以上の変化があるにもかかわらず、電波強度の変化が所定値以下である場合がある。例えば、図9(a)に示すように、車両が走行しているにも関わらず時間に応じて電界強度が変化せずに一定である場合は、受信機3の電圧計
に異常があると判断して、受信機3の故障を表示器4に表示する。このケースでは、図9(b)に示すように、円Ca〜Ccの交点の集合が交差領域α内に入らない。
With reference to FIG. 9A and FIG. 9B, an example in which it is determined that the receiver 3 is not an interference but a failure of the receiver 3 will be described. In some cases, the change in radio field intensity is less than or equal to a predetermined value despite the change in the steering state exceeding a predetermined value. For example, as shown in FIG. 9 (a), if the electric field strength does not change according to time even though the vehicle is traveling, the voltmeter of the receiver 3 is abnormal. Judgment is made and the failure of the receiver 3 is displayed on the display 4. In this case, as shown in FIG. 9B, the set of intersections of the circles Ca to Cc does not enter the intersection region α.

以上説明したように、本発明の実施の形態によれば、以下の作用効果が得られる。   As described above, according to the embodiment of the present invention, the following effects can be obtained.

車両の操舵状態と走行速度を含む走行状況に基づいて、車両の時間経過によるA〜C位置を算出する。3つの車両位置(A〜C)における電界強度Va〜Vcに反比例する各車両位置から電波発信源までの想定距離(Ra〜Rc)を求め、更に、車両位置(A〜C)を中心として、電波発信源までの想定距離が等しい電波発信源PEの等強度範囲を円として算出する。車両位置(A〜C)を中心とした等強度範囲となる円の交点の集合が所定領域としての交差領域α内にある場合に、交点の集合の中央部を電波発信源として特定する。これにより、検出した電界強度と、車両の操舵状態と走行速度とを含む走行状況とを併せて電波発生源PEを特定できるので、電波妨害と受信機3の故障とを高精度に判別することができる。   Based on the traveling state including the steering state and traveling speed of the vehicle, the A to C positions over time of the vehicle are calculated. The assumed distances (Ra to Rc) from each vehicle position to the radio wave source that are inversely proportional to the electric field strengths Va to Vc at the three vehicle positions (A to C) are obtained. Further, with the vehicle position (A to C) as the center, The equal intensity range of the radio wave source PE having the same assumed distance to the radio wave source is calculated as a circle. When a set of intersections of circles having an equal intensity range centered on the vehicle position (A to C) is within the intersection area α as a predetermined area, the central portion of the intersection set is specified as a radio wave transmission source. As a result, the radio wave generation source PE can be specified by combining the detected electric field strength and the driving situation including the steering state and the driving speed of the vehicle, so that the radio wave interference and the failure of the receiver 3 can be determined with high accuracy. Can do.

3つの車両位置A〜Cでの電界強度Va〜Vcに反比例する関係に従い算出した電波発信源PEの想定距離Ra〜Rcを、車両位置A〜Cをそれぞれ中心とした半径Ra〜Rcの円Ca〜Ccとして算出し、これらの円Ca〜Ccの交差領域を検出する。これにより、電波強度に反比例する車両位置からの距離の関係に基づき電波発生源PEを高精度に求めることができる。   The assumed distances Ra to Rc of the radio wave source PE calculated according to the relationship inversely proportional to the electric field strengths Va to Vc at the three vehicle positions A to C are circles Ca having radii Ra to Rc with the vehicle positions A to C as centers. Calculated as ˜Cc, and an intersection region of these circles Ca to Cc is detected. Thereby, the radio wave generation source PE can be obtained with high accuracy based on the relationship of the distance from the vehicle position that is inversely proportional to the radio wave intensity.

受信機3で受信した電界強度が所定値(妨害電波検出閾値Va)以上となる時期を電波発信源の特定開始時期とし、この特定開始時期での車両位置をA位置(第1位置)とし、その後、所定値以上の電界強度が継続する期間において、A位置から最も離れた位置をC位置(第2位置)とし、所定値以上の電界強度が継続する期間において、最も電界強度が強くなる時の車両位置をB位置(第3位置)とする。A位置〜C位置を中心とする、電界強度Va〜Vcと距離の関係から求められる半径Ra〜Rcの円Ca〜Ccを電波発信源PEの等強度範囲とする。この等強度範囲の交点が所定の一致状態になる、つまり所定領域としての交差領域α内にある場合に、この等強度範囲を電波発生源PEとして決定する。これにより、3つ以上の円の交差領域から、電波発生源PEを想定するので、電界強度が変化しても高精度に電波発生源PEを特定できる。   The time when the electric field intensity received by the receiver 3 is equal to or greater than a predetermined value (jamming wave detection threshold Va) is set as the specific start time of the radio wave source, and the vehicle position at this specific start time is set as the A position (first position). After that, when the electric field strength of the predetermined value or more continues, the position farthest from the A position is the C position (second position), and when the electric field strength of the predetermined value or more continues, the electric field strength becomes strongest The vehicle position is defined as B position (third position). The circles Ca to Cc having radii Ra to Rc determined from the relationship between the electric field strengths Va to Vc and the distance centered on the A position to the C position are set as the equiintensity range of the radio wave transmission source PE. When the intersection of the equal intensity range is in a predetermined coincidence state, that is, within the intersection area α as the predetermined area, the equal intensity range is determined as the radio wave generation source PE. Thereby, since the radio wave generation source PE is assumed from the intersecting region of three or more circles, the radio wave generation source PE can be specified with high accuracy even if the electric field intensity changes.

操舵状態に所定値以上の変化があり、電波強度の変化が所定値以下である場合、タイヤ空気圧モニターの故障であると判断する。車両の操舵があるにも関わらず、受信した電界強度が高い場合には、電波による受信機3の妨害でないと判断でき、故障とみなすことができる。これにより、電波妨害と受信機3の故障とを高精度に判別することができる。   If the steering state has a change greater than or equal to a predetermined value and the change in radio field intensity is less than or equal to the predetermined value, it is determined that the tire pressure monitor is out of order. If the received electric field strength is high despite the vehicle being steered, it can be determined that the receiver 3 is not obstructed by radio waves and can be regarded as a failure. Thereby, it is possible to accurately discriminate between radio wave interference and failure of the receiver 3.

(その他の実施の形態)
上記のように、本発明は、1つの実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。すなわち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
As described above, the present invention has been described by way of one embodiment, but it should not be understood that the discussion and drawings that form part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments and the like not described herein.

例えば、B位置の設定は、図6のS342段階に示した基準以外の基準によって行っても構わない。例えば、A位置〜C位置の1/2に当るとしてもよい。或いは、B位置を、A位置〜C位置の間の任意の位置としても構わない。なお、これらの場合においても、受信機3で受信した電波強度が所定値(妨害電波検出閾値Va)以上となる特定開始時期での車両位置をA位置(第1位置)とし、その後、所定値以上の電波強度が継続する期間において、A位置から最も離れた位置をC位置(第2位置)とする。   For example, the B position may be set based on a reference other than the reference shown in step S342 in FIG. For example, it may be half of the A position to the C position. Alternatively, the B position may be an arbitrary position between the A position and the C position. Even in these cases, the vehicle position at the specific start time when the radio wave intensity received by the receiver 3 is equal to or higher than a predetermined value (interference radio wave detection threshold Va) is defined as the A position (first position), and then the predetermined value. The position farthest from the A position in the period in which the above radio wave intensity continues is defined as the C position (second position).

また、図4において、走行位置予測部19は、操舵角センサ8で検出された操舵角情報27と、車速センサ9で検出された車速情報28に基づいて車両の走行位置を予測する代わりに、操舵トルクセンサと車輪速センサとを用いても構わない。   In FIG. 4, the travel position prediction unit 19 instead of predicting the travel position of the vehicle based on the steering angle information 27 detected by the steering angle sensor 8 and the vehicle speed information 28 detected by the vehicle speed sensor 9, A steering torque sensor and a wheel speed sensor may be used.

更に、車両の電波特性に偏りがある場合、例えば図10に示すような車両の電波放射特性を予め用意しておくことにより、より高精度に電波発生源PEを予測することができる。   Further, when the radio wave characteristics of the vehicle are biased, the radio wave generation source PE can be predicted with higher accuracy by preparing in advance the radio wave radiation characteristics of the vehicle as shown in FIG. 10, for example.

更に、3つの車両位置(A〜C)における電界強度Va〜Vcに基づく電波発生源PEの予測位置を求める場合を説明したが、車両位置の数は3つに限定されない。4つ以上の車両位置における電界強度に基づく電波発生源PEの予測位置を求めてもよい。例えば新たにD位置を、BとCとの間、もしくは、AとBとの間に任意に設定することで、より精度の高い電波発信源の特定が可能となる。更に、電波強度に反比例する車両位置からの距離を求め、車両位置を中心とした電波強度の等しい等強度範囲は、円だけでなく、円の一部(円弧)でもよい。   Furthermore, although the case where the predicted position of the radio wave generation source PE based on the electric field strengths Va to Vc at three vehicle positions (A to C) has been described, the number of vehicle positions is not limited to three. You may obtain | require the predicted position of the electromagnetic wave generation source PE based on the electric field strength in four or more vehicle positions. For example, by newly setting the D position arbitrarily between B and C or between A and B, it is possible to specify a radio wave source with higher accuracy. Further, the distance from the vehicle position that is inversely proportional to the radio wave intensity is obtained, and the equal intensity range having the same radio wave intensity centered on the vehicle position may be not only a circle but also a part of the circle (arc).

2:送信機
3:受信機
4:表示器
5:タイヤ
6:制御部
8:操舵角センサ(走行状況検出手段)
9:車速センサ(走行状況検出手段)
15:電界強度検出回路(電波強度検出手段)
19:走行位置予測部(車両位置算出手段)
20:電波発信源特定部(電波発信源特定手段)
21:妨害電波/故障判別部(受信機故障判別手段)
2: Transmitter 3: Receiver 4: Indicator 5: Tire 6: Control unit 8: Steering angle sensor (traveling condition detection means)
9: Vehicle speed sensor (traveling condition detection means)
15: Electric field intensity detection circuit (radio wave intensity detection means)
19: Travel position prediction unit (vehicle position calculation means)
20: Radio wave source specifying unit (Radio wave source specifying means)
21: Interference / failure determination unit (receiver failure determination means)

Claims (4)

車両のタイヤ内に設けられた送信機と、
該送信機が発するタイヤ空気圧情報を含んだ電波を受信する受信機とを含む、タイヤ空気圧モニターの故障判別装置であって、
前記受信機が受信した電波強度を検出する電波強度検出手段と、
前記車両の操舵状態と走行速度を含む走行状況を検出する走行状況検出手段と、
前記走行状況に基づいて、前記車両の時間経過による位置を3つ以上算出する車両位置算出手段と、
前記3つ以上の車両位置で、前記電波強度検出手段で検出した電波強度に反比例する車両位置から電波発信源までの想定距離を各車両位置で求め、更に、前記想定距離が等しい等強度範囲を各車両位置で求め、前記車両位置での等強度範囲が所定の一致状態となる場合に、その一致状態にある等強度範囲を電波発生源として特定する電波発生源特定手段と、
前記電波発信源特定手段による電波発信源の特定有無に基づき、電波発信源を特定できないときに前記受信機の故障と判別する受信機故障判別手段と
を備えることを特徴とするタイヤ空気圧モニターの故障判別装置。
A transmitter provided in the tire of the vehicle;
A failure determination device for a tire pressure monitor, including a receiver for receiving radio waves including tire pressure information emitted by the transmitter,
Radio wave intensity detecting means for detecting radio wave intensity received by the receiver;
A traveling state detecting means for detecting a traveling state including a steering state and a traveling speed of the vehicle;
Vehicle position calculating means for calculating three or more positions of the vehicle over time based on the traveling situation;
At each of the three or more vehicle positions, an assumed distance from the vehicle position to the radio wave transmission source that is inversely proportional to the radio wave intensity detected by the radio wave intensity detection means is obtained at each vehicle position, and an equal intensity range in which the assumed distances are equal. A radio wave generation source specifying means for specifying the equal intensity range in the coincidence state as a radio wave generation source when the equal intensity range at the vehicle position is in a predetermined coincidence state at each vehicle position;
A failure of the tire pressure monitor, comprising: a receiver failure determination unit that determines that the receiver is failed based on whether or not the radio wave source is specified by the radio wave source specifying unit. Discriminator.
前記電波発生源特定手段は、前記等強度範囲を、前記車両位置を中心とする前記距離を半径とした円として表し、前記3つ以上の車両位置において算出した前記円の交差領域が所定の一致状態となることを検出することで電波発信源を特定することを特徴とする請求項1に記載のタイヤ空気圧モニターの故障判別装置。   The radio wave generation source specifying means represents the equi-intensity range as a circle whose radius is the distance from the vehicle position, and the intersection area of the circles calculated at the three or more vehicle positions has a predetermined match. 2. The tire pressure monitor failure determination device according to claim 1, wherein a radio wave transmission source is identified by detecting a state. 3. 前記電波発生源特定手段は、前記受信機で受信した電波強度が所定値以上となる時期を特定開始時期とし、その特定開始時期での前記車両位置を第1位置とし、その後、所定値以上の電波強度が継続する期間において、前記第1位置から最も離れた位置を第2位置とし、前記所定値以上の電波強度が継続する期間において、最も電波強度が強くなる時の車両位置を第3位置とし、前記第1〜第3位置を中心とする、前記車両位置からの距離を半径とした円が交差する領域が所定の一致状態となることを検出することで、前記電波発生源を特定することを特徴とする請求項2に記載のタイヤ空気圧モニターの故障判別装置。   The radio wave generation source specifying means sets the time when the radio wave intensity received by the receiver is equal to or higher than a predetermined value as a specific start time, sets the vehicle position at the specific start time as a first position, and then exceeds a predetermined value. The position farthest from the first position during the period when the radio field intensity continues is the second position, and the vehicle position when the radio field intensity is the strongest during the period when the radio field intensity equal to or greater than the predetermined value is the third position And the radio wave generation source is identified by detecting that a region where circles having a radius from the vehicle position and having a radius from the vehicle position intersect each other is in a predetermined coincidence state. The failure determination device for a tire pressure monitor according to claim 2. タイヤ内に設けられた送信機と、
該送信機が発するタイヤ空気圧情報を含んだ電波を受信する受信機とを含む、タイヤ空気圧モニターの故障判別方法であって、
前記受信機が受信した電波強度を検出し、
車両の操舵状態と走行速度を含む走行状況を検出し、
前記走行状況に基づいて、前記車両の時間経過による位置を3つ以上算出し、
前記3つ以上の車両位置における電波強度に反比例する車両位置から電波発信源までの想定距離を各車両位置で求め、その車両位置からの距離が等しい等強度範囲を各車両位置で求め、
前記各車両位置での等強度範囲が所定の一致状態となる場合に、その一致状態にある等強度範囲を電波発生源として特定し、
前記一致状態にある等強度範囲がなく、電波発信源が特定できないときに前記受信機の故障と判別する
ことを特徴とするタイヤ空気圧モニターの故障判別方法。
A transmitter provided in the tire;
A failure determination method for a tire pressure monitor, including a receiver that receives a radio wave including tire pressure information emitted by the transmitter,
Detecting the radio field intensity received by the receiver;
Detects the driving situation including the steering state and driving speed of the vehicle,
Based on the running situation, calculate three or more positions of the vehicle over time,
Obtaining an assumed distance from the vehicle position that is inversely proportional to the radio wave intensity at the three or more vehicle positions to the radio wave transmission source at each vehicle position, and obtaining an equal intensity range equal to the distance from the vehicle position at each vehicle position;
When the equal intensity range at each vehicle position is in a predetermined coincidence state, the equal intensity range in the coincidence state is specified as a radio wave generation source,
A failure determination method for a tire air pressure monitor, wherein the failure of the receiver is determined when there is no equal intensity range in the coincidence state and a radio wave transmission source cannot be specified.
JP2010183644A 2010-08-19 2010-08-19 Tire pressure monitor failure determination device and failure determination method thereof Expired - Fee Related JP5609415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183644A JP5609415B2 (en) 2010-08-19 2010-08-19 Tire pressure monitor failure determination device and failure determination method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183644A JP5609415B2 (en) 2010-08-19 2010-08-19 Tire pressure monitor failure determination device and failure determination method thereof

Publications (2)

Publication Number Publication Date
JP2012040940A true JP2012040940A (en) 2012-03-01
JP5609415B2 JP5609415B2 (en) 2014-10-22

Family

ID=45897738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183644A Expired - Fee Related JP5609415B2 (en) 2010-08-19 2010-08-19 Tire pressure monitor failure determination device and failure determination method thereof

Country Status (1)

Country Link
JP (1) JP5609415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018293A (en) * 2016-07-28 2018-02-01 株式会社日立製作所 Electromagnetic noise analyzer, control device, and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260243A (en) * 1997-03-18 1998-09-29 Matsushita Electric Ind Co Ltd System for specifying position of radio moving terminal
JP2004009780A (en) * 2002-06-04 2004-01-15 Tokai Rika Co Ltd Tire air pressure monitor and its failure determination method
JP2005162118A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Tire pneumatic pressure monitor
JP2006175975A (en) * 2004-12-22 2006-07-06 Denso Corp Wheel position detecting device and tire air pressure detecting device equipped with the same
JP2008049875A (en) * 2006-08-25 2008-03-06 Nec Electronics Corp Tire pneumatic pressure monitoring apparatus, and tire position specifying method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260243A (en) * 1997-03-18 1998-09-29 Matsushita Electric Ind Co Ltd System for specifying position of radio moving terminal
JP2004009780A (en) * 2002-06-04 2004-01-15 Tokai Rika Co Ltd Tire air pressure monitor and its failure determination method
JP2005162118A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Tire pneumatic pressure monitor
JP2006175975A (en) * 2004-12-22 2006-07-06 Denso Corp Wheel position detecting device and tire air pressure detecting device equipped with the same
JP2008049875A (en) * 2006-08-25 2008-03-06 Nec Electronics Corp Tire pneumatic pressure monitoring apparatus, and tire position specifying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018293A (en) * 2016-07-28 2018-02-01 株式会社日立製作所 Electromagnetic noise analyzer, control device, and control method

Also Published As

Publication number Publication date
JP5609415B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP4483482B2 (en) Position detecting device and tire air pressure detecting device having position detecting function
JP4462365B2 (en) Tire pressure detector
JP4631746B2 (en) Wheel position detecting device and tire air pressure detecting device having the same
US8095333B2 (en) Device for locating a right or left position of a tire and wheel assembly of a vehicle
WO2016121364A1 (en) Wheel position detection device and tire pressure monitoring system
KR101580423B1 (en) Wheel position detector and tire inflation pressure detector having the same
WO2012098836A1 (en) Vehicle-direction identification device, vehicle-direction identification method, and program therefor
US10933704B2 (en) Tire pressure positioning method and apparatus
JP5666969B2 (en) Tire ID automatic registration system
JP7026435B2 (en) Tire monitoring equipment and systems for use with vehicle onboard stability control systems
WO2017047419A1 (en) Sensor transmitter, wheel position detecting device and tire air pressure detecting device provided with same
US9428015B2 (en) Tire identification code registration system
US9110537B2 (en) In-vehicle apparatus including distortion detection element
JP2006170991A (en) Method and device for finding moving state of vehicle
US7683766B2 (en) Method and device for locating the position of wheels of a vehicle
JP2008074162A (en) Wheel position detecting device and tire air pressure detecting device with same
JP4816344B2 (en) Wheel position detection device, manufacturing method thereof, and tire air pressure detection device including wheel position detection device
JP5609415B2 (en) Tire pressure monitor failure determination device and failure determination method thereof
JP2009054108A (en) Illegal parking warning system
JP2012171470A (en) Tire air pressure monitoring system
JP2006175975A (en) Wheel position detecting device and tire air pressure detecting device equipped with the same
WO2018066397A1 (en) Tire air pressure detection system, vehicle body side device, and tire side device
JP4458273B2 (en) Tire pressure monitoring system
JP2014211332A (en) Radar device and control method thereof
JP2005134231A (en) Radar installation and malfunction judgment method for radar installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R151 Written notification of patent or utility model registration

Ref document number: 5609415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees