[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011501049A - Seismic isolation device for structure, construction method of the device, and seismic isolation member - Google Patents

Seismic isolation device for structure, construction method of the device, and seismic isolation member Download PDF

Info

Publication number
JP2011501049A
JP2011501049A JP2010513563A JP2010513563A JP2011501049A JP 2011501049 A JP2011501049 A JP 2011501049A JP 2010513563 A JP2010513563 A JP 2010513563A JP 2010513563 A JP2010513563 A JP 2010513563A JP 2011501049 A JP2011501049 A JP 2011501049A
Authority
JP
Japan
Prior art keywords
seismic isolation
connecting plate
fixed
isolation member
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010513563A
Other languages
Japanese (ja)
Inventor
晃治 西本
宏明 小西
厚 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Publication of JP2011501049A publication Critical patent/JP2011501049A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

この免震装置1は、構造物の下部構造Bに対して同構造物の上部構造Aの振動を減衰する装置であって、U字形状を有する複数の免震部材10と、免震部材10の一方の端部を固定される第一連結板20と、免震部材10の他方の端部を固定される第二連結板30とを備える。免震部材10Aは、第一連結板20と第二連結板30との間に、ある方向に向けて配置される。免震部材10Bは、第一連結板20と第二連結板30との間に、免震部材10Aの方向と相反する方向に向けて配置される。The seismic isolation device 1 is a device that attenuates the vibration of the upper structure A of the structure relative to the lower structure B of the structure, and includes a plurality of seismic isolation members 10 having a U shape, The first connecting plate 20 to which one end of the seismic isolation member 10 is fixed, and the second connecting plate 30 to which the other end of the seismic isolation member 10 is fixed. The seismic isolation member 10 </ b> A is disposed between the first connecting plate 20 and the second connecting plate 30 in a certain direction. The seismic isolation member 10B is arranged between the first connecting plate 20 and the second connecting plate 30 in a direction opposite to the direction of the seismic isolation member 10A.

Description

本発明は、構造物の免震装置および同装置の施工方法、ならびに免震部材に関する。
本願は、2007年10月26日に出願された特願2007−279148号について優先権を主張し、その内容をここに援用する。
The present invention relates to a seismic isolation device for a structure, a construction method for the device, and a seismic isolation member.
This application claims priority about Japanese Patent Application No. 2007-279148 for which it applied on October 26, 2007, and uses the content here.

従来、建築物や橋梁、高架道路、高架鉄道などの構造物において、躯体などの上部構造と基礎などの下部構造との間に配置され、地震などの大きなエネルギーが作用したときに下部構造に対する上部構造の振動を減衰させる免震装置が提案されている。例えば、下記の特許文献1から3には、上部構造と下部構造との間に、アイソレータと減衰機構とを組み合わせた免震装置が開示されている。   Conventionally, in structures such as buildings, bridges, elevated roads, and elevated railways, they are placed between the upper structure such as the frame and the lower structure such as the foundation. Seismic isolation devices have been proposed to damp structural vibrations. For example, Patent Documents 1 to 3 below disclose seismic isolation devices that combine an isolator and a damping mechanism between an upper structure and a lower structure.

上記の免震装置において、アイソレータは、金属板と板状の弾性体とが交互に積層されたものであって、上部構造と下部構造との間に介在し、双方にそれぞれ固定されている。上部構造は、アイソレータを介して下部構造に支持されている。減衰機構は、弾塑性材料からなる複数の免震部材(湾曲状部材)によって構成される。これら複数の免震部材は、アイソレータの周囲に規則的に(例えば、放射状に)配置されており、個々の免震部材は、一方の端部を上部構造に、他方の端部を下部構造にそれぞれ固定されている。減衰機構においては、例えば地震の発生時、構造物に大きなエネルギーが作用して上部構造が下部構造に対して水平方向に振動すると、免震部材が塑性変形し、地震のエネルギーを吸収する。つまり、上部構造に入力されたエネルギーが、免震部材を塑性変形させるために消費される。   In the above seismic isolation device, the isolator is formed by alternately laminating metal plates and plate-like elastic bodies, interposed between the upper structure and the lower structure, and fixed to both. The upper structure is supported by the lower structure via an isolator. The damping mechanism is constituted by a plurality of seismic isolation members (curved members) made of an elastic-plastic material. The plurality of seismic isolation members are regularly arranged around the isolator (for example, radially). Each seismic isolation member has one end as an upper structure and the other end as a lower structure. Each is fixed. In the damping mechanism, for example, when an earthquake occurs, if a large energy acts on the structure and the upper structure vibrates in a horizontal direction with respect to the lower structure, the seismic isolation member is plastically deformed and absorbs the energy of the earthquake. That is, energy input to the superstructure is consumed to plastically deform the seismic isolation member.

特許第3533110号公報Japanese Patent No. 3533110 特許第3543004号公報Japanese Patent No. 3543004 特開2004−340301号公報JP 2004-340301 A

ところで、上記のような従来の免震装置においては、免震部材としての湾曲状部材を振動方向に対して平行に配置すると、エネルギー吸収効率が最も高くなるので、全方位からのエネルギーの入力を想定し、いずれの方向からエネルギーが入力しても常に同等の免震性能を発揮することを意図している。そのため、免震部材を設計する際には非常に詳細な検討を行う必要がある。また、そのような検討が行われた結果として、免震部材の形状には仔細な制約が課せられ、そのような制約に基づいて、免震部材が所定の形状をなすように精度よく製作する必要がある。
したがって、従来の免震装置においては、設計段階においても製造段階においても、人的な労力が過分に費やされることになり、製造コストも嵩む。
By the way, in the conventional seismic isolation device as described above, when the curved member as the seismic isolation member is arranged in parallel to the vibration direction, the energy absorption efficiency becomes the highest. Assuming that energy is input from any direction, it is always intended to exhibit equivalent seismic isolation performance. Therefore, when designing a seismic isolation member, it is necessary to conduct a very detailed study. In addition, as a result of such examination, detailed restrictions are imposed on the shape of the seismic isolation member, and based on such restrictions, the seismic isolation member is accurately manufactured so as to have a predetermined shape. There is a need.
Therefore, in the conventional seismic isolation device, human labor is excessively spent both in the design stage and in the manufacturing stage, and the manufacturing cost increases.

本発明は上記の事情に鑑みてなされたもので、設計段階においても製造段階においても生産効率が高く、安価に製造することが可能な構造物の免震装置および同装置の施工方法、ならびに免震部材を提供することを目的としている。   The present invention has been made in view of the above circumstances, and has a seismic isolation device for a structure that can be manufactured at a low cost and has high production efficiency both in the design stage and the manufacturing stage. The purpose is to provide seismic components.

上記の課題を解決するために、本発明の免震装置は、構造物の下部構造に対して同構造物の上部構造の振動を減衰する免震装置であって、U字形状を有する複数の免震部材と、前記免震部材の一方の端部を固定される第一連結板と、前記免震部材の他方の端部を固定される第二連結板とを備える。前記複数の免震部材のうち、いくつかの免震部材は、前記第一連結板と前記第二連結板との間に、所定の方向に向けて配置され、残りの免震部材は、前記第一連結板と前記第二連結板との間に、前記所定の方向とは相反する方向に向けて配置されている。   In order to solve the above-described problems, the seismic isolation device of the present invention is a seismic isolation device that attenuates the vibration of the upper structure of the structure relative to the lower structure of the structure. A seismic isolation member; a first connection plate to which one end of the seismic isolation member is fixed; and a second connection plate to which the other end of the seismic isolation member is fixed. Among the plurality of seismic isolation members, some seismic isolation members are arranged in a predetermined direction between the first coupling plate and the second coupling plate, and the remaining seismic isolation members are Between the 1st connection plate and the said 2nd connection plate, it arrange | positions toward the direction contrary to the said predetermined direction.

本発明の免震装置においては、前記免震部材の両方の端部が、前記第一、第二の各連結板にそれぞれボルトで固定されてもよい。前記ボルトは、前記免震部材の一方の端部と前記第一の連結板との固定部、および前記免震部材の他方の端部と第二の連結板との固定部に、それぞれ1本ずつ設けられてもよいし、複数本ずつ設けられてもよい。例えば、3本のボルトで固定する場合、各ボルトは、三角形の頂点に位置するように配置されることが望ましい。また、前記免震部材の両方の端部が、前記第一、第二の各連結板にそれぞれ溶接されていてもよい。   In the seismic isolation device of the present invention, both ends of the seismic isolation member may be fixed to the first and second connecting plates with bolts, respectively. The bolts are respectively provided on one end of the seismic isolation member and the first connecting plate, and on the other end of the seismic isolation member and the second connecting plate. Each may be provided, or a plurality of them may be provided. For example, in the case of fixing with three bolts, each bolt is preferably arranged so as to be positioned at the apex of a triangle. Further, both end portions of the seismic isolation member may be welded to the first and second connecting plates, respectively.

本発明の免震装置においては、前記第一、第二の各連結板に、前記免震部材の一方または他方の端部を嵌め込む凹部がそれぞれ形成され、前記免震部材の両方の端部は、前記凹部にそれぞれ嵌め込まれたうえで前記第一、第二の各連結板にそれぞれ固定されていてもよい。   In the seismic isolation device of the present invention, each of the first and second connecting plates is formed with a recess into which one or the other end of the seismic isolation member is fitted, and both ends of the seismic isolation member May be respectively fixed to the first and second connecting plates after being fitted into the recesses.

本発明の免震装置においては、金属板と板状の弾性体とが交互に積層されたアイソレータを備えていてもよい。前記アイソレータは、前記上部構造と前記下部構造との間に配置されることが望ましい。   The seismic isolation device of the present invention may include an isolator in which metal plates and plate-like elastic bodies are alternately stacked. The isolator is preferably disposed between the upper structure and the lower structure.

本発明の免震装置の施工方法は、構造物の下部構造に固定される第一連結板と、前記下部構造に相対する前記構造物の上部構造に固定される第二連結板と、前記第一連結板と前記第二連結板との間に、所定の方向および前記所定の方向とは相反する方向に向けてそれぞれ配置されるようにして前記第一連結板および第二連結板に固定された複数の免震部材とを備える免震装置を、前記下部構造および前記上部構造に配設するための施工方法である。この施工方法は、前記免震装置を、前記下部構造上に、前記免震部材を前記下部構造に対する前記上部構造の予め想定された振動の方向に沿わせるように配設する工程と、前記免震装置を前記下部構造に固定する工程と、前記上部構造を、前記免震装置上に配設する工程と、前記免震装置を前記上部構造に固定する工程とを含む。   The construction method of the seismic isolation device of the present invention includes a first connection plate fixed to a lower structure of a structure, a second connection plate fixed to an upper structure of the structure opposite to the lower structure, The first connection plate and the second connection plate are fixed to the first connection plate and the second connection plate so as to be disposed in a predetermined direction and in a direction opposite to the predetermined direction, respectively, between the one connection plate and the second connection plate. A construction method for disposing a base isolation device including a plurality of base isolation members on the lower structure and the upper structure. The construction method includes the step of disposing the seismic isolation device on the lower structure so that the seismic isolation member is along a direction of vibration assumed in advance of the upper structure with respect to the lower structure; A step of fixing a seismic device to the lower structure; a step of arranging the upper structure on the seismic isolation device; and a step of fixing the seismic isolation device to the upper structure.

本発明の免震部材は、上部構造と下部構造との間に配置され、予め想定された方向に生じる前記下部構造に対する前記上部構造の振動を、自らが塑性変形することによって減衰する免震部材であって、U字形状を有し、前記上部構造と前記下部構造との間に、前記想定された振動の方向に沿って配置され、かつ一方の端部を前記下部構造に、他方の端部を前記上部構造にそれぞれ固定される。   The seismic isolation member according to the present invention is disposed between the upper structure and the lower structure, and attenuates the vibration of the upper structure with respect to the lower structure that occurs in a previously assumed direction by plastic deformation of itself. And having a U-shape, arranged between the upper structure and the lower structure along the assumed direction of vibration, and having one end on the lower structure and the other end Each part is fixed to the superstructure.

本発明においては、上部構造および下部構造を含む構造物に地震などの大きなエネルギーが作用し、上部構造が下部構造に対して免震部材の配置された方向に振動した場合、免震部材が、一方の端部と他方の端部とが互いに離間する方向に変位するように塑性変形し、上部構造に入力されたエネルギーが消費される。これにより、上部構造の振動が減衰される。   In the present invention, when a large energy such as an earthquake acts on a structure including the upper structure and the lower structure, and the upper structure vibrates in the direction in which the seismic isolation member is disposed with respect to the lower structure, One end portion and the other end portion are plastically deformed so as to be displaced away from each other, and energy input to the superstructure is consumed. Thereby, the vibration of the superstructure is attenuated.

本発明によれば、入力される振動の方向を予め想定し、免震部材をその想定された方向に沿わせるようにして配置することにより、その想定された方向に生じた上部構造の振動を効果的に減衰することができる。つまり、本発明においては、全方位からのエネルギーの入力を想定しているのではなく、特定の方向からのエネルギーの入力のみを想定しているので、従来とは異なり、免震部材を設計する際に詳細な検討を行う必要がない。また、免震部材の形状に仔細な制約が課せられることがないので、免震部材の加工精度を従来ほどに高める必要がない。   According to the present invention, assuming the direction of vibration to be input in advance and arranging the seismic isolation member along the assumed direction, the vibration of the superstructure generated in the assumed direction can be reduced. It can attenuate effectively. That is, in the present invention, energy input from all directions is not assumed, but only energy input from a specific direction is assumed. Unlike the conventional case, the seismic isolation member is designed. There is no need for detailed examination. Moreover, since detailed restrictions are not imposed on the shape of the seismic isolation member, it is not necessary to increase the processing accuracy of the seismic isolation member as much as conventional.

本発明の免震装置は、設計段階においても製造段階においても生産効率が高く、安価に製造することができる。   The seismic isolation device of the present invention has high production efficiency both at the design stage and at the manufacturing stage, and can be manufactured at low cost.

図1は、本発明の免震装置を示す斜視図である。FIG. 1 is a perspective view showing the seismic isolation device of the present invention. 図2は、本発明の免震装置を示す側面図である。FIG. 2 is a side view showing the seismic isolation device of the present invention. 図3は、本発明の免震装置の図2中のIII−III線に沿う断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 of the seismic isolation device of the present invention. 図4は、本発明の免震装置に具備される免震部材の第一変形例を示す斜視図である。FIG. 4 is a perspective view showing a first modification of the seismic isolation member provided in the seismic isolation device of the present invention. 図5は、本発明の免震装置に具備される免震部材の第二変形例を示す斜視図である。FIG. 5 is a perspective view showing a second modification of the seismic isolation member provided in the seismic isolation device of the present invention. 図6は、本発明の免震装置に具備される免震部材の第三変形例を示す斜視図である。FIG. 6 is a perspective view showing a third modification of the seismic isolation member provided in the seismic isolation device of the present invention. 図7は、本発明の免震装置に具備される免震部材の、連結板に対する固定の仕方の第一変形例を示す斜視図である。FIG. 7 is a perspective view showing a first modified example of how the seismic isolation member provided in the seismic isolation device of the present invention is fixed to the connecting plate. 図8は、本発明の免震装置に具備される免震部材の、連結板に対する固定の仕方の第二変形例を示す斜視図である。FIG. 8 is a perspective view showing a second modified example of how the seismic isolation member provided in the seismic isolation device of the present invention is fixed to the connecting plate. 本発明の免震装置の変形例を示す斜視図である。It is a perspective view which shows the modification of the seismic isolation apparatus of this invention. 本発明の免震装置の変形例を示す平面図である。It is a top view which shows the modification of the seismic isolation apparatus of this invention.

本発明の免震装置の実施形態を図1から図10に示して説明する。
本実施形態の免震装置1は、図1から図3に示すように、8個の免震部材10と、各免震部材10の一方の端部11を固定される第一連結板20と、各免震部材10の他方の端部12を固定される第二連結板30とを備えている。
An embodiment of the seismic isolation device of the present invention will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the seismic isolation device 1 of the present embodiment includes eight seismic isolation members 10, and a first connecting plate 20 to which one end 11 of each seismic isolation member 10 is fixed. And the second connecting plate 30 to which the other end 12 of each seismic isolation member 10 is fixed.

免震部材10は、幅の狭い棒状の鋼材で、側方視するとU字形をなすように中間部分が曲げられている。免震部材10の対をなす2つの端部11,12には、他の部分よりも幅の広いブラケット部13,14がそれぞれ設けられている。ブラケット部13,14を除く免震部材10はいずれの部分でもほぼ同じ太さである。ブラケット部13,14は、互いに平行をなすように設けられている。ブラケット部13,14には、貫通孔(図示略)がふたつずつ形成されている。   The seismic isolation member 10 is a narrow rod-shaped steel material, and its middle portion is bent so as to form a U shape when viewed from the side. Two end portions 11 and 12 forming a pair of seismic isolation members 10 are respectively provided with bracket portions 13 and 14 that are wider than the other portions. The seismic isolation member 10 excluding the bracket portions 13 and 14 has substantially the same thickness in any part. The bracket parts 13 and 14 are provided so as to be parallel to each other. Two through holes (not shown) are formed in each of the bracket portions 13 and 14.

第一連結板20は、厚さが均一な矩形の鋼板であって、その上面には、各免震部材10の一方の端部11が、ボルト40を介して固定されている。第一連結板20の上面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第一連結板20の下面には、本実施形態の免震装置1を構造物の下部構造に固定する際に下部構造に埋設される複数のスタッドボルト21が立設されている。   The first connecting plate 20 is a rectangular steel plate having a uniform thickness, and one end portion 11 of each seismic isolation member 10 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the upper surface of the first connecting plate 20. A plurality of stud bolts 21 embedded in the lower structure when the seismic isolation device 1 of the present embodiment is fixed to the lower structure of the structure are erected on the lower surface of the first connecting plate 20.

第二連結板30も、厚さが均一な矩形の鋼板であって、その下面には、各免震部材10の他方の端部12が、ボルト40を介して固定されている。第二連結板30の下面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第二連結板30の上面には、本実施形態の免震装置1を前記構造物の上部構造に固定する際に上部構造に埋設される複数のスタッドボルト31が立設されている。   The second connecting plate 30 is also a rectangular steel plate having a uniform thickness, and the other end 12 of each seismic isolation member 10 is fixed to the lower surface of the second connecting plate 30 via bolts 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the lower surface of the second connecting plate 30. A plurality of stud bolts 31 that are embedded in the upper structure when the seismic isolation device 1 of the present embodiment is fixed to the upper structure of the structure are erected on the upper surface of the second connecting plate 30.

8個の免震部材10のうち、4個の免震部材10Aは、第一連結板20の一辺20aに沿って等間隔に配置され、かつその一辺20aに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら4個の免震部材10Aは、第二連結板30の一辺30aに沿って等間隔に配置され、かつその一辺30aに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, four seismic isolation members 10 </ b> A are arranged at equal intervals along one side 20 a of the first connecting plate 20 and directed in a direction orthogonal to the one side 20 a. In addition, one end 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. Furthermore, these four seismic isolation members 10A are arranged at equal intervals along one side 30a of the second connecting plate 30 and oriented in a direction orthogonal to the one side 30a, and then the other end portion. 12 is fixed to the lower surface of the second connecting plate 30 via bolts 40.

8個の免震部材10のうち、他の4個の免震部材10Bは、第一連結板20の他辺20b、すなわち、先の4個の免震部材10Aを固定した一辺20aに平行な他辺20bに沿って等間隔に配置され、かつその他辺20bに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら4個の免震部材10Bは、第二連結板30の他辺30b、すなわち、先の4個の免震部材10Aを固定した一辺30aに平行な他辺30bに沿って等間隔に配置され、かつその他辺30bに対して直交する方向に向けられたうえで、他方の端部12を第二連結板30の下面にボルト40を介して固定されている。   Among the eight seismic isolation members 10, the other four seismic isolation members 10B are parallel to the other side 20b of the first connecting plate 20, that is, one side 20a to which the previous four seismic isolation members 10A are fixed. Arranged at equal intervals along the other side 20b and oriented in a direction orthogonal to the other side 20b, one end 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. ing. Furthermore, these four seismic isolation members 10B are equally spaced along the other side 30b of the second connecting plate 30, that is, the other side 30b parallel to the one side 30a to which the previous four seismic isolation members 10A are fixed. The other end portion 12 is fixed to the lower surface of the second connecting plate 30 via a bolt 40 after being disposed and oriented in a direction orthogonal to the other side 30b.

4個の免震部材10Aと、他の4個の免震部材10Bとは、第一連結板20および第二連結板30に固定されている。免震部材10Aは、それらの湾曲された部分が第一連結板20と第二連結板30との間から所定の方向に突き出すよう配置され、免震部材10Bは、それらの湾曲された部分が第一連結板20と第二連結板30との間から前記所定の方向に相反する方向に突き出すように配置されている。すなわち、免震部材10Aは、図2中の両矢印Xの正方向に向けて配置され、免震部材10Bは、両矢印Xの負方向に向けて配置されている。第一連結板20および第二連結板30は、上方視すると四辺がすべて一致するように配置されている。   The four seismic isolation members 10 </ b> A and the other four seismic isolation members 10 </ b> B are fixed to the first connecting plate 20 and the second connecting plate 30. 10 A of seismic isolation members are arrange | positioned so that those curved parts may protrude in a predetermined direction from between the 1st connection board 20 and the 2nd connection board 30, and the base isolation member 10B has those curved parts. It arrange | positions so that it may protrude in the direction opposite to the said predetermined direction from between the 1st connection plate 20 and the 2nd connection plate 30. FIG. That is, the seismic isolation member 10A is arranged in the positive direction of the double arrow X in FIG. 2, and the seismic isolation member 10B is arranged in the negative direction of the double arrow X. The first connecting plate 20 and the second connecting plate 30 are arranged so that all four sides coincide when viewed from above.

上記のように構成された免震装置1は、構造物における躯体などの上部構造Aと基礎などの下部構造Bとの間に、以下の工程に従って配設される。
上記構造物においては、例えば、橋脚に対する橋桁のように、下部構造Bに対する上部構造Aの振動方向が、予め想定されている。そのような想定のもとに、まず、免震装置1が、下部構造B上に、免震部材10A,10Bを前記想定された上部構造Aの振動の方向(図2中の両矢印Xの正負両方向)に沿わせるようにして配置される。上述のように、免震装置1の第一連結板20には、その下面にスタッドボルト21が立設されており、免震装置1は、このスタッドボルト21を下部構造Bに埋設するようにして、下部構造Bに固定される。なお、図示しないが、スタッドボルト21が下部構造B内部に配設された鉄筋に連結されることにより、免震装置1と下部構造Bとの連結強度が高められる。
The seismic isolation device 1 configured as described above is disposed between an upper structure A such as a casing in a structure and a lower structure B such as a foundation according to the following steps.
In the above structure, for example, the vibration direction of the upper structure A with respect to the lower structure B is assumed in advance, such as a bridge girder with respect to a bridge pier. Under such assumption, first, the seismic isolation device 1 places the seismic isolation members 10A and 10B on the lower structure B in the direction of vibration of the assumed upper structure A (indicated by the double arrow X in FIG. 2). (Both positive and negative directions). As described above, the first connecting plate 20 of the seismic isolation device 1 has the stud bolt 21 standing on its lower surface, and the seismic isolation device 1 embeds the stud bolt 21 in the lower structure B. And fixed to the lower structure B. Although not shown, when the stud bolt 21 is connected to a reinforcing bar disposed inside the lower structure B, the connection strength between the seismic isolation device 1 and the lower structure B is increased.

続いて、上部構造Aが、免震装置1上に配置される。上述のように、免震装置1の第二連結板30には、その上面にスタッドボルト31が立設されており、免震装置1は、このスタッドボルト31を上部構造Aに埋設するようにして、上部構造Aに固定される。なお、図示しないが、スタッドボルト31が上部構造A内部に配設された鉄筋に連結されることにより、免震装置1と上部構造Aとの連結強度が高められる。   Subsequently, the upper structure A is arranged on the seismic isolation device 1. As described above, the stud bolt 31 is erected on the upper surface of the second connecting plate 30 of the seismic isolation device 1, and the seismic isolation device 1 embeds the stud bolt 31 in the upper structure A. And fixed to the upper structure A. In addition, although not shown in figure, the connection strength of the seismic isolation apparatus 1 and the upper structure A is raised by connecting the stud bolt 31 to the reinforcing bar arranged inside the upper structure A.

上記のように、上部構造Aと下部構造Bとの間に免震装置1を配設すると、上部構造Aおよび下部構造Bを含む構造物に地震などの大きなエネルギーが作用し、上部構造Aが下部構造Bに対して免震部材10の配置された方向(図2中の両矢印Xの正負両方向)に振動した場合、免震部材10が、一方の端部11と他方の端部12とが互いに離間する方向に変位するように塑性変形し、上部構造Aに入力されたエネルギーが消費される。これにより、上部構造Aの振動が減衰される。   As described above, when the seismic isolation device 1 is disposed between the upper structure A and the lower structure B, a large energy such as an earthquake acts on the structure including the upper structure A and the lower structure B. When the base isolation member 10 vibrates in the direction in which the base isolation member 10 is arranged (both positive and negative directions of the double-headed arrow X in FIG. 2), the base isolation member 10 has one end 11 and the other end 12. Are plastically deformed so as to be displaced in directions away from each other, and energy input to the superstructure A is consumed. Thereby, the vibration of the upper structure A is attenuated.

免震装置1によれば、入力される振動の方向を予め想定し、免震部材10をその想定された方向(図2中の両矢印Xの正負両方向)に沿わせるようにして配置することにより、その想定された方向に生じた上部構造Aの振動を効果的に減衰することができる。つまり、上部構造Aに対して全方位からエネルギーが入力されることを想定しているのではなく、特定の方向からしかエネルギーが入力されないことを想定しているので、従来とは異なり、免震部材10を設計する際に詳細な検討を行う必要がない。また、免震部材10の形状に仔細な制約が課せられることがないので、免震部材10の加工精度を従来ほどに高める必要がない。
したがって、免震装置1の生産効率を、設計段階においても製造段階においても高めることができ、結果的に免震装置1を安価に製造することができる。
According to the seismic isolation device 1, the direction of the input vibration is assumed in advance, and the seismic isolation member 10 is arranged so as to be along the assumed direction (both positive and negative directions of the double arrow X in FIG. 2). Thus, the vibration of the superstructure A generated in the assumed direction can be effectively damped. In other words, it is not assumed that energy is input from all directions with respect to the superstructure A, but it is assumed that energy is input only from a specific direction. When the member 10 is designed, detailed examination is not necessary. Moreover, since detailed restrictions are not imposed on the shape of the seismic isolation member 10, it is not necessary to increase the processing accuracy of the seismic isolation member 10 as much as in the past.
Therefore, the production efficiency of the seismic isolation device 1 can be increased both in the design stage and in the manufacturing stage, and as a result, the seismic isolation device 1 can be manufactured at low cost.

免震装置1に具備される免震部材の第一変形例を図4に示す。第一変形例としての免震部材50は、その一方の端部に設けられたブラケット部51に、ボルト40を通す貫通孔53がひとつ形成され、他方の端部に設けられたブラケット部52にも、ボルト40を通す貫通孔54がひとつ形成されている。この免震部材50は、1本のボルト40で第一連結板20に固定され、同様に1本のボルト40で第二連結板30に固定される。   A first modification of the seismic isolation member provided in the seismic isolation device 1 is shown in FIG. The seismic isolation member 50 according to the first modified example is formed with one through hole 53 through which the bolt 40 passes in the bracket portion 51 provided at one end portion thereof, and the bracket portion 52 provided at the other end portion. In addition, one through hole 54 through which the bolt 40 passes is formed. The seismic isolation member 50 is fixed to the first connecting plate 20 with one bolt 40 and is similarly fixed to the second connecting plate 30 with one bolt 40.

上記の免震部材50においては、連結板20,30に対する固定手段としてのボルト40の数を1つにすると、連結板20,30に対する固定強度が低くなることは否めないが、上記想定された方向以外の振動が免震装置1に作用した場合、ボルトが緩み難いという利点がある。また、免震装置1を構成する部品の数が少なくなるので、製造コストを削減することができる。   In the seismic isolation member 50 described above, if the number of bolts 40 as the fixing means for the connecting plates 20 and 30 is one, the fixing strength for the connecting plates 20 and 30 cannot be denied, but the above assumption is assumed. When vibrations other than directions are applied to the seismic isolation device 1, there is an advantage that the bolt is difficult to loosen. Moreover, since the number of parts which comprise the seismic isolation apparatus 1 decreases, manufacturing cost can be reduced.

免震装置1に具備される免震部材の第二変形例を図5に示す。第二変形例としての免震部材60は、その一方の端部に設けられたブラケット部61に、ボルト40を通す貫通孔63が三角形の3つの頂点に位置するように三個形成され、他方の端部に設けられたブラケット部62にも、ボルト40を通す貫通孔64が同様に三個形成されている。この免震部材60は、3本のボルト40で第一連結板20に固定され、同様に3本のボルト40で第二連結板30に固定される。   A second modification of the seismic isolation member provided in the seismic isolation device 1 is shown in FIG. Three seismic isolation members 60 as a second modification are formed in a bracket portion 61 provided at one end thereof so that three through-holes 63 through which bolts 40 pass are positioned at three vertices of a triangle. Similarly, three through holes 64 through which the bolts 40 are passed are also formed in the bracket portion 62 provided at the end portion. The seismic isolation member 60 is fixed to the first connecting plate 20 with three bolts 40, and similarly fixed to the second connecting plate 30 with three bolts 40.

上記の免震部材60においては、連結板20,30に対する固定手段としてのボルト40の数を増やすことにより、連結板20,30に対する固定強度を高めることができる。また、ボルト40が三角形の3つの頂点に位置するように配設されるので、上記想定された方向以外の振動が免震装置1に作用した場合、2本のボルトで固定されたものよりもボルトが緩み難い、ボルトの本数が増えるので個々のボルトのサイズを小さくできるなどの利点がある。   In the seismic isolation member 60 described above, the strength of fixing the connection plates 20 and 30 can be increased by increasing the number of bolts 40 as fixing means for the connection plates 20 and 30. Moreover, since the bolt 40 is disposed so as to be positioned at the three apexes of the triangle, when vibrations other than the assumed direction act on the seismic isolation device 1, than those fixed with two bolts. Bolts are difficult to loosen, and the number of bolts increases, so there are advantages such as the size of each bolt can be reduced.

免震装置1に具備される免震部材の第三変形例を図6に示す。第三変形例としての免震部材70の両方の端部に設けられたブラケット部71,72には、ボルトを通すための貫通孔は形成されていない。そして、その一方のブラケット部71が、溶接によって第一連結板20に固定される。なお、図示しないが、他方のブラケット部72が、溶接によって第二連結板30に固定される。ブラケット部71(またはブラケット部72)と第一連結板20(または第二連結板30)との間には、ビード73が形成される。   A third modification of the seismic isolation member provided in the seismic isolation device 1 is shown in FIG. The bracket parts 71 and 72 provided at both ends of the seismic isolation member 70 as the third modified example are not formed with through holes for passing bolts. And the one bracket part 71 is fixed to the 1st connection board 20 by welding. Although not shown, the other bracket portion 72 is fixed to the second connecting plate 30 by welding. A bead 73 is formed between the bracket portion 71 (or the bracket portion 72) and the first connecting plate 20 (or the second connecting plate 30).

上記の免震部材70においては、連結板20,30に対する固定強度を高めることができる。また、免震装置1を構成する部品の数が少なくなるので、製造コストを削減することができる。   In the said seismic isolation member 70, the fixed strength with respect to the connection plates 20 and 30 can be raised. Moreover, since the number of parts which comprise the seismic isolation apparatus 1 decreases, manufacturing cost can be reduced.

図7は、上記の免震装置1において、免震部材10の第一連結板20(または第二連結板30)に対する固定の仕方の第一変形例を示す斜視図である。本第一変形例において、第一連結板20の、免震部材10を固定される側面には、免震部材10の一方の端部11に設けられたブラケット部13を嵌め込む座グリ(本発明の凹部に相当)22が形成されている。そして、免震部材10の一方のブラケット部13は、座グリ22に嵌め込まれたうえで、ブラケット部13に形成された貫通孔15にボルト40を通され、ボルト40を介して第一連結板20に固定されている。なお、図示しないが、免震部材10の他方の端部12に設けられたブラケット部14も、第二連結板30に形成された座グリに嵌め込まれたうえで、ブラケット部14に形成された貫通孔16にボルト40を通され、ボルト40を介して第二連結板30に固定されている。   FIG. 7 is a perspective view showing a first modification of how the seismic isolation member 10 is fixed to the first connecting plate 20 (or the second connecting plate 30) in the seismic isolation device 1 described above. In the first modified example, a counterbore (a book) that fits a bracket portion 13 provided at one end 11 of the seismic isolation member 10 on a side surface of the first connecting plate 20 to which the seismic isolation member 10 is fixed. (Corresponding to the recess of the invention) 22 is formed. Then, one bracket portion 13 of the seismic isolation member 10 is fitted into the counterbore 22, and then passed through a through hole 15 formed in the bracket portion 13, and the first connecting plate is passed through the bolt 40. 20 is fixed. Although not shown, the bracket portion 14 provided on the other end portion 12 of the seismic isolation member 10 is also formed in the bracket portion 14 after being fitted into the spot facing formed on the second connecting plate 30. Bolts 40 are passed through the through holes 16 and are fixed to the second connecting plate 30 via the bolts 40.

上記の免震装置1においては、第一連結板20に形成された座グリ22に免震部材10の一方のブラケット部13を嵌め込んだうえで両者を固定することにより、免震部材10の第一連結板20に対する固定強度を高めることができる。同様に、第二連結板30に形成された座グリに免震部材10の他方のブラケット部14を嵌め込んだうえで両者を固定することにより、免震部材10の第二連結板30に対する固定強度を高めることができる。また、免震部材10に生じる力の一部を、ブラケット部と座グリとの接触面に作用する支圧によって第一連結板20に直接伝えることができるので、ボルト40の負担する力が低減される。これにより、ボルト40の径を小さくしたり、ボルト40の本数を減らしたりすることが可能である。   In the above-described seismic isolation device 1, by fitting one bracket portion 13 of the seismic isolation member 10 into the spot facing 22 formed on the first connecting plate 20 and fixing both, The fixing strength with respect to the first connecting plate 20 can be increased. Similarly, the other bracket portion 14 of the seismic isolation member 10 is fitted into the spot facing formed on the second coupling plate 30 and then fixed to the second coupling plate 30 to fix the seismic isolation member 10 to the second coupling plate 30. Strength can be increased. In addition, since a part of the force generated in the seismic isolation member 10 can be directly transmitted to the first connecting plate 20 by the supporting pressure acting on the contact surface between the bracket portion and the counterbore, the force applied by the bolt 40 is reduced. Is done. Thereby, the diameter of the bolt 40 can be reduced, or the number of the bolts 40 can be reduced.

図8は、上記の免震装置1において、免震部材10の第一連結板20(または第二連結板30)に対する固定の仕方の第二変形例を示す斜視図である。本第二変形例において、第一連結板20の、免震部材10を固定される側面には、コ字形の補助部材23が溶接などの手段によって固定されている。補助部材23の内側の側面と、その側面に囲まれるように露出する第一連結板20の側面とにより、上記第一変形例の座グリ22に相当する凹部24が形成されている。そして、免震部材10の一方のブラケット部13は、凹部24に嵌め込まれたうえで、ボルト40を介して第一連結板20に固定されている。なお、図示しないが、免震部材10の他方の端部12に設けられたブラケット部14も、第二連結板30に形成された凹部に嵌め込まれたうえで、ボルト40を介して第二連結板30に固定されている。   FIG. 8 is a perspective view showing a second modification of how the seismic isolation member 10 is fixed to the first connecting plate 20 (or the second connecting plate 30) in the seismic isolation device 1 described above. In the second modification, a U-shaped auxiliary member 23 is fixed to a side surface of the first connecting plate 20 to which the seismic isolation member 10 is fixed by means such as welding. A recess 24 corresponding to the spot facing 22 of the first modification is formed by the inner side surface of the auxiliary member 23 and the side surface of the first connecting plate 20 exposed so as to be surrounded by the side surface. And one bracket part 13 of the seismic isolation member 10 is being fixed to the 1st connection board 20 via the volt | bolt 40, after being inserted in the recessed part 24. FIG. Although not shown, the bracket portion 14 provided on the other end portion 12 of the seismic isolation member 10 is also fitted in the recess formed in the second connection plate 30 and then connected to the second connection via the bolt 40. It is fixed to the plate 30.

上記の免震装置1においても、免震部材10の第一連結板20に対する固定強度、ならびに免震部材10の第二連結板30に対する固定強度を高めることができる。また、ボルト40の負担する力が低減される。これにより、上記と同様の効果が得られる。   In the seismic isolation device 1 described above, the fixing strength of the seismic isolation member 10 to the first connection plate 20 and the fixing strength of the seismic isolation member 10 to the second connection plate 30 can be increased. Moreover, the force borne by the bolt 40 is reduced. Thereby, the effect similar to the above is acquired.

ところで、上記実施形態においては、上部構造の振動方向として、図2中のX方向(正負両方向)だけが想定されており、その方向に沿って免震部材が配置されている。しかしながら、図9および図10に示すように、上部構造の振動方向として、複数の方向、例えば、X方向(正負両方向)、およびX方向に直交するY方向(正負両方向)が想定されてもよい。詳述すると、図9および図10に示す免震装置101は、8個の免震部材10と、各免震部材10の一方の端部11を固定される第一連結板120と、各免震部材10の他方の端部12を固定される第二連結板130とを備えている。   By the way, in the said embodiment, only the X direction (both positive and negative directions) in FIG. 2 is assumed as a vibration direction of a superstructure, and the seismic isolation member is arrange | positioned along the direction. However, as shown in FIGS. 9 and 10, a plurality of directions, for example, the X direction (both positive and negative directions) and the Y direction (both positive and negative directions) orthogonal to the X direction may be assumed as the vibration direction of the superstructure. . Specifically, the seismic isolation device 101 shown in FIGS. 9 and 10 includes eight seismic isolation members 10, a first connecting plate 120 to which one end 11 of each seismic isolation member 10 is fixed, and each seismic isolation device. And a second connecting plate 130 to which the other end 12 of the seismic member 10 is fixed.

第一連結板120は、厚さが均一な矩形の鋼板であって、その上面には、各免震部材10の一方の端部11が、ボルト40を介して固定されている。第一連結板120の上面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第一連結板120の下面には、複数のスタッドボルト21が立設されている。   The first connecting plate 120 is a rectangular steel plate having a uniform thickness, and one end 11 of each seismic isolation member 10 is fixed to the upper surface of the first connecting plate 120 via bolts 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the upper surface of the first connecting plate 120. A plurality of stud bolts 21 are erected on the lower surface of the first connecting plate 120.

第二連結板130も、厚さが均一な矩形の鋼板であって、その下面には、各免震部材10の他方の端部12が、ボルト40を介して固定されている。第二連結板130の下面には、ボルト40を螺入するためのボルト孔(図示略)が形成されている。第二連結板30の上面には、複数のスタッドボルト31が立設されている。   The second connecting plate 130 is also a rectangular steel plate having a uniform thickness, and the other end 12 of each seismic isolation member 10 is fixed to the lower surface of the second connecting plate 130 via bolts 40. A bolt hole (not shown) for screwing the bolt 40 is formed on the lower surface of the second connecting plate 130. A plurality of stud bolts 31 are erected on the upper surface of the second connecting plate 30.

8個の免震部材10のうち、2個の免震部材10Cは、第一連結板120のある辺120aに沿って等間隔に配置され、かつその辺120aに対して直交する方向に向けられたうえで、一方の端部11を第一連結板20の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Cは、第二連結板130のある辺130aに沿って等間隔に配置され、かつその辺130aに対して直交する方向に向けられたうえで、他方の端部12を第二連結板130の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, the two seismic isolation members 10 </ b> C are arranged at equal intervals along the side 120 a with the first connecting plate 120, and are directed in a direction orthogonal to the side 120 a. In addition, one end 11 is fixed to the upper surface of the first connecting plate 20 via a bolt 40. Furthermore, these two seismic isolation members 10C are arranged at equal intervals along the side 130a with the second connecting plate 130 and oriented in a direction orthogonal to the side 130a, and the other end. The part 12 is fixed to the lower surface of the second connecting plate 130 via bolts 40.

8個の免震部材10のうち、上記とは別の2個の免震部材10Dは、免震部材10Cを固定した辺120aに隣り合う辺120bに沿って等間隔に配置され、かつその辺120bに対して直交する方向に向けられたうえで、一方の端部11を第一連結板120の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Dは、免震部材10Cを固定した辺130aに隣り合う辺130bに沿って等間隔に配置され、かつその辺130bに対して直交する方向に向けられたうえで、他方の端部12を第二連結板130の下面にボルト40を介して固定されている。   Two seismic isolation members 10D different from the above among the eight seismic isolation members 10 are arranged at equal intervals along the side 120b adjacent to the side 120a to which the seismic isolation member 10C is fixed. One end portion 11 is fixed to the upper surface of the first connecting plate 120 via a bolt 40 after being oriented in a direction orthogonal to 120b. Further, these two seismic isolation members 10D are arranged at equal intervals along the side 130b adjacent to the side 130a to which the seismic isolation member 10C is fixed, and are directed in a direction orthogonal to the side 130b. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 130 via a bolt 40.

8個の免震部材10のうち、上記とは別の2個の免震部材10Eは、免震部材10Dを固定した辺120bに隣り合う辺120cに沿って等間隔に配置され、かつその辺120cに対して直交する方向に向けられたうえで、一方の端部11を第一連結板120の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Eは、免震部材10Dを固定した辺130bに隣り合う辺130cに沿って等間隔に配置され、かつその辺130cに対して直交する方向に向けられたうえで、他方の端部12を第二連結板130の下面にボルト40を介して固定されている。   Of the eight seismic isolation members 10, two seismic isolation members 10E different from the above are arranged at equal intervals along the side 120c adjacent to the side 120b to which the seismic isolation member 10D is fixed. One end portion 11 is fixed to the upper surface of the first connecting plate 120 via a bolt 40 after being oriented in a direction orthogonal to 120c. Further, these two seismic isolation members 10E are arranged at equal intervals along the side 130c adjacent to the side 130b to which the seismic isolation member 10D is fixed, and are directed in a direction orthogonal to the side 130c. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 130 via a bolt 40.

8個の免震部材10のうち、残りの2個の免震部材10Fは、免震部材10Eを固定した辺120cに隣り合う辺120dに沿って等間隔に配置され、かつその辺120dに対して直交する方向に向けられたうえで、一方の端部11を第一連結板120の上面にボルト40を介して固定されている。さらに、これら2個の免震部材10Fは、免震部材10Eを固定した辺130cに隣り合う辺130dに沿って等間隔に配置され、かつその辺130dに対して直交する方向に向けられたうえで、他方の端部12を第二連結板130の下面にボルト40を介して固定されている。   Among the eight seismic isolation members 10, the remaining two seismic isolation members 10F are arranged at equal intervals along the side 120d adjacent to the side 120c to which the seismic isolation member 10E is fixed, and with respect to the side 120d. Then, one end portion 11 is fixed to the upper surface of the first connecting plate 120 via a bolt 40. Further, these two seismic isolation members 10F are arranged at equal intervals along the side 130d adjacent to the side 130c to which the seismic isolation member 10E is fixed, and are directed in a direction orthogonal to the side 130d. Thus, the other end 12 is fixed to the lower surface of the second connecting plate 130 via a bolt 40.

2個の免震部材10Cと、他の2個の免震部材10Eとは、第一連結板120および第二連結板130に固定されている。免震部材10Cは、それらの湾曲された部分が第一連結板120と第二連結板130との間からある方向(図10中のXの正方向)に突き出すように配置され、免震部材10Eは、それらの湾曲された部分が第一連結板120と第二連結板130との間から免震部材10Cの方向に相反する方向(図10中のXの負方向)に突き出すように配置されている。
また、2個の免震部材10Dと、他の2個の免震部材10Fとは、第一連結板120および第二連結板130に固定されている。免震部材10Dは、それらの湾曲された部分が第一連結板120と第二連結板130との間からある方向(図10中のYの正方向)に突き出すように配置され、免震部材10Fは、それらの湾曲された部分が第一連結板120と第二連結板130との間から免震部材10Dの方向に相反する方向(図10中のYの負方向)に突き出すように配置されている。
第一連結板120および第二連結板130は、上方視すると四辺がすべて一致するように配置されている。
The two seismic isolation members 10 </ b> C and the other two seismic isolation members 10 </ b> E are fixed to the first connecting plate 120 and the second connecting plate 130. The seismic isolation member 10 </ b> C is disposed so that the curved portions thereof protrude in a certain direction (the positive direction of X in FIG. 10) from between the first connecting plate 120 and the second connecting plate 130. 10E is arranged so that those curved portions protrude from between the first connecting plate 120 and the second connecting plate 130 in the direction opposite to the direction of the seismic isolation member 10C (the negative direction of X in FIG. 10). Has been.
Further, the two seismic isolation members 10D and the other two seismic isolation members 10F are fixed to the first connecting plate 120 and the second connecting plate 130. The seismic isolation member 10 </ b> D is disposed so that the curved portions thereof protrude in a certain direction (the positive direction of Y in FIG. 10) from between the first coupling plate 120 and the second coupling plate 130. 10F is arranged so that those curved portions protrude from between the first connecting plate 120 and the second connecting plate 130 in the direction opposite to the direction of the seismic isolation member 10D (the negative direction of Y in FIG. 10). Has been.
The first connecting plate 120 and the second connecting plate 130 are arranged so that all four sides coincide when viewed from above.

免震装置101によれば、入力される振動の方向を予め想定し、免震部材10をその想定された二方向(図10中の両矢印Xの方向、および両矢印Yの方向)に沿わせるようにして配置することにより、その想定された二方向に生じた上部構造の振動を効果的に減衰することができる。つまり、上部構造に対して全方位からエネルギーが入力されることを想定しているのではなく、特定の方向からしかエネルギーが入力されないことを想定しているので、従来とは異なり、免震部材10を設計する際に詳細な検討を行う必要がない。また、免震部材10の形状に仔細な制約が課せられることがないので、免震部材10の加工精度を従来ほどに高める必要がない。
したがって、免震装置101の生産効率を、設計段階においても製造段階においても高めることができ、結果的に免震装置1を安価に製造することができる。
According to the seismic isolation device 101, the direction of the input vibration is assumed in advance, and the seismic isolation member 10 is aligned along the two assumed directions (the direction of the double arrow X and the direction of the double arrow Y in FIG. 10). By arranging in such a manner, the vibration of the superstructure generated in the assumed two directions can be effectively damped. In other words, it is not assumed that energy is input from all directions to the superstructure, but it is assumed that energy is input only from a specific direction. There is no need for detailed consideration when designing 10. Moreover, since detailed restrictions are not imposed on the shape of the seismic isolation member 10, it is not necessary to increase the processing accuracy of the seismic isolation member 10 as much as in the past.
Therefore, the production efficiency of the seismic isolation device 101 can be increased both in the design stage and in the manufacturing stage, and as a result, the seismic isolation device 1 can be manufactured at low cost.

以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to said embodiment. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the scope of the appended claims.

例えば、上記実施形態においては、免震装置を下部構造上に配設してから、免震装置を下部構造に固定し、続いて、上部構造を免震装置上に配設してから、免震装置を上部構造に固定する。しかしながら、本発明の免震装置の施工方法は、前記免震装置を、前記下部構造上に、前記免震部材を前記下部構造に対する前記上部構造の予め想定された振動の方向に沿わせるように配設する工程と、前記免震装置を前記下部構造に固定する工程と、前記上部構造を、前記免震装置上に配設する工程と、前記免震装置を前記上部構造に固定する工程とを含んでいれよい。したがって、上記の各工程を実施する順序は、上記の記載順に限らない。
また、本発明の免震装置は、建築物や橋梁、高架道路、高架鉄道などの構造物において、基礎(下部構造)と駆体(上部構造)との間に配置されるだけでなく、上記構造物を構成する部材間に配置されてもよい。例えば、建築物を構成する床スラブと、床スラブ上に敷設される床版との間に配置されてもよい。この例では、免震装置は構造物の駆体に作用するエネルギーではなく、床版に作用するエネルギーを吸収する。同様に、橋梁を構成する橋脚と、橋脚上に設置される橋桁との間に設置されてもよい。
For example, in the above embodiment, the seismic isolation device is disposed on the lower structure, the seismic isolation device is fixed to the lower structure, and then the upper structure is disposed on the seismic isolation device. Secure the seismic device to the superstructure. However, in the construction method of the seismic isolation device according to the present invention, the seismic isolation device is arranged on the lower structure, and the seismic isolation member is placed along the direction of vibration assumed in advance of the upper structure with respect to the lower structure. A step of disposing, a step of fixing the seismic isolation device to the lower structure, a step of disposing the upper structure on the seismic isolation device, and a step of fixing the seismic isolation device to the upper structure. Can be included. Therefore, the order in which the above steps are performed is not limited to the order described above.
Moreover, the seismic isolation device of the present invention is not only disposed between the foundation (lower structure) and the fuselage (upper structure) in structures such as buildings, bridges, elevated roads, elevated railways, etc. You may arrange | position between the members which comprise a structure. For example, you may arrange | position between the floor slab which comprises a building, and the floor slab laid on a floor slab. In this example, the seismic isolation device absorbs energy acting on the floor slab, not energy acting on the structure body. Similarly, you may install between the bridge pier which comprises a bridge, and the bridge girder installed on a bridge pier.

本発明は、構造物の下部構造に対して同構造物の上部構造の振動を減衰する免震装置であって、U字形状を有する複数の免震部材と、前記免震部材の一方の端部を固定される第一連結板と、前記免震部材の他方の端部を固定される第二連結板とを備える免震装置に関する。前記複数の免震部材のうち、いくつかの免震部材は、前記第一連結板と前記第二連結板との間に、所定の方向に向けて配置される。残りの免震部材は、前記第一連結板と前記第二連結板との間に、前記所定の方向とは相反する方向に向けて配置される。
本発明によれば、免震装置の生産効率を、設計段階においても製造段階においても高めることができ、結果的に免震装置を安価に製造することができる。
The present invention relates to a seismic isolation device for attenuating vibration of an upper structure of a structure relative to the lower structure of the structure, the seismic isolation member having a U-shape, and one end of the seismic isolation member It is related with a seismic isolation apparatus provided with the 1st connecting plate to which a part is fixed, and the 2nd connecting plate to which the other end of the seismic isolation member is fixed. Among the plurality of seismic isolation members, some seismic isolation members are arranged in a predetermined direction between the first connection plate and the second connection plate. The remaining seismic isolation members are arranged between the first connecting plate and the second connecting plate in a direction opposite to the predetermined direction.
According to the present invention, the production efficiency of the seismic isolation device can be increased both in the design stage and in the manufacturing stage, and as a result, the seismic isolation device can be manufactured at low cost.

1…免震装置、
10,10A,10B…免震部材、
13,14…ブラケット部、
20…第一連結板、
22…座グリ(本発明の凹部に相当)、
24…凹部、
30…第二連結板、
40…ボルト、
50,60,70…免震部材、
A…上部構造、
B…下部構造
1 ... Seismic isolation device,
10, 10A, 10B ... seismic isolation member,
13, 14 ... Bracket part,
20 ... 1st connection board,
22 ... Counterbore (corresponding to the recess of the present invention),
24 ... recess,
30 ... the second connecting plate,
40 ... Bolt,
50, 60, 70 ... seismic isolation members,
A ... Superstructure,
B ... Substructure

Claims (9)

構造物の下部構造に対して同構造物の上部構造の振動を減衰する免震装置であって、
U字形状を有する複数の免震部材と、
前記免震部材の一方の端部を固定される第一連結板と、
前記免震部材の他方の端部を固定される第二連結板とを備え、
前記複数の免震部材のうち、いくつかの免震部材が、前記第一連結板と前記第二連結板との間に、所定の方向に向けて配置され、残りの免震部材が、前記第一連結板と前記第二連結板との間に、前記所定の方向とは相反する方向に向けて配置されている免震装置。
A seismic isolation device that attenuates the vibration of the upper structure of the structure relative to the lower structure of the structure,
A plurality of seismic isolation members having a U-shape;
A first connecting plate to which one end of the seismic isolation member is fixed;
A second connecting plate to which the other end of the seismic isolation member is fixed;
Among the plurality of seismic isolation members, some seismic isolation members are arranged in a predetermined direction between the first connection plate and the second connection plate, and the remaining seismic isolation members are A seismic isolation device disposed between the first connecting plate and the second connecting plate in a direction opposite to the predetermined direction.
前記免震部材の両方の端部が、前記第一、第二の各連結板にそれぞれボルトで固定されている請求項1に記載の免震装置。   The seismic isolation device according to claim 1, wherein both ends of the seismic isolation member are fixed to the first and second connecting plates with bolts, respectively. 前記ボルトが、前記免震部材の一方の端部と前記第一の連結板との固定部、および前記免震部材の他方の端部と第二の連結板との固定部に、それぞれ1本ずつ設けられている請求項2に記載の免震装置。   The bolts are respectively provided at one end of the seismic isolation member and the first connecting plate, and at the other end of the seismic isolation member and the second connecting plate. The seismic isolation device according to claim 2 provided one by one. 前記ボルトが、前記免震部材の一方の端部と前記第一の連結板との固定部、および前記免震部材の他方の端部と第二の連結板との固定部に、それぞれ複数本ずつ設けられている請求項2に記載の免震装置。   A plurality of bolts are provided on each of the fixed portion between the one end portion of the seismic isolation member and the first connecting plate and the fixing portion between the other end portion of the seismic isolation member and the second connecting plate. The seismic isolation device according to claim 2 provided one by one. 前記免震部材の両方の端部が、前記第一、第二の各連結板にそれぞれ溶接されている請求項1に記載の免震装置。   The seismic isolation device according to claim 1, wherein both ends of the seismic isolation member are welded to the first and second connecting plates, respectively. 前記第一、第二の各連結板に、前記免震部材の一方または他方の端部を嵌め込む凹部がそれぞれ形成され、
前記免震部材の両方の端部は、前記凹部にそれぞれ嵌め込まれたうえで前記第一、第二の各連結板にそれぞれ固定されている請求項1から5のいずれか一項に記載の免震装置。
In each of the first and second connecting plates, a recess for fitting one or the other end of the seismic isolation member is formed, respectively.
The both ends of the said seismic isolation member are each being fixed to said 1st and 2nd connection board, after being each fitted in the said recessed part, The immunity as described in any one of Claim 1 to 5 Seismic device.
金属板と板状の弾性体とが交互に積層されたアイソレータを備え、前記アイソレータは、前記上部構造と前記下部構造との間に配置される請求項1から6のいずれか一項に記載の免震装置。   7. The isolator according to claim 1, further comprising an isolator in which metal plates and plate-like elastic bodies are alternately stacked, wherein the isolator is disposed between the upper structure and the lower structure. Seismic isolation device. 構造物の下部構造に固定される第一連結板と、前記下部構造に相対する前記構造物の上部構造に固定される第二連結板と、前記第一連結板と前記第二連結板との間に、所定の方向および前記所定の方向とは相反する方向に向けてそれぞれ配置されるようにして前記第一連結板および第二連結板に固定された複数の免震部材とを備える免震装置を、前記下部構造および前記上部構造に配設するための施工方法であって、
前記免震装置を、前記下部構造上に、前記免震部材を前記下部構造に対する前記上部構造の予め想定された振動の方向に沿わせるように配設する工程と、
前記免震装置を前記下部構造に固定する工程と、
前記上部構造を、前記免震装置上に配設する工程と、
前記免震装置を前記上部構造に固定する工程とを含む免震装置の施工方法。
A first connection plate fixed to the lower structure of the structure, a second connection plate fixed to the upper structure of the structure opposite to the lower structure, and the first connection plate and the second connection plate And a plurality of seismic isolation members fixed to the first connection plate and the second connection plate so as to be disposed in a predetermined direction and in a direction opposite to the predetermined direction. A construction method for arranging a device in the lower structure and the upper structure,
Disposing the seismic isolation device on the lower structure so that the seismic isolation member follows a presumed vibration direction of the upper structure relative to the lower structure;
Fixing the seismic isolation device to the lower structure;
Disposing the superstructure on the seismic isolation device;
A method of constructing the seismic isolation device, including the step of fixing the seismic isolation device to the superstructure.
構造物の上部構造と下部構造との間に配置され、予め想定された方向に生じる前記下部構造に対する前記上部構造の振動を、自らが塑性変形することによって減衰する免震部材であって、
U字形状を有し、
前記上部構造と前記下部構造との間に、前記想定された振動の方向に沿って配置され、かつ一方の端部を前記下部構造に、他方の端部を前記上部構造にそれぞれ固定される免震部材。
A seismic isolation member that is arranged between the upper structure and the lower structure of the structure and attenuates the vibration of the upper structure with respect to the lower structure that occurs in a previously assumed direction by plastic deformation of itself.
Having a U-shape,
It is arranged between the upper structure and the lower structure along the assumed direction of vibration, and one end is fixed to the lower structure and the other end is fixed to the upper structure. Seismic member.
JP2010513563A 2007-10-26 2008-10-22 Seismic isolation device for structure, construction method of the device, and seismic isolation member Pending JP2011501049A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007279148 2007-10-26
PCT/JP2008/069580 WO2009054532A1 (en) 2007-10-26 2008-10-22 Seismic isolation apparatus for structures, method for installing apparatus thereof, and seismic isolation member

Publications (1)

Publication Number Publication Date
JP2011501049A true JP2011501049A (en) 2011-01-06

Family

ID=40579633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010513563A Pending JP2011501049A (en) 2007-10-26 2008-10-22 Seismic isolation device for structure, construction method of the device, and seismic isolation member

Country Status (5)

Country Link
US (1) US20100251637A1 (en)
JP (1) JP2011501049A (en)
CN (1) CN101836010A (en)
TW (1) TW200920965A (en)
WO (1) WO2009054532A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114837A (en) * 2012-12-06 2014-06-26 Takenaka Komuten Co Ltd Base isolation structure
KR20140005622U (en) * 2013-04-23 2014-10-31 프로세스 오토메이션 인터내셔날 리미티드 A damping device
JP2015047620A (en) * 2013-09-02 2015-03-16 日鉄住金関西工業株式会社 Manufacturing method of u-shaped damper
WO2021235736A1 (en) * 2020-05-22 2021-11-25 주식회사 헬스원 Spinal thermal massage device having elastic function

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656685B2 (en) * 2005-03-08 2014-02-25 City University Of Hong Kong Structural members with improved ductility
CA2754675C (en) * 2009-03-12 2015-01-06 Nippon Steel Corporation Metal joint, damping structure, and architectural construction
WO2010116779A1 (en) * 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
JP5740133B2 (en) * 2010-02-16 2015-06-24 大倉 憲峰 Fastener
CN102433934A (en) * 2011-10-19 2012-05-02 沈阳建筑大学 Self-resetting C-shaped steel plate Mi-shaped combined multidirectional shock insulation support
CN103216568A (en) * 2012-01-19 2013-07-24 昆山思拓机器有限公司 U-shaped buffer device for laser device
JP6107955B2 (en) * 2013-08-19 2017-04-05 株式会社Ihi Seismic isolation structure and structure of pillars constituting the structure
CN103967160B (en) * 2014-05-07 2016-08-31 清华大学 Deformation energy dissipation brace
JP6450609B2 (en) * 2015-03-05 2019-01-09 住友林業株式会社 Column end joint structure
KR101761338B1 (en) * 2016-04-19 2017-07-26 조선대학교산학협력단 Removable shear link removable perforated cover plate
CN106594164A (en) * 2016-11-29 2017-04-26 中国直升机设计研究所 Helicopter cockpit vibration absorber assembly and helicopter cockpit with same
CN107060124A (en) * 2016-11-30 2017-08-18 海南大学 Many level damping classification surrender metal dampers
JP7130004B2 (en) 2017-02-16 2022-09-02 デイミアン アレン,ジョン force limiter and energy dissipator
US11828083B2 (en) 2017-02-16 2023-11-28 John Damian Allen Control structure with rotary force limiter and energy dissipater
CN106988207B (en) * 2017-06-06 2019-04-02 广州大学 A kind of soft collision protective device suitable for super earthquake intensity geological process
CN107489296A (en) * 2017-09-30 2017-12-19 沈阳建筑大学 The energy-dissipating and shock-absorbing attachment structure and assembly method of assembly concrete coupling beam
CN110541595A (en) * 2019-08-28 2019-12-06 北京市政路桥股份有限公司 Rubber layering U type metal sheet attenuator
CN110438893A (en) * 2019-08-29 2019-11-12 招商局重庆交通科研设计院有限公司 A kind of bridge energy dissipating support
CN110644352B (en) * 2019-09-30 2022-01-21 重庆工商职业学院 Vibration-damping bridge
US11600248B2 (en) 2020-06-02 2023-03-07 Project Zed Limited Bow for stringed musical instrument
CN112112303A (en) * 2020-09-09 2020-12-22 五邑大学 Damper
US20230036876A1 (en) * 2020-11-27 2023-02-02 Osaka University Steel damper for seismic isolation and seismic isolation structure
CN112900670A (en) * 2021-01-22 2021-06-04 江南大学 Replaceable sectional yielding metal energy dissipation damper
US20230104946A1 (en) * 2021-10-01 2023-04-06 Saeed Towfighi Steel plate damper for structures
CN114593176B (en) * 2022-02-17 2023-11-03 天津科技大学 Damping mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206987A (en) * 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP3533110B2 (en) * 1998-07-28 2004-05-31 新日本製鐵株式会社 Seismic isolation device
JP2004278205A (en) * 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper
JP2004340301A (en) * 2003-05-16 2004-12-02 Nippon Steel Corp Seismic isolator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533110B2 (en) * 1998-07-28 2004-05-31 新日本製鐵株式会社 Seismic isolation device
JP2003206987A (en) * 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP2004278205A (en) * 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper
JP2004340301A (en) * 2003-05-16 2004-12-02 Nippon Steel Corp Seismic isolator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114837A (en) * 2012-12-06 2014-06-26 Takenaka Komuten Co Ltd Base isolation structure
KR20140005622U (en) * 2013-04-23 2014-10-31 프로세스 오토메이션 인터내셔날 리미티드 A damping device
KR200487830Y1 (en) 2013-04-23 2018-11-08 프로세스 오토메이션 인터내셔날 리미티드 A damping device
JP2015047620A (en) * 2013-09-02 2015-03-16 日鉄住金関西工業株式会社 Manufacturing method of u-shaped damper
WO2021235736A1 (en) * 2020-05-22 2021-11-25 주식회사 헬스원 Spinal thermal massage device having elastic function

Also Published As

Publication number Publication date
TW200920965A (en) 2009-05-16
US20100251637A1 (en) 2010-10-07
CN101836010A (en) 2010-09-15
WO2009054532A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
JP2011501050A (en) Seismic isolation structure
JP5075948B2 (en) Vibration control device
JP2011256577A (en) Seismic control structure including viscoelastic damper
JP5319902B2 (en) Building vibration control structure
JP2014194116A (en) Vibration control structure of building
JP5404679B2 (en) Shear damper
JP2010043415A (en) Seismic control device
JP4049120B2 (en) Building seismic control structure
JP5305756B2 (en) Damping wall using corrugated steel
JP4884914B2 (en) Vibration control device installation structure of unit building
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP6134099B2 (en) Vibration control device and building
JP2021162099A (en) Energy absorption member
JP2009256957A (en) Viscoelastic brace damper
JP4559793B2 (en) Multi-story shear wall
JP2009035949A5 (en)
JP7558005B2 (en) Vibration control panels and buildings
JP7388968B2 (en) Earthquake-resistant structure
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP2010018985A (en) Portal frame with damper of brace structure
JP2023099943A (en) damper
JP6668117B2 (en) Shelf equipment
JP2021172997A (en) Damping stud
KR101203802B1 (en) Method for introducing prestress into steel girder using eccentric braket and prestressed steel girder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205