[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011229405A5 - - Google Patents

Download PDF

Info

Publication number
JP2011229405A5
JP2011229405A5 JP2010099920A JP2010099920A JP2011229405A5 JP 2011229405 A5 JP2011229405 A5 JP 2011229405A5 JP 2010099920 A JP2010099920 A JP 2010099920A JP 2010099920 A JP2010099920 A JP 2010099920A JP 2011229405 A5 JP2011229405 A5 JP 2011229405A5
Authority
JP
Japan
Prior art keywords
water
ozone
fish
electrolytic
patent document
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010099920A
Other languages
Japanese (ja)
Other versions
JP2011229405A (en
JP5221591B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2010099920A priority Critical patent/JP5221591B2/en
Priority claimed from JP2010099920A external-priority patent/JP5221591B2/en
Priority to TW100113338A priority patent/TWI472349B/en
Priority to KR1020110038008A priority patent/KR101628407B1/en
Priority to CN201110102935.7A priority patent/CN102246712B/en
Publication of JP2011229405A publication Critical patent/JP2011229405A/en
Publication of JP2011229405A5 publication Critical patent/JP2011229405A5/ja
Application granted granted Critical
Publication of JP5221591B2 publication Critical patent/JP5221591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

(2)薬浴法
薬浴法は、過酸化ピロリン酸ナトリウム、過炭酸ナトリウム、過酸化リン酸二ナトリウム、ホルマリン、氷酢酸等の薬剤の作用を利用して、寄生虫を魚体より駆除しようとするものである。しかしながら、薬剤は、周辺海水を汚染するという問題がある。薬浴法としては、従来、次のような方法が行われている。
特許文献1には、フェルラ酸と乳酸により、ハダムシ等の寄生虫に感染した魚から寄生虫を駆虫しうることが開示されている。
特許文献2には、カカオ豆組成物を有効成分とする寄生虫抑制剤を投与することにより、海産養殖魚の寄生虫症を抑制及び予防する方法が開示されている。
特許文献3には、δ−アミノレブリン酸を飼料又は水槽に添加し、病原性微生物及び寄生虫に感染した魚類を治療する方法が開示されている。
特許文献4には、トラフグに寄生するエラムシの駆除剤及び駆除方法として、ベンゾイミダゾール系薬剤を有効成分として用いることが開示されている。
特許文献5には、魚類のスクーチカ症を、安定化二酸化塩素又は亜塩素酸塩、有機カルボン酸及び過酸化水素を用いて治療及び予防する方法が開示されている。スクーチカ繊毛虫は、魚体内に深く浸入するため、他の寄生虫病と異なり薬浴による駆虫は期待できない。従来、慣用的に使用されてきたホルマリンは、養殖魚に使用することが全面的に禁止された。
(2) Drug bath method The drug bath method uses the action of chemicals such as sodium pyrophosphate, sodium percarbonate, disodium phosphate, formalin, and glacial acetic acid to eliminate parasites from fish. To do. However, there is a problem that the drug contaminates the surrounding seawater. As a chemical bath method, the following methods have been conventionally performed.
Patent Document 1 discloses that a parasite can be dewormed from a fish infected with a parasite such as a beetle by ferulic acid and lactic acid.
Patent Document 2 discloses a method for suppressing and preventing parasitic diseases in marine cultured fish by administering a parasitic inhibitor containing a cacao bean composition as an active ingredient.
Patent Document 3 discloses a method of treating fish infected with pathogenic microorganisms and parasites by adding δ-aminolevulinic acid to a feed or an aquarium.
Patent Document 4 discloses that a benzimidazole-based drug is used as an active ingredient as a pest control agent and a pest control method parasitic on trough puffer fish.
Patent Document 5 discloses a method for treating and preventing fish succiticosis using stabilized chlorine dioxide or chlorite, organic carboxylic acid and hydrogen peroxide. The scoutica ciliate penetrates deeply into the fish body, and unlike other parasitic diseases, it cannot be expected to be anthelmintic by a chemical bath. Conventionally, formalin that has been conventionally used has been completely prohibited from being used for cultured fish.

(4)その他の方法
その他の方法としては、特許文献10、11には、イオン類を含有する水溶液に紫外線を光触媒体に照射して生じた活性酸素種を拡散することにより、水に活性酸素種の機能を付与し、この水による酸化反応を利用した微生物の除菌、寄生虫の駆虫、原虫類の駆除を行うことのできる光触媒反応水生成装置が開示されている。但し、紫外線により寄生虫を死滅させるために、高出力が必要となり、養殖場での利用には不向きである。
特許文献12には、養殖魚の寄生虫症による斃死の発生を抑制するために、魚類の免疫を賦活化させる方法、特に魚類寄生虫症に対する免疫を賦活させる方法として、魚類用ワクチンが開示されているが、研究段階であり、未だ実用性に乏しい。
(4) Other methods Other methods, Patent Documents 10 and 11, by diffusion of the active oxygen species generated by irradiating ultraviolet rays to an aqueous solution containing ions to photocatalyst activity in water There has been disclosed a photocatalytic water generation apparatus that can function as an oxygen species and can perform sterilization of microorganisms, parasitic worms, and protozoa by utilizing this water oxidation reaction. However, in order to kill parasites by ultraviolet rays, high output is required, which is not suitable for use in aquaculture.
Patent Document 12 discloses a fish vaccine as a method for activating immunity of fish, particularly a method for activating immunity against fish parasitic disease, in order to suppress the occurrence of moribund due to parasitic disease of cultured fish. Although it is in the research stage, it is still not practical.

(5)オゾン水による方法
非特許文献1には、酸化剤であるオゾンの魚類病原微生物に対する殺菌効果が記載されている。
非特許文献2には、オゾン水は、飼育用水、用具の処理にも適しており、濃度0.3−0.5ppmにおいて5−10分で効果がある。但し、飼育槽では、海水中の臭化物との反応による臭素酸の養殖魚への影響を避けるために、濃度を100分の1まで低減させる必要のあることが開示されている。
非特許文献3には、オゾン水では、0.3ppmで5分間の処理でセラトミキサ症、ミキソゾーマ属寄生虫感染症を防止できた実例が報告されている。
尚、海水中に臭化物イオンが存在する場合、オゾンと反応し残留性、有害性のある臭素酸イオンを生成するため、これを予め除去することが好ましい。
しかるに、従来、前記オゾン水による方法においては、本発明で対象としている養殖魚に寄生する外部寄生虫の駆除方法として、特に、トラフグのような外皮の厚い魚類に寄生するエラムシ、ハダムシのような外部寄生虫の駆除に関しては、知られていなかった。
(5) Method using ozone water Non-Patent Document 1 describes the bactericidal effect of ozone, which is an oxidizing agent, on fish pathogenic microorganisms.
According to Non-Patent Document 2, ozone water is suitable for treatment of breeding water and tools, and is effective in 5-10 minutes at a concentration of 0.3-0.5 ppm. However, it is disclosed that in the breeding tank, it is necessary to reduce the concentration to 1/100 in order to avoid the influence of bromic acid on the cultured fish due to the reaction with bromide in seawater.
Non-patent document 3 reports an example in which ozone water was able to prevent seratomixosis and myxosomal parasitic infections by treatment at 0.3 ppm for 5 minutes.
When bromide ions are present in seawater , they react with ozone to generate residual and harmful bromate ions, so it is preferable to remove them in advance.
However, conventionally, in the method using ozone water, as a method for controlling ectoparasites that are parasitic on cultured fish, which is the subject of the present invention, in particular, such as aphids and scallops that parasitize thick fish such as trough fish. There was no known eradication of ectoparasites.

オゾン水は、従来から放電型のオゾンガス発生器を用いて製造することが一般的であり、数ppmのオゾン水を容易に製造でき、浄水処理、食品洗浄分野で利用されている。しかしながら、放電型のオゾンガス発生器は、以下の理由により使用分野に制限あった。
(a)原料として乾燥空気を用いると、NOxが副生する。高濃度ガスを得るためには純酸素原料を用いなければならない。
(b)オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(c)後述する電解法に比較して濃度が低いため、溶解させることが困難である。
(d)発生電源が高電圧・高周波のため、小型化しにくい。
(e)放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまで時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難である。
このため、放電型のオゾンガス発生器は、養殖場、特に海岸での利用に適さないことを示唆している。
Conventionally, ozone water is generally produced using a discharge-type ozone gas generator. Ozone water of several ppm can be easily produced, and is used in the fields of water purification and food washing. However, discharge ozone generator has been limited to the field of use for the following reasons.
(A) When dry air is used as a raw material, NO x is by-produced. In order to obtain a high concentration gas, a pure oxygen raw material must be used.
(B) It requires two steps of once generating ozone as a gas and then dissolving it in water.
(C) Since the concentration is lower than that of the electrolytic method described later, it is difficult to dissolve.
(D) Since the generated power source is high voltage and high frequency, it is difficult to reduce the size.
(E) In the ozone water generating device by discharge, it takes time (a waiting time of several minutes) until the ozone gas generation ability is stabilized, and it is difficult to instantaneously prepare ozone water having a constant concentration.
For this reason, it is suggested that the discharge-type ozone gas generator is not suitable for use on aquaculture farms, particularly on the coast.

オゾン水の製法としては、上記の放電法の他に、電解法によるオゾン水の製法が知られており、この電解法は、放電法に比較して電力原単位は劣るが、高濃度のオゾンガス及び水が容易に得られる特徴により、電子部品洗浄などの特殊分野で汎用されている。原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。
オゾンガスを効率よく発生させるには、適切な触媒と電解質を選択することが不可欠である。電極材料として、白金などの貴金属、α−二酸化鉛、β−二酸化鉛、フルオロカーボンを含浸させたグラッシーカーボン、ダイヤモンドが知られている。電解質としては、硫酸、リン酸、フッ素基含有などの水溶液が利用されてきたが、取り扱いが不便であり広まってはいない。これに対して、非特許文献5に記載されているように、固体高分子電解質を隔膜として用い、水を原料とする水電解セルは、管理がしやすく、汎用されている。従来からの触媒である二酸化鉛を使用すると、12重量%以上の高濃度なオゾンガスが得られる。
As a method for producing ozone water, in addition to the above-described discharge method, a method for producing ozone water by electrolysis is known. This electrolysis method is inferior in electric power unit compared to the discharge method, but has a high concentration of ozone gas. In addition, it is widely used in special fields such as electronic component cleaning due to the characteristics that water is easily obtained. Since a DC low-voltage power supply is used in principle, it has excellent instantaneous response and safety, and is expected to be used as a small ozone gas and ozone water generator.
In order to efficiently generate ozone gas, it is essential to select an appropriate catalyst and electrolyte. Known electrode materials include noble metals such as platinum, α-lead dioxide, β-lead dioxide, glassy carbon impregnated with fluorocarbon, and diamond. As an electrolyte, an aqueous solution containing sulfuric acid, phosphoric acid, fluorine group and the like has been used, but it is inconvenient to handle and has not spread. On the other hand, as described in Non-Patent Document 5, a water electrolysis cell using a solid polymer electrolyte as a diaphragm and using water as a raw material is easy to manage and is widely used. If lead dioxide which is a conventional catalyst is used, ozone gas having a high concentration of 12% by weight or more can be obtained.

体高分子電解質を隔膜として用い、原料水を原料とする水電解セルにおいて、特許文献13では、導電性ダイヤモンドが機能水(オゾン含む)用電極として有用であることが開示されている。
また、特許文献14では、電極近傍の溶液に十分な流速を与えることで、ガス化する前にオゾン水として取り出す方法が開示されている。
特許文献15では、オゾンを溶解する電解水の噴霧装置、特に得られた電解水を霧状に噴霧する小型スプレー装置が提案されている。
特許文献16では、生成されるオゾン水を殺菌洗浄槽へ導入すると共に超音波作用とオゾン水の殺菌作用との組合せによって殺菌・脱臭を奏させる殺菌浄化装置を提供する。
更に、非特許文献6に記載されているように、近年、ナノバブル、マイクロバブルと呼ばれる微細気泡に関する基礎的研究や実用化の検討が行われている。最近の展開については、微細気泡の最新技術に記載されている。
特許文献17、18では、酸素などのガスを主体とするナノバブル、マイクロバブル化したオゾン含有気泡は、洗浄効果があることが開示されている。同技術では、かき体内のノロウィルスの不活化に効果のあることが報告された。
Using solid polymer electrolyte membrane as a diaphragm, the water electrolysis cell for the raw water and the raw material, Patent Document 13, the conductive diamond are disclosed to be useful as an electrode for functional water (containing ozone water).
Moreover, in patent document 14, the method of taking out as ozone water before gasifying is disclosed by giving sufficient flow rate to the solution of an electrode vicinity.
Patent Document 15 proposes an electrolyzed water spray device that dissolves ozone, and in particular, a small spray device that sprays the obtained electrolyzed water in a mist form.
Patent Document 16 provides a sterilizing and purifying apparatus that introduces the generated ozone water into a sterilization washing tank and performs sterilization and deodorization by a combination of ultrasonic action and sterilization action of ozone water.
Furthermore, as described in Non-Patent Document 6, in recent years, basic research and practical application of fine bubbles called nanobubbles and microbubbles have been studied. Recent developments are described in the latest microbubble technology.
In Patent Documents 17 and 18, it is disclosed that nanobubbles mainly composed of a gas such as oxygen and ozone-containing bubbles that are microbubbled have a cleaning effect. This technology has been reported to be effective in inactivating norovirus in the oyster.

従来、前記のように、寄生虫の駆除方法としてさまざまな検討がなされてきたが、いずれの方法においても、十分に解決されたとはいえない。養殖魚の駆除方法としては、
(a)寄生虫、特にハダムシ、エラムシの駆除が短時間に行えること
(b)調製保管の手間がかからずオンサイトにより、作業が安全に行えること
(c)そのまま処理水を海に廃棄できること
(d)養殖魚の生態に影響を与えないで駆除効果を発揮すること
が好ましい。漁業者が実施し得る実効ある現業的方法提供することが重要である。
Conventionally, as described above, various studies have been made as a method for controlling parasites. However, none of the methods has been sufficiently solved. As a method of controlling cultured fish,
(A) It is possible to eliminate parasites, especially damselfly and aphids, in a short time. (B) It is possible to safely work on site without the need for preparation and storage. (C) It is possible to dispose of treated water as it is. (D) It is preferable to exert the extermination effect without affecting the ecology of the cultured fish. It is important to provide effective on-the-job methods that fishers can implement.

更に、電解式オゾン発生装置1の近くに電解式過酸化水素発生装置を設置し、前記電解オゾン水タンク4内に電解式過酸化水素発生装置により生成した電解過酸化水素水を投入し、前記電解オゾン水と前記電解過酸化水素水との混合水を用いて、外皮の厚い魚類の養殖魚に寄生する外部寄生虫を駆除すると、効果的な駆除を行うことができる。上記のように電解オゾン水と電解過酸化水素水との混合水を用いると、これらの物質および促進酸化により生成する活性酸素種により寄生虫の表面が酸化され、正常な生命活動が阻害され、寄生部位からの脱落、駆除が誘発されるものと考えられる。オゾンと過酸化水素の混合水を用いると、促進酸化処理により活性酸素が生成しやすい。このときの濃度比オゾン:過酸化水素は、1:0.1〜1:10の範囲が好ましい。過酸化水素がこれより少ないと、促進酸化処理効果が期待できない。またこれより多いとオゾンの分解が速くなり、過酸化水素の効果しか得られない。
Further, an electrolytic hydrogen peroxide generator is installed near the electrolytic ozone generator 1, and the electrolytic hydrogen peroxide solution generated by the electrolytic hydrogen peroxide generator is put into the electrolytic ozone water tank 4. Effective extermination can be carried out by exterminating ectoparasites that parasitize cultured fish with thick outer skin using a mixture of electrolytic ozone water and electrolytic hydrogen peroxide water. When mixed water of electrolytic ozone water and electrolytic hydrogen peroxide water is used as described above, the surface of the parasite is oxidized by these substances and reactive oxygen species generated by accelerated oxidation, and normal life activity is inhibited. It is thought that shedding from the parasitic site and extermination are induced. When mixed water of ozone and hydrogen peroxide is used, active oxygen is likely to be generated by accelerated oxidation treatment. The concentration ratio ozone: hydrogen peroxide at this time is preferably in the range of 1: 0.1 to 1:10. If the amount of hydrogen peroxide is less than this, an accelerated oxidation treatment effect cannot be expected. On the other hand, if the amount is larger than this, the decomposition of ozone becomes faster and only the effect of hydrogen peroxide can be obtained.

図2は、本発明による、養殖魚に寄生するエラムシまたハダムシ等の外部寄生虫の駆除方法の他の実施態様を示したものであり、沿岸から離れた海上養殖場に養殖用生簀5を設け、船6の船上に電解式オゾン発生装置1を設け、船上もしくは船6の近くの海上に電解式オゾン水タンク4を設けたものである。
養殖生簀5から隔離された別の区画に電解式オゾン水タンク4を設け、このタンク4内にオゾン水を注入し、養殖生簀中の魚を該区画に移し、処理した後、魚を元の生簀5中に放流する。処理区画としては、オゾン水を合成、運搬に使用した容器でもよい。オゾン水からのオゾンガスの放出を防止するために、蓋を有する区画、容器であることが好ましい。海水と分離区画された区画の水量は、魚数と重量に依存するが、1〜10m3程度である。上記駆除方法は、何回か繰り返すことが効果的である。
オゾン水は、船上にて、あるいはまた漁港において、原料水を満たした容器から原料水を電解セルに送り、オゾン水を合成する。
FIG. 2 shows another embodiment of a method for controlling ectoparasites such as aphids and bark beetles parasitizing cultured fish according to the present invention, and an aquaculture ginger 5 is provided in a marine farm far from the coast. The electrolytic ozone generator 1 is provided on the ship 6, and the electrolytic ozone water tank 4 is provided on the ship or on the sea near the ship 6.
In another compartment isolated from cultured fish preserve 5 provided electrolytic ozone water tank 4, the ozone water is injected into the tank 4, the fish in aquaculture pens to feed transferred to compartment, after processing, fish be released to the original raw bamboo 5. The processing compartment may be a container using ozone water for synthesis and transportation. In order to prevent the release of ozone gas from the ozone water, a compartment or container having a lid is preferable. The amount of water in the compartment separated from the seawater is about 1 to 10 m 3 , although it depends on the number of fish and the weight. It is effective to repeat the removal method several times.
The ozone water is synthesized on the ship or in the fishing port by sending the raw water from the container filled with the raw water to the electrolytic cell.

本発明に使用する電解式オゾン発生装置の一例について詳述する。
(1)電解式オゾン発生装置
解式オゾン発生セルの一例を図3に示した。図3において、7は陽極、8は陰極、9はイオン交換膜であり、電解式オゾン発生セルは、イオン交換膜9により陽極7を含む陽極室と陰極8を含む陰極室に分けられている。
電極間距離は0.1mm〜50mmが好ましい。これより近いと接触により短絡が発生しやすく、これより遠いとセル電圧の増加を招く。電極間距離は0.1mmから2mm程度がより好適である。各電極室には、原料水の供給口と排出口、生成ガスの排出口が設けられている。合成した電解オゾン水は、極室内に保存することも可能であるが、別途の容器に保存することが好ましい。タンク材質は電解水により侵されない材料を選択する。特に問題がなければPE樹脂などでよい。
An example of the electrolytic ozone generator used in the present invention will be described in detail.
(1) Electrolytic ozone generator
An example of a conductive Kaishiki ozone generating cell shown in FIG. In FIG. 3, 7 is an anode, 8 is a cathode, 9 is an ion exchange membrane, and the electrolytic ozone generating cell is divided into an anode chamber including the anode 7 and a cathode chamber including the cathode 8 by the ion exchange membrane 9. .
The distance between the electrodes is preferably 0.1 mm to 50 mm. If it is closer than this, a short circuit is likely to occur due to contact, and if it is farther than this, the cell voltage increases. The distance between the electrodes is more preferably about 0.1 mm to 2 mm. Each electrode chamber is provided with a raw water supply port and discharge port, and a generated gas discharge port. Synthesized electrolytic ozone water, it is also possible to store the indoor electrodes, it is preferable to store in a separate container. As the tank material, a material that is not affected by electrolyzed water is selected. If there is no problem, PE resin or the like may be used.

(3)陽極材料
陽極7の陽極基材としてはチタン、ニオブなどの弁金属、その合金、シリコンに限定される。触媒としては、白金、ダイヤモンド、二酸化鉛が利用可能である。
ダイヤモンドはドーピングにより電気伝導性の制御も可能であることから、電極材料として有望とされている。ダイヤモンド電極は水の分解反応に対しては不活性であり、酸化反応では酸素以外にオゾン、過酸化水素の生成が報告されている。触媒は陽極の一部に存在すればよく、前記基材の一部が露出していても支障ない。代表的な熱フィラメントCVD法について以下に説明する。炭素源となるメタンCH4など炭化水素ガス、或いはアルコールなどの有機物を用い、CVDチャンバー内に水素ガスと共に送り込み、還元雰囲気に保ちながら、フィラメントを熱し、炭素ラジカルが生成する温度1800−2400℃にする。このときダイヤモンドが析出する温度(750−950℃)領域に電極基材を設置する。水素に対する炭化水素ガス濃度は0.1−10vol%、圧力は20hPa〜1013hPa(1気圧)である。
ダイヤモンドが良好な導電性を得るために、原子価の異なる元素を微量添加することは不可欠である。ホウ素BやリンPの好ましい含有率は1〜100000ppmであり、更に好ましくは100〜10000ppmである。原料化合物にはトリメチルボロン(CH33Bを用いるが、毒性の少ない酸化ホウ素B23、5酸化2燐P25などの利用も好ましい。電極基材の形状としては、粒子、繊維、板、穴明き板、棒などが可能である。
(3) Anode material The anode base material of the anode 7 is limited to valve metals such as titanium and niobium, alloys thereof, and silicon. Platinum, diamond, and lead dioxide can be used as the catalyst.
Diamond is considered promising as an electrode material because it can control electrical conductivity by doping. The diamond electrode is inactive against the decomposition reaction of water, and ozone and hydrogen peroxide are reported to be generated in addition to oxygen in the oxidation reaction. The catalyst only needs to be present on a part of the anode, and there is no problem even if a part of the substrate is exposed. A typical hot filament CVD method will be described below. Using a hydrocarbon gas such as methane CH 4 as a carbon source, or an organic substance such as alcohol, it is sent together with hydrogen gas into the CVD chamber, and while maintaining a reducing atmosphere, the filament is heated to a temperature 1800-2400 ° C. at which carbon radicals are generated. To do. At this time, an electrode base material is placed in a temperature (750-950 ° C.) region where diamond is deposited. The hydrocarbon gas concentration with respect to hydrogen is 0.1-10 vol%, and the pressure is 20 hPa-1013 hPa (1 atm).
In order for diamond to obtain good conductivity, it is indispensable to add a trace amount of elements having different valences. The preferred content of boron B or phosphorus P is 1 to 100,000 ppm, more preferably 100 to 10,000 ppm. Trimethylboron (CH 3 ) 3 B is used as the raw material compound, but it is also preferable to use boron oxide B 2 O 3 , pentoxide 5 phosphorus P 2 O 5, etc., which are less toxic. The shape of the electrode substrate, the grain terminal, fibers, plates, perforated plates, rods, or the like is possible.

[比較例1]
実施例1で使用した体長15cmのトラフグの鰓より切除されたエラムシを、過酸化水素水(600ppm)で処理したころ、エラムシが死滅するまで、5分間を要した。尚、この過酸化水素水(600ppm)でトラフグの鰓部位に寄生した状態のエラムシおよび鰓肉片を処理したところ、エラムシおよび鰓肉片は、20分でも死滅できなかった。エラムシが寄生したフグは体力が回復しなかった。解剖したところ、エラムシの生存が確認された。
上記の実施例においては、トラフグ等の外皮の厚い養殖魚について記載したが、本発明は、これらに限定されることなく、その他の養殖魚にも適用することができる。また、外部寄生虫としては、エラムシ、ハダムシ以外の外部寄生虫にも適用することができる。
[Comparative Example 1]
When the aphid excised from the 15 cm long trough puffer used in Example 1 was treated with hydrogen peroxide (600 ppm), it took 5 minutes for the aphid to die. Incidentally, it was treated with Eramushi and gill meat pieces while parasitic in the hydrogen peroxide solution (600 ppm) in the gill portion of Fugu, Eramushi and gill meat piece could not kill even 20 minutes. The pufferfish infested with aphids did not recover. Upon dissection, the survival of the aphid was confirmed.
In the above-described embodiments, the farmed fish having a thick outer skin such as trough puff was described, but the present invention is not limited to these and can be applied to other farmed fish. Moreover, as an ectoparasite, it can apply also to ectoparasites other than aphid and aphid.

JP2010099920A 2010-04-23 2010-04-23 How to control ectoparasites that infest cultured fish Expired - Fee Related JP5221591B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010099920A JP5221591B2 (en) 2010-04-23 2010-04-23 How to control ectoparasites that infest cultured fish
TW100113338A TWI472349B (en) 2010-04-23 2011-04-18 Method for disinfecting ectoparasites of farmed fish
KR1020110038008A KR101628407B1 (en) 2010-04-23 2011-04-22 Method for disinfecting ectoparasites of farmed fish
CN201110102935.7A CN102246712B (en) 2010-04-23 2011-04-25 Method of expelling ectoparasites parasitic on breeding fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099920A JP5221591B2 (en) 2010-04-23 2010-04-23 How to control ectoparasites that infest cultured fish

Publications (3)

Publication Number Publication Date
JP2011229405A JP2011229405A (en) 2011-11-17
JP2011229405A5 true JP2011229405A5 (en) 2012-03-22
JP5221591B2 JP5221591B2 (en) 2013-06-26

Family

ID=44974580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099920A Expired - Fee Related JP5221591B2 (en) 2010-04-23 2010-04-23 How to control ectoparasites that infest cultured fish

Country Status (4)

Country Link
JP (1) JP5221591B2 (en)
KR (1) KR101628407B1 (en)
CN (1) CN102246712B (en)
TW (1) TWI472349B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160075580A (en) * 2013-10-18 2016-06-29 닛폰 스이산 가부시키가이샤 Method for exterminating fish-external parasites using low-concentration hydrogen peroxide solution
CN104351116A (en) * 2014-11-10 2015-02-18 济南冷圣保温车厢有限公司 Live fish and seafood container capable of being disinfected and sterilized
NO20161570A1 (en) * 2016-09-29 2018-03-30 Brage Innovation As Chlorine trap for killing salmon lice parasites
CN106942097A (en) * 2017-03-24 2017-07-14 饶平县腾跃食品有限公司 It is a kind of to remove the device of lice and its except lice method for sweet fish
KR101981395B1 (en) 2017-08-29 2019-05-24 주식회사 솔포투 Natural feed additive composition and its preventive and therapeutic effect on Myxozoa
NO20190379A1 (en) * 2019-03-21 2020-09-22 Mowi ASA Treatment composition for a marine ectoparasite and a method for preparing the treatment composition
KR102010724B1 (en) 2019-04-03 2019-08-14 주식회사 솔포투 Natural feed additive composition and its preventive and therapeutic effect on Myxozoa

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792728B2 (en) * 1990-10-05 1998-09-03 三菱重工業株式会社 Sterilization method of packaging material
JPH0748966B2 (en) * 1991-08-12 1995-05-31 菱洋産業株式会社 How to treat fish disease
JP2817753B2 (en) * 1992-07-27 1998-10-30 株式会社片山化学工業研究所 Prevention of Heterobothrosis in Trafugu in a Sea Farm
JPH0751028A (en) 1993-08-09 1995-02-28 Kansai Paint Co Ltd Fine powder of agar-agar and gelidium jelly using the powder
JPH07196521A (en) * 1993-12-31 1995-08-01 Shoji Toyoda Method for treating athlete's foot and apparatus for treating athlete's foot
JP3297227B2 (en) 1994-11-11 2002-07-02 株式会社ブイエムシー Ozone water production equipment
JPH0994036A (en) * 1995-09-28 1997-04-08 Ebara Corp Prevention of ectoparasite in water-surface fish farming and apparatus therefor
JP3722537B2 (en) * 1996-02-02 2005-11-30 株式会社荏原製作所 Organic sludge oxidation treatment method and equipment
JPH09268395A (en) * 1996-04-02 1997-10-14 Permelec Electrode Ltd Electrode for electrolysis and electrolytic cell using this electrode
JP3409996B2 (en) * 1997-06-27 2003-05-26 神鋼プラント建設株式会社 Ozone water production apparatus and method for producing ozone water using the apparatus
JP2000128702A (en) 1998-10-28 2000-05-09 Daiichi Seimou Co Ltd Parasiticide in hatchery fish
FR2793996B1 (en) * 1999-05-25 2002-12-13 Air Liquide PROCESS FOR IMPROVING CONDITIONS FOR FARMING FISH ON A CLOSED CIRCUIT
FR2797561B1 (en) * 1999-08-18 2001-11-09 Air Liquide PROCESS FOR IMPROVING THE CONDITIONS FOR BREEDING FISH OPERATING IN OZONE WATER
JP2001079544A (en) * 1999-09-16 2001-03-27 Chlorine Eng Corp Ltd Water treatment by ultraviolet-irradiation
KR100365151B1 (en) 2000-05-08 2003-02-11 김형락 Novel use of delta-aminolevulinic acid for the prevention and treatment of infection by pathogenic microorganism
JP2002220308A (en) 2001-01-29 2002-08-09 Kyowa Hakko Kogyo Co Ltd Exterminator and exterminating method of heterobacterium okamotoi
TW523488B (en) * 2001-12-31 2003-03-11 Luxon Energy Devices Corp Ozone-generating electrolytic vessel
CN2552335Y (en) * 2002-06-19 2003-05-28 吴小军 Fish disease therapeutic equipment
JP2004357521A (en) 2003-06-02 2004-12-24 Akiyasu Inaba Sterilizing purifying apparatus
JP2005253378A (en) * 2004-03-12 2005-09-22 Nature's Co Method for raising chicken
JP4059506B2 (en) 2004-03-05 2008-03-12 独立行政法人産業技術総合研究所 Ozone water and method for producing the same
JP2006077000A (en) 2004-08-10 2006-03-23 Fuji Seifun Kk Method for exterminating fish parasite and method for preventing infection
JP2006061107A (en) 2004-08-27 2006-03-09 Higashimaru Co Ltd Parasitic disease inhibitor, feed for marine cultured fishes and method for preventing parasitic disease of marine cultured fishes
JP4410155B2 (en) * 2005-06-16 2010-02-03 ペルメレック電極株式会社 Electrolyzed water ejection device
JP4464888B2 (en) 2005-08-05 2010-05-19 太陽誘電株式会社 Optical communication transmitter, optical communication receiver, optical communication system, and communication apparatus
JP3882939B1 (en) 2006-08-11 2007-02-21 助川化学株式会社 Method for treating and preventing fish succichiosis
JP2008142647A (en) 2006-12-11 2008-06-26 K2R:Kk Method and apparatus for producing functional water
JP2008148607A (en) 2006-12-15 2008-07-03 Nippon Suisan Kaisha Ltd Method for activating immunity of fishes and gene used therefor
JP4888782B2 (en) 2007-08-28 2012-02-29 株式会社片山化学工業研究所 How to kill parasite eggs in cultured fish
JP5596276B2 (en) 2008-03-21 2014-09-24 眞 八藤 Super fine bubble water
JP2010172238A (en) * 2009-01-28 2010-08-12 Kansai Automation Kiki Kk Method for exterminating parasite and system for exterminating parasite

Similar Documents

Publication Publication Date Title
JP2011229405A5 (en)
JP4464027B2 (en) Dental apparatus and method for operating the apparatus
JP5221591B2 (en) How to control ectoparasites that infest cultured fish
KR100951071B1 (en) Method of sterilization and electrolytic water ejecting apparatus
JP6457737B2 (en) Acid electrolyzed water and method for producing the same, bactericide and cleaning agent containing the acid electrolyzed water, sterilizing method using the acid electrolyzed water, and apparatus for producing acid electrolyzed water
US20040037737A1 (en) Method of and equipment for washing, disinfecting and/or sterilizing health care devices
CN111569683B (en) High-concentration long-acting ozone nano bubble aqueous solution and preparation method thereof
JP2011157580A (en) Electrolytic synthesis method of ozone fine bubble
CN104191483A (en) Method for processing bamboo chopsticks by ozone
KR101516834B1 (en) Waste treatment system
CN113215596B (en) System suitable for hypochlorous acid sterilizing water in industrial production
JP4098617B2 (en) Sterilization method
WO2015029263A1 (en) Cleaning solution and manufacturing method therefor
KR20130000043A (en) Method of sterilizing and cleaning medical device satisfying high level disinfection and apparatus using same
WO2014037810A2 (en) Acidic electrolyzed water, and manufacturing method for same
JP3583608B2 (en) Electrolytic sterilizing apparatus and electrolytic sterilizing method
CN210065943U (en) High oxidation water generating equipment
JP2006020570A (en) Apparatus and method for oyster purification
CN113215595B (en) Portable hypochlorous acid sterilizing water production device
CN106746082B (en) Method for treating water for fish egg incubation by using ultrasonic wave and electrocatalysis equipment
KR101254551B1 (en) An aquarium type sterilizer
KR20180131901A (en) Apparatus for producing sterilization water
KR20170108250A (en) The adding method of fatty acid in manufacturing sterilizer made of electrolytic water to protect the lipids between human cells to prevent NMF from departing and the spraying method to enhance the washing and detoxing capabilities of detergent and sterilizer.
JP2003275770A (en) Seawater pasteurizer
JP4231272B2 (en) Marine organism aquaculture water, production method and production apparatus for the same