[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011225866A - Method for manufacturing styrene-based resin composition containing multibranched polymer of super-high molecular weight, and the composition - Google Patents

Method for manufacturing styrene-based resin composition containing multibranched polymer of super-high molecular weight, and the composition Download PDF

Info

Publication number
JP2011225866A
JP2011225866A JP2011078380A JP2011078380A JP2011225866A JP 2011225866 A JP2011225866 A JP 2011225866A JP 2011078380 A JP2011078380 A JP 2011078380A JP 2011078380 A JP2011078380 A JP 2011078380A JP 2011225866 A JP2011225866 A JP 2011225866A
Authority
JP
Japan
Prior art keywords
styrene
molecular weight
resin composition
copolymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011078380A
Other languages
Japanese (ja)
Other versions
JP5658607B2 (en
Inventor
Keita Akiba
圭太 秋葉
Keiichi Hayashi
敬一 林
Masanao Kawabe
正直 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2011078380A priority Critical patent/JP5658607B2/en
Publication of JP2011225866A publication Critical patent/JP2011225866A/en
Application granted granted Critical
Publication of JP5658607B2 publication Critical patent/JP5658607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gelation-controlled styrene-based resin composition composed of branched polystyrene of super-high molecular weight and linear polystyrene, and a method for manufacturing the same.SOLUTION: The styrene-based resin composition containing a multibranched styrene-based copolymer of super-high molecular weight and a linear polymer is manufactured. A vinyl monomer indispensably including styrene is added with 50-5,000 ppm by weight of a solvent-soluble multifunctional vinyl compound copolymer having two or more vinyl groups on average in one molecule and a branched structure, followed by uniform mixing, and then supplied to polymerization reactors arranged in series to be subjected to polymerization. There is thus produced the styrene-based resin composition containing the multibranched copolymer of super-high molecular weight obtained by polymerizing the copolymer and the vinyl monomer, and the linear polymer obtained by polymerizing the vinyl monomer.

Description

本発明は、スチレンを含むエチレン性不飽和モノマーと一分子内に複数の二重結合を有する溶剤可溶性多官能ビニル化合物共重合体とを均一混合した後に、連続的に重合反応器に供給する連続塊状重合法によって得られる多分岐型超高分子量成分と線状成分の混合物からなるスチレン系樹脂組成物の製造方法、この製造方法によって得られるスチレン系樹脂組成物に関する。   In the present invention, an ethylenically unsaturated monomer containing styrene and a solvent-soluble polyfunctional vinyl compound copolymer having a plurality of double bonds in one molecule are uniformly mixed and then continuously supplied to a polymerization reactor. The present invention relates to a method for producing a styrene resin composition comprising a mixture of a hyperbranched ultrahigh molecular weight component and a linear component obtained by a bulk polymerization method, and a styrene resin composition obtained by this production method.

スチレン系樹脂は、安価で、透明性、成形性、剛性に優れた樹脂として、家庭用品、電気製品等の成形材料に広く用いられている。これらの成形品は、射出成形、或いはシートからの真空、圧空成形、さらには押出し機から樹脂をパリソンと呼ばれる筒状に押出し金型に挟み込んだ後に内部から圧縮エアー等を吹き込むブロー成形等の手段で得られる。また軽量および断熱性能を有する成形体を得るためには発泡成形等の技術も用いられる。これらの成形方法において、特に溶融延伸過程を有するシート成形、ブロー成形、発泡成形等の成形方法には、溶融時の歪み硬化性の高い素材の要求が高い。   Styrenic resins are widely used as molding materials for household goods, electrical products and the like as inexpensive resins with excellent transparency, moldability, and rigidity. These molded products are injection molding or vacuum or pressure molding from a sheet, and further blow molding in which compressed air is blown from the inside after a resin is sandwiched in an extrusion mold called a parison from an extruder. It is obtained by. Moreover, in order to obtain the molded object which has a light weight and heat insulation performance, techniques, such as foam molding, are also used. In these molding methods, there is a high demand for a material having high strain-hardening properties at the time of melting, particularly for molding methods such as sheet molding, blow molding, and foam molding having a melt-drawing process.

上記の成形方法における歪み硬化性の低い樹脂材料を用いた場合の問題点としては、シート成形では食品容器等の深絞り成形品に二次加工する際に、加熱溶融に伴うダレ現象で製品に厚みムラが生じやすく、また延伸性の不足による製品の割れ、破れ等が生じやくなること、ブロー成形ではパリソン形成時に歪み硬化性が低いとドローダウンを生じ成形が困難となる上、厚みムラによる製品強度のバラツキが大きいこと、さらに発泡成形では断熱性能を高めるため、発泡体の気泡を微小化、独立化させることが困難となる等の現象があげられる。   When using a resin material with low strain-hardening properties in the above molding method, the problem with sheet molding is that when the secondary processing is performed on a deep-drawn molded product such as a food container, the sagging phenomenon associated with heat melting causes the product to Thickness unevenness is likely to occur, and the product is likely to be cracked or torn due to insufficient stretchability. In blow molding, if the strain hardening is low at the time of parison formation, drawdown occurs and molding becomes difficult. For example, there is a large variation in product strength, and in addition, it is difficult to make the bubbles in the foam smaller and independent in order to enhance the heat insulation performance in foam molding.

溶融状態での歪み硬化性に代表される溶融粘弾性を制御する手段としては、スチレン系樹脂組成物に超高分子量成分を含有させる方法が有効であることが知られている。   As a means for controlling melt viscoelasticity typified by strain hardening in a molten state, it is known that a method of incorporating an ultrahigh molecular weight component into a styrene resin composition is effective.

超高分子量成分を含有する樹脂組成物を得る方法としては、例えば特許文献1に記載された分子量が200万以上の成分を一定範囲内で含有するスチレン系重合体組成物がある。この組成物を得るためには、重合の前段において低温下で重合を進行させる方法やアニオン重合等で別途重合した超高分子量重合体をブレンドする方法が提案されているが、この方法では、生産性に劣ったり、別途重合した成分をブレンドする場合はコスト高となる等の問題点があった。   As a method for obtaining a resin composition containing an ultrahigh molecular weight component, for example, there is a styrene polymer composition containing a component having a molecular weight of 2 million or more described in Patent Document 1 within a certain range. In order to obtain this composition, a method in which polymerization is allowed to proceed at a low temperature before polymerization or a method in which an ultrahigh molecular weight polymer separately polymerized by anionic polymerization or the like is blended have been proposed. There are problems such as inferior properties and high costs when blending separately polymerized components.

上記の問題を回避するために、例えば特許文献2に記載された多官能ビニル化合物単位を含有する100万以上の分子量成分を一定範囲内で含有するスチレン系重合体などがあり、分岐型超高分子量成分を含有させるために芳香族ジビニル化合物に代表される芳香族多官能ビニル化合物を極少量、ビニル系単量体に添加し重合することが提案されている。しかし、この手段を連続塊状重合に応用すると長期の反応を継続した場合、重合反応器の壁面に存在する境膜と呼ばれる流動が停止している領域においてゲル化が進行するという問題点があり、上記を避けようとすると多官能芳香族ビニル化合物の添加量に制限を受け、望ましい超高分子量成分量を生成させることが困難であった。   In order to avoid the above problem, for example, there is a styrenic polymer containing a molecular weight component of 1 million or more containing a polyfunctional vinyl compound unit described in Patent Document 2 within a certain range. In order to contain a molecular weight component, it has been proposed to polymerize by adding a very small amount of an aromatic polyfunctional vinyl compound typified by an aromatic divinyl compound to a vinyl monomer. However, when this means is applied to continuous bulk polymerization, when a long-term reaction is continued, there is a problem that gelation proceeds in a region where the flow called a boundary film existing on the wall of the polymerization reactor is stopped, When trying to avoid the above, the amount of the polyfunctional aromatic vinyl compound was limited, and it was difficult to produce a desirable amount of ultrahigh molecular weight component.

さらに、特許文献3には多官能重合開始剤を用いてスチレン系共重合体に分岐構造を有する超高分子量成分を含有させる方法が開示されているが、この方法ではスチレン系重合体全体が高分子量化しやすく、それを避けるために多量の連鎖移動剤を使用すると効果が不十分となる。また、特許文献4にも多官能芳香族ビニル化合物と連鎖移動剤を併用することでスチレン系樹脂の重合度を制御する方法が開示されているが、多官能開始剤を用いた場合と同様に効果を相殺する上に、連鎖移動剤としてメルカプタン類を用いると特有の臭気の問題点から使用範囲が制限されるという問題点が有った。   Furthermore, Patent Document 3 discloses a method in which an ultrahigh molecular weight component having a branched structure is contained in a styrene copolymer using a polyfunctional polymerization initiator. However, in this method, the entire styrene polymer is expensive. The molecular weight tends to increase, and if a large amount of chain transfer agent is used to avoid this, the effect becomes insufficient. Patent Document 4 discloses a method for controlling the degree of polymerization of a styrenic resin by using a polyfunctional aromatic vinyl compound and a chain transfer agent in the same manner as in the case of using a polyfunctional initiator. In addition to offsetting the effect, the use of mercaptans as chain transfer agents has a problem that the range of use is limited due to the problem of specific odor.

特公昭62−61231号公報Japanese Examined Patent Publication No. 62-61231 特開平2−170806号公報JP-A-2-170806 特開平8−59721号公報JP-A-8-59721 特開2002−211413号公報JP 2002-211141 A

本発明の目的は、シート成形、発泡成形、ブロー成形等の成形加工時に溶融延伸過程を有する加工方法に最適な溶融特性を備えた、ゲル状物がなく、多分岐型超高分子量成分と線状成分とを含有するスチレン系樹脂組成物と、それを効率よく製造する方法を提供することである。   The object of the present invention is to provide a gel-like, multi-branched ultra-high molecular weight component and a line having optimum melting characteristics for a processing method having a melt-drawing process at the time of molding such as sheet molding, foam molding and blow molding. It is providing the styrene resin composition containing a gaseous component, and the method of manufacturing it efficiently.

すなわち本発明は、超高分子量多分岐型スチレン系共重合体と線状重合体とを含有するスチレン系樹脂組成物を製造する方法であって、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、重量基準で50ppm〜5000ppm添加し、均一混合した後に、連続的に配置された重合反応器に供給して重合反応を進行させ、該溶剤可溶性多官能ビニル化合物共重合体と該ビニル系モノマーが重合して生じる超高分子量多分岐型共重合体と、該ビニル系モノマーが重合して生じる線状重合体とを含むスチレン系樹脂組成物を得ることを特徴とするスチレン系樹脂組成物の製造方法である。   That is, the present invention is a method for producing a styrene resin composition containing an ultra-high molecular weight multi-branched styrene copolymer and a linear polymer, and is averaged over a vinyl monomer essentially containing styrene. The polymerization reaction is continuously arranged after adding 50 ppm to 5000 ppm of solvent-soluble polyfunctional vinyl compound copolymer having two or more vinyl groups in one molecule and having a branched structure, and mixing them uniformly. To the vessel, the polymerization reaction proceeds, and the solvent-soluble polyfunctional vinyl compound copolymer and the vinyl monomer are polymerized, and the ultra high molecular weight multi-branched copolymer and the vinyl monomer are polymerized. A method for producing a styrenic resin composition comprising obtaining a styrenic resin composition containing a linear polymer formed.

上記製造方法において、溶剤可溶性多官能ビニル化合物共重合体としては、ジビニル化合物及びモノビニル化合物を必須とするモノビニル化合物を含む単量体を重合して得られ、下記式(a1)で表されるジビニル化合物由来のビニル基を構造単位中にモル分率として0.05〜0.50の範囲で含有し、その重量平均分子量における慣性半径(nm)と上記モル分率の比が1〜100の範囲内にあるものが好ましく挙げられる。また、式(a1)で表されるビニル基の他のビニル基を含めて、ビニル基を構造単位中に合計のモル分率として0.05〜0.50の範囲で含有し、その重量平均分子量における慣性半径(nm)と上記モル分率の比が1〜100の範囲内にあるものが好ましく挙げられる。

Figure 2011225866


(式中、R1はジビニル芳香族化合物に由来する芳香族炭化水素基を示す。) In the above production method, the solvent-soluble polyfunctional vinyl compound copolymer is obtained by polymerizing a monomer containing a monovinyl compound essentially comprising a divinyl compound and a monovinyl compound, and represented by the following formula (a1). A compound-derived vinyl group is contained in the structural unit in the range of 0.05 to 0.50 as a molar fraction, and the ratio of the inertial radius (nm) in the weight average molecular weight to the molar fraction is in the range of 1 to 100. Those within are preferably mentioned. Further, including other vinyl groups of the vinyl group represented by the formula (a1), the vinyl group is contained in the structural unit in the range of 0.05 to 0.50 as a total molar fraction, and its weight average Preferred are those having a ratio of the radius of inertia (nm) in molecular weight to the molar fraction in the range of 1-100.
Figure 2011225866


(In the formula, R 1 represents an aromatic hydrocarbon group derived from a divinyl aromatic compound.)

また、本発明は上記の製造方法によって得られる重量平均分子量が100万以上の多分岐状スチレン系重合体2.0〜20.0wt%と、重量平均分子量が10万〜50万の線状スチレン系重合体80.0〜98.0wt%とを含有する重量平均分子量が20万〜80万であることを特徴とする多分岐型超高分子量体を含有するスチレン系樹脂組成物である。好ましくは、上記の製造方法によって得られるスチレン系樹脂組成物は、重量平均分子量が100万以上の多分岐状スチレン系重合体3.5〜10.0wt%と、重量平均分子量が15万〜35万の線状スチレン系重合体90.0〜96.5wt%とを含有し、全体の重量平均分子量が25万〜70万であるものである。   In addition, the present invention provides a multi-branched styrene polymer having a weight average molecular weight of 1 million or more obtained by the above production method of 2.0 to 20.0 wt% and a linear styrene having a weight average molecular weight of 100,000 to 500,000. A styrene-based resin composition containing a multi-branched ultra-high molecular weight polymer characterized in that a weight average molecular weight containing a polymer of 80.0 to 98.0 wt% is 200,000 to 800,000. Preferably, the styrenic resin composition obtained by the above production method has a weight average molecular weight of 3.5 to 10.0 wt% of a multi-branched styrene polymer having a weight average molecular weight of 1 million or more, and a weight average molecular weight of 150,000 to 35. It contains 100.0 to 96.5 wt% of linear styrene polymer, and the total weight average molecular weight is 250,000 to 700,000.

本発明によれば、連続的に重合を進行させるスチレン系樹脂の製造方法において、分岐状の多官能ビニル化合物共重合体を使用することで、長期間の連続生産に適用してもゲル状の生成物を含有しないスチレン系樹脂組成物を生産することができる。さらに、本発明により得られる多分岐型超高分子量体と線状重合体からなるスチレン系樹脂組成物は、歪み硬化性に代表される溶融特性に優れ、シート成形においては二次加工時のダレ、厚みむら、ゲル状物による破れ、外観の悪化を抑制する。またブロー成形時のドローダウン、発泡成形時の破泡、気泡肥大化、連続気泡生成等の各種問題点を解消することができる。   According to the present invention, by using a branched polyfunctional vinyl compound copolymer in a method for producing a styrenic resin in which polymerization proceeds continuously, the gel-like resin can be applied to continuous production over a long period of time. A styrenic resin composition containing no product can be produced. Furthermore, the styrenic resin composition comprising a multi-branched ultrahigh molecular weight material and a linear polymer obtained by the present invention is excellent in melting characteristics typified by strain-hardening properties, and in sheet molding, sagging during secondary processing. , Thickness unevenness, tearing due to gel, and deterioration of appearance are suppressed. In addition, various problems such as drawdown during blow molding, bubble breakage during foam molding, bubble enlargement, and continuous cell generation can be solved.

以下、本発明を詳細に説明する。本発明に用いる重合方法としては、スチレンを含むビニル系モノマーと溶剤可溶性多官能ビニル化合物共重合体と、必要に応じて溶剤、重合触媒、連鎖移動剤等を均一混合した後に、直列および/または並列に配列された1個以上の反応器と未反応単量体等を除去する揮発分除去工程を備えた設備に連続的に単量体類を送入し、段階的に重合を進行させる所謂、連続塊状重合法が好適に用いられる。反応器の様式としては、完全混合型の槽型反応器、プラグフロー性を有する塔型反応器、重合を進行させながら一部の重合液を抜き出すループ型の反応器等が例示される。これら反応器の配列の順序に特に制限は無いが、連続生産においてゲル状物の生成を抑制するためには、溶剤可溶性多官能ビニル化合物共重合体が未反応の状態で、反応器壁面の境膜中に高濃度に滞留する状態を発現させないことが重要であり、第一の反応器として完全混合型の槽型反応器を選択することが好ましい。   Hereinafter, the present invention will be described in detail. As a polymerization method used in the present invention, a vinyl monomer containing styrene and a solvent-soluble polyfunctional vinyl compound copolymer and, if necessary, a solvent, a polymerization catalyst, a chain transfer agent and the like are mixed uniformly, and then in series and / or So-called one or more reactors arranged in parallel and equipment equipped with a volatile matter removing process for removing unreacted monomers, etc., are continuously fed monomers so that polymerization proceeds in stages. A continuous bulk polymerization method is preferably used. Examples of the reactor type include a fully mixed tank reactor, a column reactor having plug flow properties, and a loop reactor in which a part of the polymerization liquid is withdrawn while the polymerization proceeds. There are no particular restrictions on the order of arrangement of these reactors, but in order to suppress the formation of gel-like substances in continuous production, the solvent-soluble polyfunctional vinyl compound copolymer is in an unreacted state and the boundary of the reactor wall surface. It is important not to develop a state of staying in the membrane at a high concentration, and it is preferable to select a fully mixed tank reactor as the first reactor.

本発明においては、溶剤可溶性多官能ビニル化合物共重合体は、重合溶剤等に溶解した状態で、必要に応じて上記の反応器の途中から添加することもできる。   In the present invention, the solvent-soluble polyfunctional vinyl compound copolymer can be added in the middle of the reactor as necessary in a state dissolved in a polymerization solvent or the like.

本発明に用いるスチレンを必須とするビニル系モノマー(以下、スチレン系モノマーともいう)は、スチレンが100%であってもよく、スチレンと他のビニル系モノマーを含む混合物であってもよい。他のビニル系モノマーとしては、スチレンと共重合可能なオレフィン性二重結合を有するものであればよく、パラメチルスチレン等の芳香族ビニル系モノマー類、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β−エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。これらの他のビニル系モノマーは1種もしくは2種以上を併用して使用することもできる。そして、スチレンと他のビニル系モノマーの割合は、スチレン50〜100モル%、他のビニル系モノマー0〜50モル%であることが、スチレン系樹脂組成物の特性を生かすために好ましい。   100% of styrene may be sufficient as the vinyl-type monomer (henceforth a styrene-type monomer) which uses styrene for this invention, and the mixture containing styrene and another vinyl-type monomer may be sufficient as it. Other vinyl monomers may be those having an olefinic double bond copolymerizable with styrene, aromatic vinyl monomers such as paramethylstyrene, acrylic acid monomers such as acrylic acid and methacrylic acid, Vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, acrylic monomers such as butyl acrylate and methyl methacrylate, and α, β-ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid, phenylmaleimide, cyclohexylmaleimide, etc. Examples include imide monomers. These other vinyl monomers can be used alone or in combination of two or more. And it is preferable in order to make use of the characteristic of a styrene resin composition that the ratio of styrene and another vinyl monomer is 50-100 mol% of styrene, and 0-50 mol% of other vinyl monomers.

本発明に用いる溶剤可溶性多官能ビニル化合物共重合体(以下、多官能ビニル化合物共重合体ともいう)は、スチレン系モノマーと共重合化されることで多岐に分岐された超高分子量のスチレン系樹脂を与えるものである。   The solvent-soluble polyfunctional vinyl compound copolymer (hereinafter also referred to as polyfunctional vinyl compound copolymer) used in the present invention is an ultra-high molecular weight styrene-based polymer that is divergently branched by being copolymerized with a styrene-based monomer. It gives resin.

本発明に用いる多官能ビニル化合物共重合体は、特開2004−123873号公報、特開2005−213443号公報、WO2009/110453等に開示されている方法に準じて得ることができる。具体的には、ジビニル化合物とモノビニル化合物を必須とするモノビニル化合物から選ばれる少なくとも1種以上の化合物を使用し、共重合させて、式(a1)で示される反応性のペンダントビニル基を有する共重合体を得るものである。さらに、上記特許文献に記載されるように末端にビニル基以外の他の末端基が導入されたものを使用することもでき、特にフェノキシメタクリレート末端変性されたものは(a1)以外にも架橋点として作用することが可能となるため好ましい。この場合は、末端の不飽和結合も(a1)に含めたモル分率として取り扱う。   The polyfunctional vinyl compound copolymer used in the present invention can be obtained according to the methods disclosed in JP-A No. 2004-123873, JP-A No. 2005-213443, WO 2009/110453, and the like. Specifically, a copolymer having at least one reactive pendant vinyl group represented by the formula (a1) is copolymerized by using at least one compound selected from a divinyl compound and a monovinyl compound essentially comprising a monovinyl compound. A polymer is obtained. Furthermore, as described in the above-mentioned patent document, those having a terminal group other than a vinyl group introduced at the terminal can also be used. It is preferable because it can act as In this case, the terminal unsaturated bond is also handled as a mole fraction included in (a1).

ここで、モノビニル化合物としては、スチレン等のモノビニル芳香族化合物が100%であってもよく、これと共重合可能な他のビニル系モノマーを含む混合物であってもよい。他のビニル系モノマーとしては、上記したようなモノマーが挙げられる。モノビニル化合物は、モノビニル芳香族化合物を25〜100モル%含むことが好ましい。また、モノビニル芳香族化合物以外の単官能エチレン性不飽和結合含有化合物から選ばれるその他のモノビニル化合物を使用する場合は、全単量体の50モル%以下、好ましくは10モル%以下使用することが好ましい。   Here, the monovinyl compound may be 100% of a monovinyl aromatic compound such as styrene, or may be a mixture containing other vinyl monomers copolymerizable therewith. Examples of other vinyl monomers include the monomers described above. It is preferable that a monovinyl compound contains 25-100 mol% of monovinyl aromatic compounds. Moreover, when using other monovinyl compounds selected from monofunctional ethylenically unsaturated bond-containing compounds other than monovinyl aromatic compounds, they may be used in an amount of 50 mol% or less, preferably 10 mol% or less of the total monomers. preferable.

好ましいモノビニル化合物としては、スチレン、アルキルスチレン、フェニルスチレン等のモノビニル芳香族化合物が挙げられ、より好ましくはスチレン又はC1〜2のアルキルスチレンが挙げられる。ジビニル化合物としては、ジビニルベンゼン、ジビニルビフェニル等が好ましく挙げられる。   Preferable monovinyl compounds include monovinyl aromatic compounds such as styrene, alkyl styrene, and phenyl styrene, and more preferably styrene or C1-2 alkyl styrene. Preferred examples of the divinyl compound include divinylbenzene and divinylbiphenyl.

多官能ビニル化合物共重合体の製造方法としては、例えば、ジビニル芳香族化合物、モノビニル芳香族化合物及び他のモノビニル化合物から選ばれる2種以上の化合物を、ルイス酸触媒、エステル化合物から選ばれる助触媒の存在下、カチオン共重合させることにより得ることができる。   As a method for producing a polyfunctional vinyl compound copolymer, for example, two or more kinds of compounds selected from divinyl aromatic compounds, monovinyl aromatic compounds and other monovinyl compounds are used as promoters selected from Lewis acid catalysts and ester compounds. Can be obtained by cationic copolymerization in the presence of.

ジビニル化合物とモノビニル化合物の使用量は、本発明で使用される多官能ビニル化合物共重合体の組成を与えるように決められるが、ジビニル化合物を、好ましくは全単量体の10〜50モル%、より好ましくは30〜50モル%使用する。モノビニル化合物は好ましくは全単量体の90〜50モル%、より好ましくは70〜50モル%使用する。ここで、2−フェノキシエチルメタクリレートのようなカチオン重合においては末端変性剤として作用するものは単量体としては計算しない。   The amount of divinyl compound and monovinyl compound used is determined so as to give the composition of the polyfunctional vinyl compound copolymer used in the present invention. The divinyl compound is preferably 10 to 50 mol% of the total monomers, More preferably, 30-50 mol% is used. The monovinyl compound is preferably used in an amount of 90 to 50 mol%, more preferably 70 to 50 mol% of the total monomers. Here, in cationic polymerization like 2-phenoxyethyl methacrylate, what acts as a terminal modifier is not calculated as a monomer.

多官能ビニル化合物共重合体の製造で用いられるルイス酸触媒としては、金属イオン(酸)と配位子(塩基)からなる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。分子量及び分子量分布の制御及び重合活性の観点から、三フッ化ホウ素のエーテル(ジエチルエーテル、ジメチルエーテル等)錯体が最も好ましく使用される。ルイス酸触媒は単量体化合物1モルに対して、0.001〜10モルの範囲内で用いるが、より好ましくは0.001〜0.01モルである。ルイス酸触媒の使用量が過大であると、重合速度が大きくなりすぎるため、分子量分布の制御が困難となるので好ましくない。   The Lewis acid catalyst used in the production of the polyfunctional vinyl compound copolymer is particularly limited as long as it is a compound composed of a metal ion (acid) and a ligand (base) and can receive an electron pair. Can be used without From the viewpoints of control of molecular weight and molecular weight distribution and polymerization activity, boron trifluoride ether (diethyl ether, dimethyl ether, etc.) complexes are most preferably used. The Lewis acid catalyst is used in the range of 0.001 to 10 mol, more preferably 0.001 to 0.01 mol, per 1 mol of the monomer compound. An excessive amount of the Lewis acid catalyst is not preferable because the polymerization rate becomes too high and it becomes difficult to control the molecular weight distribution.

助触媒としてはエステル化合物から選ばれる1種以上が挙げられる。その中で、重合速度及び共重合体の分子量分布制御の観点から炭素数4〜30のエステル化合物が好適に使用される。入手の容易さの観点から、酢酸エチル、酢酸プロピル及び酢酸ブチルが好適に使用される。助触媒は単量体化合物1モルに対して0.001〜10モルの範囲内で使用するが、より好ましくは0.01〜1モルである。助触媒の使用量が過大であると、重合速度が減少し、共重合体の収率が低下する。一方、助触媒の使用量が過少であると、重合反応の選択性が低下し、分子量分布の増大、ゲルの生成等が生じる他、重合反応の制御が困難となる。   Examples of the cocatalyst include one or more selected from ester compounds. Among them, an ester compound having 4 to 30 carbon atoms is preferably used from the viewpoint of controlling the polymerization rate and the molecular weight distribution of the copolymer. From the viewpoint of availability, ethyl acetate, propyl acetate and butyl acetate are preferably used. The cocatalyst is used in the range of 0.001 to 10 mol, more preferably 0.01 to 1 mol, relative to 1 mol of the monomer compound. When the amount of the cocatalyst used is excessive, the polymerization rate decreases and the yield of the copolymer decreases. On the other hand, when the amount of the cocatalyst used is too small, the selectivity of the polymerization reaction is lowered, the molecular weight distribution is increased, the gel is generated, and the polymerization reaction is difficult to control.

本発明で使用する多官能ビニル化合物共重合体は上記のような製造方法で得ることができるが、単量体として使用するジビニル化合物のビニル基の一部は重合させずに残すことが必要である。そして、少なくとも平均して1分子中に2以上、好ましくは3以上のビニル基が存在するようにする。このビニル基は主として上記式(a1)で表わされる構造単位として存在する。そして、ビニル基の一部は重合させずに残すことにより架橋反応を抑制し、溶剤可溶性を与えることができる。ここで、溶剤可溶性とは、トルエン、キシレン、THF、ジクロロエタン又はクロロホルムに可溶であることをいい、具体的にはこれらの溶媒100gに、25℃において5g以上が溶解し、ゲルが発生しないことをいう。一方、ジビニル化合物の一部は2つビニル基が反応して架橋又は分岐することが必要であり、これにより分岐構造を有する共重合体とすることができる。このように、ジビニル化合物の一部については2つビニル基の一つは反応させ、一つは重合させずに残し、他の一部については2つビニル基を反応させることにより本発明で使用する多官能ビニル化合物共重合体を得ることができる。このような多官能ビニル化合物共重合体を得る重合方法は、上記のように公知であり、上記のようにして製造することができる。   The polyfunctional vinyl compound copolymer used in the present invention can be obtained by the production method as described above, but it is necessary to leave a part of the vinyl group of the divinyl compound used as a monomer without being polymerized. is there. Then, on average, 2 or more, preferably 3 or more vinyl groups are present in one molecule. This vinyl group exists mainly as a structural unit represented by the above formula (a1). Then, by leaving a part of the vinyl group without being polymerized, the crosslinking reaction can be suppressed and solvent solubility can be imparted. Here, solvent-soluble means that it is soluble in toluene, xylene, THF, dichloroethane, or chloroform. Specifically, in 100 g of these solvents, 5 g or more dissolves at 25 ° C., and no gel is generated. Say. On the other hand, a part of the divinyl compound needs to be crosslinked or branched by the reaction of two vinyl groups, whereby a copolymer having a branched structure can be obtained. Thus, for some of the divinyl compounds, one of the two vinyl groups is reacted, one is left unpolymerized and the other is used in the present invention by reacting two vinyl groups. A polyfunctional vinyl compound copolymer can be obtained. The polymerization method for obtaining such a polyfunctional vinyl compound copolymer is known as described above, and can be produced as described above.

多官能ビニル化合物共重合体の重量平均分子量(Mw)は、1,000〜100,000であることが好ましく、5,000〜70,000がより好ましい。1000より小さい場合は、芳香族ジビニル化合物を用いた場合と同様に連続重合におけるゲル化の進行抑制効果が小さくなり、連続重合において十分な効果を得られないため好ましくない。   The polyfunctional vinyl compound copolymer preferably has a weight average molecular weight (Mw) of 1,000 to 100,000, more preferably 5,000 to 70,000. If it is less than 1000, the effect of inhibiting the progress of gelation in continuous polymerization is reduced as in the case of using an aromatic divinyl compound, and a sufficient effect cannot be obtained in continuous polymerization.

多官能ビニル化合物共重合体に導入されるジビニル化合物由来のビニル基を含有する上記式(a1)で表わされる構造単位を有するが、この構造単位(a1)のモル分率は、0.05〜0.50であることがよく、好ましくは0.1〜0.3である。0.05モルより少ない場合は、高分子量の多分岐状ポリスチレンが得られにくいため好ましくない。一方、0.50モルを超える場合は、多分岐状ポリスチレンの分子量が過度に増大し、ゲル化が起こりやすくなるため好ましくない。   Although having the structural unit represented by the said Formula (a1) containing the vinyl group derived from the divinyl compound introduce | transduced into a polyfunctional vinyl compound copolymer, the molar fraction of this structural unit (a1) is 0.05- It is good that it is 0.50, preferably 0.1-0.3. When the amount is less than 0.05 mol, it is not preferable because it is difficult to obtain a high molecular weight hyperbranched polystyrene. On the other hand, when the amount exceeds 0.50 mol, the molecular weight of the hyperbranched polystyrene is excessively increased and gelation tends to occur, which is not preferable.

また、溶剤可溶性多官能ビニル化合物共重合体は、その慣性半径(nm)と上記構造単位(a1)のモル分率との比が1〜100の範囲にあることが好ましい。歪み硬化性を付与するための分岐型超高分子量成分をゲル化を伴わずに調整するためには、5〜70の範囲が更に好ましい。上記の比が100を超える場合は、ゲル化は進行しないが、高分子量の多分岐状ポリスチレンが得られにくいため好ましくない。一方、1より小さい場合は、多分岐状ポリスチレンの分子量が過度に増大し、ゲル化が起こりやすくなるため好ましくない。ここで、慣性半径は、実施例に記載した方法により測定される値である。   The solvent-soluble polyfunctional vinyl compound copolymer preferably has a ratio of the radius of inertia (nm) to the molar fraction of the structural unit (a1) in the range of 1 to 100. In order to adjust the branched ultrahigh molecular weight component for imparting strain hardening without gelation, the range of 5 to 70 is more preferable. When the above ratio exceeds 100, gelation does not proceed, but it is not preferable because a high molecular weight multi-branched polystyrene is difficult to obtain. On the other hand, when it is smaller than 1, the molecular weight of the hyperbranched polystyrene is excessively increased, and gelation tends to occur, which is not preferable. Here, the inertial radius is a value measured by the method described in the examples.

ここで定義した慣性半径と二重結合の含有量を表わす指標である構造単位(a1)のモル分率の比は、分岐型超高分子量成分を構成する際に、核となる多官能化合物が重合反応溶液中でどのような広がりの中に、どれだけの反応点を有しているかを表す指標といえる。この比が小さ過ぎると、反応点が近傍にあり、ゲル化を引き起こしやすくなり、またこの比が大き過ぎると分岐型成分の高分子量化が困難となる。このような意味で、構造単位(a1)の他に重合性二重結合の含有基が存在する場合は、二重結合の含有基(ビニル基)の合計がモル分率として0.05〜0.50の範囲で、慣性半径(nm)と上記モル分率の比が1〜100の範囲内にあることが好ましい。   The ratio of the molar fraction of the structural unit (a1), which is an index representing the content of the double bond and the radius of inertia defined here, is that the polyfunctional compound serving as a nucleus when the branched ultrahigh molecular weight component is formed. It can be said that it is an index showing how many reaction points are present in what extent in the polymerization reaction solution. If this ratio is too small, the reaction point is in the vicinity and gelation is likely to occur, and if this ratio is too large, it is difficult to increase the molecular weight of the branched component. In this sense, when a polymerizable double bond-containing group is present in addition to the structural unit (a1), the total of the double bond-containing groups (vinyl group) is 0.05 to 0 as a molar fraction. In the range of .50, the ratio of the radius of inertia (nm) to the molar fraction is preferably in the range of 1 to 100.

スチレン系単量体に対する多官能ビニル化合物共重合体の配合率としては、重量基準で50ppm〜5000ppmが好ましく、100ppm〜3000ppmがより好ましい。多官能ビニル化合物共重合体の配合率が50ppmより少ない場合は、本発明の十分な効果が得られにくいため好ましくない。一方、5000ppmを超える場合は、ゲルを生じる可能性がある。   As a compounding ratio of the polyfunctional vinyl compound copolymer with respect to a styrene-type monomer, 50 ppm-5000 ppm are preferable on a weight basis, and 100 ppm-3000 ppm are more preferable. When the blending ratio of the polyfunctional vinyl compound copolymer is less than 50 ppm, it is difficult to obtain a sufficient effect of the present invention, which is not preferable. On the other hand, when it exceeds 5000 ppm, a gel may be produced.

前記多官能ビニル化合物共重合体とスチレン系単量体とを重合させることにより、多官能ビニル化合物共重合体とスチレン系単量体との共重合体である多分岐型共重合体と、スチレン系単量体だけから生成する線状重合体との混合物である本発明のスチレン系樹脂組成物が得られる。スチレン系単量体として2種類以上の単量体を用いた場合は、線状重合体は共重合体となる。   By polymerizing the polyfunctional vinyl compound copolymer and a styrene monomer, a multi-branched copolymer that is a copolymer of the polyfunctional vinyl compound copolymer and the styrene monomer, and styrene The styrenic resin composition of the present invention, which is a mixture with a linear polymer produced only from a monomer, is obtained. When two or more types of monomers are used as the styrenic monomer, the linear polymer becomes a copolymer.

本発明により得られたスチレン系樹脂組成物のMwは、20万〜80万であることが好ましい。25万〜70万であることがより好ましい。Mwが20万未満では成形体の衝撃強度が不十分であり、Mwが80万よりも大きいと粘度が増大し、成形性が不十分になる。   The Mw of the styrenic resin composition obtained by the present invention is preferably 200,000 to 800,000. More preferably, it is 250,000 to 700,000. When the Mw is less than 200,000, the impact strength of the molded product is insufficient, and when the Mw is greater than 800,000, the viscosity increases and the moldability becomes insufficient.

上記のようなスチレン系樹脂組成物中は、多分岐型共重合体と線状重合体を含むが、上記のようなMwを示すスチレン系樹脂組成物とすることにより、多分岐型共重合体はMwが100万以上の超高分子量となり、線状重合体は10万〜50万となる。そして、スチレン系樹脂組成物全体としてのMwは、上記範囲となる。そして、Mwが100万以上の多分岐状スチレン系重合体とMwが10万〜50万の線状スチレン系重合体の割合は2.0:98.0〜20.0:80.0であることが好ましい。これらの割合は、スチレン系単量体に対する多官能ビニル芳香族共重合体の配合割合や重合条件を調整することにより制御可能である。また、重量平均分子量が100万以上の多分岐状スチレン系重合体3.5〜10.0wt%と、重量平均分子量が15万〜35万の線状スチレン系重合体90.0〜96.5wt%とを含有することがより好ましい。   The styrenic resin composition as described above includes a multibranched copolymer and a linear polymer. By using a styrenic resin composition exhibiting Mw as described above, a multibranched copolymer is obtained. Mw has an ultra high molecular weight of 1 million or more, and the linear polymer is 100,000 to 500,000. And Mw as the whole styrene-type resin composition becomes the said range. The ratio of the multi-branched styrene polymer having Mw of 1 million or more and the linear styrene polymer having Mw of 100,000 to 500,000 is 2.0: 98.0 to 20.0: 80.0. It is preferable. These ratios can be controlled by adjusting the blending ratio of the polyfunctional vinyl aromatic copolymer to the styrene monomer and the polymerization conditions. Moreover, 3.5-10.0 wt% of multi-branched styrene polymers having a weight average molecular weight of 1 million or more, and 90.0-96.5 wt of linear styrene polymers having a weight average molecular weight of 150,000-350,000. % Is more preferable.

重合反応の制御の観点から、必要に応じて重合溶剤、有機過酸化物等の重合開始剤や脂肪族メルカプタン等の連鎖移動剤を使用できる。   From the viewpoint of controlling the polymerization reaction, a polymerization initiator such as a polymerization solvent or an organic peroxide or a chain transfer agent such as an aliphatic mercaptan can be used as necessary.

重合溶剤は重合反応での反応物の粘性を低下させるために、反応系に有機溶剤を添加してもよく、その有機溶剤は、トルエン、エチルベンゼン、キシレン、アセトニトリル、ベンゼン、クロロベンゼン、ジクロロベンゼン、アニソール、シアノベンゼン、ジメチルフォルムアミド、N,N−ジメチルアセトアミド、メチルエチルケトン等が挙げられる。   In order to lower the viscosity of the reaction product in the polymerization reaction, an organic solvent may be added to the reaction system, and the organic solvent is toluene, ethylbenzene, xylene, acetonitrile, benzene, chlorobenzene, dichlorobenzene, anisole. , Cyanobenzene, dimethylformamide, N, N-dimethylacetamide, methyl ethyl ketone and the like.

特に多官能ビニル化合物共重合体の添加量を多くしたい場合には、ゲル化を抑制する観点からも有機溶剤を使用することが好ましい。これにより、先に示した多官能ビニル化合物共重合体の添加量を飛躍的に増量させることができ、ゲルが生じにくい。   In particular, when it is desired to increase the amount of the polyfunctional vinyl compound copolymer, it is preferable to use an organic solvent from the viewpoint of suppressing gelation. Thereby, the addition amount of the polyfunctional vinyl compound copolymer shown previously can be increased dramatically, and a gel is hardly generated.

有機溶剤の使用量は、特に限定されるものではないが、ゲル化を制御するという観点から、通常、単量体成分の合計量100重量部に対して、1〜50重量部であることが好ましく、5〜30重量部の範囲内であることがより好ましい。50重量部を超える場合は、生産性が著しく低下したり、鎖状スチレン系樹脂の分子量が過度に低下するため好ましくない。   The amount of the organic solvent used is not particularly limited, but from the viewpoint of controlling gelation, it is usually 1 to 50 parts by weight with respect to 100 parts by weight of the total amount of monomer components. Preferably, it is in the range of 5 to 30 parts by weight. When the amount exceeds 50 parts by weight, productivity is remarkably lowered, and the molecular weight of the chain styrene resin is excessively lowered, which is not preferable.

重合開始剤としては、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(4,4−ジ−ブチルパーオキシシクロヘキシル)プロパン等のパーオキシケタール類、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、ジ−t−ヘキシルパーオキサイド等のジアルキルパーオキサイド類、ベンゾイルパーオキサイド、ジシナモイルパーオキサイド等のジアシルパーオキサイド類、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシイシプロピルモノカーボネート等のパーオキシエステル類、N,N'−アゾビスイソブチルニトリル、N,N'−アゾビス(シクロヘキサン−1−カルボニトリル)、N,N'−アゾビス(2−メチルブチロニトリル)、N,N'−アゾビス(2,4−ジメチルバレロニトリル)、N,N'−アゾビス[2−(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。   As the polymerization initiator, a radical polymerization initiator is preferable. For example, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, 2,2- Peroxyketals such as bis (4,4-di-butylperoxycyclohexyl) propane, hydroperoxides such as cumene hydroperoxide, t-butyl hydroperoxide, di-t-butyl peroxide, dicumylper Dialkyl peroxides such as oxide, di-t-hexyl peroxide, diacyl peroxides such as benzoyl peroxide, disinamoyl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxyisophthalate, t -Butylperoxy isopropyl mono carbonate Peroxyesters such as N, N′-azobisisobutylnitrile, N, N′-azobis (cyclohexane-1-carbonitrile), N, N′-azobis (2-methylbutyronitrile), N, N '-Azobis (2,4-dimethylvaleronitrile), N, N'-azobis [2- (hydroxymethyl) propionitrile] and the like may be used, and these may be used alone or in combination of two or more. it can.

連鎖移動剤はスチレン系樹脂組成物の分子量が過度に大きくなりすぎないように添加するもので、連鎖移動基を1つ有する単官能連鎖移動剤でも連鎖移動剤を複数有する多官能連鎖移動剤を使用できる。単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類等が挙げられる。   The chain transfer agent is added so that the molecular weight of the styrenic resin composition does not become excessively large. A monofunctional chain transfer agent having one chain transfer group or a polyfunctional chain transfer agent having a plurality of chain transfer agents. Can be used. Examples of the monofunctional chain transfer agent include alkyl mercaptans and thioglycolic acid esters.

多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。   Polyfunctional chain transfer agents such as ethylene glycol, neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, etc. are esterified with thioglycolic acid or 3-mercaptopropionic acid. The thing which was done is mentioned.

以下に実施例を用いて本発明を更に具体的に説明する。用いた測定方法は以下の通りである。   Hereinafter, the present invention will be described more specifically with reference to examples. The measurement method used is as follows.

(GPC測定法)
高速液体クロマトグラフィー(東ソー株式会社製HLC−8220GPC)、RI検出器、TSKgel GMHxl×2、溶媒THF、流速1.0ml/分、温度40℃にて標準ポリスチレン換算の平均分子量を測定した。得られたクロマトグラフを処理ソフトにて分割し、100万以上の重量平均分子量をもつピークを多分岐型共重合体の含有量とし、表1、2に記載した。尚、ピーク分割が不可能、もしくは不明瞭なものはその含有量を0として取り扱った。
(GPC measurement method)
The average molecular weight in terms of standard polystyrene was measured at high speed liquid chromatography (HLC-8220GPC manufactured by Tosoh Corporation), RI detector, TSKgel GMHxl × 2, solvent THF, flow rate 1.0 ml / min, and temperature 40 ° C. The obtained chromatograph was divided by the processing software, and the peak having a weight average molecular weight of 1 million or more was defined as the content of the multi-branched copolymer and listed in Tables 1 and 2. In the case where peak division was impossible or unclear, the content was treated as 0.

(二重結合定量法)
構造単位(a1)および末端変性剤由来の二重結合のモル分率は日本電子製JNM−LA600型核磁気共鳴分光装置を用い、13C−NMR及び1H−NMR分析により構造を決定した。溶媒としてクロロホルム−d1を使用し、テトラメチルシランの共鳴線を内部標準として使用した。
(Double bond quantitative method)
The molar fraction of the double bond derived from the structural unit (a1) and the terminal modifier was determined by 13C-NMR and 1H-NMR analysis using a JNM-LA600 nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as a solvent, and the tetramethylsilane resonance line was used as an internal standard.

(慣性半径)
試料を0.5%のTHF溶液に調整した後、メンブランフィルターにてろ過し、ろ液についてGPC多角度光散乱法を用いて測定を行った。さらに、試料を0.2%THF溶液に調整後1日放置した。その後、THFを用いて4種類の濃度(0.02、0.05、0.10、0.12wt%)の溶液に希釈し、これらの溶液を用いてdn/dc測定を行い、得られたdn/dc値から試料の慣性半径を算出した。
(Inertia radius)
The sample was adjusted to a 0.5% THF solution and then filtered through a membrane filter, and the filtrate was measured using the GPC multi-angle light scattering method. Further, the sample was adjusted to 0.2% THF solution and allowed to stand for 1 day. Thereafter, it was diluted to a solution having four kinds of concentrations (0.02, 0.05, 0.10, 0.12 wt%) using THF, and dn / dc measurement was performed using these solutions. The radius of inertia of the sample was calculated from the dn / dc value.

(ゲル状物の確認)
射出成形機を用いて180mm×180mm×3mmの平板を成形し、ゲル状物を含有する際に発生するゲート部分からの線状痕の有無を目視にて確認した。
(Confirmation of gel)
A flat plate of 180 mm × 180 mm × 3 mm was formed using an injection molding machine, and the presence or absence of linear traces from the gate portion generated when the gel-like material was contained was visually confirmed.

合成例1
(多官能ビニル化合物芳香族共重合体α)
ジビニジビニルベンゼン159.8g(40wt%)、エチルビニルベンゼン93.8g(5wt%)、スチレン223.2g(9wt%)、2−フェノキシエチルメタクリレート632.7g(46wt%)、トルエン1081gを3Lの反応器内に投入し、50℃で56.8gの三フッ化ホウ素のジエチルエーテル錯体を添加し、6時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル化合物共重合体αを340.8g(収率:71.5wt%)得た。この多官能ビニル芳香族共重合体αのMwは8000で、ジビニル芳香族化合物(a)由来のビニル基を含有する構造単位(a1)および末端の2−フェノキシエチルメタクリレート由来の二重結合を合わせたモル分率は0.20であった。また重量平均分子量における共重合体の慣性半径は6.4nmであった。
Synthesis example 1
(Polyfunctional vinyl compound aromatic copolymer α)
Divinylidivinylbenzene 159.8 g (40 wt%), ethyl vinyl benzene 93.8 g (5 wt%), styrene 223.2 g (9 wt%), 2-phenoxyethyl methacrylate 632.7 g (46 wt%), toluene 1081 g in 3 L The reactor was put into the reactor, 56.8 g of boron trifluoride diethyl ether complex was added at 50 ° C., and reacted for 6 hours. After stopping the polymerization solution with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. The obtained polymer was washed with methanol, filtered, dried and weighed to obtain 340.8 g of polyfunctional vinyl compound copolymer α (yield: 71.5 wt%). The polyfunctional vinyl aromatic copolymer α has an Mw of 8000, and combines the structural unit (a1) containing a vinyl group derived from the divinyl aromatic compound (a) and the double bond derived from the terminal 2-phenoxyethyl methacrylate. The molar fraction was 0.20. The inertia radius of the copolymer in terms of weight average molecular weight was 6.4 nm.

合成例2
(多官能ビニル化合物共重合体β)
ジビニルベンゼン3320g(26wt%)、エチルビニルベンゼン1950g(9wt%)スチレン1096g(15wt%)、2−フェノキシエチルメタクリレート6311g(50wt%)、トルエン8650gを30Lの反応器内に投入し、50℃で354.8gの三フッ化ホウ素のジエチルエーテル錯体を添加し、3時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル化合物共重合体βを5640g(収率:88.6wt%)得た。この多官能ビニル芳香族共重合体βのMwは8000で、ジビニル芳香族化合物(a)由来のビニル基を含有する構造単位(a1)および末端の2−フェノキシエチルメタクリレート由来の二重結合を合わせたモル分率は0.37であった。また重量平均分子量における共重合体の慣性半径は3.1nmであった。
Synthesis example 2
(Polyfunctional vinyl compound copolymer β)
3320 g (26 wt%) of divinylbenzene, 1950 g (9 wt%) of ethyl vinylbenzene, 1096 g (15 wt%) of styrene, 6311 g (50 wt%) of 2-phenoxyethyl methacrylate, and 8650 g of toluene were charged into a 30 L reactor, and 354 at 50 ° C. .8 g of boron trifluoride diethyl ether complex was added and allowed to react for 3 hours. After stopping the polymerization solution with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. The obtained polymer was washed with methanol, filtered, dried and weighed to obtain 5640 g (yield: 88.6 wt%) of polyfunctional vinyl compound copolymer β. The polyfunctional vinyl aromatic copolymer β has an Mw of 8000, and combines the structural unit (a1) containing a vinyl group derived from the divinyl aromatic compound (a) and the double bond derived from the terminal 2-phenoxyethyl methacrylate. The molar fraction was 0.37. The inertia radius of the copolymer in terms of weight average molecular weight was 3.1 nm.

合成例3
(多官能ビニル化合物共重合体γ)
ジビニルベンゼン159.8g(15wt%)、エチルビニルベンゼン93.8g(20wt%)、スチレン223.2g(8wt%)、2−フェノキシエチルメタクリレート632.7g(57wt%)、トルエン1081gを3Lの反応器内に投入し、50℃で56.8gの三フッ化ホウ素のジエチルエーテル錯体を添加し、6時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル化合物共重合体γを340.8g(収率:71.5wt%)得た。この多官能ビニル芳香族共重合体γのMwは5000で、ジビニル芳香族化合物(a)由来のビニル基を含有する構造単位(a1)および末端の2−フェノキシエチルメタクリレート由来の二重結合を合わせたモル分率は0.21であった。また重量平均分子量における共重合体の慣性半径は10.6nmであった。
なお、多官能ビニル化合物共重合体α、β及びγ中の構造単位(a1)のモル分率は、いずれも0.1〜0.2の範囲である。
Synthesis example 3
(Polyfunctional vinyl compound copolymer γ)
A 3 L reactor containing 159.8 g (15 wt%) of divinylbenzene, 93.8 g (20 wt%) of ethylvinylbenzene, 223.2 g (8 wt%) of styrene, 632.7 g (57 wt%) of 2-phenoxyethyl methacrylate, and 1081 g of toluene Then, 56.8 g of diethyl ether complex of boron trifluoride was added at 50 ° C. and reacted for 6 hours. After stopping the polymerization solution with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. The obtained polymer was washed with methanol, filtered, dried and weighed to obtain 340.8 g of polyfunctional vinyl compound copolymer γ (yield: 71.5 wt%). The Mw of this polyfunctional vinyl aromatic copolymer γ is 5000, and the structural unit (a1) containing the vinyl group derived from the divinyl aromatic compound (a) and the double bond derived from the terminal 2-phenoxyethyl methacrylate are combined. The molar fraction was 0.21. Further, the inertia radius of the copolymer in the weight average molecular weight was 10.6 nm.
The molar fraction of the structural unit (a1) in the polyfunctional vinyl compound copolymers α, β, and γ is all in the range of 0.1 to 0.2.

実施例1
直列に接続された内容積30Lの完全混合性を有する槽型反応器を2個とプラグフロー性を有する静的混合機を内蔵した内容積15Lの塔型反応器と予熱器と真空槽を有するフラッシュチャンバー型の揮発分除去設備を有した連続塊状重合設備にスチレン85重量部、エチルベンゼン15重量部、溶剤可溶性多官能ビニル化合物共重合体(α)0.06重量部を均一混合した後に15L/hrで連続的に送入した。第一の反応器は130℃、第二の反応器は140℃、第三の反応器は入口部を140℃、出口部が160℃となるように段階的に温度を上昇させた後、220℃に加熱した予熱器に移送し、圧力を8Torrに調整した予熱器の直下の真空槽に投入することで未反応単量体、溶剤を除去した後、真空槽からギアポンプにてストランド状に樹脂を抜き出しながらカットすることでスチレン系樹脂組成物を得た。この定常状態を保ったままで定常状態到達後、24時間、72時間、144時間後の樹脂組成物について分子量、ゲル状物の評価を実施した結果を表1に示す。
Example 1
It has two tank reactors with a total mixing capacity of 30 L connected in series, a tower reactor of 15 L with a built-in static mixer with plug flow, a preheater, and a vacuum tank After uniformly mixing 85 parts by weight of styrene, 15 parts by weight of ethylbenzene and 0.06 part by weight of a solvent-soluble polyfunctional vinyl compound copolymer (α) in a continuous bulk polymerization equipment having a flash chamber type devolatilization equipment, 15 L / It was continuously fed in hr. The temperature of the first reactor is 130 ° C., the second reactor is 140 ° C., the third reactor is heated to 140 ° C. at the inlet and 160 ° C. at the outlet, and then the temperature is increased to 220 ° C. Transfer to a preheater heated to ℃ and put it in a vacuum tank directly under the preheater whose pressure is adjusted to 8 Torr to remove unreacted monomers and solvent, and then use a gear pump to remove the resin from the vacuum tank into a strand. The styrenic resin composition was obtained by cutting while extracting. Table 1 shows the results of evaluating the molecular weight and the gel-like substance for the resin composition 24 hours, 72 hours, and 144 hours after reaching the steady state while maintaining this steady state.

実施例2
実施例1における多官能ビニル化合物共重合体(α)の代わりに多官能ビニル化合物共重合体(β)を用いた以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Example 2
A polystyrene resin composition was obtained in the same manner as in Example 1 except that the polyfunctional vinyl compound copolymer (β) was used instead of the polyfunctional vinyl compound copolymer (α) in Example 1. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

実施例3
実施例1における多官能ビニル化合物共重合体(α)の代わりに多官能ビニル化合物共重合体(γ)を用いた以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Example 3
A polystyrene resin composition was obtained in the same manner as in Example 1 except that the polyfunctional vinyl compound copolymer (γ) was used instead of the polyfunctional vinyl compound copolymer (α) in Example 1. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

実施例4
実施例1における多官能ビニル芳香族共重合体(α)の添加量0.06重量部を0.01重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Example 4
A polystyrene resin composition was obtained in the same manner as in Example 1, except that 0.06 part by weight of the polyfunctional vinyl aromatic copolymer (α) in Example 1 was changed to 0.01 part by weight. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

実施例5
スチレン70重量部、エチルベンゼン30重量部とし、実施例1における多官能ビニル化合物共重合体(α)の添加量0.06重量部を0.3重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Example 5
Except that 70 parts by weight of styrene and 30 parts by weight of ethylbenzene were used, and 0.06 part by weight of the polyfunctional vinyl compound copolymer (α) in Example 1 was changed to 0.3 part by weight. Thus, a polystyrene resin composition was obtained. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

実施例6
実施例1において、スチレンと共にt−ドデシルメルカプタン0.05重量部を加えた以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Example 6
In Example 1, the polystyrene resin composition was obtained like Example 1 except having added 0.05 weight part of t-dodecyl mercaptan with styrene. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

比較例1
多官能ビニル化合物共重合体(α)を添加しなかった以外は、実施例1と同様にして線状ポリスチレンを得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Comparative Example 1
A linear polystyrene was obtained in the same manner as in Example 1 except that the polyfunctional vinyl compound copolymer (α) was not added. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

比較例2
実施例1における多官能ビニル化合物共重合体(α)の添加量0.06重量部を0.001重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Comparative Example 2
A polystyrene resin composition was obtained in the same manner as in Example 1 except that the addition amount of the polyfunctional vinyl compound copolymer (α) in Example 1 was changed to 0.01 part by weight. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

比較例3
実施例1における多官能ビニル化合物共重合体(α)の添加量0.06重量部を1重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。
Comparative Example 3
A polystyrene resin composition was obtained in the same manner as in Example 1, except that the addition amount of the polyfunctional vinyl compound copolymer (α) in Example 1 was changed to 1 part by weight. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material.

比較例4
実施例1における多官能ビニル化合物共重合体(α)の代わりにジビニルベンゼン0.05重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。各時間における分子量、ゲル状物の評価結果を表1に示す。24時間ではゲル状物は観測されなかったが、72時間ではゲル状物が発生し、144時間ではゲル状物を多量に含有する状態となった。
Comparative Example 4
A polystyrene resin composition was obtained in the same manner as in Example 1 except that 0.05 part by weight of divinylbenzene was used instead of the polyfunctional vinyl compound copolymer (α) in Example 1. Table 1 shows the molecular weight at each time and the evaluation results of the gel-like material. No gel-like material was observed at 24 hours, but a gel-like material was generated at 72 hours, and a large amount of gel-like material was contained at 144 hours.

比較例5
実施例1における多官能ビニル化合物共重合体(α)の代わりにジビニルベンゼン0.025重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。72時間ではゲル状物が観測されなかったが、144時間ではゲル状物の発生が確認された。
Comparative Example 5
A polystyrene resin composition was obtained in the same manner as in Example 1 except that 0.025 part by weight of divinylbenzene was used instead of the polyfunctional vinyl compound copolymer (α) in Example 1. No gel-like substance was observed at 72 hours, but generation of a gel-like substance was confirmed at 144 hours.

比較例6
実施例1における多官能ビニル化合物共重合体(α)の代わりにジビニルベンゼン0.05重量部を使用し、スチレンと溶剤のエチルベンゼンの比率をスチレン70重量部、エチルベンゼン30重量部とした以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。
Comparative Example 6
Except for using 0.05 parts by weight of divinylbenzene in place of the polyfunctional vinyl compound copolymer (α) in Example 1, the ratio of styrene to ethylbenzene as a solvent was 70 parts by weight of styrene and 30 parts by weight of ethylbenzene, A polystyrene resin composition was obtained in the same manner as in Example 1.

比較例7
実施例1における多官能ビニル化合物共重合体(α)の代わりにジビニルベンゼン0.05重量部を使用し、t−ドデシルメルカプタン0.05重量部を加えた以外は、実施例1と同様にしてポリスチレン樹脂組成物を得た。
Comparative Example 7
In the same manner as in Example 1, except that 0.05 part by weight of divinylbenzene was used instead of the polyfunctional vinyl compound copolymer (α) in Example 1, and 0.05 part by weight of t-dodecyl mercaptan was added. A polystyrene resin composition was obtained.

反応原料の使用量及びポリスチレン樹脂組成物の物性をまとめて表1〜2に示す。表中、架橋剤は多官能ビニル化合物共重合体又はジビニルベンゼン(DVB)を意味する。   The usage-amount of a reaction raw material and the physical property of a polystyrene resin composition are put together, and are shown to Tables 1-2. In the table, the crosslinking agent means a polyfunctional vinyl compound copolymer or divinylbenzene (DVB).

Figure 2011225866
Figure 2011225866

Figure 2011225866
Figure 2011225866

Claims (3)

超高分子量多分岐型スチレン系共重合体と線状重合体とを含有するスチレン系樹脂組成物を製造する方法であって、スチレンを必須とするビニル系モノマーに、平均して1分子中にビニル基を2以上有し、分岐構造を有する溶剤可溶性多官能ビニル化合物共重合体を、重量基準で50ppm〜5000ppm添加し、均一混合した後に、連続的に配置された重合反応器に供給して重合反応を進行させ、該溶剤可溶性多官能ビニル化合物共重合体と該ビニル系モノマーが重合して生じる超高分子量多分岐型共重合体と、該ビニル系モノマーが重合して生じる線状重合体とを含むスチレン系樹脂組成物を得ることを特徴とするスチレン系樹脂組成物の製造方法。   A method for producing a styrene resin composition comprising an ultrahigh molecular weight multi-branched styrene copolymer and a linear polymer, wherein a vinyl monomer containing styrene as an essential component is averaged in one molecule. A solvent-soluble polyfunctional vinyl compound copolymer having two or more vinyl groups and having a branched structure is added in an amount of 50 ppm to 5000 ppm on a weight basis, uniformly mixed, and then supplied to a continuously arranged polymerization reactor. An ultra-high molecular weight multi-branched copolymer produced by polymerizing the solvent-soluble polyfunctional vinyl compound copolymer and the vinyl monomer, and a linear polymer produced by polymerizing the vinyl monomer A method for producing a styrene resin composition, comprising: obtaining a styrene resin composition comprising: 溶剤可溶性多官能ビニル化合物共重合体が、ジビニル化合物及びモノビニル化合物を含む単量体を重合して得られ、未反応のビニル基を構造単位中にモル分率として0.05〜0.50の範囲で含有し、その重量平均分子量における慣性半径(nm)と上記モル分率の比が1〜100の範囲内にあることを特徴とする請求項1記載のスチレン系樹脂組成物の製造方法。   A solvent-soluble polyfunctional vinyl compound copolymer is obtained by polymerizing a monomer containing a divinyl compound and a monovinyl compound, and has an unreacted vinyl group in a structural unit having a molar fraction of 0.05 to 0.50. The method for producing a styrenic resin composition according to claim 1, wherein the ratio of the inertial radius (nm) in the weight average molecular weight and the molar fraction is in the range of 1 to 100. 請求項1又は2記載の方法によって得られるスチレン系樹脂組成物が、重量平均分子量が100万以上の多分岐状スチレン系重合体2.0〜20.0wt%と、重量平均分子量が15万〜35万の線状スチレン系重合体80.0〜98.0wt%とを含有する重量平均分子量が20万〜80万であることを特徴とするスチレン系樹脂組成物。   The styrene resin composition obtained by the method according to claim 1 or 2 has a weight average molecular weight of 2 to 20.0 wt% of a multi-branched styrene polymer having a weight average molecular weight of 1 million or more, and a weight average molecular weight of 150,000 to A styrene-based resin composition having a weight average molecular weight of 350,000 to 850,000 to 88.0 wt%, containing 350,000 linear styrene-based polymers.
JP2011078380A 2010-03-31 2011-03-31 Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof Active JP5658607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078380A JP5658607B2 (en) 2010-03-31 2011-03-31 Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010081322 2010-03-31
JP2010081322 2010-03-31
JP2011078380A JP5658607B2 (en) 2010-03-31 2011-03-31 Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof

Publications (2)

Publication Number Publication Date
JP2011225866A true JP2011225866A (en) 2011-11-10
JP5658607B2 JP5658607B2 (en) 2015-01-28

Family

ID=45041604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078380A Active JP5658607B2 (en) 2010-03-31 2011-03-31 Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof

Country Status (1)

Country Link
JP (1) JP5658607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069077A1 (en) * 2011-11-07 2013-05-16 新日鉄住金化学株式会社 Method for producing styrene-based resin composition comprising highly branched ultra-high-molecular-weight polymer, and composition
JP2014087955A (en) * 2012-10-30 2014-05-15 Denki Kagaku Kogyo Kk Biaxially stretched sheet and container
JP2014087954A (en) * 2012-10-30 2014-05-15 Denki Kagaku Kogyo Kk Biaxially stretched sheet and container
JP2017218576A (en) * 2016-03-28 2017-12-14 Psジャパン株式会社 Styrenic copolymer and manufacturing method therefor
EP3261144A4 (en) * 2015-02-20 2018-11-07 DIC Corporation Ink composition for organic light emitting device, and organic light emitting element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143322A (en) * 1995-11-28 1997-06-03 Asahi Chem Ind Co Ltd Styrene resin composition
JP2001512752A (en) * 1997-08-05 2001-08-28 エス・シー・ジョンソン・コマーシャル・マーケッツ・インコーポレーテッド Method for producing hyperbranched polymer
JP2004123873A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Soluble, multifunctional vinyl aromatic copolymer and its polymerization process
JP2005179389A (en) * 2003-12-16 2005-07-07 Dainippon Ink & Chem Inc Styrene resin composition for biaxial stretching, biaxially stretched sheet and its manufacturing method
JP2007291366A (en) * 2006-03-27 2007-11-08 Dainippon Ink & Chem Inc Resin composition for biaxially oriented styrenic resin sheet, and sheet and formed article using the same
JP2008189745A (en) * 2007-02-02 2008-08-21 Nippon Steel Chem Co Ltd Dissolvable multi-functional vinyl aromatic copolymer having phenolic hydroxyl group at its terminal, and method for producing the same
JP2008239781A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method for producing soluble polyfunctional vinyl aromatic copolymer, and the copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143322A (en) * 1995-11-28 1997-06-03 Asahi Chem Ind Co Ltd Styrene resin composition
JP2001512752A (en) * 1997-08-05 2001-08-28 エス・シー・ジョンソン・コマーシャル・マーケッツ・インコーポレーテッド Method for producing hyperbranched polymer
JP2004123873A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Soluble, multifunctional vinyl aromatic copolymer and its polymerization process
JP2005179389A (en) * 2003-12-16 2005-07-07 Dainippon Ink & Chem Inc Styrene resin composition for biaxial stretching, biaxially stretched sheet and its manufacturing method
JP2007291366A (en) * 2006-03-27 2007-11-08 Dainippon Ink & Chem Inc Resin composition for biaxially oriented styrenic resin sheet, and sheet and formed article using the same
JP2008189745A (en) * 2007-02-02 2008-08-21 Nippon Steel Chem Co Ltd Dissolvable multi-functional vinyl aromatic copolymer having phenolic hydroxyl group at its terminal, and method for producing the same
JP2008239781A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method for producing soluble polyfunctional vinyl aromatic copolymer, and the copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069077A1 (en) * 2011-11-07 2013-05-16 新日鉄住金化学株式会社 Method for producing styrene-based resin composition comprising highly branched ultra-high-molecular-weight polymer, and composition
JP2014087955A (en) * 2012-10-30 2014-05-15 Denki Kagaku Kogyo Kk Biaxially stretched sheet and container
JP2014087954A (en) * 2012-10-30 2014-05-15 Denki Kagaku Kogyo Kk Biaxially stretched sheet and container
EP3261144A4 (en) * 2015-02-20 2018-11-07 DIC Corporation Ink composition for organic light emitting device, and organic light emitting element
JP2017218576A (en) * 2016-03-28 2017-12-14 Psジャパン株式会社 Styrenic copolymer and manufacturing method therefor

Also Published As

Publication number Publication date
JP5658607B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5658607B2 (en) Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof
WO2013069077A1 (en) Method for producing styrene-based resin composition comprising highly branched ultra-high-molecular-weight polymer, and composition
JP2013100433A (en) Manufacturing method of styrene-methacrylate based copolymer resin composition and the composition
JP5913917B2 (en) Highly branched styrene resin composition for foaming
JP4990995B2 (en) Biaxially stretched styrene resin sheet and molded product using the same
KR101292963B1 (en) Composition containing aromatic vinyl compound/(meth)acrylic acid copolymer resin and process for producing the same
JP5951230B2 (en) Highly branched styrenic resin composition and foam sheet
JP5913919B2 (en) Highly branched rubber-modified styrenic resin composition and sheet
JP5930668B2 (en) Manufacturing method of injection blow molded product
JP4992271B2 (en) Rubber-modified styrene resin composition, styrene resin sheet and molded body using the same
JP2013100436A (en) Highly branched rubber-modified styrenic resin composition for blow molding, and molded article
JP5930666B2 (en) Styrenic resin composition for highly branched biaxially stretched sheet and biaxially stretched sheet
JP5930667B2 (en) Styrenic resin composition for hyperbranched film and styrene resin film
TWI538946B (en) A method for producing a styrene-based resin composition containing a high-branch type ultra-high molecular weight body and a composition thereof
JP6290530B2 (en) Biaxially stretched sheet and container for vacuum / pressure forming, and methods for producing them
JP5029722B2 (en) Styrenic resin composition and molded product thereof
JP6203973B1 (en) Heat-resistant styrene resin composition, foam sheet, and food container
JP5457160B2 (en) Soluble polyfunctional (meth) acrylic acid ester copolymer having alicyclic structure and method for producing the same
JP5858705B2 (en) Method for producing styrenic resin composition containing hyperbranched ultrahigh molecular weight substance and composition thereof
JP5913918B2 (en) Styrene resin composition for highly branched plate-like extruded foam
JP2012116875A (en) Resin composition for heat-shrinkable film and heat-shrinkable film
JP6622006B2 (en) Rubber-modified styrene resin composition, rubber-modified styrene resin sheet, method for producing the same, and food container
US5880232A (en) Process for producing styrene based polymer and molded articles comprising the polymer
JP6290529B2 (en) Biaxially stretched sheet and container for hot plate molding, and production methods thereof
JP2023115374A (en) Styrene-based resin composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250