[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011218452A - Machining robot, and machining control method thereof - Google Patents

Machining robot, and machining control method thereof Download PDF

Info

Publication number
JP2011218452A
JP2011218452A JP2010086719A JP2010086719A JP2011218452A JP 2011218452 A JP2011218452 A JP 2011218452A JP 2010086719 A JP2010086719 A JP 2010086719A JP 2010086719 A JP2010086719 A JP 2010086719A JP 2011218452 A JP2011218452 A JP 2011218452A
Authority
JP
Japan
Prior art keywords
tool
machining
workpiece
robot
freedom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086719A
Other languages
Japanese (ja)
Other versions
JP5549330B2 (en
Inventor
Koichiro Hayashi
浩一郎 林
Mitsuharu Sonehara
光冶 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010086719A priority Critical patent/JP5549330B2/en
Publication of JP2011218452A publication Critical patent/JP2011218452A/en
Application granted granted Critical
Publication of JP5549330B2 publication Critical patent/JP5549330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machining robot capable of machining a workpiece while pressing a tool against the workpiece, and greatly enhancing a working efficiency of a grinding wheel, and to provide a machining control method thereof.SOLUTION: The machining robot includes: the tool 12; a robot arm 16 capable of moving a position and posture of the tool in a three-dimensional space; and a robot control device 20 for storing machining data and controlling the robot arm. The machining robot moves the tool 12 along a machining track 3 based on the machining data, machines the workpiece 1 while pressing the tool against the workpiece, and reciprocates the tool 12 along a contact surface between the workpiece and the tool 12 in a 5 degree-of-freedom space which has excluded a translation in a tool pressing direction 6 from a 6 degree-of-freedom space (3 degree-of-freedom translation+3 degree-of-freedom rotation) during machining.

Description

本発明は、ワークを加工する加工ロボットとその加工制御方法に関する。   The present invention relates to a machining robot for machining a workpiece and a machining control method thereof.

回転砥石等の工具を使用し、ワークのバリ取り、C面取り、ラウンドエッジ加工等の切削加工や研削加工をする加工ロボットにおいて、工具の押付力を制御しながらワークに倣って加工し、砥石の磨耗に応じてロボットの軌道を補正することが広く行われている(例えば特許文献1〜4)。   In a processing robot that uses tools such as a rotating grindstone to perform cutting and grinding work such as deburring, C-chamfering, and round edge machining of workpieces, machining is performed following the workpiece while controlling the pressing force of the tool. It is widely performed to correct the robot trajectory according to wear (for example, Patent Documents 1 to 4).

特許文献1は、加工前後等に、基準面に砥石を押し付けて、磨耗前と磨耗後との砥石の接触位置の比較から砥石の磨耗量を算出し、工具のTCP(Tool Center Point)の設定値を更新する方法である。
特許文献2は、グラインダの砥石に同心円上に複数の目印マークが描かれており、磨耗が進んで目印マークが消えると、作業者がロボットコントローラに入力し、グラインダの移動経路をシフトする制御をするものである。
特許文献3は、一定量の研削を行う毎にグラインダの姿勢を変更してツールセンタに対する磨耗量を補正し、教示プログラムが研削軌道を示す際に、グラインダ姿勢を磨耗量補正時の姿勢に自動的に変更して研削を行うものである。
特許文献4は、ワークの研削作業の途中で研削作業を中断し、カメラで砥石を撮影し、画像処理により砥石の磨耗量を検知し、工具作用点の位置ずれ補正を行うものである。
In Patent Document 1, a grinding wheel is pressed against a reference surface before and after processing, and the wear amount of the grinding wheel is calculated from a comparison of the contact position of the grinding stone before and after the wear, and the setting of the tool TCP (Tool Center Point) is performed. It is a method of updating the value.
In Patent Document 2, a plurality of mark marks are drawn concentrically on the grinder's grindstone. When wear marks progress and the mark marks disappear, the operator inputs to the robot controller and controls to shift the movement path of the grinder. To do.
Patent Document 3 automatically corrects the amount of wear with respect to the tool center by changing the posture of the grinder every time a certain amount of grinding is performed. When the teaching program indicates the grinding trajectory, the grinder posture is automatically set to the posture at the time of wear amount correction. The grinding is performed by changing the operation.
In Patent Document 4, the grinding operation is interrupted in the middle of the workpiece grinding operation, the grindstone is photographed with a camera, the wear amount of the grindstone is detected by image processing, and the displacement of the tool action point is corrected.

特許平7−205022号公報、「力制御ロボットの砥石摩耗補正方法」Japanese Patent Laid-Open No. 7-205022, “Method for correcting grinding wheel wear of force control robot” 特開平11−28663号公報、「砥石摩耗補正装置」Japanese Patent Application Laid-Open No. 11-28663, “Wearstone wear correction device” 特開平6−179163号公報、「ロボット制御方式」JP-A-6-179163, “Robot Control Method” 特開2000−202771号公報、「自動研削装置」JP 2000-202771 A, “Automatic grinding device”

図1は、従来方法の問題点を示す模式図である。
特許文献1〜4に記載された従来の方法は、磨耗が砥石の加工面全体に一様に進展すること、例えば、円板状砥石で、半径が小さくなっていくことを前提としている。
しかし、例えば円柱型の回転砥石を図1のように使って、ワークにC面取り加工する場合は、磨耗は一様でないため単純には適用できない。
FIG. 1 is a schematic diagram showing a problem of the conventional method.
The conventional methods described in Patent Documents 1 to 4 are based on the premise that the wear progresses uniformly over the entire processing surface of the grindstone, for example, the radius decreases with a disc-shaped grindstone.
However, for example, when a C-shaped chamfering process is performed on a workpiece using a cylindrical rotary grindstone as shown in FIG. 1, the wear is not uniform and cannot be simply applied.

図2は、従来方法の問題点を示す別の模式図である。
図1の問題点を解決するために、円柱型の回転砥石を砥石の回転軸方向に一定量ずつシフトさせる方法が考えられる。しかし、図2(A)に示すように、未使用部分を使うようにシフトさせるために砥石の加工面の使用効率が悪い。
また、円柱型の回転砥石を磨耗量に応じて工具のTCPをシフトさせる方法も考えられる。しかし、図2(B)に示すように、やはり砥石の使用効率が悪いという問題があった。
FIG. 2 is another schematic diagram showing the problems of the conventional method.
In order to solve the problem shown in FIG. 1, a method of shifting a cylindrical rotary grindstone by a certain amount in the direction of the rotation axis of the grindstone can be considered. However, as shown in FIG. 2 (A), the use efficiency of the processing surface of the grindstone is poor because shifting is performed so that unused portions are used.
A method of shifting the TCP of the tool according to the wear amount of the cylindrical rotary grindstone is also conceivable. However, as shown in FIG. 2B, there is still a problem that the use efficiency of the grindstone is poor.

また上述した問題点は砥石の表面付近に薄い砥粒の層がある電着砥石(例えばダイヤモンド電着砥石)においても同様である。電着砥石では、磨耗による形状の変化は小さいが、砥粒は磨耗して切れなくなる。例えば、図1の加工をした場合、最も砥粒への負担の大きい一部分の砥粒のみが磨耗することになり、従来の方法を適用すると、砥石の使用効率が悪い。   The above-mentioned problems are also the same in an electrodeposition grindstone (for example, a diamond electrodeposition grindstone) in which a thin abrasive layer is present near the surface of the grindstone. In an electrodeposition grindstone, the change in shape due to wear is small, but the abrasive grains wear out and cannot be cut. For example, when the processing shown in FIG. 1 is performed, only a part of the abrasive grains having the greatest burden on the abrasive grains is worn, and the use efficiency of the grindstone is poor when the conventional method is applied.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、工具をワークに押付けながらワークを加工することができ、かつ砥石の使用効率を大幅に高めることができる加工ロボットとその加工制御方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a machining robot that can machine a workpiece while pressing a tool against the workpiece, and can greatly increase the use efficiency of a grindstone, and a machining control method thereof.

本発明によれば、工具と、
該工具を3次元空間内で位置と姿勢を移動可能なロボットアームと、
加工データを記憶し前記ロボットアームを制御するロボット制御装置とを備え、
前記加工データに基づく加工軌道に沿って工具を移動し、該工具をワークに押付けながらワークを加工し、かつ該加工中に、空間6自由度のうち、工具の押付け方向の並進を除いた5自由度の空間上で、ワークと工具との接触面に沿って工具を往復動させる、ことを特徴とする加工ロボットが提供される。
According to the present invention, a tool;
A robot arm capable of moving the position and posture of the tool in a three-dimensional space;
A robot control device for storing machining data and controlling the robot arm;
The tool is moved along the machining path based on the machining data, and the workpiece is machined while pressing the tool against the workpiece. During the machining, the translation of the tool pushing direction is excluded from the 6 degrees of freedom of the space. There is provided a machining robot characterized in that a tool is reciprocated along a contact surface between a workpiece and a tool in a space of freedom.

本発明の実施形態によれば、前記工具は、軸心を中心とする外周面に加工面を有する回転砥石と、
該回転砥石をその軸心を中心に回転駆動するスピンドルモータとからなる。
According to an embodiment of the present invention, the tool includes a rotating grindstone having a processing surface on an outer peripheral surface centering on an axis,
It comprises a spindle motor that rotationally drives the rotary grindstone about its axis.

また、工具のワークへの押付け力を制御しながら、ワークに倣って加工する。   In addition, the workpiece is processed following the workpiece while controlling the pressing force of the tool to the workpiece.

また、本発明によれば、工具をワークに押付けながらワークを加工する加工ロボットの加工制御方法であって、
ワークの加工中に、空間6自由度のうち、工具の押付け方向の並進を除いた5自由度の空間上で、ワークと工具との接触面に沿って工具を往復動させる、ことを特徴とする加工ロボットの加工制御方法が提供される。
Further, according to the present invention, there is provided a machining control method for a machining robot for machining a workpiece while pressing a tool against the workpiece,
During machining of the workpiece, the tool is reciprocated along the contact surface between the workpiece and the tool in a space of 5 degrees of freedom excluding translation in the pressing direction of the tool among the six degrees of freedom of the space. A machining control method for a machining robot is provided.

本発明の実施形態によれば、前記工具の送り方向と押付け方向との外積によって工具の往復動方向を算出する。   According to the embodiment of the present invention, the reciprocating direction of the tool is calculated from the outer product of the feeding direction and the pressing direction of the tool.

また、工具のワークへの押付け力を制御しながら、ワークに倣って加工する。   In addition, the workpiece is processed following the workpiece while controlling the pressing force of the tool to the workpiece.

上記本発明の装置及び方法によれば、ワークの加工中に、空間6自由度(並進3自由度+回転3自由度)のうち、工具の押付け方向の並進を除いた5自由度の空間上で、ワークと工具との接触面に沿って工具を往復動させるので、工具をワークに押付けながらワークを加工することができ、かつ砥石のほぼ全面を均一に使用することができるので砥石の使用効率を大幅に高めることができる。
According to the above-described apparatus and method of the present invention, during machining of a workpiece, out of a space with 5 degrees of freedom excluding translation in the pressing direction of the tool among 6 degrees of freedom (3 degrees of freedom of translation + 3 degrees of freedom of rotation). Because the tool is reciprocated along the contact surface between the workpiece and the tool, the workpiece can be processed while pressing the tool against the workpiece, and the entire surface of the grindstone can be used uniformly, so the use of a grindstone Efficiency can be greatly increased.

従来方法の問題点を示す模式図である。It is a schematic diagram which shows the problem of the conventional method. 従来方法の問題点を示す別の模式図である。It is another schematic diagram which shows the problem of the conventional method. 本発明による加工ロボットの全体構成図である。It is a whole block diagram of the processing robot by this invention. 図3の回転砥石の拡大図である。It is an enlarged view of the rotary grindstone of FIG. 本発明による加工制御方法の説明図である。It is explanatory drawing of the processing control method by this invention.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図3は、本発明による加工ロボットの全体構成図であり、図4は、図3の工具の拡大図である。
図3において、本発明の加工ロボット10は、工具12、ロボットアーム16、及びロボット制御装置20を備える。なお1はワーク(被加工部材)、2はテーブルである。
FIG. 3 is an overall configuration diagram of the machining robot according to the present invention, and FIG. 4 is an enlarged view of the tool of FIG.
In FIG. 3, the processing robot 10 of the present invention includes a tool 12, a robot arm 16, and a robot control device 20. In addition, 1 is a workpiece | work (member to be processed), 2 is a table.

ワーク1は、加工ロボット10により、バリ取り、C面取り、又はラウンドエッジ加工される被加工部材であり、例えば鋳鉄等の硬い材質からなる。
ワーク1は、この例ではテーブル2の上面の所定位置に固定されている。
The workpiece 1 is a workpiece to be deburred, chamfered, or rounded by the machining robot 10 and is made of a hard material such as cast iron.
In this example, the work 1 is fixed at a predetermined position on the upper surface of the table 2.

図4において、工具12は、回転砥石13、スピンドルモータ14からなり、力センサ15を介して設置される。
本発明の工具12はこれに限定されず、往復運動するものや、工具自体を駆動しないもの(棒やすり等)であってもよい。
In FIG. 4, the tool 12 includes a rotating grindstone 13 and a spindle motor 14 and is installed via a force sensor 15.
The tool 12 of the present invention is not limited to this, and may be one that reciprocates or one that does not drive the tool itself (such as a bar file).

回転砥石13は、軸心を中心とする外周面13aに加工面を有する砥石である。
この例において、回転砥石13の形状は円柱形であるが、本発明はこれに限定されず、円錐形、接頭円錐形、球形、その他の形状であってもよい。また、回転砥石13は砥石に限定されず、その他の工具(カッターやブラシ)であってもよい。
The rotating grindstone 13 is a grindstone having a processed surface on the outer peripheral surface 13a centering on the axis.
In this example, the shape of the rotating grindstone 13 is a cylindrical shape, but the present invention is not limited to this, and may be a conical shape, a prefix conical shape, a spherical shape, or other shapes. Moreover, the rotary grindstone 13 is not limited to a grindstone, and may be another tool (cutter or brush).

スピンドルモータ14は、回転砥石13をその軸心を中心に回転駆動する電動モータである。スピンドルモータ14の回転速度は、ロボット制御装置20により所定の範囲で可変に制御される。なお、スピンドルモータ14は電動モータに限定されず、エアモータであってもよい。   The spindle motor 14 is an electric motor that rotationally drives the rotary grindstone 13 around its axis. The rotational speed of the spindle motor 14 is variably controlled within a predetermined range by the robot controller 20. The spindle motor 14 is not limited to an electric motor, and may be an air motor.

力センサ15は、回転砥石13に作用する外力を検出するセンサである。
この例において、力センサ15はロードセルであり、3次元的に移動可能なロボットアーム16に取り付けられ、これに作用する外力を検出するようになっている。
この力センサ15で検出される外力は、好ましくは6自由度の外力(3方向の力と、3軸まわりのトルク)であるが、本発明はこれに限定されず、ワークに対する押付け力が検出できる限りで、その他の力センサであってもよい。
The force sensor 15 is a sensor that detects an external force acting on the rotating grindstone 13.
In this example, the force sensor 15 is a load cell, is attached to a robot arm 16 that can be moved three-dimensionally, and detects an external force acting on the robot arm 16.
The external force detected by the force sensor 15 is preferably an external force having six degrees of freedom (a force in three directions and a torque around three axes), but the present invention is not limited to this, and a pressing force against a workpiece is detected. Other force sensors may be used as much as possible.

図3において、ロボットアーム16は、手先に工具12を取付け、これを3次元空間内で位置と姿勢を移動可能に構成されている。
ロボットアーム16は、この例では、多関節ロボットのロボットアームであるが、本発明はこれに限定されず、その他のロボットであってもよい。
In FIG. 3, the robot arm 16 is configured so that a tool 12 is attached to the hand and the position and posture of the tool 12 can be moved in a three-dimensional space.
In this example, the robot arm 16 is a robot arm of an articulated robot, but the present invention is not limited to this and may be another robot.

ロボット制御装置20は、記憶装置21に加工データを記憶しロボットアーム16を制御する。
ロボット制御装置20は、例えば数値制御装置であり、指令信号によりロボットアーム16を6自由度(3次元位置と3軸まわりの回転)に制御するようになっている。
The robot control device 20 stores the machining data in the storage device 21 and controls the robot arm 16.
The robot control device 20 is, for example, a numerical control device, and controls the robot arm 16 to six degrees of freedom (three-dimensional position and rotation about three axes) by a command signal.

記憶装置21に記憶された加工データは、加工軌道データテーブルと加工条件データからなる。
加工軌道データテーブルは、一定距離間隔における空間座標(X,Y,Z)と、押付け方向ベクトルからなる。これらはワークの3DCADモデルから自動的に生成する。
加工条件データは、砥石の回転速度、押付力、送り速度、工具形状、往復動作の振幅と周期である。
The machining data stored in the storage device 21 includes a machining trajectory data table and machining condition data.
The machining trajectory data table includes spatial coordinates (X, Y, Z) at a constant distance interval and a pressing direction vector. These are automatically generated from the 3D CAD model of the workpiece.
The processing condition data includes the rotation speed of the grindstone, the pressing force, the feed speed, the tool shape, and the amplitude and period of the reciprocating operation.

図5は、本発明による加工制御方法の説明図である。
本発明の方法は、工具12をワーク1に押付けながらワーク1を加工する加工ロボットの加工制御方法である。
図5において、3は工具12の軌道データ、4は工具12の動作、5は送り方向、6は押付け方向、7は往復動作方向(工具の往復動方向)である。
本発明の方法によれば、ワーク1の加工中に、空間6自由度(並進3自由度+回転3自由度)のうち、工具12の押付け方向6の並進を除いた5自由度の空間上で、ワーク1と工具12との接触面に沿って工具12を往復動させる。
FIG. 5 is an explanatory diagram of a machining control method according to the present invention.
The method of the present invention is a processing control method for a processing robot that processes the workpiece 1 while pressing the tool 12 against the workpiece 1.
In FIG. 5, 3 is the trajectory data of the tool 12, 4 is the operation of the tool 12, 5 is the feeding direction, 6 is the pressing direction, and 7 is the reciprocating direction (the reciprocating direction of the tool).
According to the method of the present invention, during machining of the workpiece 1, among the 6 degrees of freedom in space (3 degrees of freedom of translation + 3 degrees of freedom of rotation), on the space of 5 degrees of freedom excluding translation in the pressing direction 6 of the tool 12. Then, the tool 12 is reciprocated along the contact surface between the workpiece 1 and the tool 12.

すなわち、予め、ワーク1の3DCADモデルや工具形状等から、ロボットのTCPの目標軌道や押し付け方向ベクトルから構成される時系列のデータテーブルを生成しておく。
次いで、ワーク1の加工中に、前述のデータテーブルから制御周期ごと読み出しながら、位置・力ハイブリッド制御によって、軌道データ3に沿って位置と速度を制御しながら、押付け方向6に目標力に押し付けるように動作する。このとき、前述のデータテーブルから読み込んだロボットのTCPの目標位置に、往復動作を重ね合わせる。
往復動作の方向は、データテーブルから送り方向5を算出し、押付け方向6との外積によって算出できる。
往復動作の振幅と周期は設定されたパラメータから読み出し、往復動作の成分を作成し、元の軌道に重ね合わせる。
That is, a time-series data table including a TCP target trajectory and a pressing direction vector of the robot is generated in advance from the 3D CAD model and tool shape of the workpiece 1.
Next, while the workpiece 1 is being processed, the position and force are controlled by the position / force hybrid control while being read from the data table described above for each control cycle, and the target force is pressed in the pressing direction 6 while controlling the position and speed. To work. At this time, the reciprocating motion is superimposed on the target TCP position of the robot read from the data table.
The reciprocating direction can be calculated by calculating the feed direction 5 from the data table and the outer product with the pressing direction 6.
The amplitude and period of the reciprocating motion are read out from the set parameters, a reciprocating motion component is created and superimposed on the original trajectory.

なお、上述の例では、往復動作を軌道データに重ね合わせたが、回転工具12のTCP設定値を変動させて往復動作を生成してもよい。   In the above example, the reciprocating motion is superimposed on the track data. However, the reciprocating motion may be generated by changing the TCP setting value of the rotary tool 12.

上述した本発明の装置及び方法により、以下の効果が得られる。
(1)砥石の磨耗が、均一に進行するため、砥石の全面を効率よく使用でき、工具の交換頻度を下げる効果が得られる。
(2)一定回数ごとに砥石の成形をする(砥石の面の凹凸を除去する)場合、およそ平面状に磨耗するため、成形の負担を軽減できる。
(3)位置・力ハイブリッド制御において、オフラインで作成するロボットの軌道と押し付け方向のデータテーブルに、リアルタイムで(=制御周期ごとの演算で)往復動作を重ね合わせれば、往復動作のON/OFF切り替えや、往復動作のパラメータ(振幅・周期)変更が容易となる(軌道のデータテーブルを作成しなおす必要がない)。
(4)軌道データテーブルで、送り方向と押付け方向とが垂直になるように生成し、往復動作の方向を砥石面に平行な方向(=押付け方向と送り方向との双方に垂直な方向)とすれば、力制御する方向と位置制御する方向とが垂直に保たれるために制御系の干渉を防ぐことができる。往復動作の方向は、押し付け方向と送り方向との外積によって容易に算出できる。
The following effects are obtained by the apparatus and method of the present invention described above.
(1) Since the abrasion of the grindstone progresses uniformly, the entire surface of the grindstone can be used efficiently, and the effect of lowering the tool replacement frequency can be obtained.
(2) When forming a grindstone every certain number of times (removing the irregularities on the surface of the grindstone), it wears in a substantially flat shape, so the burden of shaping can be reduced.
(3) In position / force hybrid control, if the reciprocating motion is superimposed in real time (by calculation for each control cycle) on the robot trajectory and pressing direction data table created offline, the reciprocating motion is switched ON / OFF. In addition, it is easy to change the parameters (amplitude / cycle) of the reciprocating motion (it is not necessary to recreate the trajectory data table).
(4) The trajectory data table is generated so that the feed direction and the pressing direction are perpendicular to each other, and the reciprocating direction is parallel to the grindstone surface (= the direction perpendicular to both the pressing direction and the feeding direction). In this case, since the direction for force control and the direction for position control are kept vertical, it is possible to prevent interference of the control system. The reciprocating direction can be easily calculated by the outer product of the pressing direction and the feeding direction.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.

1 ワーク(被加工部材)、2 テーブル、
3 軌道データ、4 工具の動作、
5 送り方向、6 押付け方向、
7 往復動作方向(工具の往復動方向)、
10 加工ロボット、12 工具、
13 回転砥石、13a 外周面、
14 スピンドルモータ、15 力センサ、
16 ロボットアーム、
20 ロボット制御装置、
21 記憶装置
1 workpiece (workpiece), 2 tables,
3 orbit data, 4 tool movement,
5 Feed direction, 6 Pressing direction,
7 Reciprocating direction (tool reciprocating direction),
10 processing robots, 12 tools,
13 rotating whetstone, 13a outer peripheral surface,
14 spindle motor, 15 force sensor,
16 robot arm,
20 robot controller,
21 Storage device

Claims (6)

工具と、
該工具を3次元空間内で位置と姿勢を移動可能なロボットアームと、
加工データを記憶し前記ロボットアームを制御するロボット制御装置とを備え、
前記加工データに基づく加工軌道に沿って工具を移動し、該工具をワークに押付けながらワークを加工し、かつ該加工中に、空間6自由度のうち、工具の押付け方向の並進を除いた5自由度の空間上で、ワークと工具との接触面に沿って工具を往復動させる、ことを特徴とする加工ロボット。
Tools,
A robot arm capable of moving the position and posture of the tool in a three-dimensional space;
A robot control device for storing machining data and controlling the robot arm;
The tool is moved along the machining path based on the machining data, and the workpiece is machined while pressing the tool against the workpiece. During the machining, the translation of the tool pushing direction is excluded from the 6 degrees of freedom in space. A machining robot characterized by reciprocating a tool along a contact surface between a workpiece and a tool in a space of freedom.
前記工具は、軸心を中心とする外周面に加工面を有する回転砥石と、
該回転砥石をその軸心を中心に回転駆動するスピンドルモータとからなる、ことを特徴とする請求項1に記載の加工ロボット。
The tool is a rotating grindstone having a machining surface on an outer peripheral surface centered on an axis;
The machining robot according to claim 1, comprising a spindle motor that rotationally drives the rotary grindstone about its axis.
工具のワークへの押付け力を制御しながら、ワークに倣って加工する、ことを特徴とする請求項1に記載の加工ロボット。   The machining robot according to claim 1, wherein the machining robot follows the workpiece while controlling a pressing force of the tool to the workpiece. 工具をワークに押付けながらワークを加工する加工ロボットの加工制御方法であって、
ワークの加工中に、空間6自由度のうち、工具の押付け方向の並進を除いた5自由度の空間上で、ワークと工具との接触面に沿って工具を往復動させる、ことを特徴とする加工ロボットの加工制御方法。
A processing control method for a processing robot that processes a workpiece while pressing the tool against the workpiece,
During machining of the workpiece, the tool is reciprocated along the contact surface between the workpiece and the tool in a space of 5 degrees of freedom excluding translation in the pressing direction of the tool among the six degrees of freedom of the space. Machining control method for machining robots.
前記工具の送り方向と押付け方向との外積によって工具の往復動方向を算出する、ことを特徴とする請求項4に記載の加工制御方法。   The machining control method according to claim 4, wherein a reciprocating direction of the tool is calculated by an outer product of the feed direction and the pressing direction of the tool. 工具のワークへの押付け力を制御しながら、ワークに倣って加工する、ことを特徴とする請求項4に記載の加工制御方法。



5. The machining control method according to claim 4, wherein machining is performed in accordance with the workpiece while controlling the pressing force of the tool to the workpiece.



JP2010086719A 2010-04-05 2010-04-05 Machining robot and its machining control method Active JP5549330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086719A JP5549330B2 (en) 2010-04-05 2010-04-05 Machining robot and its machining control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086719A JP5549330B2 (en) 2010-04-05 2010-04-05 Machining robot and its machining control method

Publications (2)

Publication Number Publication Date
JP2011218452A true JP2011218452A (en) 2011-11-04
JP5549330B2 JP5549330B2 (en) 2014-07-16

Family

ID=45036081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086719A Active JP5549330B2 (en) 2010-04-05 2010-04-05 Machining robot and its machining control method

Country Status (1)

Country Link
JP (1) JP5549330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144487A (en) * 2016-02-15 2017-08-24 株式会社Ihi Processing tool holder and precise finishing robot system
CN107848046A (en) * 2015-09-29 2018-03-27 Abb瑞士股份有限公司 For mach method and system
CN108098515A (en) * 2017-12-12 2018-06-01 科德数控股份有限公司 A kind of method using a variety of forming grinding wheel processing drill groove profiles
US10150200B2 (en) 2016-05-26 2018-12-11 Fanuc Corporation Grinding robot system
CN111633668A (en) * 2020-07-27 2020-09-08 山东大学 Motion control method for robot to process three-dimensional free-form surface
JP2020189401A (en) * 2020-07-22 2020-11-26 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Method and system for machining
CN114310539A (en) * 2020-10-12 2022-04-12 太原科技大学 Bar chamfering robot system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196960A (en) * 1989-12-25 1991-08-28 Toshiba Ceramics Co Ltd Ceramics compact deburring finisher
JPH08118277A (en) * 1994-10-24 1996-05-14 Toshiba Corp Force control robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196960A (en) * 1989-12-25 1991-08-28 Toshiba Ceramics Co Ltd Ceramics compact deburring finisher
JPH08118277A (en) * 1994-10-24 1996-05-14 Toshiba Corp Force control robot

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3356070A4 (en) * 2015-09-29 2019-07-17 ABB Schweiz AG Method and system for machining
CN107848046A (en) * 2015-09-29 2018-03-27 Abb瑞士股份有限公司 For mach method and system
US20180281138A1 (en) * 2015-09-29 2018-10-04 Abb Schweiz Ag Method and system for machining
JP2018531159A (en) * 2015-09-29 2018-10-25 アーベーベー・シュバイツ・アーゲー Method and system for machining
US10759015B2 (en) 2015-09-29 2020-09-01 Abb Schweiz Ag Method and system for machining
JP2017144487A (en) * 2016-02-15 2017-08-24 株式会社Ihi Processing tool holder and precise finishing robot system
US10150200B2 (en) 2016-05-26 2018-12-11 Fanuc Corporation Grinding robot system
CN108098515A (en) * 2017-12-12 2018-06-01 科德数控股份有限公司 A kind of method using a variety of forming grinding wheel processing drill groove profiles
JP2020189401A (en) * 2020-07-22 2020-11-26 アーベーベー・シュバイツ・アーゲーABB Schweiz AG Method and system for machining
JP7051948B2 (en) 2020-07-22 2022-04-11 アーベーベー・シュバイツ・アーゲー Methods and systems for machining
CN111633668A (en) * 2020-07-27 2020-09-08 山东大学 Motion control method for robot to process three-dimensional free-form surface
CN111633668B (en) * 2020-07-27 2021-07-02 山东大学 Motion control method for robot to process three-dimensional free-form surface
CN114310539A (en) * 2020-10-12 2022-04-12 太原科技大学 Bar chamfering robot system and method

Also Published As

Publication number Publication date
JP5549330B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5549330B2 (en) Machining robot and its machining control method
JP4220944B2 (en) Gear grinding machine
JP5481919B2 (en) Workpiece processing apparatus and control method thereof
JP2014040001A (en) Workpiece processing device and control method for the same
JP2019171503A (en) Robot processing system
CN107695883B (en) Shaping and trimming device and shaping and trimming method
JP4456520B2 (en) Multi-axis spherical grinding apparatus and grinding method
JP5534189B2 (en) Machining robot and its machining control method
CN103128663A (en) Dresser of air bag polishing tool
JP2017019071A (en) Grinder and grinding method
WO2018011990A1 (en) Machining program generation device and machining method
JP6766922B2 (en) Cutting equipment and cutting method
JP6323744B2 (en) Polishing robot and its control method
JP2010082749A (en) Finishing method and device for workpiece
US10759015B2 (en) Method and system for machining
JP4712586B2 (en) NC machine tool
JP5296509B2 (en) Grinding method and grinding apparatus
JP6430217B2 (en) Profile grinding machine
JP2018202582A (en) Processing method and processing device
JP2009090414A (en) Spherical surface grinding method for lens
JP6561596B2 (en) Cutting apparatus and cutting method
JP2009066724A (en) Lens spherical face grinding method and device
JP2019098445A (en) Processing device and processing method
JP4187849B2 (en) Disc-shaped tool control method and tool dressing machine
GB2408224B (en) Improvements in and relating to grinding machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R151 Written notification of patent or utility model registration

Ref document number: 5549330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250