[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011218346A - Method and apparatus for treating wastewater - Google Patents

Method and apparatus for treating wastewater Download PDF

Info

Publication number
JP2011218346A
JP2011218346A JP2011055265A JP2011055265A JP2011218346A JP 2011218346 A JP2011218346 A JP 2011218346A JP 2011055265 A JP2011055265 A JP 2011055265A JP 2011055265 A JP2011055265 A JP 2011055265A JP 2011218346 A JP2011218346 A JP 2011218346A
Authority
JP
Japan
Prior art keywords
tank
diversion tank
diversion
specific
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011055265A
Other languages
Japanese (ja)
Other versions
JP5717188B2 (en
Inventor
Yusuke Otake
祐介 大嶽
Shigehiro Suzuki
重浩 鈴木
Toshiaki Saito
利晃 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Metawater Co Ltd
Original Assignee
Nihon University
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Metawater Co Ltd filed Critical Nihon University
Priority to JP2011055265A priority Critical patent/JP5717188B2/en
Publication of JP2011218346A publication Critical patent/JP2011218346A/en
Application granted granted Critical
Publication of JP5717188B2 publication Critical patent/JP5717188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve both of the efficiency of the whole wastewater treatment, and the reduction of generation and emitting amount of nitrous oxide.SOLUTION: An apparatus S for treating wastewater measures an ORP value D1 in the position near the downmost stream of the diversion tanks 61 to 64, and the diversion tank whose ORP value D1 is within a first prescribed range Dc1 is determined to be a specific diversion tank. Air is supplied into the specific diversion tank and the diversion tank at a side upstream therefrom by an air diffuser 16, and the air content to be supplied into the diversion tank downstream of the specific diversion tank is reduced from that to be supplied into the specific diversion tank and the tank upstream thereof. Thereby, since the air diffusers can be operated at low electric power in a downstream tank, energy saving can be achieved and besides, the generation and emitting amount of nitrous oxide can be reduced in the downstream tank.

Description

本発明は、窒素を含有する排水を生物処理する排水処理方法及び排水処理装置に関するものである。   The present invention relates to a wastewater treatment method and wastewater treatment apparatus for biologically treating wastewater containing nitrogen.

窒素を含有する排水(以下、窒素含有排水と略記)を生物処理する際、反応副生成物として亜酸化窒素ガス(NO)が発生することが知られている。亜酸化窒素ガスは温室効果ガスであり、その温室効果は二酸化炭素ガスの約310倍と非常に高い。また、亜酸化窒素ガスは、フロンガスと同様、成層圏のオゾン層を破壊するオゾン層破壊ガスとしても問題視されている。このため、窒素含有排水を生物処理する際、大気中への亜酸化窒素ガスの拡散を抑制することが地球環境保護の観点から急務となっている。なお、窒素含有排水としては、下水処理場の最初沈殿池より供給される原水、一般下水や汚水、し尿,工場排水,農業集落排水,漁業集落排水,養殖排水等を処理した排水や浄水原水等を例示できる。 It is known that nitrous oxide gas (N 2 O) is generated as a reaction byproduct when biologically treating wastewater containing nitrogen (hereinafter abbreviated as nitrogen-containing wastewater). Nitrous oxide gas is a greenhouse gas, and its greenhouse effect is as high as about 310 times that of carbon dioxide gas. Nitrous oxide gas is also regarded as a problem as an ozone depleting gas that destroys the stratospheric ozone layer, like chlorofluorocarbon gas. For this reason, when biologically treating nitrogen-containing wastewater, it is an urgent task to suppress the diffusion of nitrous oxide gas into the atmosphere from the viewpoint of protecting the global environment. Nitrogen-containing wastewater includes raw water supplied from the first sedimentation basin of the sewage treatment plant, general sewage and sewage, human waste, industrial wastewater, agricultural village wastewater, fishery village wastewater, aquaculture wastewater, etc. Can be illustrated.

一般に、窒素含有排水を生物処理する方法(以下、排水処理方法と表記)は、硝化菌を利用して窒素含有排水中のアンモニア性窒素を酸化する硝化工程と、脱窒菌を利用して窒素含有排水中に含まれる窒素酸化物を還元する脱窒工程と、を含む(特許文献1参照)。硝化工程は、以下に示す化学反応式(1),(2)に従ってアンモニアが酸化されて亜硝酸となる工程と、以下に示す化学反応式(3)に従って亜硝酸が酸化されて硝酸となる工程と、を含む。   In general, biological treatment of nitrogen-containing wastewater (hereinafter referred to as wastewater treatment method) involves nitrification using nitrifying bacteria to oxidize ammonia nitrogen in nitrogen-containing wastewater, and nitrogen containing using denitrifying bacteria. A denitrification step of reducing nitrogen oxides contained in the waste water (see Patent Document 1). The nitrification step is a step in which ammonia is oxidized into nitrous acid according to chemical reaction formulas (1) and (2) shown below, and a step in which nitrous acid is oxidized into nitric acid in accordance with chemical reaction formula (3) shown below. And including.

NH +O+H+2e → NHOH+HO …(1)
NHOH+HO → NO +5H+4e …(2)
NO +0.5O → NO …(3)
NH 4 + + O 2 + H + + 2e → NH 2 OH + H 2 O (1)
NH 2 OH + H 2 O → NO 2 + 5H + + 4e (2)
NO 2 + 0.5O 2 → NO 3 (3)

化学反応式(1),(2)は、本来的には1対の反応として連続的に進み、以下の化学反応式(4)に示すように余った電子が酸素に渡される。しかしながら、化学反応式(1)に従って生成されたNHOHの一部が化学反応式(2)の反応経路を経ることなく以下に示す化学反応式(5)に従って酸化されることによって、亜酸化窒素が生成されることがある。また、曝気量が不足して硝化工程に必要な酸素量を確保できない場合、反応が十分に進行せず、排水中にNO が蓄積し、以下に示す化学反応式(6),(7)の反応が生じ、硝化率が低下することによって、亜酸化窒素への転換率が上昇することがある。 The chemical reaction formulas (1) and (2) essentially proceed continuously as a pair of reactions, and surplus electrons are transferred to oxygen as shown in the following chemical reaction formula (4). However, a part of NH 2 OH generated according to the chemical reaction formula (1) is oxidized according to the chemical reaction formula (5) shown below without passing through the reaction path of the chemical reaction formula (2). Nitrogen may be produced. In addition, when the amount of oxygen necessary for the nitrification process cannot be secured due to a shortage of aeration, the reaction does not proceed sufficiently, NO 2 accumulates in the waste water, and the chemical reaction formulas (6) and (7) shown below: ) Reaction, and the nitrification rate decreases, the conversion rate to nitrous oxide may increase.

0.5O+2H+2e → HO …(4)
NHOH+NO → NO+HO+OH …(5)
NO +3H+2e → 0.5NO+1.5HO …(6)
NO +H+2(H) → 0.5NO+1.5HO …(7)
0.5O 2 + 2H + + 2e → H 2 O (4)
NH 2 OH + NO 2 → N 2 O + H 2 O + OH (5)
NO 2 + 3H + + 2e → 0.5N 2 O + 1.5H 2 O (6)
NO 2 + H + +2 (H) → 0.5N 2 O + 1.5H 2 O (7)

一方、脱窒工程は、有機物を利用して以下に示す化学反応式(8)に従って進行する。化学反応式(8)中の(H)はエタノール及びその他の有機物を示している。しかしながら、この脱窒工程において、有機物量が少ない、溶存酸素量が多い等、反応環境が良好でないと、脱窒反応が不十分になり、窒素への完全な分解が進まなくなる。この結果、以下に示す化学反応式(9)〜(12)のうち、化学反応式(11)までで反応が終了してしまい、亜酸化窒素の発生量が増加することがある。   On the other hand, the denitrification process proceeds according to the chemical reaction formula (8) shown below using an organic substance. (H) in the chemical reaction formula (8) represents ethanol and other organic substances. However, in this denitrification step, if the reaction environment is not good, such as a small amount of organic matter or a large amount of dissolved oxygen, the denitrification reaction will be insufficient and complete decomposition into nitrogen will not proceed. As a result, among the chemical reaction formulas (9) to (12) shown below, the reaction may be completed up to the chemical reaction formula (11), and the amount of nitrous oxide generated may increase.

NO +H+5(H) → 0.5N+3HO …(8)
NO +H+5(H) → NO +HO …(9)
NO +H+(H) → NO+HO …(10)
NO+(H) → 0.5NO+0.5HO …(11)
O+2(H) → N+HO …(12)
NO 3 + H + +5 (H) → 0.5N 2 + 3H 2 O (8)
NO 3 + H + +5 (H) → NO 2 + H 2 O (9)
NO 2 + H + + (H) → NO + H 2 O (10)
NO + (H) → 0.5N 2 O + 0.5H 2 O (11)
N 2 O + 2 (H) → N 2 + H 2 O (12)

ところで、嫌気好気法(AO法),嫌気無酸素好気法(A2O法),循環型硝化脱窒法等の排水処理方法において、窒素除去率を向上させるためには、硝化槽において発生した硝化液を脱窒槽(嫌気槽や無酸素槽)に循環させ、生物学的な還元反応によって窒素化を促進する必要がある。しかしながら、硝化液を循環させるためにはエネルギーが必要であり、また、酸素が溶存した硝化液が脱窒槽に流入することにより、脱窒槽内での脱窒反応の効率が悪化してしまう。従って、好気槽を複数設け、その中で硝化反応が十分に完了した槽を見極めて、それ以降の槽を脱窒反応に利用できれば、硝化液の循環量をいたずらに増大させる必要がなくなり好ましい。このような背景から、特許文献2には、酸化還元電位の値に基づいて複数の好気槽のうちの一部を嫌気槽に切り替えて使用する技術が開示されている。   By the way, in order to improve the nitrogen removal rate in wastewater treatment methods such as anaerobic aerobic method (AO method), anaerobic anaerobic aerobic method (A2O method), circulation type nitrification denitrification method, nitrification generated in nitrification tank It is necessary to circulate the liquid to a denitrification tank (anaerobic tank or anoxic tank) and promote nitrogenation by biological reduction reaction. However, energy is required to circulate the nitrification liquid, and the efficiency of the denitrification reaction in the denitrification tank deteriorates when the nitrification liquid in which oxygen is dissolved flows into the denitrification tank. Accordingly, if a plurality of aerobic tanks are provided, and a tank in which the nitrification reaction is sufficiently completed is identified, and the subsequent tanks can be used for the denitrification reaction, it is preferable that the circulation amount of the nitrification liquid need not be increased unnecessarily. . From such a background, Patent Document 2 discloses a technique in which a part of a plurality of aerobic tanks is switched to an anaerobic tank based on the value of the oxidation-reduction potential.

特開平6−63588公報JP-A-6-63588 実開平5−18699号公報Japanese Utility Model Publication No. 5-18699

しかしながら、上記特許文献2に記載の技術は、省エネルギー等を含む排水処理の効率化を目的としているものの、亜酸化窒素の発生量低減まで考慮されていない。特に、好気槽における散気(空気供給)に伴い溶存状態の亜酸化窒素が大気中に容易に揮散してしまうという弊害については何ら検討されていない。   However, the technique described in Patent Document 2 is aimed at improving the efficiency of wastewater treatment including energy saving, but does not take into account the reduction in the amount of nitrous oxide generated. In particular, no consideration has been given to the adverse effect that dissolved nitrous oxide easily volatilizes into the atmosphere with aeration (air supply) in an aerobic tank.

本発明は、上記課題に鑑みてなされたものであって、その目的は、排水処理全体の効率化と亜酸化窒素の発生量や揮散量の低減とを両立可能な排水処理方法及び排水処理装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide a wastewater treatment method and a wastewater treatment apparatus that can achieve both the efficiency of the entire wastewater treatment and the reduction of the amount of nitrous oxide generated and the amount of volatilization. Is to provide.

上記課題を解決するために、本発明の第1の態様に係る排水処理方法は、窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置における排水処理方法であって、各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測するステップと、前記酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定するステップと、前記特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給するステップと、前記特定転用槽より下流側の転用槽内に前記第1供給量より少ない第2供給量の空気を供給するステップと、を含む。   In order to solve the above-mentioned problem, a wastewater treatment method according to the first aspect of the present invention includes a wastewater treatment comprising a plurality of diversion tanks arranged along the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater. A wastewater treatment method in the apparatus, the step of measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank, and a nitrification reaction of the nitrogen-containing wastewater based on the redox potential or dissolved oxygen concentration Identifying a diversion tank that has been substantially completed as a specific diversion tank, supplying a first supply amount of air into the specific diversion tank and a diversion tank upstream of the specific diversion tank, and the identification Supplying a second supply amount of air less than the first supply amount into the diversion tank downstream of the diversion tank.

上記課題を解決するために、本発明の第1の態様に係る排水処理装置は、窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置であって、各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測する計測手段と、前記計測手段によって計測された酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定する手段と、該特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給する手段と、特定転用槽より下流側の転用槽内に前記第1供給量より少ない第2供給量の空気を供給する手段と、を備える。   In order to solve the above-described problem, a wastewater treatment apparatus according to the first aspect of the present invention includes a wastewater treatment system including a plurality of diversion tanks arranged along the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater. A measuring means for measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank, and the nitrogen-containing wastewater based on the redox potential or dissolved oxygen concentration measured by the measuring means. Means for identifying a diversion tank in which the nitrification reaction of the nitrification reaction is substantially completed as a specific diversion tank, and means for supplying a first supply amount of air into the specific diversion tank and into a diversion tank upstream of the specific diversion tank; And means for supplying a second supply amount of air smaller than the first supply amount into the diversion tank on the downstream side of the specific diversion tank.

上記課題を解決するために、本発明の第2の態様に係る排水処理方法は、窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置における排水処理方法であって、各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測するステップと、前記酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定するステップと、前記特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給するステップと、前記特定転用槽より下流側の転用槽内に有機物を添加し、該有機物が添加された転用槽内を撹拌するステップと、を含む。   In order to solve the above-mentioned problem, a wastewater treatment method according to the second aspect of the present invention includes a wastewater treatment comprising a plurality of diversion tanks arranged along the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater. A wastewater treatment method in the apparatus, the step of measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank, and a nitrification reaction of the nitrogen-containing wastewater based on the redox potential or dissolved oxygen concentration Identifying a diversion tank that has been substantially completed as a specific diversion tank, supplying a first supply amount of air into the specific diversion tank and a diversion tank upstream of the specific diversion tank, and the identification Adding an organic substance into a diversion tank on the downstream side of the diversion tank, and stirring the diversion tank to which the organic substance is added.

上記課題を解決するために、本発明の第2の態様に係る排水処理装置は、窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置であって、各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測する計測手段と、前記計測手段によって計測された酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定する手段と、該特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給する手段と、該特定転用槽より下流側の転用槽内に有機物を添加し、該有機物が添加された転用槽内を撹拌する手段と、を備える。   In order to solve the above-mentioned problem, a wastewater treatment apparatus according to a second aspect of the present invention is a wastewater treatment apparatus comprising a plurality of diversion tanks arranged along the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater. A measuring means for measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank, and the nitrogen-containing wastewater based on the redox potential or dissolved oxygen concentration measured by the measuring means. Means for identifying a diversion tank in which the nitrification reaction of the nitrification reaction is substantially completed as a specific diversion tank, and means for supplying a first supply amount of air into the specific diversion tank and into a diversion tank upstream of the specific diversion tank; And means for adding an organic substance into a diversion tank downstream from the specific diversion tank and stirring the diversion tank to which the organic substance is added.

本発明に係る排水処理方法及び排水処理装置によれば、排水処理全体の効率化と亜酸化窒素の発生量や揮散量の低減とを両立させることができる。   According to the waste water treatment method and the waste water treatment apparatus according to the present invention, it is possible to achieve both the efficiency of the whole waste water treatment and the reduction in the amount of nitrous oxide generated and the amount of volatilization.

図1は、本発明の第1の実施形態である排水処理装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a wastewater treatment apparatus according to the first embodiment of the present invention. 図2は、図1に示す排水処理装置の変形例の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a modified example of the waste water treatment apparatus illustrated in FIG. 1. 図3は、本発明の第2の実施形態である排水処理装置の構成を示す模式図である。FIG. 3 is a schematic view showing a configuration of a waste water treatment apparatus according to the second embodiment of the present invention. 図4は、転用槽におけるORP値とアンモニア濃度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the ORP value and the ammonia concentration in the diversion tank. 図5は、図3に示す排水処理装置の変形例の構成を示す模式図である。FIG. 5 is a schematic diagram illustrating a configuration of a modified example of the waste water treatment apparatus illustrated in FIG. 3.

以下、図面を参照して、本発明の第1及び第2の実施形態である排水処理装置及びその排水処理方法について説明する。   Hereinafter, a waste water treatment apparatus and a waste water treatment method thereof according to first and second embodiments of the present invention will be described with reference to the drawings.

〔第1の実施形態〕
始めに、図1,図2を参照して、本発明の第1の実施形態である排水処理装置及びその排水処理方法について説明する。
[First Embodiment]
First, the waste water treatment apparatus and the waste water treatment method according to the first embodiment of the present invention will be described with reference to FIGS.

〔排水処理装置の構成〕
図1は、本発明の第1の実施形態である排水処理装置の構成を示す模式図である。図1に示すように、本発明の第1の実施形態である排水処理装置Sは、嫌気槽2,脱窒槽4,転用槽6,固液分離槽(沈殿槽)10,散気装置16,ORP計24,及びコンピュータ28を主な構成要素として備えている。嫌気槽2は、窒素含有排水が最初に又は下水処理場の構成によっては図示しない最初沈殿池を介して流入する槽である。嫌気槽2は、嫌気環境下でリン蓄積細菌の作用によって窒素含有排水に対し脱リン処理(嫌気処理)を施すためのものである。
[Configuration of wastewater treatment equipment]
FIG. 1 is a schematic diagram showing a configuration of a wastewater treatment apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the wastewater treatment apparatus S according to the first embodiment of the present invention includes an anaerobic tank 2, a denitrification tank 4, a diversion tank 6, a solid-liquid separation tank (precipitation tank) 10, an air diffuser 16, An ORP meter 24 and a computer 28 are provided as main components. The anaerobic tank 2 is a tank into which nitrogen-containing wastewater flows first or through a first sedimentation basin (not shown) depending on the configuration of the sewage treatment plant. The anaerobic tank 2 is for performing a dephosphorization process (anaerobic treatment) on the nitrogen-containing wastewater by the action of phosphorus-accumulating bacteria in an anaerobic environment.

脱窒槽4は、嫌気槽2の下流側に配置され、嫌気槽2から流出した処理水が流入する槽である。脱窒槽4は、無酸素環境下で脱窒菌の作用によって処理水に対し脱窒処理を施すためのものである。脱窒槽4内の処理水には、循環経路8を介して転用槽64(6)内の硝化液が循環されることによって硝酸が含まれている。この硝酸は、既に述べた化学反応式(9)〜(12)に従った化学反応によって窒素へと分解される。循環経路8を介して脱窒槽4内に硝化液を循環させることによって、脱窒槽4における脱窒効率を向上させることができる。   The denitrification tank 4 is a tank that is arranged on the downstream side of the anaerobic tank 2 and into which treated water that has flowed out of the anaerobic tank 2 flows. The denitrification tank 4 is for denitrifying the treated water by the action of denitrifying bacteria in an oxygen-free environment. The treated water in the denitrification tank 4 contains nitric acid by circulating the nitrification liquid in the diversion tank 64 (6) through the circulation path 8. This nitric acid is decomposed into nitrogen by the chemical reaction according to the chemical reaction formulas (9) to (12) already described. Denitrification efficiency in the denitrification tank 4 can be improved by circulating the nitrification liquid in the denitrification tank 4 via the circulation path 8.

転用槽6は、脱窒槽4の下流側に配置され、脱窒槽4から流出した処理水が流入する槽である。転用槽6は、複数の転用槽61〜64によって構成されている。複数の転用槽61〜64は、物理的に分離したものであってもよいし、隔壁又は槽内流によって1つの転用槽内を仮想的に複数に区分けしたものであってもよい。各転用槽の底部には、貯留されている処理水に空気を供給するための散気装置16が設けられている。各散気装置16の散気量は個別のコントローラ18によって制御される。各コントローラ18は、ブロアと流量調整弁とを備え、コンピュータ28からの制御指令に従って各散気装置16の散気量を調整する。各槽の終端位置(最下流近傍位置)6aには、各槽に貯留されている処理水の酸化還元電位(ORP値)を計測するためのORP計24が設置されている。   The diversion tank 6 is a tank that is disposed on the downstream side of the denitrification tank 4 and into which treated water that has flowed out of the denitrification tank 4 flows. The diversion tank 6 includes a plurality of diversion tanks 61 to 64. The plurality of diversion tanks 61 to 64 may be physically separated, or may be one in which one diversion tank is virtually divided into a plurality of partition walls or a flow in the tank. A diffuser 16 for supplying air to the stored treated water is provided at the bottom of each diversion tank. The amount of air diffused by each air diffuser 16 is controlled by an individual controller 18. Each controller 18 includes a blower and a flow rate adjustment valve, and adjusts the amount of air diffused by each air diffuser 16 in accordance with a control command from the computer 28. An ORP meter 24 for measuring the oxidation-reduction potential (ORP value) of the treated water stored in each tank is installed at the terminal position (most downstream vicinity position) 6a of each tank.

初段(最上流)の転用槽61は、好気(硝化)槽として利用される。すなわち、転用槽61内では、散気装置16による散気が充分に行われ、溶存酸素濃度が高い環境下で硝化菌の作用によって処理水の硝化が行われる。一方、次段以降の転用槽62〜64は、各ORP計24によるORP値の計測値に応じて、好気槽又は下流槽のいずれかに切り替えて利用される。より具体的には、コンピュータ28によって転用槽62〜64のうちのいずれかの槽が特定転用槽であると判断された場合、特定転用槽及びそれより上流側の転用槽は好気槽として利用され、特定転用槽より下流側の転用槽は下流槽として利用される。本明細書中において、特定転用槽とは、「その転用槽までにおいて、硝化反応が略完了していると判断することができる」転用槽のことを意味する。なお、初期動作時においては、全ての転用槽61〜64を好気槽として利用することが好ましい。   The first-stage (most upstream) diversion tank 61 is used as an aerobic (nitrification) tank. That is, in the diversion tank 61, the aeration by the aeration device 16 is sufficiently performed, and nitrification of the treated water is performed by the action of nitrifying bacteria in an environment where the dissolved oxygen concentration is high. On the other hand, the diversion tanks 62 to 64 in the subsequent stages are used by switching to either the aerobic tank or the downstream tank according to the measured value of the ORP value by each ORP meter 24. More specifically, when the computer 28 determines that any one of the conversion tanks 62 to 64 is the specific conversion tank, the specific conversion tank and the conversion tank upstream thereof are used as the aerobic tank. The diversion tank on the downstream side of the specific diversion tank is used as the downstream tank. In the present specification, the specific diversion tank means a diversion tank that can be “determined that the nitrification reaction has been substantially completed up to the diversion tank”. In the initial operation, it is preferable to use all the diversion tanks 61 to 64 as aerobic tanks.

固液分離槽10は、転用槽6の下流側に位置し、転用槽6から流出した処理水が流入する槽である。固液分離槽10は、生物学的処理が完了した処理水を固液分離するためのものである。固液分離槽10では、固液分離によって生成された上澄水が装置外に排出される。固液分離によって生成された汚泥の一部は、返送経路12を介して嫌気槽2や嫌気槽2に流入する前の窒素含有排水と合流する位置にまで返送され、嫌気槽2内の生物量を維持している。固液分離によって生成された汚泥の残部は余剰汚泥として排出管14を介して装置外に排出される。   The solid-liquid separation tank 10 is located on the downstream side of the diversion tank 6 and is a tank into which treated water that has flowed out of the diversion tank 6 flows. The solid-liquid separation tank 10 is for solid-liquid separation of treated water that has undergone biological treatment. In the solid-liquid separation tank 10, the supernatant water generated by the solid-liquid separation is discharged out of the apparatus. Part of the sludge generated by the solid-liquid separation is returned to the anaerobic tank 2 and the position where it merges with the nitrogen-containing wastewater before flowing into the anaerobic tank 2 via the return path 12, and the biomass in the anaerobic tank 2 Is maintained. The remainder of the sludge generated by solid-liquid separation is discharged out of the apparatus through the discharge pipe 14 as excess sludge.

コンピュータ28は、各転用槽61〜64に設置されたORP計24からのORP値に基づいて、転用槽61〜64のうちのいずれの転用槽が特定転用槽であるかを判断する。本実施形態では、コンピュータ28内のメモリに第1の所定範囲Dc1を示す数値範囲の情報が予め格納されており、コンピュータ28は、この数値範囲と各ORP計24からのORP値D1とを比較し、ORP値D1がこの数値範囲内にある転用槽を特定転用槽と判断する。   The computer 28 determines which of the diversion tanks 61 to 64 is the specific diversion tank based on the ORP value from the ORP meter 24 installed in each diversion tank 61 to 64. In the present embodiment, the numerical value range information indicating the first predetermined range Dc1 is stored in advance in the memory in the computer 28, and the computer 28 compares this numerical value range with the ORP value D1 from each ORP meter 24. Then, the diversion tank having the ORP value D1 within this numerical range is determined as the specific diversion tank.

コンピュータ28は、特定転用槽とそれより上流側の転用槽の各コントローラ18に対し散気装置16による散気を継続して行うように制御指令D2を送出する。これにより、特定転用槽とそれより上流側の転用槽は好気槽として利用される。一方、コンピュータ28は、特定転用槽の下流側の転用槽の各コントローラ18に対しては、好気槽において散気装置16によって供給される空気量よりも少ない空気量を供給するように制御指令D2を送出する。これにより、特定転用槽の下流側の転用槽は下流側脱窒槽として利用される。下流側脱窒槽は、亜酸化窒素の発生量や揮散量を低減するために、脱窒反応や硝化反応を極力進行させない槽内環境を実現した槽である。この結果、散気に要する電力量を削減することができると共に、排水処理装置を有効活用することができる。   The computer 28 sends out a control command D2 so as to continue the aeration by the aeration device 16 to each controller 18 of the specific diversion tank and the diversion tank upstream thereof. Thereby, the specific diversion tank and the diversion tank on the upstream side are used as an aerobic tank. On the other hand, the computer 28 controls the controller 18 of the diversion tank downstream of the specific diversion tank so as to supply an air amount smaller than the air amount supplied by the air diffuser 16 in the aerobic tank. D2 is sent out. Thereby, the diversion tank on the downstream side of the specific diversion tank is used as a downstream denitrification tank. The downstream denitrification tank is a tank that realizes an in-tank environment in which the denitrification reaction and the nitrification reaction do not proceed as much as possible in order to reduce the generation amount and volatilization amount of nitrous oxide. As a result, the amount of power required for aeration can be reduced, and the wastewater treatment device can be effectively utilized.

下流槽への散気を完全に停止すると、下流槽は無酸素状態となるが、有機物量が不足しているので、十分な脱窒反応を行わせることが難しい。このため、脱窒反応が部分的に進行してしまい、半脱窒状態となり、亜酸化窒素の発生量が増大することがある。一方、下流槽に空気を多量に供給すると、不必要なエネルギーを用いて不必要な硝化反応を促進する結果になる上に、溶存状態の亜酸化窒素が揮散してしまう。このため、脱窒反応及び硝化反応が進行せず、且つ、溶存状態の亜酸化窒素が揮散しない程度に空気を供給することが望ましい。   When the aeration to the downstream tank is completely stopped, the downstream tank is in an oxygen-free state, but since the amount of organic substances is insufficient, it is difficult to perform a sufficient denitrification reaction. For this reason, the denitrification reaction partly proceeds, resulting in a semi-denitrification state, and the amount of nitrous oxide generated may increase. On the other hand, when a large amount of air is supplied to the downstream tank, unnecessary nitrification reaction is promoted using unnecessary energy, and dissolved nitrous oxide is volatilized. For this reason, it is desirable to supply air to such an extent that denitrification reaction and nitrification reaction do not proceed and dissolved nitrous oxide is not volatilized.

特定転用槽の下流側の転用槽に対する空気量の制御は、特定転用槽の下流側の転用槽のORP値D1に基づいて行うことが好ましい。具体的には、本実施形態では、コンピュータ28内のメモリに第2の所定範囲Dc2の情報が格納されており、コンピュータ28は、特定転用槽の下流側の転用槽からのORP値D1とこの第2の所定範囲Dc2を比較する。そして、特定転用槽の下流側の転用槽からのORP値D1が第2の所定範囲Dc2以上である場合、コンピュータ28は、特定転用槽の下流側の転用槽のコントローラ18に向けて供給空気量をより減少させる制御指令を送出する。   It is preferable to control the amount of air for the diversion tank downstream of the specific diversion tank based on the ORP value D1 of the diversion tank downstream of the specific diversion tank. Specifically, in the present embodiment, the information in the second predetermined range Dc2 is stored in the memory in the computer 28, and the computer 28 determines the ORP value D1 from the diversion tank downstream of the specific diversion tank and this The second predetermined range Dc2 is compared. When the ORP value D1 from the diversion tank downstream of the specific diversion tank is equal to or greater than the second predetermined range Dc2, the computer 28 supplies the amount of air supplied to the controller 18 of the diversion tank downstream of the specific diversion tank. Sends a control command to further reduce the.

一方、特定転用槽の下流側の転用槽からのORP値D1が第2の所定範囲Dc2未満である場合、コンピュータ28は、特定転用槽の下流側の転用槽のコントローラ18に向けて供給空気量をより増加させる制御指令を送出する。これにより、特定転用槽の下流側の転用槽からのORP値D1は第2の所定範囲Dc2内に入るようにフィードバック制御される。   On the other hand, when the ORP value D1 from the diversion tank downstream of the specific diversion tank is less than the second predetermined range Dc2, the computer 28 supplies the air amount to the controller 18 of the diversion tank downstream of the specific diversion tank. Sends a control command that further increases. As a result, the ORP value D1 from the diversion tank on the downstream side of the specific diversion tank is feedback-controlled so as to fall within the second predetermined range Dc2.

〔排水処理方法〕
次に、本発明の第1の実施形態である排水処理装置Sによる排水処理方法について説明する。
[Wastewater treatment method]
Next, a wastewater treatment method by the wastewater treatment apparatus S according to the first embodiment of the present invention will be described.

本発明の第1の実施形態である排水処理装置Sでは、始めに、窒素含有排水は、嫌気槽2に流入し、脱リン処理される。次に、処理水は、上流側脱窒槽4に流入し、脱窒処理される。次に、処理水は、転用槽6に流入し、硝化処理される。次に、転用槽61〜64の槽終端位置6aにおけるORP値D1がORP計24によって計測され、計測されたORP値D1はコンピュータ28に送出される。次に、コンピュータ28は、ORP値D1と所定範囲Dc1とを比較することによって特定転用槽を特定する。   In the waste water treatment apparatus S which is the first embodiment of the present invention, first, the nitrogen-containing waste water flows into the anaerobic tank 2 and is subjected to dephosphorization treatment. Next, the treated water flows into the upstream denitrification tank 4 and is denitrified. Next, the treated water flows into the diversion tank 6 and is nitrified. Next, the ORP value D 1 at the tank terminal position 6 a of the diversion tanks 61 to 64 is measured by the ORP meter 24, and the measured ORP value D 1 is sent to the computer 28. Next, the computer 28 specifies the specific diversion tank by comparing the ORP value D1 with the predetermined range Dc1.

次に、コンピュータ28は、特定転用槽及び特定転用槽より上流側の転用槽への空気供給量よりも空気供給量を減少させる制御指令D2を特定転用槽より下流側の転用槽のコントローラ18に送出する。また、コンピュータ28は、特定転用槽より下流側の転用槽のORP値D1と第2の所定範囲Dc2とを比較する。そして、特定転用槽より下流側の転用槽のORP値D1が第2の所定範囲Dc2以上である場合、コンピュータ28は、特定転用槽より下流側の転用槽への空気供給量をより一層減少させる制御指令D2を送出する。一方、特定転用槽より下流側の転用槽のORP値D1が第2の所定範囲Dc2未満である場合には、コンピュータ28は、特定転用槽より下流側の転用槽への空気供給量を増加させる制御指令D2を転用槽64のコントローラ18に向けて送出する。   Next, the computer 28 sends a control command D2 for reducing the air supply amount to the specific diversion tank and the diversion tank upstream of the specific diversion tank to the controller 18 of the diversion tank downstream from the specific diversion tank. Send it out. Further, the computer 28 compares the ORP value D1 of the diversion tank downstream from the specific diversion tank with the second predetermined range Dc2. When the ORP value D1 of the diversion tank downstream of the specific diversion tank is equal to or greater than the second predetermined range Dc2, the computer 28 further reduces the amount of air supplied to the diversion tank downstream of the specific diversion tank. A control command D2 is sent out. On the other hand, when the ORP value D1 of the diversion tank downstream from the specific diversion tank is less than the second predetermined range Dc2, the computer 28 increases the amount of air supplied to the diversion tank downstream from the specific diversion tank. A control command D2 is sent to the controller 18 of the diversion tank 64.

以上の説明から明らかなように、本発明の第1の実施形態である排水処理方法では、排水処理装置Sが、転用槽61〜64の最下流近傍位置におけるORP値D1を計測し、ORP値D1が第1の所定範囲Dc1内にある転用槽を特定転用槽と判断し、特定転用槽内及びそれより上流側の転用槽内に散気装置16により空気を供給し、特定転用槽より下流側の転用槽内に供給する空気量を特定転用槽及びそれより上流側の転用槽内に供給する空気量よりも減少させる。このような排水処理方法によれば、下流槽では散気装置を低電力で稼働させることができるので、省エネルギー化を実現することができる。また、下流槽における亜酸化窒素の発生量や揮散量を低減させることができる。すなわち、このような排水処理方法によれば、排水処理全体の効率化と亜酸化窒素の発生量及び揮散量の低減とを両立させることができる。   As is apparent from the above description, in the wastewater treatment method according to the first embodiment of the present invention, the wastewater treatment apparatus S measures the ORP value D1 at the position closest to the downstream of the diversion tanks 61 to 64, and the ORP value. The diversion tank in which D1 is within the first predetermined range Dc1 is determined as the specific diversion tank, and air is supplied to the diversion tank 16 in the specific diversion tank and upstream from the specific diversion tank, and downstream from the specific diversion tank. The amount of air supplied into the diversion tank on the side is reduced below the amount of air supplied into the specific diversion tank and the diversion tank on the upstream side. According to such a wastewater treatment method, since the diffuser can be operated with low power in the downstream tank, energy saving can be realized. Moreover, the generation amount and volatilization amount of nitrous oxide in a downstream tank can be reduced. That is, according to such a waste water treatment method, it is possible to achieve both the efficiency of the whole waste water treatment and the reduction of the amount of nitrous oxide generated and the amount of volatilization.

また、本発明の第1の実施形態である排水処理方法では、排水処理装置Sが、特定転用槽より下流側の転用槽におけるORP値が第2の所定範囲Dc2となるように、特定転用槽より下流側の転用槽内に供給する空気量を調整するので、特定転用槽より下流側の転用槽において脱窒反応や硝化反応が進行することを抑制できる。   Further, in the wastewater treatment method according to the first embodiment of the present invention, the wastewater treatment apparatus S has a specific diversion tank so that the ORP value in the diversion tank downstream from the specific diversion tank is within the second predetermined range Dc2. Since the amount of air supplied into the conversion tank on the further downstream side is adjusted, it is possible to suppress the progress of the denitrification reaction or nitrification reaction in the conversion tank on the downstream side of the specific conversion tank.

[変形例]
本実施形態では、コンピュータ28は、転用槽内のORP値D1が第1の所定範囲Dc1内であるか否かに基づいて特定転用槽を特定したが、上下流方向に連続するORP計24のORP値D1の差分値が所定差分値以上であるか否かに基づいて特定転用槽を特定してもよい。より具体的には、この場合、コンピュータ28は、上下流方向に連続する転用槽のORP値D1の差分値がメモリ内に記憶されている所定差分値未満である場合、上下流方向に連続する転用槽は特定転用槽でないと判断する。一方、コンピュータ28は、上下流方向に連続する転用槽のORP値D1の差分値がメモリ内に記憶されている所定差分値以上である場合には、下流側の転用槽を特定転用槽と判断する。
[Modification]
In the present embodiment, the computer 28 specifies the specific diversion tank based on whether the ORP value D1 in the diversion tank is within the first predetermined range Dc1, but the computer 28 of the ORP meter 24 that is continuous in the upstream and downstream directions. You may identify a specific diversion tank based on whether the difference value of ORP value D1 is more than a predetermined difference value. More specifically, in this case, the computer 28 continues in the upstream / downstream direction when the difference value of the ORP value D1 of the diversion tanks continuous in the upstream / downstream direction is less than a predetermined difference value stored in the memory. It is determined that the diversion tank is not a specific diversion tank. On the other hand, when the difference value of the ORP value D1 of the diversion tanks continuous in the upstream / downstream direction is equal to or larger than the predetermined difference value stored in the memory, the computer 28 determines that the downstream diversion tank is the specific diversion tank. To do.

本実施形態では、転用槽内のORP値D1が第1の所定範囲Dc1内であるか否かに基づいて特定転用槽を特定したが、図2に示すように、各転用槽61〜64の槽終端位置6aにORP計24に加えて溶存酸素濃度(DO値)を測定するDO計34を設け、上下流方向に連続するDO計34のDO値D3の差分値が所定差分値Dc3以上であるか否かに基づいて特定転用槽を特定してもよい。より具体的には、この場合、コンピュータ28は、上下流方向に連続する転用槽のDO値D3の差分値がメモリ内に記憶されている所定差分値Dc3未満である場合、上下流方向に連続する転用槽は特定転用槽でないと判断する。一方、コンピュータ28は、上下流方向に連続する転用槽のDO値D3の差分値がメモリ内に記憶されている所定差分値Dc3以上である場合、下流側の転用槽を特定転用槽と判断する。なお、所定差分値Dc3は、略0.3mg/Lであることが好ましい。また、本変形例においても、特定転用槽より下流側の転用槽下流槽に対する空気供給量のフィードバック制御がORP値D1と第2の所定範囲Dc2との比較に基づいて行われる。   In the present embodiment, the specific diversion tank is identified based on whether or not the ORP value D1 in the diversion tank is within the first predetermined range Dc1, but as shown in FIG. In addition to the ORP meter 24, a DO meter 34 for measuring the dissolved oxygen concentration (DO value) is provided at the tank end position 6a, and the difference value of the DO value D3 of the DO meter 34 continuous in the upstream and downstream directions is equal to or greater than a predetermined difference value Dc3. The specific diversion tank may be specified based on whether or not there is. More specifically, in this case, when the difference value of the DO value D3 of the diversion tank continuous in the upstream / downstream direction is less than the predetermined difference value Dc3 stored in the memory, the computer 28 continues in the upstream / downstream direction. It is determined that the diversion tank to be used is not a specific diversion tank. On the other hand, when the difference value of the DO value D3 of the diversion tanks continuous in the upstream / downstream direction is equal to or larger than the predetermined difference value Dc3 stored in the memory, the computer 28 determines that the downstream diversion tank is the specific diversion tank. . The predetermined difference value Dc3 is preferably about 0.3 mg / L. Also in this modified example, the feedback control of the air supply amount to the downstream conversion tank downstream of the specific conversion tank is performed based on the comparison between the ORP value D1 and the second predetermined range Dc2.

本実施形態及び変形例では、排水処理装置Sが嫌気槽2及び脱窒槽4を含む場合について説明したが、排水処理装置Sが嫌気槽2及び上流側脱窒槽4のいずれも含まない構成、排水処理装置Sが嫌気槽2又は脱窒槽4の一方のみを含む構成についても本発明を適用することが可能である。   In the present embodiment and the modification, the case where the waste water treatment apparatus S includes the anaerobic tank 2 and the denitrification tank 4 has been described, but the waste water treatment apparatus S includes neither the anaerobic tank 2 nor the upstream denitrification tank 4, drainage The present invention can be applied to a configuration in which the processing apparatus S includes only one of the anaerobic tank 2 or the denitrification tank 4.

〔第2の実施形態〕
次に、図3乃至図5を参照して、本発明の第2の実施形態である排水処理装置及びその排水処理方法について説明する。
[Second Embodiment]
Next, with reference to FIG. 3 thru | or FIG. 5, the waste water treatment apparatus which is the 2nd Embodiment of this invention, and its waste water treatment method are demonstrated.

〔排水処理装置の構成〕
図3は、本発明の第2の実施形態である排水処理装置の構成を示す模式図である。図3に示すように、本発明の第2の実施形態である排水処理装置Sは、嫌気槽2,上流側脱窒槽(脱窒槽)4,転用槽6,固液分離槽(沈殿槽)10,ORP計24,有機物添加手段26、及びコンピュータ28を主な構成要素として備えている。嫌気槽2は、窒素含有排水が最初に又は下水処理場の構成によっては図示しない最初沈殿池を介して流入する槽である。嫌気槽2は、嫌気環境下でリン蓄積細菌の作用によって窒素含有排水に対し脱リン処理(嫌気処理)を施すためのものである。
[Configuration of wastewater treatment equipment]
FIG. 3 is a schematic view showing a configuration of a waste water treatment apparatus according to the second embodiment of the present invention. As shown in FIG. 3, the waste water treatment apparatus S according to the second embodiment of the present invention includes an anaerobic tank 2, an upstream denitrification tank (denitrification tank) 4, a diversion tank 6, and a solid-liquid separation tank (precipitation tank) 10. , ORP meter 24, organic substance adding means 26, and computer 28 as main components. The anaerobic tank 2 is a tank into which nitrogen-containing wastewater flows first or through a first sedimentation basin (not shown) depending on the configuration of the sewage treatment plant. The anaerobic tank 2 is for performing a dephosphorization process (anaerobic treatment) on the nitrogen-containing wastewater by the action of phosphorus-accumulating bacteria in an anaerobic environment.

上流側脱窒槽4は、嫌気槽2の下流側に配置され、嫌気槽2から流出した処理水が流入する槽である。上流側脱窒槽4は、無酸素環境下で脱窒菌の作用によって処理水に対し脱窒処理を施すためのものである。上流側脱窒槽4内の処理水には、循環経路8を介して転用槽64(6)内の硝化液が循環されることによって硝酸が含まれている。この硝酸は、既に述べた化学反応式(9)〜(12)に従った化学反応によって窒素へと分解される。循環経路8を介して上流側脱窒槽4内に硝化液を循環させることによって、上流側脱窒槽4における脱窒効率を向上させることができる。   The upstream denitrification tank 4 is a tank that is disposed on the downstream side of the anaerobic tank 2 and into which treated water that has flowed out of the anaerobic tank 2 flows. The upstream denitrification tank 4 is for performing denitrification treatment on the treated water by the action of denitrifying bacteria in an oxygen-free environment. The treated water in the upstream denitrification tank 4 contains nitric acid as the nitrification liquid in the diversion tank 64 (6) is circulated through the circulation path 8. This nitric acid is decomposed into nitrogen by the chemical reaction according to the chemical reaction formulas (9) to (12) already described. By circulating the nitrification liquid in the upstream denitrification tank 4 via the circulation path 8, the denitrification efficiency in the upstream denitrification tank 4 can be improved.

転用槽6は、脱窒槽4の下流側に配置され、脱窒槽4から流出した処理水が流入する槽である。転用槽6は、複数の転用槽61〜64によって構成されている。複数の転用槽61〜64は、物理的に分離したものであってもよいし、隔壁又は槽内流によって1つの転用槽内を仮想的に複数に区分けしたものであってもよい。各転用槽の底部には、貯留されている処理水に空気を供給するための散気装置16が設けられている。各散気装置16の散気量は個別のコントローラ18によって制御される。各コントローラ18は、ブロアと流量調整弁とを備え、コンピュータ28からの制御指令に従って各散気装置16の散気量を調整する。各槽の終端位置(最下流近傍位置)6aには、各槽に貯留されている処理水の酸化還元電位(ORP値)を計測するためのORP計24が設置されている。   The diversion tank 6 is a tank that is disposed on the downstream side of the denitrification tank 4 and into which treated water that has flowed out of the denitrification tank 4 flows. The diversion tank 6 includes a plurality of diversion tanks 61 to 64. The plurality of diversion tanks 61 to 64 may be physically separated, or may be one in which one diversion tank is virtually divided into a plurality of partition walls or a flow in the tank. A diffuser 16 for supplying air to the stored treated water is provided at the bottom of each diversion tank. The amount of air diffused by each air diffuser 16 is controlled by an individual controller 18. Each controller 18 includes a blower and a flow rate adjustment valve, and adjusts the amount of air diffused by each air diffuser 16 in accordance with a control command from the computer 28. An ORP meter 24 for measuring the oxidation-reduction potential (ORP value) of the treated water stored in each tank is installed at the terminal position (most downstream vicinity position) 6a of each tank.

初段(最上流)の転用槽61は、好気(硝化)槽として利用される。従って、転用槽61内では、散気装置16による散気が充分に行われ、溶存酸素濃度の高い環境下で硝化菌の作用によって窒素含有排水の硝化が行われる。一方、次段以降の転用槽62〜64は、各ORP計24によるORP値の計測値に応じて、好気槽又は脱窒槽のいずれかに切り替えて利用される。より具体的には、コンピュータ28によって転用槽62〜64のうちのいずれかの槽が特定転用槽であると判断されると、その特定転用槽及びそれより上流側の転用槽は好気槽として利用され、特定転用槽より下流側の転用槽は脱窒槽として利用される。   The first-stage (most upstream) diversion tank 61 is used as an aerobic (nitrification) tank. Therefore, in the diversion tank 61, the air diffused by the air diffuser 16 is sufficiently performed, and the nitrogen-containing wastewater is nitrified by the action of nitrifying bacteria in an environment with a high dissolved oxygen concentration. On the other hand, the diversion tanks 62 to 64 in the subsequent stages are used by switching to either an aerobic tank or a denitrification tank according to the ORP value measured by each ORP meter 24. More specifically, when the computer 28 determines that any one of the diversion tanks 62 to 64 is a specific diversion tank, the specific diversion tank and the diversion tank upstream of the diversion tank are defined as aerobic tanks. The diversion tank downstream from the specific diversion tank is used as a denitrification tank.

本実施形態では、上流側脱窒槽4のみならず、好気槽である転用槽61の下流側にも脱窒槽が配置されることとなるので、循環経路8を介した硝化液の循環量を減少させることができる。この結果、硝化液の循環に必要なエネルギーを削減できると共に、溶存酸素の多い硝化液が多量に上流側脱窒槽4に流入することによって脱窒効率が低下することを抑制できる。本明細書中において、特定転用槽とは、「その転用槽までにおいて、硝化反応が略完了していると判断することができる」転用槽のことを意味する。なお、初期動作時においては、全ての転用槽61〜64を好気槽として利用することが好ましい。   In this embodiment, since the denitrification tank is arranged not only in the upstream denitrification tank 4 but also in the downstream side of the diversion tank 61 which is an aerobic tank, the circulation amount of the nitrification liquid via the circulation path 8 is reduced. Can be reduced. As a result, it is possible to reduce the energy required for the circulation of the nitrification solution, and it is possible to suppress a decrease in the denitrification efficiency due to a large amount of the nitrification solution containing a large amount of dissolved oxygen flowing into the upstream denitrification tank 4. In the present specification, the specific diversion tank means a diversion tank that can be “determined that the nitrification reaction has been substantially completed up to the diversion tank”. In the initial operation, it is preferable to use all the diversion tanks 61 to 64 as aerobic tanks.

固液分離槽10は、転用槽6の下流側に位置し、転用槽6から流出した処理水が流入する槽である。固液分離槽10は、生物学的処理が完了した処理水を固液分離するためのものである。固液分離槽10では、固液分離によって生成された上澄水が装置外に排出される。固液分離によって生成された汚泥の一部は、返送経路12を介して嫌気槽2や嫌気槽2に流入する前の窒素含有排水と合流する位置にまで返送され、嫌気槽2内の生物量を維持している。固液分離によって生成された汚泥の残部は余剰汚泥として排出管14を介して装置外に排出される。   The solid-liquid separation tank 10 is located on the downstream side of the diversion tank 6 and is a tank into which treated water that has flowed out of the diversion tank 6 flows. The solid-liquid separation tank 10 is for solid-liquid separation of treated water that has undergone biological treatment. In the solid-liquid separation tank 10, the supernatant water generated by the solid-liquid separation is discharged out of the apparatus. Part of the sludge generated by the solid-liquid separation is returned to the anaerobic tank 2 and the position where it merges with the nitrogen-containing wastewater before flowing into the anaerobic tank 2 via the return path 12, and the biomass in the anaerobic tank 2 Is maintained. The remainder of the sludge generated by solid-liquid separation is discharged out of the apparatus through the discharge pipe 14 as excess sludge.

有機物添加手段26は、初段の転用槽61を除く転用槽62〜64の上流側に近い位置に有機物を添加するものである。有機物添加手段26は、開閉及び流量調整弁を有し、コンピュータ28からの制御指令に従って有機物を添加する転用槽62〜64を切り替えることができる。また、有機物添加手段26は、コンピュータ28からの制御指令に従って有機物の添加量も調整することができる。添加する有機物としては、メタノールやエタノール等のアルコール,酢酸等の揮発性脂肪酸,グルコース等の易分解性の炭水化物等,嫌気槽2に流入する前の窒素含有排水を例示することができる。   The organic substance addition means 26 adds an organic substance to a position close to the upstream side of the diversion tanks 62 to 64 excluding the first-stage diversion tank 61. The organic substance addition means 26 has an open / close and flow rate adjustment valve, and can switch the diversion tanks 62 to 64 to which the organic substance is added in accordance with a control command from the computer 28. The organic substance adding means 26 can also adjust the amount of organic substance added in accordance with a control command from the computer 28. Examples of the organic substance to be added include nitrogen-containing wastewater before flowing into the anaerobic tank 2, such as alcohols such as methanol and ethanol, volatile fatty acids such as acetic acid, easily decomposable carbohydrates such as glucose, and the like.

コンピュータ28は、各転用槽61〜64に設置されたORP計24からのORP値に基づいて、転用槽61〜64のうちのいずれの転用槽が特定転用槽であるかを判断する。本実施形態では、コンピュータ28内のメモリに第1の所定範囲Dc1を示す数値範囲の情報が予め格納されており、コンピュータ28は、この数値範囲と各ORP計24からのORP値D1とを比較し、ORP値D1がこの数値範囲内にある転用槽を特定転用槽と判断する。なお、本発明者らの検討によれば、図4に示すように、ORP値が40mV以上であるとアンモニア濃度が大きく低下する。このことから、第1の所定範囲Dc1は、ORP値が略40mV以上、略60mV以下の範囲であることが望ましい。   The computer 28 determines which of the diversion tanks 61 to 64 is the specific diversion tank based on the ORP value from the ORP meter 24 installed in each diversion tank 61 to 64. In the present embodiment, the numerical value range information indicating the first predetermined range Dc1 is stored in advance in the memory in the computer 28, and the computer 28 compares this numerical value range with the ORP value D1 from each ORP meter 24. Then, the diversion tank having the ORP value D1 within this numerical range is determined as the specific diversion tank. According to the study by the present inventors, as shown in FIG. 4, when the ORP value is 40 mV or more, the ammonia concentration greatly decreases. For this reason, the first predetermined range Dc1 is desirably a range in which the ORP value is approximately 40 mV or more and approximately 60 mV or less.

コンピュータ28は、特定転用槽とそれより上流側の転用槽の各コントローラ18に対し散気装置16による散気を継続して行うように制御指令D2を送出する。これにより、特定転用槽とそれより上流側の転用槽は好気槽として利用される。一方、コンピュータ28は、特定転用槽の下流側の転用槽の各コントローラ18に対しては散気を停止するように制御指令D2を送出する。これにより、特定転用槽の下流側の転用槽は、無酸素状態となり、下流側脱窒槽として利用される。また、特定転用槽の下流側の転用槽内に僅かな亜酸化窒素が溶存していたとしても、亜酸化窒素が大気中に揮散することを抑制できる。また、散気のための電力量を削減することができ、省エネルギー化を実現できる。また、下流側脱窒槽で脱窒を行うことができるので、上流側脱窒槽4に循環させる硝化液の量を減少させ、硝化液の循環に要するエネルギー量を削減することができる。   The computer 28 sends out a control command D2 so as to continue the aeration by the aeration device 16 to each controller 18 of the specific diversion tank and the diversion tank upstream thereof. Thereby, the specific diversion tank and the diversion tank on the upstream side are used as an aerobic tank. On the other hand, the computer 28 sends a control command D2 to each controller 18 of the diversion tank on the downstream side of the specific diversion tank so as to stop the aeration. Thereby, the diversion tank on the downstream side of the specific diversion tank becomes oxygen-free and is used as a downstream denitrification tank. Moreover, even if a slight amount of nitrous oxide is dissolved in the diversion tank on the downstream side of the specific diversion tank, it is possible to suppress nitrous oxide from evaporating into the atmosphere. In addition, the amount of power for air diffusion can be reduced, and energy saving can be realized. Further, since denitrification can be performed in the downstream denitrification tank, the amount of nitrification liquid to be circulated in the upstream denitrification tank 4 can be reduced, and the amount of energy required for circulation of the nitrification liquid can be reduced.

なお、特定転用槽の下流側の転用槽内に撹拌装置が設置されている場合、コンピュータ28は、撹拌装置を駆動することによって転用槽内の処理水を撹拌ことによって脱窒反応を促進させてもよい。この場合、散気装置16及びコントローラ18に撹拌機能を実現させてもよい。すなわち、コンピュータ28は、空気供給を完全には停止しないが、極めて少量の空気供給を行う制御指令D2をコントローラ18に送出し、溶存酸素量をあまり増大させない範囲での槽内の撹拌機能を実現してもよい。この場合、攪拌のための散気量が微量であるので、脱窒反応への悪影響は殆どない。また、溶存状態の亜酸化窒素が存在したとしても、散気量が微量であるので亜酸化窒素は殆ど揮散されることがない。   In addition, when the stirring apparatus is installed in the diversion tank on the downstream side of the specific diversion tank, the computer 28 promotes the denitrification reaction by stirring the treated water in the diversion tank by driving the stirring apparatus. Also good. In this case, the air diffuser 16 and the controller 18 may have a stirring function. That is, the computer 28 does not stop the air supply completely, but sends a control command D2 for supplying a very small amount of air to the controller 18 and realizes the stirring function in the tank within a range in which the amount of dissolved oxygen is not increased so much. May be. In this case, since the amount of aeration for stirring is very small, there is almost no adverse effect on the denitrification reaction. Even if dissolved nitrous oxide exists, the amount of air diffused is very small, so that nitrous oxide is hardly volatilized.

特定転用槽の下流側の転用槽には、有機物添加手段26から有機物が添加される。すなわち、コンピュータ28は、有機物添加手段26に対して特定転用槽の下流側の転用槽に有機物を添加するための制御指令D2を送出する。この際、有機物の添加量は、特定転用槽の下流側の転用槽のORP値D1に基づいて調整される。すなわち、コンピュータ28のメモリ内には所定臨界値Dc2が格納されており、コンピュータ28は、特定転用槽の下流側の転用槽のORP値D1とこの所定臨界値Dc2とを比較する。そして、特定転用槽の下流側の転用槽のORP値D1が所定臨界値Dc2以上である場合、コンピュータ28は、有機物添加手段26に対し有機物添加量を増大させる制御指令D2を送出する。これにより、脱窒反応の効率が悪化した場合であっても、特定転用槽の下流側の転用槽内での有機物量が増加し、脱窒反応が促進され、亜酸化窒素の発生量を低減できる。   Organic substances are added from the organic substance addition means 26 to the diversion tank on the downstream side of the specific diversion tank. That is, the computer 28 sends a control command D2 for adding an organic substance to the diversion tank downstream of the specific diversion tank to the organic substance addition means 26. At this time, the amount of the organic substance added is adjusted based on the ORP value D1 of the diversion tank on the downstream side of the specific diversion tank. That is, the predetermined critical value Dc2 is stored in the memory of the computer 28, and the computer 28 compares the ORP value D1 of the diversion tank downstream of the specific diversion tank with the predetermined critical value Dc2. When the ORP value D1 of the diversion tank on the downstream side of the specific diversion tank is equal to or greater than the predetermined critical value Dc2, the computer 28 sends a control command D2 for increasing the organic substance addition amount to the organic substance addition means 26. As a result, even if the efficiency of the denitrification reaction deteriorates, the amount of organic matter in the diversion tank downstream of the specific diversion tank increases, the denitrification reaction is promoted, and the amount of nitrous oxide generated is reduced. it can.

〔排水処理方法〕
次に、本発明の第2の実施形態である排水処理装置Sによる排水処理方法について説明する。
[Wastewater treatment method]
Next, a wastewater treatment method by the wastewater treatment apparatus S according to the second embodiment of the present invention will be described.

本発明の第2の実施形態である排水処理装置Sでは、始めに、窒素含有排水は、嫌気槽2に流入し、脱リン処理される。次に、処理水は、上流側脱窒槽4に流入し、脱窒処理される。次に、処理水は、転用槽6に流入し、硝化処理される。次に、転用槽61〜64の槽終端位置6aにおけるORP値D1がORP計24によって計測され、計測されたORP値D1はコンピュータ28に送出される。次に、コンピュータ28は、ORP値D1と所定範囲Dc1とを比較することによって特定転用槽を特定する。   In the waste water treatment apparatus S that is the second embodiment of the present invention, first, the nitrogen-containing waste water flows into the anaerobic tank 2 and is subjected to dephosphorization treatment. Next, the treated water flows into the upstream denitrification tank 4 and is denitrified. Next, the treated water flows into the diversion tank 6 and is nitrified. Next, the ORP value D 1 at the tank terminal position 6 a of the diversion tanks 61 to 64 is measured by the ORP meter 24, and the measured ORP value D 1 is sent to the computer 28. Next, the computer 28 specifies the specific diversion tank by comparing the ORP value D1 with the predetermined range Dc1.

次に、コンピュータ28は、散気装置16を散気機能でなく撹拌機能を発揮する程度に動作させる制御指令D2を特定転用槽より下流側の転用槽のコントローラ18に送出する。また、コンピュータ28は、有機物添加手段26に対して特定転用槽より下流側の転用槽に有機物を添加する制御指令を送出する。そして、コンピュータ28は、特定転用槽より下流側の転用槽のORP値D1と所定臨界値Dc2とを比較し、特定転用槽より下流側の転用槽のORP値D1が所定臨界値Dc2以上である場合、有機物添加手段26に対して特定転用槽より下流側の転用槽に添加する有機物の量を増大させる制御指令D2を送出する。   Next, the computer 28 sends a control command D2 for operating the air diffuser 16 to such an extent that the agitating function is exhibited instead of the air diffuser function, to the diverter tank controller 18 on the downstream side of the specific diverter tank. Further, the computer 28 sends a control command for adding the organic substance to the diversion tank downstream of the specific diversion tank to the organic substance addition means 26. Then, the computer 28 compares the ORP value D1 of the diversion tank downstream of the specific diversion tank with the predetermined critical value Dc2, and the ORP value D1 of the diversion tank downstream of the specific diversion tank is equal to or greater than the predetermined critical value Dc2. In this case, a control command D2 for increasing the amount of organic matter added to the diversion tank downstream from the specific diversion tank is sent to the organic substance addition means 26.

以上の説明から明らかなように、本発明の第2の実施形態である排水処理方法では、排水処理装置Sが、転用槽61〜64の最下流近傍位置におけるORP値を計測し、ORP値が第1の所定範囲内にある転用槽を特定転用槽と判断し、特定転用槽内及びそれより上流側の転用槽内に散気装置16により空気を供給し、特定転用槽より下流側の転用槽内に有機物を添加し、有機物が添加された転用槽内を撹拌する。このような排水処理方法によれば、下流槽では散気装置の動作を停止させることができるので、省エネルギー化を実現することができる。また、下流槽における亜酸化窒素の発生量や揮散量を低減させることができる。すなわち、このような排水処理方法によれば、排水処理全体の効率化と亜酸化窒素発生量の低減とを両立させることができる。   As is clear from the above description, in the wastewater treatment method according to the second embodiment of the present invention, the wastewater treatment device S measures the ORP value in the position near the most downstream of the diversion tanks 61 to 64, and the ORP value is The diversion tank in the first predetermined range is determined as the specific diversion tank, air is supplied to the diversion tank 16 in the specific diversion tank and the diversion tank upstream from the diversion tank, and the diversion downstream from the specific diversion tank. An organic substance is added to the tank, and the inside of the diversion tank to which the organic substance is added is stirred. According to such a wastewater treatment method, since the operation of the air diffuser can be stopped in the downstream tank, energy saving can be realized. Moreover, the generation amount and volatilization amount of nitrous oxide in a downstream tank can be reduced. That is, according to such a wastewater treatment method, it is possible to achieve both the efficiency of the whole wastewater treatment and the reduction of the amount of nitrous oxide generated.

また、本発明の第2の実施形態である排水処理方法では、排水処理装置Sが、特定転用槽より下流側の転用槽におけるORP値が所定臨界値以上である場合、有機物の添加量を増加させるので、下流槽における脱窒反応が促進され、亜酸化窒素の発生量を低減することができる。   Further, in the wastewater treatment method according to the second embodiment of the present invention, when the wastewater treatment apparatus S has an ORP value in the diversion tank downstream from the specific diversion tank, the amount of organic matter added is increased. Therefore, the denitrification reaction in the downstream tank is promoted, and the amount of nitrous oxide generated can be reduced.

[変形例]
本実施形態では、コンピュータ28は、転用槽内のORP値D1が第1の所定範囲Dc1内であるか否かに基づいて特定転用槽を特定したが、上下流方向に連続するORP計24のORP値D1の差分値が所定差分値以上であるか否かに基づいて特定転用槽を特定してもよい。より具体的には、この場合、コンピュータ28は、上下流方向に連続する転用槽のORP値D1の差分値がメモリ内に記憶されている所定差分値未満である場合、上下流方向に連続する転用槽は特定転用槽でないと判断する。一方、コンピュータ28は、上下流方向に連続する転用槽のORP値D1の差分値がメモリ内に記憶されている所定差分値以上である場合には、下流側の転用槽を特定転用槽と判断する。
[Modification]
In the present embodiment, the computer 28 specifies the specific diversion tank based on whether the ORP value D1 in the diversion tank is within the first predetermined range Dc1, but the computer 28 of the ORP meter 24 that is continuous in the upstream and downstream directions. You may identify a specific diversion tank based on whether the difference value of ORP value D1 is more than a predetermined difference value. More specifically, in this case, the computer 28 continues in the upstream / downstream direction when the difference value of the ORP value D1 of the diversion tanks continuous in the upstream / downstream direction is less than a predetermined difference value stored in the memory. It is determined that the diversion tank is not a specific diversion tank. On the other hand, when the difference value of the ORP value D1 of the diversion tanks continuous in the upstream / downstream direction is equal to or larger than the predetermined difference value stored in the memory, the computer 28 determines that the downstream diversion tank is the specific diversion tank. To do.

本実施形態では、転用槽内のORP値D1が第1の所定範囲Dc1内であるか否かに基づいて特定転用槽を特定したが、図5に示すように、各転用槽61〜64の槽終端位置6aにORP計24に加えて溶存酸素濃度(DO値)を測定するDO計34を設け、上下流方向に連続するDO計34のDO値D3の差分値が所定差分値Dc3以上であるか否かに基づいて特定転用槽を特定してもよい。より具体的には、この場合、コンピュータ28は、上下流方向に連続する転用槽のDO値D3の差分値がメモリ内に記憶されている所定差分値Dc3未満である場合、上下流方向に連続する転用槽は特定転用槽でないと判断する。一方、コンピュータ28は、上下流方向に連続する転用槽のDO値D3の差分値がメモリ内に記憶されている所定差分値Dc3以上である場合、下流側の転用槽を特定転用槽と判断する。   In the present embodiment, the specific diversion tank is identified based on whether or not the ORP value D1 in the diversion tank is within the first predetermined range Dc1, but as shown in FIG. In addition to the ORP meter 24, a DO meter 34 for measuring the dissolved oxygen concentration (DO value) is provided at the tank end position 6a, and the difference value of the DO value D3 of the DO meter 34 continuous in the upstream and downstream directions is equal to or greater than a predetermined difference value Dc3. The specific diversion tank may be specified based on whether or not there is. More specifically, in this case, when the difference value of the DO value D3 of the diversion tank continuous in the upstream / downstream direction is less than the predetermined difference value Dc3 stored in the memory, the computer 28 continues in the upstream / downstream direction. It is determined that the diversion tank to be used is not a specific diversion tank. On the other hand, when the difference value of the DO value D3 of the diversion tanks continuous in the upstream / downstream direction is equal to or larger than the predetermined difference value Dc3 stored in the memory, the computer 28 determines that the downstream diversion tank is the specific diversion tank. .

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者などによりなされる他の実施の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

2 嫌気槽
4 上流側脱窒槽(脱窒槽)
6,61〜64:転用槽
6a 槽終端位置(最下流近傍位置)
8 循環経路
10 固液分離槽(沈殿槽)
12 返送経路
14 排出管
16 散気装置
18 コントローラ
24 ORP計
26 有機物添加手段
28 コンピュータ
34 DO計
S 生物処理装置
2 Anaerobic tank 4 Upstream denitrification tank (denitrification tank)
6, 61-64: Diversion tank 6a Tank end position (position near the most downstream)
8 Circulation path 10 Solid-liquid separation tank (precipitation tank)
DESCRIPTION OF SYMBOLS 12 Return path 14 Drain pipe 16 Air diffuser 18 Controller 24 ORP meter 26 Organic substance addition means 28 Computer 34 DO meter S Biological processing device

Claims (12)

窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置における排水処理方法であって、
各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測するステップと、
前記酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定するステップと、
前記特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給するステップと、
前記特定転用槽より下流側の転用槽内に前記第1供給量より少ない第2供給量の空気を供給するステップと、
を含むことを特徴とする排水処理方法。
A wastewater treatment method in a wastewater treatment apparatus comprising a plurality of diversion tanks arranged in the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater,
Measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank;
Identifying a diversion tank in which the nitrification reaction of the nitrogen-containing wastewater is substantially completed as a specific diversion tank based on the redox potential or dissolved oxygen concentration;
Supplying a first supply amount of air into the specific diversion tank and into the diversion tank upstream of the specific diversion tank;
Supplying a second supply amount of air less than the first supply amount into the diversion tank downstream of the specific diversion tank;
The waste water treatment method characterized by including.
前記特定転用槽を特定するステップは、前記酸化還元電位が第1所定範囲内にある転用槽を前記特定転用槽として特定するステップを含むことを特徴とする請求項1に記載の排水処理方法。   2. The wastewater treatment method according to claim 1, wherein the step of specifying the specific diversion tank includes the step of specifying, as the specific diversion tank, a diversion tank in which the oxidation-reduction potential is within a first predetermined range. 前記特定転用槽を特定するステップは、窒素含有排水の流れ方向に連続する2つの転用槽の最下流近傍位置における酸化還元電位の差分値が所定差分値以上である場合、下流側の転用槽を特定転用槽として特定するステップを含むことを特徴とする請求項1に記載の排水処理方法。   In the step of identifying the specific diversion tank, when the difference value of the oxidation-reduction potential at the position near the most downstream of the two diversion tanks continuous in the flow direction of the nitrogen-containing wastewater is a predetermined difference value or more, the diversion tank on the downstream side The wastewater treatment method according to claim 1, further comprising a step of identifying the specific diversion tank. 前記特定転用槽を特定するステップは、窒素含有排水の流れ方向に連続する2つの転用槽の最下流近傍位置における溶存酸素濃度の差分値が所定差分値以上である場合、下流側の転用槽を特定転用槽として特定するステップを含むことを特徴とする請求項1に記載の排水処理方法。   In the step of identifying the specific diversion tank, if the difference value of the dissolved oxygen concentration in the vicinity of the most downstream of two diversion tanks continuous in the flow direction of the nitrogen-containing wastewater is equal to or greater than a predetermined difference value, the diversion tank on the downstream side The wastewater treatment method according to claim 1, further comprising a step of identifying the specific diversion tank. 前記特定転用槽より下流側の転用槽における酸化還元電位が第2所定範囲内になるように、前記特定転用槽より下流側の転用槽内に供給する空気量を調整するステップを含むことを特徴とする請求項1〜4のうち、いずれか1項に記載の排水処理方法。   Adjusting the amount of air supplied into the diversion tank downstream from the specific diversion tank so that the oxidation-reduction potential in the diversion tank downstream from the specific diversion tank is within a second predetermined range. The wastewater treatment method according to any one of claims 1 to 4. 窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置であって、
各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測する計測手段と、
前記計測手段によって計測された酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定する手段と、
該特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給する手段と、
特定転用槽より下流側の転用槽内に前記第1供給量より少ない第2供給量の空気を供給する手段と、
を備えることを特徴とする排水処理装置。
A wastewater treatment apparatus comprising a plurality of diversion tanks arranged in the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater,
A measuring means for measuring the redox potential or dissolved oxygen concentration at the position near the most downstream of each diversion tank;
Based on the oxidation-reduction potential or dissolved oxygen concentration measured by the measuring means, means for specifying a diversion tank in which the nitrification reaction of the nitrogen-containing wastewater is substantially completed as a specific diversion tank;
Means for supplying a first supply amount of air into the specific diversion tank and into the diversion tank upstream of the specific diversion tank;
Means for supplying a second supply amount of air less than the first supply amount into the diversion tank downstream of the specific diversion tank;
A wastewater treatment apparatus comprising:
窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置における排水処理方法であって、
各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測するステップと、
前記酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定するステップと、
前記特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給するステップと、
前記特定転用槽より下流側の転用槽内に有機物を添加し、該有機物が添加された転用槽内を撹拌するステップと、
を含むことを特徴とする排水処理方法。
A wastewater treatment method in a wastewater treatment apparatus comprising a plurality of diversion tanks arranged in the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater,
Measuring a redox potential or dissolved oxygen concentration at a position near the most downstream of each diversion tank;
Identifying a diversion tank in which the nitrification reaction of the nitrogen-containing wastewater is substantially completed as a specific diversion tank based on the redox potential or dissolved oxygen concentration;
Supplying a first supply amount of air into the specific diversion tank and into the diversion tank upstream of the specific diversion tank;
Adding an organic substance in a diversion tank downstream from the specific diversion tank, and stirring the diversion tank to which the organic substance is added;
The waste water treatment method characterized by including.
前記特定転用槽を特定するステップは、前記酸化還元電位が第1所定範囲内にある転用槽を前記特定転用槽として特定するステップを含むことを特徴とする請求項7に記載の排水処理方法。   The wastewater treatment method according to claim 7, wherein the step of specifying the specific diversion tank includes the step of specifying a diversion tank having the oxidation-reduction potential within a first predetermined range as the specific diversion tank. 前記特定転用槽を特定するステップは、窒素含有排水の流れ方向に連続する2つの転用槽の最下流近傍位置における酸化還元電位の差分値が所定差分値以上である場合、下流側の転用槽を特定転用槽として特定するステップを含むことを特徴とする請求項7に記載の排水処理方法。   In the step of identifying the specific diversion tank, when the difference value of the oxidation-reduction potential at the position near the most downstream of the two diversion tanks continuous in the flow direction of the nitrogen-containing wastewater is a predetermined difference value or more, the diversion tank on the downstream side The wastewater treatment method according to claim 7, further comprising a step of identifying the specific diversion tank. 前記特定転用槽を特定するステップは、窒素含有排水の流れ方向に連続する2つの転用槽の最下流近傍位置における溶存酸素濃度の差分値が所定差分値以上である場合、下流側の転用槽を特定転用槽として特定するステップを含むことを特徴とする請求項7に記載の排水処理方法。   In the step of identifying the specific diversion tank, if the difference value of the dissolved oxygen concentration in the vicinity of the most downstream of two diversion tanks continuous in the flow direction of the nitrogen-containing wastewater is equal to or greater than a predetermined difference value, the diversion tank on the downstream side The wastewater treatment method according to claim 7, further comprising a step of identifying the specific diversion tank. 前記特定転用槽より下流側の転用槽における酸化還元電位が所定臨界値以上である場合、前記有機物の添加量を増加させるステップを含むことを特徴とする請求項7〜10のうち、いずれか1項に記載の排水処理方法。   11. The method according to claim 7, further comprising a step of increasing the amount of the organic substance added when an oxidation-reduction potential in a diversion tank downstream from the specific diversion tank is a predetermined critical value or more. The waste water treatment method as described in a term. 窒素含有排水の流れ方向に沿って配列された、該窒素含有排水を硝化する複数の転用槽を備える排水処理装置であって、
各転用槽の最下流近傍位置における酸化還元電位又は溶存酸素濃度を計測する計測手段と、
前記計測手段によって計測された酸化還元電位又は溶存酸素濃度に基づいて、前記窒素含有排水の硝化反応が略完了している転用槽を特定転用槽として特定する手段と、
該特定転用槽内及び該特定転用槽より上流側の転用槽内に第1供給量の空気を供給する手段と、
該特定転用槽より下流側の転用槽内に有機物を添加し、該有機物が添加された転用槽内を撹拌する手段と、
を備えることを特徴とする排水処理装置。
A wastewater treatment apparatus comprising a plurality of diversion tanks arranged in the flow direction of nitrogen-containing wastewater to nitrify the nitrogen-containing wastewater,
A measuring means for measuring the redox potential or dissolved oxygen concentration at the position near the most downstream of each diversion tank;
Based on the oxidation-reduction potential or dissolved oxygen concentration measured by the measuring means, means for specifying a diversion tank in which the nitrification reaction of the nitrogen-containing wastewater is substantially completed as a specific diversion tank;
Means for supplying a first supply amount of air into the specific diversion tank and into the diversion tank upstream of the specific diversion tank;
Means for adding an organic substance in a diversion tank downstream from the specific diversion tank, and stirring the diversion tank to which the organic substance is added;
A wastewater treatment apparatus comprising:
JP2011055265A 2010-03-15 2011-03-14 Waste water treatment method and waste water treatment equipment Active JP5717188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011055265A JP5717188B2 (en) 2010-03-15 2011-03-14 Waste water treatment method and waste water treatment equipment

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010058028 2010-03-15
JP2010058028 2010-03-15
JP2010066457 2010-03-23
JP2010066457 2010-03-23
JP2011055265A JP5717188B2 (en) 2010-03-15 2011-03-14 Waste water treatment method and waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2011218346A true JP2011218346A (en) 2011-11-04
JP5717188B2 JP5717188B2 (en) 2015-05-13

Family

ID=45035998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011055265A Active JP5717188B2 (en) 2010-03-15 2011-03-14 Waste water treatment method and waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP5717188B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
WO2013133445A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
WO2013133444A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
WO2013133443A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
WO2014049672A1 (en) * 2012-09-27 2014-04-03 パナソニック株式会社 Carbon dioxide manufacturing apparatus
WO2015072207A1 (en) * 2013-11-18 2015-05-21 株式会社東芝 Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
JP2017177105A (en) * 2017-06-07 2017-10-05 株式会社東芝 Organic wastewater treatment apparatus
JPWO2020161825A1 (en) * 2019-02-06 2021-04-30 三菱電機株式会社 Water treatment equipment and water treatment method
JP2022027846A (en) * 2019-02-06 2022-02-14 三菱電機株式会社 Water treatment apparatus and water treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109704456B (en) * 2019-02-27 2021-05-11 同济大学 Method for reducing nitrous oxide gas release amount in nitrosation process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912797A (en) * 1982-07-13 1984-01-23 Nishihara Environ Sanit Res Corp Intermittently aerating denitrification device
JPS6451197A (en) * 1987-08-24 1989-02-27 Toshiba Corp Biological nitration and denitrification plant of waste water
JPH0518699U (en) * 1991-08-28 1993-03-09 株式会社明電舎 Anaerobic / aerobic activated sludge treatment equipment
JPH07136687A (en) * 1993-11-12 1995-05-30 Meidensha Corp Operation control method for modified active sludge circulation process in low water temperature period
US5733456A (en) * 1997-03-31 1998-03-31 Okey; Robert W. Environmental control for biological nutrient removal in water/wastewater treatment
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912797A (en) * 1982-07-13 1984-01-23 Nishihara Environ Sanit Res Corp Intermittently aerating denitrification device
JPS6451197A (en) * 1987-08-24 1989-02-27 Toshiba Corp Biological nitration and denitrification plant of waste water
JPH0518699U (en) * 1991-08-28 1993-03-09 株式会社明電舎 Anaerobic / aerobic activated sludge treatment equipment
JPH07136687A (en) * 1993-11-12 1995-05-30 Meidensha Corp Operation control method for modified active sludge circulation process in low water temperature period
US5733456A (en) * 1997-03-31 1998-03-31 Okey; Robert W. Environmental control for biological nutrient removal in water/wastewater treatment
JP2008012425A (en) * 2006-07-05 2008-01-24 Nippon Steel Corp Method and apparatus for removing phosphorus and nitrogen from sewage

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110807A (en) * 2010-11-22 2012-06-14 Metawater Co Ltd Sewage treatment system
JP2012228646A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Biological water treating apparatus
CN104271515A (en) * 2012-03-09 2015-01-07 美得华水务株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
JPWO2013133443A1 (en) * 2012-03-09 2015-07-30 メタウォーター株式会社 Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
WO2013133443A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
US9522832B2 (en) 2012-03-09 2016-12-20 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method
WO2013133444A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
CN104169227A (en) * 2012-03-09 2014-11-26 美得华水务株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
WO2013133445A1 (en) * 2012-03-09 2013-09-12 メタウォーター株式会社 Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
US9302923B2 (en) 2012-03-09 2016-04-05 Metawater Co., Ltd. Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, and control method
JP2014064537A (en) * 2012-09-27 2014-04-17 Panasonic Corp Carbon dioxide producing apparatus
WO2014049672A1 (en) * 2012-09-27 2014-04-03 パナソニック株式会社 Carbon dioxide manufacturing apparatus
WO2015072207A1 (en) * 2013-11-18 2015-05-21 株式会社東芝 Organic waste water treatment apparatus, organic waste water treatment method, and control program for organic waste water treatment apparatus
JP2017177105A (en) * 2017-06-07 2017-10-05 株式会社東芝 Organic wastewater treatment apparatus
JPWO2020161825A1 (en) * 2019-02-06 2021-04-30 三菱電機株式会社 Water treatment equipment and water treatment method
JP2022027846A (en) * 2019-02-06 2022-02-14 三菱電機株式会社 Water treatment apparatus and water treatment method
JP7282149B2 (en) 2019-02-06 2023-05-26 三菱電機株式会社 Water treatment device and water treatment method
JP7424997B2 (en) 2019-02-06 2024-01-30 三菱電機株式会社 water treatment equipment

Also Published As

Publication number Publication date
JP5717188B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5717188B2 (en) Waste water treatment method and waste water treatment equipment
JP4931495B2 (en) Method and apparatus for removing phosphorus and nitrogen from sewage
JP5424789B2 (en) Nitrous oxide emission control method for nitrogen-containing wastewater treatment
JP5355459B2 (en) Organic wastewater treatment system
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
WO2010016268A1 (en) Water treatment system and water treatment method
JPH07265890A (en) Treatment of water containing organic sulfur compound and device therefor
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP2010063987A (en) Waste water treatment device and treatment method
JP5984137B2 (en) Water treatment apparatus and water treatment method
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JP4670322B2 (en) Wastewater treatment equipment containing organic sulfur compounds
JP2006143780A (en) Biogas purification system
JP2017177105A (en) Organic wastewater treatment apparatus
JP5148642B2 (en) Wastewater nitrogen treatment method and equipment
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP5717187B2 (en) Waste water treatment method and waste water treatment equipment
JP2009154131A (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
JP6158691B2 (en) Organic wastewater treatment apparatus, organic wastewater treatment method, and organic wastewater treatment apparatus control program
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP2012066186A (en) Water treatment apparatus
JP4113759B2 (en) Waste water treatment method and waste water treatment equipment
JP5592162B2 (en) Sewage treatment equipment
JP5656656B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150312

R150 Certificate of patent or registration of utility model

Ref document number: 5717188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250