[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011214758A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2011214758A
JP2011214758A JP2010081726A JP2010081726A JP2011214758A JP 2011214758 A JP2011214758 A JP 2011214758A JP 2010081726 A JP2010081726 A JP 2010081726A JP 2010081726 A JP2010081726 A JP 2010081726A JP 2011214758 A JP2011214758 A JP 2011214758A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compression
low
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081726A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshimi
敦史 吉見
Shuji Fujimoto
修二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010081726A priority Critical patent/JP2011214758A/en
Publication of JP2011214758A publication Critical patent/JP2011214758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To equalize a pressure inside of a stopped compressing section of which driving is stopped, in a case that the plurality of compressing sections having a plurality of compressing elements are arranged in parallel with each other.SOLUTION: A compressing mechanism 3 is constituted by connecting compressors 31, 32 having low-pressure compressing elements 31e, 32e and high-pressure compressing elements 31d, 32d in parallel with each other. A refrigerant of high pressure discharged from each of the high-pressure compressing elements 31d, 32d flows in a high-pressure pipe p1. An intermediate pipe p2 connects the high-pressure compressing elements 31d, 32d and the low-pressure compressing elements 31e, 32e, and a refrigerant of intermediate pressure flows therein. In a low-pressure pipe p3, a refrigerant of low pressure sucked to the low-pressure compressing elements 31e, 32e flows. A regulation valve 8 regulates a communication state of the stopped compressor 32 and the pipes p1, p2, p3, so that the refrigerant is allowed to flow only in one of the pipes p1, p2, p3, and does not flow to the other pipes in the stopped compressor 32, in a case when the compressor 32 is stopped and the compressor 31 is driven.

Description

本発明は、冷凍装置、特に、複数の圧縮要素を有する圧縮部が複数並列接続されてなる圧縮機構を備えた冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus provided with a compression mechanism in which a plurality of compression units having a plurality of compression elements are connected in parallel.

従来より、多段圧縮式冷凍サイクルを行う冷凍装置の1つとして、特許文献1(特開2009−133583号公報)に開示されているものがある。特許文献1に係る冷凍装置は、高圧圧縮要素及び低圧圧縮要素を有する2つの圧縮部を備えており、各圧縮部の低圧圧縮要素から吐出された冷媒は、一旦合流された後分岐されて各圧縮部の高圧圧縮要素に吸入される。そして、低圧圧縮要素、中間冷却器及び高圧圧縮要素を繋ぐ経路上であって、中間冷却器と高圧圧縮要素との間には、冷媒流れを遮断するバイパス遮断弁が設けられている。更に、低圧圧縮要素から吐出された冷媒が低圧圧縮要素の吐出口付近にて上記経路から分岐し各圧縮部の高圧圧縮要素に吸入されるまでの別の経路上には、高圧吸入遮断弁が設けられている。   Conventionally, there is one disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-133583) as one of refrigeration apparatuses that perform a multistage compression refrigeration cycle. The refrigeration apparatus according to Patent Document 1 includes two compression units having a high-pressure compression element and a low-pressure compression element, and the refrigerant discharged from the low-pressure compression element of each compression unit is once merged and then branched. Sucked into the high pressure compression element of the compression section. A bypass shut-off valve is provided on the path connecting the low pressure compression element, the intermediate cooler, and the high pressure compression element, and between the intermediate cooler and the high pressure compression element, for blocking the refrigerant flow. Furthermore, a high-pressure suction shut-off valve is provided on another path until the refrigerant discharged from the low-pressure compression element branches from the path near the discharge port of the low-pressure compression element and is sucked into the high-pressure compression element of each compression unit. Is provided.

上記特許文献1では、1つの圧縮部が駆動しており他方の圧縮部(以下、停止圧縮部という)が停止している状態から、停止圧縮部が起動し始める直前においては、高圧吸入遮断弁を閉じバイパス遮断弁を開けることで、高圧圧縮要素に向けて冷媒を行きやすくさせている。しかしながら、上記特許文献1においては、停止圧縮部が駆動を停止している場合において、停止圧縮部のドーム内部を必ずしも均圧な状態にできるとは限らない。停止圧縮部のドーム内部が均圧でないと、場合によっては、生じた圧力差により、停止圧縮部から該圧縮部の外部へ、または停止圧縮部の外部から該圧縮部のドーム内部へと、冷媒及び冷凍機油が流出してしまう恐れがある。   In the above-mentioned Patent Document 1, a high-pressure intake shut-off valve immediately before the stop compression unit starts to start from a state in which one compression unit is driven and the other compression unit (hereinafter referred to as a stop compression unit) is stopped. By closing the valve and opening the bypass shut-off valve, the refrigerant can easily reach the high-pressure compression element. However, in the said patent document 1, when the stop compression part has stopped drive, the inside of the dome of a stop compression part cannot necessarily be made into a pressure equalization state. If the pressure inside the dome of the stop compression section is not equal, refrigerant may flow from the stop compression section to the outside of the compression section, or from the outside of the stop compression section to the dome of the compression section, depending on the pressure difference that occurs. And refrigeration oil may flow out.

そこで、本発明の課題は、圧縮要素を複数有する圧縮部が複数並列接続されている場合において、駆動を停止している状態にある停止圧縮部のドーム内部を均圧にすることとする。   Therefore, an object of the present invention is to equalize the inside of the dome of the stop compression unit in a state where driving is stopped when a plurality of compression units having a plurality of compression elements are connected in parallel.

本発明の第1観点に係る冷凍装置は、圧縮機構、熱源側熱交換器、膨張機構、利用側熱交換器、高圧配管、中圧配管、低圧配管、及び調整弁を有する。圧縮機構は、複数の圧縮部が並列接続されることで構成される。各圧縮部は、冷媒の圧力を高める低圧圧縮要素と、低圧圧縮要素よりも更に冷媒の圧力を高める高圧圧縮要素とを有する。熱源側熱交換器は、冷媒の冷却器または加熱器として機能する。膨張機構は、冷媒を減圧する。利用側熱交換器は、冷媒の加熱器または冷却器として機能する。高圧配管には、複数の圧縮部の高圧圧縮要素から吐出された高圧の冷媒が流れる。中圧配管は、各圧縮部における高圧圧縮要素と低圧圧縮要素とを繋ぎ、中圧の冷媒が流れる。低圧配管には、複数の圧縮部の低圧圧縮要素に吸入する低圧の冷媒が流れる。調整弁は、複数の圧縮部のうちいずれか1つ(以下、停止圧縮部という)が駆動を停止し残りの圧縮部が駆動している場合、停止圧縮部において、高圧配管、中圧配管及び低圧配管のいずれか1つとのみ冷媒の流れを許容し他の配管との間では冷媒の流れが生じないように、停止圧縮部と各配管との連通状態を調整する。   The refrigeration apparatus according to the first aspect of the present invention includes a compression mechanism, a heat source side heat exchanger, an expansion mechanism, a use side heat exchanger, a high pressure pipe, a medium pressure pipe, a low pressure pipe, and a regulating valve. The compression mechanism is configured by connecting a plurality of compression units in parallel. Each compression section includes a low-pressure compression element that increases the pressure of the refrigerant and a high-pressure compression element that increases the pressure of the refrigerant further than the low-pressure compression element. The heat source side heat exchanger functions as a refrigerant cooler or heater. The expansion mechanism depressurizes the refrigerant. The use side heat exchanger functions as a refrigerant heater or cooler. High-pressure refrigerant discharged from the high-pressure compression elements of the plurality of compression units flows through the high-pressure pipe. The medium pressure pipe connects the high pressure compression element and the low pressure compression element in each compression section, and the medium pressure refrigerant flows. Low-pressure refrigerant sucked into the low-pressure compression elements of the plurality of compression units flows through the low-pressure pipe. When any one of the plurality of compression units (hereinafter referred to as a stop compression unit) stops driving and the remaining compression units are driven, the regulating valve has a high pressure pipe, an intermediate pressure pipe, The state of communication between the stop compressor and each pipe is adjusted so that only one of the low-pressure pipes allows the refrigerant to flow and does not flow between the other pipes.

この冷凍装置では、複数の圧縮部のうちいずれか1つが駆動を停止しており、他の圧縮部が駆動をしている状態においては、調整弁によって、駆動を停止している圧縮部と各配管(具体的には、高圧配管、中圧配管及び低圧配管)のいずれか1つの間において冷媒が流れ、他の配管とは冷媒の流れが生じないようになる。例えば、調整弁によって停止圧縮部と中圧配管との間のみで冷媒の流れが生じるようにする場合、他の配管である高圧配管や低圧配管と停止圧縮部との間では冷媒が流れなくなる。この場合、中圧配管の間、つまりは停止圧縮部における低圧圧縮要素及び高圧圧縮要素の間と、停止圧縮部のドーム内は、同じ圧力の冷媒で満たされる。従って、中間配管とドーム内との間においては圧力差が生じなくなり、停止圧縮部の内部は均圧に保たれる。   In this refrigeration apparatus, any one of the plurality of compression units has stopped driving, and in the state in which the other compression units are driving, each of the compression units stopped driving by the adjusting valve The refrigerant flows between any one of the pipes (specifically, the high-pressure pipe, the medium-pressure pipe, and the low-pressure pipe), and the refrigerant does not flow with the other pipes. For example, when the adjustment valve causes the refrigerant to flow only between the stop compressor and the medium pressure pipe, the refrigerant does not flow between the other high-pressure pipes or low-pressure pipes and the stop compressor. In this case, between the intermediate pressure pipes, that is, between the low pressure compression element and the high pressure compression element in the stop compression section, and in the dome of the stop compression section are filled with the refrigerant having the same pressure. Therefore, no pressure difference is generated between the intermediate pipe and the inside of the dome, and the inside of the stop compression section is kept at a uniform pressure.

本発明の第2観点に係る冷凍装置は、第1観点に係る冷凍装置において、各圧縮部は、1つのドーム内に高圧圧縮要素及び低圧圧縮要素を収容している圧縮機である。   The refrigeration apparatus according to the second aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein each compression unit is a compressor containing a high pressure compression element and a low pressure compression element in one dome.

この冷凍装置では、停止圧縮部は、高圧圧縮要素及び低圧圧縮要素を1つのドーム内に収容した1つの圧縮機で構成される。そのため、停止圧縮部から他の圧縮部への冷媒の流れを生じさせず、ドーム内部を均圧にすることができる。   In this refrigeration apparatus, the stop compression section is composed of a single compressor in which a high pressure compression element and a low pressure compression element are accommodated in one dome. Therefore, it is possible to equalize the pressure inside the dome without causing a refrigerant flow from the stop compression unit to the other compression unit.

本発明の第3観点に係る冷凍装置は、第1または第2観点に係る冷凍装置において、停止圧縮部は、停止圧縮部の高圧圧縮要素または低圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止する。そして、調整弁は、低圧配管から停止圧縮部に向かう冷媒の流れのみを許容する低圧側逆止弁を有する。   The refrigeration apparatus according to the third aspect of the present invention is the refrigeration apparatus according to the first or second aspect, wherein the stop compression unit is configured such that the refrigerant discharged from the high pressure compression element or the low pressure compression element of the stop compression unit is in the dome. Stop driving in full condition. The regulating valve has a low-pressure check valve that allows only the flow of refrigerant from the low-pressure pipe toward the stop compressor.

停止圧縮部のドーム内に高圧圧縮要素から吐出される冷媒が充満すると、停止圧縮部のドーム内には、高圧の冷媒が充満することとなる。また、停止圧縮部のドーム内に低圧圧縮要素から吐出される冷媒が充満すると、停止圧縮部のドーム内には、中圧の冷媒が充満することとなる。一方で、低圧配管側には低圧の冷媒が流入しているため、高圧または中圧の冷媒が充満する停止圧縮部の低圧冷媒吸入口付近においては、停止圧縮部のドーム内部と低圧配管内との圧力差により、圧力の高い停止圧縮部から圧力の低い低圧配管側へと冷凍機油が流出してしまう恐れがある。   When the refrigerant discharged from the high pressure compression element is filled in the dome of the stop compression unit, the high pressure refrigerant is filled in the dome of the stop compression unit. In addition, when the refrigerant discharged from the low pressure compression element is filled in the dome of the stop compression unit, the medium pressure refrigerant is filled in the dome of the stop compression unit. On the other hand, since the low-pressure refrigerant flows into the low-pressure pipe side, in the vicinity of the low-pressure refrigerant inlet of the stop compression section where the high-pressure or medium-pressure refrigerant is filled, Due to this pressure difference, the refrigeration oil may flow out from the high pressure stop compression section to the low pressure low pressure piping side.

しかし、この冷凍装置では、低圧側逆止弁によって、低圧配管から停止圧縮部に向かう冷媒の流れのみが許容され、逆に停止圧縮部から低圧配管に向かう冷媒の流れは遮断されることとなる。これにより、停止圧縮部のドーム内部と低圧配管内との圧力差がある場合であっても、圧力の高い停止圧縮部から圧力の低い低圧配管側へと、冷媒及びこれに伴う冷凍機油が流出してしまうのを防ぐことができる。   However, in this refrigeration apparatus, only the refrigerant flow from the low pressure pipe toward the stop compression section is allowed by the low pressure side check valve, and conversely, the refrigerant flow from the stop compression section to the low pressure pipe is blocked. . As a result, even if there is a pressure difference between the inside of the dome of the stop compression section and the inside of the low pressure pipe, the refrigerant and the accompanying refrigeration oil flow from the high pressure stop compression section to the low pressure low pressure pipe side. Can be prevented.

本発明の第4観点に係る冷凍装置は、第3観点に係る冷凍装置において、停止圧縮部は、停止圧縮部の低圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止する。調整弁は、中圧側逆止弁と、高圧側逆止弁とを更に備える。中圧側逆止弁は、中圧配管において、停止圧縮部の低圧圧縮要素から高圧圧縮要素に向かう冷媒の流れのみを許容する。高圧側逆止弁は、停止圧縮部から高圧配管に向かう冷媒の流れのみを許容する。   The refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to the third aspect, wherein the stop compression unit stops driving in a state where the refrigerant discharged from the low pressure compression element of the stop compression unit is filled in the dome. To do. The regulating valve further includes an intermediate pressure side check valve and a high pressure side check valve. The intermediate pressure check valve allows only the refrigerant flow from the low pressure compression element to the high pressure compression element of the stop compression section in the medium pressure pipe. The high pressure side check valve allows only the flow of refrigerant from the stop compression section toward the high pressure pipe.

停止圧縮部のドーム内に低圧圧縮要素から吐出される冷媒が充満すると、停止圧縮部のドーム内には、中圧の冷媒が充満することとなる。一方で、中圧配管には中圧の冷媒が流入し、高圧配管には、高圧の冷媒が流入している。すると、停止圧縮部を停止した直後においては、該圧縮部のドーム内の圧力の高低によっては、停止圧縮部のドーム内部と中圧配管や高圧配管内との圧力差が生じ、場合によっては停止圧縮部から中圧配管や高圧配管側へと冷凍機油が流出してしまう恐れがある。   When the refrigerant discharged from the low pressure compression element is filled in the dome of the stop compression section, the medium pressure refrigerant is filled in the dome of the stop compression section. On the other hand, medium-pressure refrigerant flows into the medium-pressure pipe, and high-pressure refrigerant flows into the high-pressure pipe. Then, immediately after stopping the stop compression section, depending on the pressure in the dome of the compression section, there is a pressure difference between the inside of the dome of the stop compression section and the medium pressure pipe or the high pressure pipe. There is a risk that the refrigeration oil flows out from the compression section to the medium pressure pipe or the high pressure pipe.

しかし、この冷凍装置では、中圧側逆止弁によって、停止圧縮部の低圧圧縮要素から高圧圧縮要素に向かう冷媒の流れのみが許容され、逆に高圧圧縮要素から低圧圧縮要素に向かう冷媒の流れは遮断される。また、高圧側逆止弁によって、停止圧縮部から高圧配管に向かう冷媒の流れのみが許容され、逆に高圧配管から中圧配管を介して停止圧縮部に向かう冷媒の流れは遮断される。これにより、駆動停止時にドーム内が中圧となる停止圧縮部において、高圧圧縮要素から低圧圧縮要素、及び停止圧縮部から高圧配管側へと冷媒及びこれに伴う冷凍機油が流出してしまうのを防ぐことができる。   However, in this refrigeration system, only the refrigerant flow from the low pressure compression element to the high pressure compression element of the stop compression section is allowed by the intermediate pressure side check valve, and conversely, the refrigerant flow from the high pressure compression element to the low pressure compression element is Blocked. Further, only the refrigerant flow from the stop compression section to the high pressure pipe is allowed by the high pressure side check valve, and conversely, the refrigerant flow from the high pressure pipe to the stop compression section through the intermediate pressure pipe is blocked. As a result, in the stop compression section where the inside of the dome becomes medium pressure when the drive is stopped, the refrigerant and the accompanying refrigeration oil flow out from the high pressure compression element to the low pressure compression element, and from the stop compression section to the high pressure piping side. Can be prevented.

特に、駆動停止時にドーム内が中圧となる停止圧縮部においては、調整弁を全て逆止弁で構成することができる。従って、簡単な構成で冷媒の流れを調整することができ、調整弁が電磁弁等で構成される場合に比してコストを抑えることができる。   In particular, in the stop compression section in which the inside of the dome has an intermediate pressure when driving is stopped, all the adjustment valves can be configured by check valves. Therefore, the flow of the refrigerant can be adjusted with a simple configuration, and the cost can be suppressed as compared with the case where the adjustment valve is configured by an electromagnetic valve or the like.

本発明の第5観点に係る冷凍装置は、第1観点から第3観点のいずれかに係る冷凍装置において、調整弁は、閉止弁を更に有する。閉止弁は、冷媒の圧力関係によって、停止圧縮部が駆動を停止している状態時に冷媒の流出する方向が、停止圧縮部の駆動状態時と同じとなる中圧配管に設けられている。   The refrigeration apparatus according to the fifth aspect of the present invention is the refrigeration apparatus according to any one of the first to third aspects, wherein the adjustment valve further includes a closing valve. The shutoff valve is provided in the intermediate pressure pipe in which the direction in which the refrigerant flows out in the state where the stop compression unit stops driving is the same as that in the drive state of the stop compression unit due to the pressure relationship of the refrigerant.

この冷凍装置では、冷媒の圧力関係によって、停止圧縮部が駆動を停止している状態時に冷媒の流出する方向が停止圧縮部の駆動状態時と同じとなる中圧配管には、逆止弁ではなく閉止弁が設けられる。閉止弁は、停止圧縮部が駆動を停止している状態時には“閉”の状態を採り、停止圧縮部が駆動している状態時には“開”の状態を採る。これにより、停止圧縮部が駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   In this refrigeration system, due to the pressure relationship of the refrigerant, the check valve is not used for an intermediate pressure pipe in which the direction in which the refrigerant flows out when the stop compressor is stopped is the same as when the stop compressor is driven. A shut-off valve is provided. The shut-off valve takes a “closed” state when the stop compression unit stops driving, and takes an “open” state when the stop compression unit is driven. Thereby, when a stop compression part stops a drive, the outflow of a refrigerant | coolant can be prevented reliably.

本発明の第6観点に係る冷凍装置は、第5観点に係る冷凍装置において、閉止弁は、停止圧縮部が、高圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止する場合、または低圧側吸入管から吸入される冷媒がそのドーム内に充満した状態で駆動を停止する場合に、中圧配管に設けられる。   The refrigeration apparatus according to a sixth aspect of the present invention is the refrigeration apparatus according to the fifth aspect, wherein the stop valve stops driving in a state where the stop compression unit is filled with the refrigerant discharged from the high pressure compression element. When the operation is stopped when the dome is filled with the refrigerant sucked from the low pressure side suction pipe, the medium pressure pipe is provided.

この冷凍装置では、閉止弁は、停止圧縮部のドーム内が高圧の冷媒で充満する場合、または低圧の冷媒で充満する場合に、中圧配管に設けられる。従って、停止圧縮部が高圧状態または低圧状態で駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   In this refrigeration apparatus, the shut-off valve is provided in the medium pressure pipe when the inside of the dome of the stop compression unit is filled with high-pressure refrigerant or when it is filled with low-pressure refrigerant. Therefore, when the stop compressor stops driving in a high pressure state or a low pressure state, it is possible to reliably prevent the refrigerant from flowing out.

本発明の第7観点に係る冷凍装置は、圧縮機構と、熱源側熱交換器と、膨張機構と、利用側熱交換器と、高圧配管と、第1中圧配管と、第2中圧配管と、低圧配管と、調整弁とを備える。圧縮機構は、複数の圧縮部が並列接続されることで構成される。各圧縮部は、低圧圧縮要素、中圧圧縮要素及び高圧圧縮要素を有する。低圧圧縮要素は、冷媒の圧力を高める。中圧圧縮要素は、低圧圧縮要素よりも更に冷媒の圧力を高める。高圧圧縮要素は、中圧圧縮要素よりも更に冷媒の圧力を高める。熱源側熱交換器は、冷媒の冷却器または加熱器として機能する。膨張機構は、冷媒を減圧する。利用側熱交換器は、冷媒の加熱器または冷却器として機能する。高圧配管には、複数の圧縮部の高圧圧縮要素から吐出された高圧の冷媒が流れる。第1中圧配管は、各圧縮部における中圧圧縮要素と高圧圧縮要素とを繋ぐ。第2中圧配管は、各圧縮部における中圧圧縮要素と低圧圧縮要素とを繋ぐ。低圧配管には、複数の圧縮部の低圧圧縮要素に吸入する低圧の冷媒が流れる。調整弁は、複数の圧縮部のうちいずれか1つ(以下、停止圧縮機という)が駆動を停止し残りの圧縮部が駆動している場合、停止圧縮部において、高圧配管、第1中圧配管、第2中圧配管及び低圧配管のいずれか1つとのみ冷媒の流れを許容し、他の配管との間では冷媒の流れが生じないように、停止圧縮部と各配管との連通状態を調整する。   A refrigeration apparatus according to a seventh aspect of the present invention includes a compression mechanism, a heat source side heat exchanger, an expansion mechanism, a use side heat exchanger, a high pressure pipe, a first medium pressure pipe, and a second medium pressure pipe. And a low-pressure pipe and a regulating valve. The compression mechanism is configured by connecting a plurality of compression units in parallel. Each compression section has a low pressure compression element, an intermediate pressure compression element, and a high pressure compression element. The low pressure compression element increases the pressure of the refrigerant. The medium pressure compression element increases the refrigerant pressure further than the low pressure compression element. The high pressure compression element increases the pressure of the refrigerant further than the medium pressure compression element. The heat source side heat exchanger functions as a refrigerant cooler or heater. The expansion mechanism depressurizes the refrigerant. The use side heat exchanger functions as a refrigerant heater or cooler. High-pressure refrigerant discharged from the high-pressure compression elements of the plurality of compression units flows through the high-pressure pipe. The first intermediate pressure pipe connects the intermediate pressure compression element and the high pressure compression element in each compression section. The second intermediate pressure pipe connects the intermediate pressure compression element and the low pressure compression element in each compression section. Low-pressure refrigerant sucked into the low-pressure compression elements of the plurality of compression units flows through the low-pressure pipe. When any one of the plurality of compression units (hereinafter referred to as a stop compressor) stops driving and the remaining compression units are driven, the adjustment valve is connected to the high-pressure pipe, the first intermediate pressure in the stop compression unit. The communication state between the stop compressor and each pipe is set so that only one of the pipe, the second medium-pressure pipe and the low-pressure pipe is allowed to flow the refrigerant, and no refrigerant flows between the other pipes. adjust.

この冷凍装置に係る圧縮部は、低圧圧縮要素、中圧圧縮要素及び高圧圧縮要素の3段の要素を有している。この場合、複数の圧縮部のうちいずれか1つが駆動を停止しており、他の圧縮部が駆動をしている状態においては、調整弁によって、駆動を停止している圧縮部と各配管(具体的には、高圧配管、第1中圧配管、第2中圧配管及び低圧配管)のいずれか1つの間において冷媒が流れ、他の配管とは冷媒の流れが生じないようになる。例えば、調整弁によって停止圧縮部と第1中圧配管との間のみで冷媒の流れが生じるようにする場合、他の配管である高圧配管、第2中圧配管及び低圧配管と停止圧縮部との間では、冷媒が流れなくなる。この場合、第1中圧配管の間、つまりは停止圧縮部における中圧圧縮要素及び高圧圧縮要素の間と、停止圧縮部のドーム内は、同じ圧力の冷媒で満たされる。従って、第1中間配管とドーム内との間においては圧力差が生じなくなり、停止圧縮機の内部は均圧に保たれる。つまり、3段の圧縮要素を有する圧縮部が複数並列接続されている場合においても、停止圧縮部の内部を均圧にすることができる。   The compression unit according to this refrigeration apparatus has three stages of a low pressure compression element, an intermediate pressure compression element, and a high pressure compression element. In this case, in the state where any one of the plurality of compression units has stopped driving and the other compression units are driving, the compression unit that has stopped driving and each pipe ( Specifically, the refrigerant flows between any one of the high-pressure pipe, the first medium-pressure pipe, the second medium-pressure pipe, and the low-pressure pipe, and the refrigerant does not flow with the other pipes. For example, when the flow of the refrigerant is generated only between the stop compression unit and the first intermediate pressure pipe by the adjusting valve, the other high pressure pipe, the second intermediate pressure pipe, the low pressure pipe, and the stop compression part In between, the refrigerant stops flowing. In this case, between the first intermediate pressure pipes, that is, between the intermediate pressure compression element and the high pressure compression element in the stop compression section, and in the dome of the stop compression section, the refrigerant of the same pressure is filled. Therefore, no pressure difference is generated between the first intermediate pipe and the inside of the dome, and the inside of the stop compressor is kept at a uniform pressure. That is, even when a plurality of compression units having three-stage compression elements are connected in parallel, the inside of the stop compression unit can be equalized.

本発明の第8観点に係る冷凍装置は、第7観点に係る冷凍装置において、圧縮部は、複数の中圧圧縮要素を有する。そして、この冷凍装置は、各圧縮部の中圧圧縮要素同士を繋ぐ1または複数の第3中圧配管を更に備える。調整弁は、停止圧縮部において、高圧配管、第1中圧配管、第2中圧配管、低圧配管、及び1または複数の第3中圧配管のいずれか1つとのみ冷媒の流れを許容し、他の配管との間では冷媒の流れが生じないように、停止圧縮部と各配管との連通状態を調整する。   The refrigeration apparatus according to an eighth aspect of the present invention is the refrigeration apparatus according to the seventh aspect, wherein the compression unit has a plurality of medium pressure compression elements. And this freezing apparatus is further provided with 1 or several 3rd intermediate pressure piping which connects the intermediate pressure compression elements of each compression part. The regulating valve allows the refrigerant to flow only in one of the high pressure pipe, the first medium pressure pipe, the second medium pressure pipe, the low pressure pipe, and one or a plurality of third medium pressure pipes in the stop compression unit, The state of communication between the stop compressor and each pipe is adjusted so that no refrigerant flows between the other pipes.

この冷凍装置に係る圧縮部は、4段以上の圧縮要素を有している。このように、4段以上の圧縮要素を有する圧縮部が複数並列接続されている場合においても、停止圧縮部の内部を均圧にすることができる。   The compression unit according to this refrigeration apparatus has four or more stages of compression elements. Thus, even when a plurality of compression units having four or more stages of compression elements are connected in parallel, the inside of the stop compression unit can be equalized.

本発明の第1観点に係る冷凍装置によると、中間配管とドーム内との間においては圧力差が生じなくなり、停止圧縮部の内部は均圧に保たれる。   According to the refrigeration apparatus according to the first aspect of the present invention, no pressure difference is generated between the intermediate pipe and the inside of the dome, and the inside of the stop compression section is kept at a uniform pressure.

本発明の第2観点に係る冷凍装置によると、停止圧縮部から他の圧縮部への冷媒の流れを生じさせず、ドーム内部を均圧にすることができる。   According to the refrigeration apparatus according to the second aspect of the present invention, the inside of the dome can be equalized without causing a refrigerant flow from the stop compression section to the other compression section.

本発明の第3観点に係る冷凍装置によると、停止圧縮部のドーム内部と低圧配管内との圧力差がある場合であっても、圧力の高い停止圧縮部から圧力の低い低圧配管側へと、冷媒及びこれに伴う冷凍機油が流出してしまうのを防ぐことができる。   According to the refrigeration apparatus according to the third aspect of the present invention, even when there is a pressure difference between the inside of the dome of the stop compression section and the inside of the low pressure pipe, the stop compression section having a high pressure is moved to the low pressure pipe side having a low pressure. The refrigerant and the accompanying refrigeration oil can be prevented from flowing out.

本発明の第4観点に係る冷凍装置によると、駆動停止時にドーム内が中圧となる停止圧縮部において、高圧圧縮要素から低圧圧縮要素、及び停止圧縮部から高圧配管側へと、冷媒及びこれに伴う冷凍機油が流出してしまうのを防ぐことができる。特に、この場合には、調整弁が逆止弁のみという簡単な構成で冷媒の流れを調整でき、調整弁が電磁弁等で構成される場合に比してコストを抑えることができる。   According to the refrigeration apparatus according to the fourth aspect of the present invention, in the stop compression section where the inside of the dome has an intermediate pressure when the drive is stopped, the refrigerant and the It is possible to prevent the refrigerating machine oil from flowing out. In particular, in this case, the flow of the refrigerant can be adjusted with a simple configuration in which the adjustment valve is only a check valve, and the cost can be reduced compared to the case where the adjustment valve is constituted by an electromagnetic valve or the like.

本発明の第5観点に係る冷凍装置によると、停止圧縮部が駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   According to the refrigeration apparatus according to the fifth aspect of the present invention, when the stop compressor stops driving, the refrigerant can be reliably prevented from flowing out.

本発明の第6観点に係る冷凍装置によると、停止圧縮部が高圧状態または低圧状態で駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   According to the refrigeration apparatus according to the sixth aspect of the present invention, when the stop compressor stops driving in a high pressure state or a low pressure state, the refrigerant can be reliably prevented from flowing out.

本発明の第7観点に係る冷凍装置によると、3段の圧縮要素を有する圧縮部が複数並列接続されている場合においても、停止圧縮部の内部を均圧にすることができる。   According to the refrigeration apparatus according to the seventh aspect of the present invention, even when a plurality of compression units having three-stage compression elements are connected in parallel, the inside of the stop compression unit can be equalized.

本発明の第8観点に係る冷凍装置によると、4段以上の圧縮要素を有する圧縮部が複数並列接続されている場合においても、停止圧縮部の内部を均圧にすることができる。   According to the refrigeration apparatus according to the eighth aspect of the present invention, even when a plurality of compression units having four or more stages of compression elements are connected in parallel, the inside of the stop compression unit can be equalized.

本発明にかかる冷凍装置の一実施形態としての空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus as one Embodiment of the freezing apparatus concerning this invention. 冷房運転時の冷凍サイクルが図示された圧力―エンタルピ線図である。FIG. 4 is a pressure-enthalpy diagram illustrating a refrigeration cycle during cooling operation. 冷房運転時の冷凍サイクルが図示された温度―エントロピ線図である。FIG. 3 is a temperature-entropy diagram illustrating a refrigeration cycle during cooling operation. 変形例Aにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification A. 変形例Bにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification B. 変形例Cにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification C. 変形例Dにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification D. 変形例Eにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification E. 変形例Fにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification F. 変形例Gにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification G. 変形例Hにかかる空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus concerning the modification H. 変形例Iにかかる空気調和装置のうち、熱源側熱交換器、膨張機構及び利用側熱交換器を省き、他の構成の概略を表した図である。It is a figure showing the outline of other composition, omitting a heat source side heat exchanger, an expansion mechanism, and a use side heat exchanger among the air harmony devices concerning modification I. 変形例Jにかかる空気調和装置における空気調和装置の概略構成図である。It is a schematic block diagram of the air conditioning apparatus in the air conditioning apparatus concerning the modification J.

以下、本発明の冷凍装置について、図面を用いて説明する。   Hereinafter, the refrigeration apparatus of the present invention will be described with reference to the drawings.

(1)構成
図1は、本発明にかかる冷凍装置の一実施形態としての空気調和装置1の概略構成図である。空気調和装置1は、冷房運転が可能となるように構成された冷媒回路2を有し、超臨界域で作動する冷媒(ここでは、二酸化炭素)を使用して二段圧縮式冷凍サイクルを行う装置である。
(1) Configuration FIG. 1 is a schematic configuration diagram of an air conditioner 1 as an embodiment of a refrigeration apparatus according to the present invention. The air conditioner 1 includes a refrigerant circuit 2 configured to be capable of cooling operation, and performs a two-stage compression refrigeration cycle using a refrigerant (here, carbon dioxide) that operates in a supercritical region. Device.

空気調和装置1の冷媒回路2は、主として、圧縮機構3、油分離機構21,22,25,26、高圧配管p1、中圧配管p2、低圧配管p3、熱源側熱交換器4、膨張機構5、利用側熱交換器6、中間冷却器7、及び調整弁8を備える。   The refrigerant circuit 2 of the air conditioner 1 mainly includes a compression mechanism 3, oil separation mechanisms 21, 22, 25, 26, a high pressure pipe p 1, an intermediate pressure pipe p 2, a low pressure pipe p 3, a heat source side heat exchanger 4, and an expansion mechanism 5. , A use side heat exchanger 6, an intermediate cooler 7, and a regulating valve 8.

(1−1)圧縮機構
圧縮機構3は、本実施形態において、2つの圧縮要素で冷媒を二段圧縮する圧縮機(圧縮部に相当)31,32が2機並列接続されることで構成されている。圧縮機31,32は、それぞれ1つのドーム31a,32a内に、圧縮機駆動モータ31b,32bと、駆動軸31c,32cと、2つの圧縮要素31d,31e,32d,32eとが収容された密閉式構造となっている。圧縮機駆動モータ31b,32bは、それぞれ駆動軸31c,32cに連結されている。そして、各駆動軸31c,32cは、ドーム31a内の2つの圧縮要素31d,31e、ドーム32a内の2つの圧縮要素32d,32eそれぞれに連結されている。すなわち、駆動軸31cは、ドーム31a内の2つの圧縮要素31d,31eにおいて共通な軸であり、圧縮機31は、この2つの圧縮要素31d,31eがともに圧縮機駆動モータ31bによって回転駆動されることで圧縮仕事を行う、いわゆる一軸二段圧縮構造となっている。同様に、ドーム32a内の2つの圧縮要素32d,32eは単一の駆動軸32cに連結されており、圧縮機32は、この2つの圧縮要素32d,32eがともに圧縮機駆動モータ32bによって回転駆動されることで圧縮仕事を行う、いわゆる一軸二段圧縮構造となっている。圧縮要素31d,31e,32d,32eは、本実施形態において、ロータリ式やスクロール式等の容積式の圧縮要素である。具体的には、圧縮要素31d,31e,32d,32eは、冷媒の圧力を高める低圧圧縮要素31e,32e、及び低圧圧縮要素31e,32eよりも更に冷媒の圧力を高める高圧圧縮要素31d,32dで構成される。
(1-1) Compression mechanism In this embodiment, the compression mechanism 3 is configured by connecting in parallel two compressors 31 and 32 (corresponding to compression units) that compress refrigerant in two stages with two compression elements. ing. The compressors 31 and 32 are sealed in which compressor drive motors 31b and 32b, drive shafts 31c and 32c, and two compression elements 31d, 31e, 32d, and 32e are accommodated in one dome 31a and 32a, respectively. It has a formula structure. The compressor drive motors 31b and 32b are connected to the drive shafts 31c and 32c, respectively. The drive shafts 31c and 32c are connected to the two compression elements 31d and 31e in the dome 31a and the two compression elements 32d and 32e in the dome 32a, respectively. That is, the drive shaft 31c is a common shaft for the two compression elements 31d and 31e in the dome 31a, and the compressor 31 is rotationally driven by the compressor drive motor 31b for the two compression elements 31d and 31e. This is a so-called uniaxial two-stage compression structure that performs compression work. Similarly, the two compression elements 32d and 32e in the dome 32a are connected to a single drive shaft 32c, and the compressor 32 is rotationally driven by the compressor drive motor 32b. As a result, a so-called uniaxial two-stage compression structure that performs compression work is obtained. The compression elements 31d, 31e, 32d, and 32e are positive displacement compression elements such as a rotary type and a scroll type in the present embodiment. Specifically, the compression elements 31d, 31e, 32d, and 32e are low-pressure compression elements 31e and 32e that increase the pressure of the refrigerant, and high-pressure compression elements 31d and 32d that further increase the pressure of the refrigerant than the low-pressure compression elements 31e and 32e. Composed.

そして、圧縮機31は、後述する低圧配管p3から分岐された低圧吸入管p31aの一端に低圧圧縮要素31eの吸入口を接続し、高圧配管p1から分岐された高圧吐出管p11aの一端に圧縮機31の吐出口を接続している。また、圧縮機31は、中圧配管p2の吐出側中圧母管p23に合流する吐出側中圧枝管p21の一端に低圧圧縮要素31eの吐出口を接続し、中圧配管p2の吸入側中圧母管p24から分岐する吸入側中圧枝管p25の一端に高圧圧縮要素31dの吸入口を接続している。同様に、圧縮機32は、低圧配管p3から分岐された低圧吸入管p32aの一端に低圧圧縮要素32eの吸入口を接続し、高圧配管p1から分岐された高圧吐出管p12aの一端に圧縮機32の吐出口を接続している。また、圧縮機32は、吐出側中圧母管p23に合流する吐出側中圧枝管p22の一端に低圧圧縮要素32eの吐出口を接続し、吸入側中圧母管p24から分岐する吸入側中圧枝管p26の一端に高圧圧縮要素32dの吸入口を接続している。   The compressor 31 has a suction port of a low-pressure compression element 31e connected to one end of a low-pressure suction pipe p31a branched from a low-pressure pipe p3 described later, and a compressor connected to one end of a high-pressure discharge pipe p11a branched from the high-pressure pipe p1. 31 discharge ports are connected. The compressor 31 has a discharge port of the low-pressure compression element 31e connected to one end of the discharge-side intermediate pressure branch pipe p21 that joins the discharge-side intermediate pressure mother pipe p23 of the intermediate pressure pipe p2, and the suction side of the intermediate pressure pipe p2 The suction port of the high-pressure compression element 31d is connected to one end of the suction-side medium pressure branch pipe p25 branched from the medium pressure mother pipe p24. Similarly, in the compressor 32, the suction port of the low pressure compression element 32e is connected to one end of the low pressure suction pipe p32a branched from the low pressure pipe p3, and the compressor 32 is connected to one end of the high pressure discharge pipe p12a branched from the high pressure pipe p1. The outlet is connected. The compressor 32 has a discharge side of the low pressure compression element 32e connected to one end of the discharge side intermediate pressure branch pipe p22 that joins the discharge side intermediate pressure mother pipe p23, and is branched from the suction side intermediate pressure mother pipe p24. The suction port of the high pressure compression element 32d is connected to one end of the intermediate pressure branch pipe p26.

上述した構成により、低圧の冷媒は、低圧配管p3から各低圧側吸入管p31a,p32aを介して各圧縮機31,32の低圧圧縮要素31e,32eに分けて吸入される。そして、低圧の冷媒は、各低圧圧縮要素31e,32eにて圧縮された後更に各高圧圧縮要素31d,32dで圧縮されることで高圧の状態となる。その後、高圧の冷媒は、各高圧吐出管p11a,p12aから吐出され、高圧配管p1にて合流する。圧縮機構3は、冷媒を低圧配管p3から吸入して高圧配管p1から吐出する過程で、各低圧吸入管p31a,p32aから吸入した低圧の冷媒を各低圧圧縮要素31e,32eで圧縮していったん中圧の状態にした後、当該冷媒を各低圧圧縮要素31e,32eの吐出口から一つの中圧配管p2に吐出し、その後各高圧圧縮要素31d,32dの吸入口から吸入する。   With the above-described configuration, the low-pressure refrigerant is sucked into the low-pressure compression elements 31e and 32e of the compressors 31 and 32 through the low-pressure pipe p3 and the low-pressure side suction pipes p31a and p32a. Then, the low-pressure refrigerant is compressed by the low-pressure compression elements 31e and 32e and further compressed by the high-pressure compression elements 31d and 32d, thereby becoming a high-pressure state. Thereafter, the high-pressure refrigerant is discharged from each of the high-pressure discharge pipes p11a and p12a and merges in the high-pressure pipe p1. The compression mechanism 3 compresses the low-pressure refrigerant sucked from the low-pressure suction pipes p31a and p32a by the low-pressure compression elements 31e and 32e in the course of sucking the refrigerant from the low-pressure pipe p3 and discharging the refrigerant from the high-pressure pipe p1. After the pressure is reached, the refrigerant is discharged from the discharge ports of the low pressure compression elements 31e and 32e to one intermediate pressure pipe p2, and then sucked from the suction ports of the high pressure compression elements 31d and 32d.

このように、圧縮機構3は、本実施形態において、4つの圧縮要素31d,31e,32d,32eを有しており、低圧圧縮要素31e及び高圧圧縮要素31dは直列に接続され、低圧圧縮要素32e及び高圧圧縮要素32dは直列に接続されている。更に、高圧圧縮要素31d,32dは互いに並列に接続され、低圧圧縮要素31e,32eは互いに並列に接続されている。そして、圧縮機構3は、これらの圧縮要素31d,31e,32d,32eのうちの前段側の圧縮要素である低圧圧縮要素31e,32eそれぞれにて中圧に圧縮された冷媒を、後段側の圧縮要素である各高圧圧縮要素31d,31eでさらに高い圧力に順次圧縮するように構成されている。   Thus, in this embodiment, the compression mechanism 3 has the four compression elements 31d, 31e, 32d, and 32e, the low pressure compression element 31e and the high pressure compression element 31d are connected in series, and the low pressure compression element 32e. The high-pressure compression element 32d is connected in series. Further, the high pressure compression elements 31d and 32d are connected in parallel to each other, and the low pressure compression elements 31e and 32e are connected in parallel to each other. The compression mechanism 3 then compresses the refrigerant compressed to the medium pressure by the low-pressure compression elements 31e and 32e, which are the compression elements on the front stage among the compression elements 31d, 31e, 32d and 32e, on the downstream side. The high pressure compression elements 31d and 31e, which are elements, are configured to be sequentially compressed to a higher pressure.

また、圧縮機31の駆動時、圧縮機31に含まれる2段の圧縮要素31d,31eのうち、前段となる低圧圧縮要素31eから吐出される中圧の冷媒は、該要素31eを有する圧縮機31のドーム31a外に中圧配管p2(具体的には、吐出側中圧枝管p21)を介して吐出される。従って、低圧圧縮要素31eは、外部吐出圧縮要素に相当する。そして、圧縮機31の駆動時、後段となる高圧圧縮要素31dから吐出される高圧の冷媒は、圧縮機31のドーム31a内にいったん吐出され、その後ドーム31aに直結した高圧吐出管p11aを介してドーム31aの外、具体的には油分離機構21側に吐出されるようになる。従って、高圧圧縮要素31dは、内部吐出圧縮要素に相当する。同様にして、圧縮機32の駆動時、圧縮機32に含まれる2段の圧縮要素32d,32eのうち、前段となる低圧圧縮要素32eから吐出される中圧の冷媒は、該要素32eを有する圧縮機32のドーム32a外に中圧配管p2(具体的には、吐出側中圧枝管p22)を介して吐出される。従って、低圧圧縮要素32eは、外部吐出圧縮要素に相当する。そして、圧縮機32の駆動時、後段となる高圧圧縮要素32dから吐出される高圧の冷媒は、圧縮機32のドーム32a内にいったん吐出され、その後ドーム32aに直結した高圧吐出管p12aを介してドーム32aの外、具体的には油分離機構22側に吐出されるようになる。従って、高圧圧縮要素32eは、内部吐出圧縮要素に相当する。以上より、本実施形態に係る圧縮機31,32は、駆動時にはそれぞれのドーム31a,32a内に高圧の冷媒が溜まる、いわゆる高圧ドーム型の圧縮機であると言える。   Further, among the two-stage compression elements 31d and 31e included in the compressor 31, when the compressor 31 is driven, the medium-pressure refrigerant discharged from the low-pressure compression element 31e as the previous stage is a compressor having the element 31e. 31 is discharged outside the dome 31a through the intermediate pressure pipe p2 (specifically, the discharge side intermediate pressure branch pipe p21). Therefore, the low pressure compression element 31e corresponds to an external discharge compression element. When the compressor 31 is driven, the high-pressure refrigerant discharged from the high-pressure compression element 31d, which is the latter stage, is once discharged into the dome 31a of the compressor 31, and then through the high-pressure discharge pipe p11a directly connected to the dome 31a. The ink is discharged to the outside of the dome 31a, specifically, to the oil separation mechanism 21 side. Accordingly, the high pressure compression element 31d corresponds to an internal discharge compression element. Similarly, when the compressor 32 is driven, the medium-pressure refrigerant discharged from the low-pressure compression element 32e, which is the preceding stage, of the two-stage compression elements 32d and 32e included in the compressor 32 has the element 32e. It is discharged out of the dome 32a of the compressor 32 through an intermediate pressure pipe p2 (specifically, a discharge side intermediate pressure branch pipe p22). Accordingly, the low pressure compression element 32e corresponds to an external discharge compression element. When the compressor 32 is driven, the high-pressure refrigerant discharged from the subsequent high-pressure compression element 32d is once discharged into the dome 32a of the compressor 32, and then via the high-pressure discharge pipe p12a directly connected to the dome 32a. The ink is discharged to the outside of the dome 32a, specifically, to the oil separation mechanism 22 side. Accordingly, the high pressure compression element 32e corresponds to an internal discharge compression element. From the above, it can be said that the compressors 31 and 32 according to the present embodiment are so-called high-pressure dome type compressors in which high-pressure refrigerant is accumulated in the respective domes 31a and 32a during driving.

(1−2)油分離機構
油分離機構21,22,25,26は、冷媒に同伴する冷凍機油を分離するための機構である。本実施形態において、油分離機構21,22,25,26は、各圧縮機31,32が有する低圧圧縮要素31e,32e及び高圧圧縮要素31d,32dそれぞれに対応して、各圧縮要素31d,32d,31e,32eの吐出側に4つ設けられている。
(1-2) Oil separation mechanism The oil separation mechanisms 21, 22, 25, and 26 are mechanisms for separating the refrigerating machine oil accompanying the refrigerant. In the present embodiment, the oil separation mechanisms 21, 22, 25, 26 correspond to the low pressure compression elements 31e, 32e and the high pressure compression elements 31d, 32d of the compressors 31, 32, respectively. , 31e, 32e are provided on the discharge side.

油分離機構21,22は、それぞれ油分離器21a,22a、油戻し管21c,22c及び減圧機構21b,22bを有している。各油分離器21a,22aは、各圧縮機31,32の内部吐出圧縮要素である高圧圧縮要素31d,32dそれぞれから吐出される高圧の冷媒から、この冷媒に同伴する冷凍機油を分離する。各油戻し管21c,22cは、一端が各油分離器21a,22aに接続されており、該油分離器21a,22aそれぞれによって分離された冷凍機油を、内部吐出圧縮要素、即ち各高圧圧縮要素31d,32dの吸入側に戻す。特に、本実施形態に係る油戻し管21cは、油分離器21aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である高圧圧縮要素31dを有する圧縮機31ではなく、別の圧縮機32の高圧圧縮要素32d(つまり、圧縮機32の内部吐出圧縮要素)の吸入側に戻す。そのため、油戻し管21cの他端は、中圧配管p2の吸入側中圧枝管p26に接続されている。同様にして、本実施形態に係る油戻し管22cは、油分離器22aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である高圧圧縮要素32dを有する圧縮機32ではなく、別の圧縮機31の高圧圧縮要素31d(つまり、圧縮機31の内部吐出圧縮要素)の吸入側に戻す。そのため、油戻し管22cの他端は、中圧配管p2の吸入側中圧枝管p25に接続されている。つまり、本実施形態に係る各油戻し管21c,22cと中圧配管p2における吸入側中圧枝管p25,p26とは、いわゆるたすき掛け状態に接続されている。減圧機構21b,22bは、各油戻し管21c,22cを流れる冷凍機油を減圧する。減圧機構21b,22bは、油戻し管21c,22c上に設けられており、本実施形態において、キャピラリチューブが使用されている。   The oil separation mechanisms 21 and 22 have oil separators 21a and 22a, oil return pipes 21c and 22c, and pressure reduction mechanisms 21b and 22b, respectively. The oil separators 21a and 22a separate the refrigerating machine oil accompanying the refrigerant from the high-pressure refrigerant discharged from the high-pressure compression elements 31d and 32d, which are internal discharge compression elements of the compressors 31 and 32, respectively. One end of each oil return pipe 21c, 22c is connected to each oil separator 21a, 22a, and the refrigerating machine oil separated by each oil separator 21a, 22a is supplied to the internal discharge compression element, that is, each high pressure compression element. Return to the suction side of 31d and 32d. In particular, the oil return pipe 21c according to the present embodiment is not a compressor 31 having a high-pressure compression element 31d that is a refrigerant flow source from which the refrigerating machine oil separated by the oil separator 21a is discharged. Return to the suction side of the high-pressure compression element 32d of another compressor 32 (that is, the internal discharge compression element of the compressor 32). Therefore, the other end of the oil return pipe 21c is connected to the suction side intermediate pressure branch pipe p26 of the intermediate pressure pipe p2. Similarly, the oil return pipe 22c according to the present embodiment includes a compressor 32 having a high-pressure compression element 32d that is a refrigerant flow source from which the refrigerating machine oil separated by the oil separator 22a is transferred. Instead, it is returned to the suction side of the high-pressure compression element 31d of another compressor 31 (that is, the internal discharge compression element of the compressor 31). Therefore, the other end of the oil return pipe 22c is connected to the suction side intermediate pressure branch pipe p25 of the intermediate pressure pipe p2. That is, the oil return pipes 21c and 22c according to the present embodiment and the suction side intermediate pressure branch pipes p25 and p26 in the intermediate pressure pipe p2 are connected in a so-called staking state. The decompression mechanisms 21b and 22b decompress the refrigerating machine oil flowing through the oil return pipes 21c and 22c. The decompression mechanisms 21b and 22b are provided on the oil return pipes 21c and 22c, and a capillary tube is used in this embodiment.

このように、本実施形態においては、吸入側中圧枝管p25,p26と高圧吐出管p11a,p12aとが、油分離機構21,22によってたすき掛けの状態に接続されている。そのため、高圧圧縮要素31d内に溜まった冷凍機油の量と高圧圧縮要素32d内に溜まった冷凍機油の量との間に生じた偏りに起因して、高圧圧縮要素31dから吐出される高圧の冷媒中の冷凍機油の量と高圧圧縮要素32dから吐出される高圧の冷媒中の冷凍機油の量との間に偏りが生じた場合であっても、高圧圧縮要素31d,32dのうち冷凍機油の量が少ない方に冷凍機油が多く戻ることになり、高圧圧縮要素31d,32d内に溜まった冷凍機油の量の偏りが解消されるようになっている。   Thus, in this embodiment, the suction side intermediate pressure branch pipes p25 and p26 and the high pressure discharge pipes p11a and p12a are connected to each other by the oil separation mechanisms 21 and 22. Therefore, the high-pressure refrigerant discharged from the high-pressure compression element 31d due to a bias generated between the amount of refrigerating machine oil accumulated in the high-pressure compression element 31d and the amount of refrigerating machine oil accumulated in the high-pressure compression element 32d. Even if there is a bias between the amount of refrigeration oil in the refrigerant and the amount of refrigeration oil in the high-pressure refrigerant discharged from the high-pressure compression element 32d, the amount of refrigeration oil in the high-pressure compression elements 31d and 32d As a result, the amount of refrigerating machine oil returns to the direction where there is a smaller amount, and the unevenness of the amount of refrigerating machine oil accumulated in the high-pressure compression elements 31d and 32d is eliminated.

油分離機構25,26は、それぞれ油分離器25a,26a、油戻し管25c,26c及び減圧機構25b,26bを有している。各油分離器25a,26aは、中圧配管p2上に設けられており、各圧縮機31,32の外部吐出圧縮要素である低圧圧縮要素31e,32eそれぞれから吐出される中圧の冷媒から、この冷媒に同伴する冷凍機油を分離する。各油戻し管25c,26cは、一端が油分離器25a,26aに接続されており、該油分離器25a,26aそれぞれによって分離された冷凍機油を、内部吐出圧縮要素、即ち各高圧圧縮要素31d,32dの吸入側に戻す。具体的には、油戻し管25cは、油戻し管21cとは異なり、油分離器25aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である低圧圧縮要素31eを有する圧縮機31自身の吸入側であって、かつ該圧縮機31の内部吐出圧縮要素である高圧圧縮要素31dの吸入側に戻す。そのため、油戻し管25cの他端は、中圧配管p2の吸入側中圧枝管p25に接続されている。同様にして、油戻し管26cは、油戻し管22cとは異なり、油分離器26aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である低圧圧縮要素32eを有する圧縮機32自身の吸入側であって、かつ該圧縮機32の内部吐出圧縮要素である高圧圧縮要素32dの吸入側に戻す。そのため、油戻し管26cの他端は、中圧配管p2の吸入側中圧枝管p26に接続されている。つまり、各油戻し管25c,26cと中圧配管p2における吸入側中圧枝管p25,p26とは、いわゆるたすき掛け状態ではなく、各油戻し管25c,26cが対応する圧縮機31,32自身における内部吐出圧縮要素の吸入側に冷凍機油が戻るようにして接続されている。減圧機構25b,26bは、油戻し管25c,26cを流れる冷凍機油を減圧する。減圧機構25b,26bは、油戻し管25c,26c上に設けられており、本実施形態において、キャピラリチューブが使用されている。   The oil separation mechanisms 25 and 26 have oil separators 25a and 26a, oil return pipes 25c and 26c, and pressure reduction mechanisms 25b and 26b, respectively. Each of the oil separators 25a and 26a is provided on the medium pressure pipe p2, and from the medium pressure refrigerant discharged from the low pressure compression elements 31e and 32e, which are external discharge compression elements of the compressors 31 and 32, respectively. The refrigerating machine oil accompanying the refrigerant is separated. One end of each of the oil return pipes 25c and 26c is connected to the oil separators 25a and 26a, and the refrigerating machine oil separated by each of the oil separators 25a and 26a is supplied to the internal discharge compression element, that is, each high-pressure compression element 31d. , 32d to the suction side. Specifically, the oil return pipe 25c differs from the oil return pipe 21c in that the refrigerating machine oil separated by the oil separator 25a is supplied with the low-pressure compression element 31e that is the refrigerant flow source accompanied by the refrigerating machine oil. The compressor 31 itself is returned to the suction side of the high-pressure compression element 31d that is the internal discharge compression element of the compressor 31. Therefore, the other end of the oil return pipe 25c is connected to the suction side intermediate pressure branch pipe p25 of the intermediate pressure pipe p2. Similarly, unlike the oil return pipe 22c, the oil return pipe 26c has a low-pressure compression element 32e, which is a refrigerant flow source from which the refrigerating machine oil was accompanied by the refrigerating machine oil separated by the oil separator 26a. It is returned to the suction side of the compressor 32 itself and to the suction side of the high-pressure compression element 32d which is an internal discharge compression element of the compressor 32. Therefore, the other end of the oil return pipe 26c is connected to the suction side intermediate pressure branch pipe p26 of the intermediate pressure pipe p2. That is, the oil return pipes 25c and 26c and the suction side intermediate pressure branch pipes p25 and p26 in the intermediate pressure pipe p2 are not in a so-called stagnation state, and the compressors 31 and 32 themselves corresponding to the oil return pipes 25c and 26c correspond to each other. The refrigerating machine oil is connected so as to return to the suction side of the internal discharge compression element. The decompression mechanisms 25b and 26b decompress the refrigerating machine oil flowing through the oil return pipes 25c and 26c. The decompression mechanisms 25b and 26b are provided on the oil return pipes 25c and 26c, and a capillary tube is used in this embodiment.

(1−3)各種配管
高圧配管p1は、一端が各油分離機構21,22の吐出口側に接続された吐出枝管p11b,p12bの合流点に接続され、他端が熱源側熱交換器4に接続されている。高圧配管p1は、2つの圧縮機31,32の各高圧圧縮要素31d,32dから吐出された高圧の冷媒が流れる。即ち、高圧配管p1には、各圧縮機31,32のドーム31a,32a内に吐出され、かつ冷凍機油が分離された状態の高圧冷媒が、合流して流れる。そして、この高圧冷媒は、高圧配管p1によって熱源側熱交換器4に送られる。
(1-3) Various pipes The high-pressure pipe p1 has one end connected to the junction of discharge branch pipes p11b and p12b connected to the discharge port side of each oil separation mechanism 21, 22, and the other end is a heat source side heat exchanger. 4 is connected. High-pressure refrigerant discharged from the high-pressure compression elements 31d and 32d of the two compressors 31 and 32 flows through the high-pressure pipe p1. That is, high-pressure refrigerant that is discharged into the domes 31a and 32a of the compressors 31 and 32 and separated from the refrigerating machine oil flows through the high-pressure pipe p1. The high-pressure refrigerant is sent to the heat source side heat exchanger 4 through the high-pressure pipe p1.

中圧配管p2は、各圧縮機31,32における各高圧圧縮要素31d,32dと各低圧圧縮要素31e,32eとを繋いでいる。具体的には、中圧配管p2は、その一端側において、低圧圧縮要素31eの吐出口に一端を接続している吐出側中圧枝管p21の他端が、油分離機構25と閉止弁83(後述)を介して吐出側中圧母管p23の一端側に接続される。また、中圧配管p2は、その一端側において、低圧圧縮要素32eの吐出口に一端を接続している吐出側中圧枝管p22の他端が、油分離機構26と閉止弁84(後述)を介して吐出側中圧母管p23の一端側に接続される。一方、中圧配管p2は、その他端側において、高圧圧縮要素31dの吸入口に他端を接続している吸入側中圧枝管p25の一端が吸入側中圧母管p24の他端側に接続されるとともに、高圧圧縮要素32dの吸入口に他端を接続している吸入側中圧枝管p26の一端が吸入側中圧母管p24の他端側に接続される。そして、吸入側中圧枝間p25,p26には、同じ圧力の冷媒として、中圧の冷媒が流れる。   The medium pressure pipe p2 connects the high pressure compression elements 31d and 32d and the low pressure compression elements 31e and 32e in the compressors 31 and 32, respectively. Specifically, the other end of the discharge-side intermediate pressure branch pipe p21 whose one end is connected to the discharge port of the low-pressure compression element 31e is connected to the oil separation mechanism 25 and the stop valve 83 at one end side of the intermediate-pressure pipe p2. It is connected to one end side of the discharge side intermediate pressure mother pipe p23 via (described later). The other end of the discharge-side intermediate pressure branch pipe p22, which has one end connected to the discharge port of the low-pressure compression element 32e, is connected to the oil separation mechanism 26 and the stop valve 84 (described later). Is connected to one end side of the discharge-side intermediate pressure mother pipe p23. On the other hand, at the other end of the intermediate pressure pipe p2, one end of the suction side intermediate pressure branch pipe p25 connected to the suction port of the high pressure compression element 31d is connected to the other end side of the suction side intermediate pressure mother pipe p24. One end of the suction side intermediate pressure branch pipe p26 connected to the other end of the suction port of the high pressure compression element 32d is connected to the other end side of the suction side intermediate pressure mother pipe p24. An intermediate pressure refrigerant flows between the suction side intermediate pressure branches p25 and p26 as the same pressure refrigerant.

低圧配管p3の一端は、利用側熱交換器6の他端に接続され、低圧配管p3の他端は、各圧縮機31,32の低圧吸入管p31a,p32aの合流点に接続されている。低圧配管p3は、圧縮機31,32の低圧圧縮要素31e,32eそれぞれに吸入する低圧の冷媒が流れる。つまり、低圧の冷媒は、利用側熱交換器6から低圧配管p3に流れると低圧吸入管p31a,p32aそれぞれに分かれて流れ、各低圧圧縮要素31e,32eの吸入口から低圧圧縮要素31e,32eの内部に流入する。   One end of the low-pressure pipe p3 is connected to the other end of the use side heat exchanger 6, and the other end of the low-pressure pipe p3 is connected to a junction of the low-pressure suction pipes p31a and p32a of the compressors 31 and 32. In the low-pressure pipe p3, low-pressure refrigerant sucked into the low-pressure compression elements 31e and 32e of the compressors 31 and 32 flows. That is, when the low-pressure refrigerant flows from the use-side heat exchanger 6 to the low-pressure pipe p3, the refrigerant flows separately into the low-pressure suction pipes p31a and p32a, and flows from the suction ports of the low-pressure compression elements 31e and 32e to the low-pressure compression elements 31e and 32e. Flows into the interior.

(1−4)熱源側熱交換器
熱源側熱交換器4は、冷媒の冷却器として機能する熱交換器である。熱源側熱交換器4の一端は、高圧配管p1を介して圧縮機構3の配管p11b,p11aと接続されており、その他端は膨張機構5の一端に接続されている。尚、ここでは図示しないが、熱源側熱交換器4には、熱源側熱交換器4を流れる冷媒と熱交換を行う冷却源としての水や空気が供給されるようになっている。
(1-4) Heat source side heat exchanger The heat source side heat exchanger 4 is a heat exchanger that functions as a refrigerant cooler. One end of the heat source side heat exchanger 4 is connected to the pipes p11b and p11a of the compression mechanism 3 via the high-pressure pipe p1 and the other end is connected to one end of the expansion mechanism 5. Although not shown here, the heat source side heat exchanger 4 is supplied with water or air as a cooling source for exchanging heat with the refrigerant flowing through the heat source side heat exchanger 4.

(1−5)膨張機構
膨張機構5は、冷媒を減圧する機構であり、本実施形態において、電動膨張弁が使用されている。膨張機構5の一端は、熱源側熱交換器4に接続され、その他端は利用側熱交換器6に接続されている。また、本実施形態において、膨張機構5は、放熱器として機能する熱源側熱交換器4において冷却された高圧の冷媒を、蒸発器として機能する利用側熱交換器6に送る前に減圧する。
(1-5) Expansion mechanism The expansion mechanism 5 is a mechanism that depressurizes the refrigerant, and an electric expansion valve is used in the present embodiment. One end of the expansion mechanism 5 is connected to the heat source side heat exchanger 4, and the other end is connected to the use side heat exchanger 6. In the present embodiment, the expansion mechanism 5 reduces the pressure of the high-pressure refrigerant cooled in the heat source side heat exchanger 4 functioning as a radiator before being sent to the use side heat exchanger 6 functioning as an evaporator.

(1−6)利用側熱交換器
利用側熱交換器6は、冷媒の加熱器として機能する熱交換器である。利用側熱交換器6の一端は、膨張機構5の他端に接続されており、利用側熱交換器6の他端は、低圧配管p3を介して圧縮機構3の吸入側に接続されている。尚、ここでは図示しないが、利用側熱交換器6には、利用側熱交換器6を流れる冷媒と熱交換を行う加熱源としての水や空気が供給されるようになっている。
(1-6) Use-side heat exchanger The use-side heat exchanger 6 is a heat exchanger that functions as a refrigerant heater. One end of the use side heat exchanger 6 is connected to the other end of the expansion mechanism 5, and the other end of the use side heat exchanger 6 is connected to the suction side of the compression mechanism 3 via the low pressure pipe p3. . Although not shown here, the use side heat exchanger 6 is supplied with water and air as a heat source for exchanging heat with the refrigerant flowing through the use side heat exchanger 6.

(1−7)中間冷却器
中間冷却器7は、中圧配管p2上に設けられている。具体的には、中間冷却器7の一端は吐出側中圧母管p23の他端に接続され、中間冷却器7の他端は、吸入側中圧母管p24の一端に接続されている。中間冷却器7は、前段側の圧縮要素である低圧圧縮要素31e,32eから吐出されて後段の圧縮要素である高圧圧縮要素31d,32dに吸入される冷媒の冷却器として機能する熱交換器である。尚、ここでは図示しないが、中間冷却器7には、中間冷却器7を流れる冷媒と熱交換を行う冷却源としての水や空気が供給されるようになっている。このように、中間冷却器7は、冷媒回路2を循環する冷媒を用いたものではないという意味で、外部熱源を用いた冷却器ということができる。
(1-7) Intermediate cooler The intermediate cooler 7 is provided on the intermediate pressure pipe p2. Specifically, one end of the intermediate cooler 7 is connected to the other end of the discharge side intermediate pressure mother pipe p23, and the other end of the intermediate cooler 7 is connected to one end of the suction side intermediate pressure mother pipe p24. The intermediate cooler 7 is a heat exchanger that functions as a refrigerant cooler that is discharged from the low-pressure compression elements 31e and 32e that are the compression elements on the front stage side and sucked into the high-pressure compression elements 31d and 32d that are the compression elements on the rear stage. is there. Although not shown here, the intermediate cooler 7 is supplied with water and air as a cooling source for exchanging heat with the refrigerant flowing through the intermediate cooler 7. Thus, the intermediate cooler 7 can be called a cooler using an external heat source in the sense that it does not use the refrigerant circulating in the refrigerant circuit 2.

(1−8)調整弁
調整弁8は、2つの圧縮機31,32のうちいずれか一方の圧縮機(以下、停止圧縮機という)が駆動を停止し、他方の圧縮機が駆動している場合に、停止圧縮機と各配管p1,p2,p3との連通状態を調整するための弁である。具体的には、調整弁8は、例えば圧縮機32が停止圧縮機であるとした場合、停止圧縮部機32において、高圧配管p1、中圧配管p2及び低圧配管p3のいずれか1つとのみ冷媒の流れを許容し、他の配管p1,p2,p3との間では冷媒の流れが生じないようにする。
(1-8) Regulating valve In the regulating valve 8, one of the two compressors 31 and 32 (hereinafter referred to as a stop compressor) stops driving, and the other compressor is driven. In this case, it is a valve for adjusting the communication state between the stop compressor and each of the pipes p1, p2, and p3. Specifically, for example, when the compressor 32 is a stop compressor, the regulating valve 8 is a refrigerant in only one of the high pressure pipe p1, the medium pressure pipe p2, and the low pressure pipe p3 in the stop compressor unit 32. Is allowed to flow between the other pipes p1, p2, and p3.

ここで、本実施形態では、停止圧縮機32は、低圧圧縮要素32eから吐出された中圧の冷媒がドーム32a内に充満した状態で、駆動を停止する場合について説明する。この場合、調整弁8は、高圧側逆止弁81,82、中圧側逆止弁83,84及び低圧側逆止弁85,86を有する。つまり、本実施形態においては、停止圧縮機のドームが中圧の冷媒で満たされ駆動を停止する場合には、1つの圧縮機32(または圧縮機31)に対し、3つの逆止弁82,84,86(または逆止弁81,83,85)が、調整弁8として設けられている。   Here, in the present embodiment, the case where the stop compressor 32 stops driving in a state where the medium-pressure refrigerant discharged from the low-pressure compression element 32e is filled in the dome 32a will be described. In this case, the regulating valve 8 includes high pressure side check valves 81 and 82, intermediate pressure side check valves 83 and 84, and low pressure side check valves 85 and 86. That is, in this embodiment, when the dome of the stop compressor is filled with the medium-pressure refrigerant and the drive is stopped, three check valves 82, for one compressor 32 (or the compressor 31). 84, 86 (or check valves 81, 83, 85) are provided as the regulating valve 8.

高圧側逆止弁81,82は、各油分離器21a,22aの吐出口と高圧配管p1との間であって、各吐出枝管p11b,p12b上に設けられている。高圧側逆止弁81,82は、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。   The high pressure side check valves 81 and 82 are provided on the discharge branch pipes p11b and p12b between the discharge ports of the oil separators 21a and 22a and the high pressure pipe p1. The high pressure side check valves 81 and 82 allow the flow of refrigerant from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high pressure pipe p1, and conversely, from the high pressure pipe p1 to the compressors 31 and 32, in particular. The refrigerant flow toward the discharge port of the stop compressor 32 is blocked.

中圧側逆止弁83,84は、それぞれ中圧配管p2上に設けられている。より具体的には、中圧側逆止弁83,84は、油分離器25a,26aの吐出口と吐出側中圧母管p23との間に接続され、各低圧圧縮要素31e,32e、特に停止圧縮機32の低圧圧縮要素32eの吐出口から各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32e、特に停止圧縮機32の低圧圧縮要素32eの吐出口に向かう冷媒の流れを遮断する。   The intermediate pressure check valves 83 and 84 are respectively provided on the intermediate pressure pipe p2. More specifically, the intermediate pressure side check valves 83 and 84 are connected between the discharge ports of the oil separators 25a and 26a and the discharge side intermediate pressure mother pipe p23, and the low pressure compression elements 31e and 32e, particularly the stop. The refrigerant flow from the discharge port of the low pressure compression element 32e of the compressor 32 toward the high pressure compression elements 31d and 32d is allowed, and conversely, the low pressure compression elements 31e and 32e from the high pressure compression elements 31d and 32d, particularly the stop compressor. The refrigerant flow toward the discharge port of the 32 low-pressure compression elements 32e is blocked.

低圧側逆止弁85,86は、各低圧吸入管p31a,p32a上に設けられている。低圧側逆止弁85,86は、低圧配管p3から圧縮機31,32、特に停止圧縮機32に向かう冷媒の流れのみを許容し、逆に圧縮機31,32、特に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。   The low pressure side check valves 85 and 86 are provided on the low pressure suction pipes p31a and p32a. The low pressure side check valves 85 and 86 allow only the flow of refrigerant from the low pressure pipe p3 toward the compressors 31 and 32, particularly the stop compressor 32, and conversely, the low pressure side check valves 85 and 86 are low pressure from the compressors 31 and 32, particularly the stop compressor 32. The refrigerant flowing toward the pipe p3 is blocked.

一般的に、低圧圧縮要素31e,32eによって圧縮された中圧の冷媒がドーム32a内に充満した状態で停止圧縮機32が駆動を停止する場合、停止圧縮機32が駆動停止した直後においては、該圧縮機32のドーム32a内の圧力の高低等によっては、停止圧縮機32のドーム32a内部と中圧配管p2や高圧配管p1内との圧力差が生じることがある。すると、従来のように、中圧側逆止弁83,84及び高圧側逆止弁81,82が設けられていないとなると、停止圧縮機32からこれらの配管p1,p2側へと冷媒及びこれに伴う冷凍機油が流出してしまう恐れがある。特に、高圧配管p1内には高圧の冷媒が流入しているため、ドーム32a内部よりも高圧配管p1側の方が圧力は低く、よって高圧側逆止弁81,82が設けられていないとなると、高圧配管p1側からドーム32a内部へ冷媒が流れてしまう恐れがある。しかし、上述した中圧側逆止弁83,84によって、高圧圧縮要素31d,32dから中圧配管p2を介して低圧圧縮要素31e,32eに向かう冷媒の流れは遮断され、高圧側逆止弁81,82(特に、高圧側逆止弁82)によって、高圧配管p1から停止圧縮機32側に向かう冷媒の流れは遮断される。これにより、駆動停止時にドーム32a内が中圧となる停止圧縮機32において、停止圧縮機32の低圧圧縮要素32eの吐出側から中圧配管p2、高圧圧縮要素32dの吐出側から高圧配管p1側へと冷媒及びこれに伴う冷凍機油が流出するということが生じなくなる。従って、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   Generally, when the stop compressor 32 stops driving with the medium pressure refrigerant compressed by the low pressure compression elements 31e and 32e filled in the dome 32a, immediately after the stop compressor 32 stops driving, Depending on the level of pressure in the dome 32a of the compressor 32, a pressure difference may occur between the inside of the dome 32a of the stop compressor 32 and the medium pressure pipe p2 or the high pressure pipe p1. Then, if the intermediate pressure side check valves 83 and 84 and the high pressure side check valves 81 and 82 are not provided as in the prior art, the refrigerant is transferred from the stop compressor 32 to the pipes p1 and p2 side. The accompanying refrigeration oil may leak. In particular, since the high-pressure refrigerant flows into the high-pressure pipe p1, the pressure on the high-pressure pipe p1 side is lower than the inside of the dome 32a. Therefore, the high-pressure side check valves 81 and 82 are not provided. The refrigerant may flow from the high-pressure pipe p1 side into the dome 32a. However, the flow of the refrigerant from the high pressure compression elements 31d and 32d to the low pressure compression elements 31e and 32e through the medium pressure pipe p2 is blocked by the above-described intermediate pressure check valves 83 and 84, and the high pressure check valves 81 and 82 (particularly, the high-pressure check valve 82) blocks the refrigerant flow from the high-pressure pipe p1 toward the stop compressor 32. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes an intermediate pressure when the drive is stopped, the intermediate pressure pipe p2 from the discharge side of the low pressure compression element 32e of the stop compressor 32, and the high pressure pipe p1 side from the discharge side of the high pressure compression element 32d. The refrigerant and the accompanying refrigeration oil do not flow out to the bottom. Therefore, a shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

また、上述した低圧側逆止弁85,86が設けられているため、低圧圧縮要素31e,32eによって圧縮された中圧の冷媒がドーム32a内に充満した状態で停止圧縮機32が駆動を停止し、かつ低圧配管p3に低圧の冷媒が流入しているとしても、停止圧縮機32から低圧配管p3側に向かう冷媒の流れは遮断される。これにより、停止圧縮機32から吸入口を介して低圧配管p3側へと冷媒及びこれに伴う冷凍機油が流出するということが生じなくなる。従って、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   In addition, since the low-pressure check valves 85 and 86 described above are provided, the stop compressor 32 stops driving while the medium-pressure refrigerant compressed by the low-pressure compression elements 31e and 32e is filled in the dome 32a. Even if the low-pressure refrigerant flows into the low-pressure pipe p3, the refrigerant flow from the stop compressor 32 toward the low-pressure pipe p3 is blocked. This prevents the refrigerant and the accompanying refrigeration oil from flowing out from the stop compressor 32 to the low-pressure pipe p3 side through the suction port. Therefore, a shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

特に、駆動停止時にドーム32a内が中圧状態となる停止圧縮機32においては、調整弁8を逆止弁81〜86のみで構成することができる。従って、簡単な構成にて冷媒の流れを調整することができ、かつ調整弁8が電磁弁等で構成される場合に比してコストは抑えられる。   In particular, in the stop compressor 32 in which the inside of the dome 32a is in an intermediate pressure state when the drive is stopped, the regulating valve 8 can be configured by only the check valves 81 to 86. Therefore, the flow of the refrigerant can be adjusted with a simple configuration, and the cost can be reduced as compared with the case where the adjustment valve 8 is configured by an electromagnetic valve or the like.

尚、圧縮機31,32間に運転の優先順位を設けている場合(例えば、圧縮機31を優先的に運転する圧縮機とする場合)には、上記停止圧縮機は圧縮機32に限られることになる。このような場合には、圧縮機31に対応する逆止弁81,83,85は設けずに、停止圧縮機32に対応する逆止弁82,84,86のみを設けるようにしてもよい。   In addition, when the priority of operation is provided between the compressors 31 and 32 (for example, when the compressor 31 is a compressor that operates preferentially), the stop compressor is limited to the compressor 32. It will be. In such a case, the check valves 81, 83, 85 corresponding to the compressor 31 may not be provided, and only the check valves 82, 84, 86 corresponding to the stop compressor 32 may be provided.

さらに、空気調和装置1は、ここでは図示しないが、圧縮機構2、膨張機構5等の空気調和装置1を構成する各部の動作を制御する制御部を有している。   Furthermore, although not shown here, the air conditioner 1 has a control unit that controls the operation of each part of the air conditioner 1 such as the compression mechanism 2 and the expansion mechanism 5.

(2)動作
次に、本実施形態の空気調和装置1の動作について、図1〜図3を用いて説明する。ここで、図2は、冷房運転時の冷凍サイクルが図示された圧力−エンタルピ線図であり、図3は、冷房運転時の冷凍サイクルが図示された温度−エントロピ線図である。なお、以下の冷房運転における運転制御は、上述の制御部(図示せず)によって行われる。また、以下の説明において、「高圧」とは、冷凍サイクルにおける高圧(すなわち、図2,図3の点D、D’、Eにおける圧力)を意味し、「低圧」とは、冷凍サイクルにおける低圧(すなわち、図2、図3の点A、Fにおける圧力)を意味し、「中圧」とは、冷凍サイクルにおける中間圧(すなわち、図2、図3の点B、Cにおける圧力)を意味している。
(2) Operation Next, the operation of the air conditioner 1 of the present embodiment will be described with reference to FIGS. 2 is a pressure-enthalpy diagram illustrating the refrigeration cycle during the cooling operation, and FIG. 3 is a temperature-entropy diagram illustrating the refrigeration cycle during the cooling operation. In addition, the operation control in the following cooling operation is performed by the above-described control unit (not shown). In the following description, “high pressure” means high pressure in the refrigeration cycle (that is, pressure at points D, D ′, and E in FIGS. 2 and 3), and “low pressure” means low pressure in the refrigeration cycle. (That is, pressure at points A and F in FIGS. 2 and 3), and “intermediate pressure” means intermediate pressure in the refrigeration cycle (that is, pressure at points B and C in FIGS. 2 and 3). is doing.

−冷房運転−
冷房運転時においては、膨張機構5が開度調節される。この冷媒回路2の状態において、低圧の冷媒(図1〜図3の点A参照)は、低圧配管p3及び低圧吸入管p31a,p32aから圧縮機構3の各圧縮機31,32内に吸入される。そして、低圧の冷媒は、まず、各低圧圧縮要素31e,32eによって中圧まで圧縮された後に、中圧配管p2に吐出される(図1〜図3の点B参照)。そして、各圧縮機31,32から中圧配管p2に吐出された中圧の冷媒は、各油分離機構25,26を構成する油分離器25a,26aそれぞれに流入され、冷媒中の冷凍機油が分離される。また、各油分離器25a,26aにおいて中圧の冷媒から分離された冷凍機油は、油分離機構25,26を構成する油戻し管25c,26cそれぞれに流入し、各減圧機構25b,26bで減圧された後に中圧配管p2の吸入側中圧枝管p25,p26それぞれに戻されて、再び、各圧縮機31,32の内部吐出圧縮要素である高圧圧縮要素31d,32dに吸入される。
-Cooling operation-
During the cooling operation, the opening degree of the expansion mechanism 5 is adjusted. In the state of the refrigerant circuit 2, low-pressure refrigerant (see point A in FIGS. 1 to 3) is sucked into the compressors 31 and 32 of the compression mechanism 3 from the low-pressure pipe p3 and the low-pressure suction pipes p31a and p32a. . The low-pressure refrigerant is first compressed to an intermediate pressure by the low-pressure compression elements 31e and 32e, and then discharged to the intermediate-pressure pipe p2 (see point B in FIGS. 1 to 3). Then, the medium pressure refrigerant discharged from the compressors 31 and 32 to the medium pressure pipe p2 flows into the oil separators 25a and 26a constituting the oil separation mechanisms 25 and 26, respectively, and the refrigerating machine oil in the refrigerant is supplied. To be separated. In addition, the refrigeration oil separated from the medium pressure refrigerant in the oil separators 25a and 26a flows into the oil return pipes 25c and 26c constituting the oil separation mechanisms 25 and 26, and is decompressed by the decompression mechanisms 25b and 26b. After that, the refrigerant is returned to the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2 and again sucked into the high pressure compression elements 31d and 32d which are internal discharge compression elements of the compressors 31 and 32, respectively.

前段となる各低圧圧縮要素31e,32eから吐出された中圧の冷媒は、中間冷却器7において、冷却源としての水や空気と熱交換を行うことで冷却される(図1〜図3の点C参照)。この中間冷却器7において冷却された冷媒は、次に、各低圧圧縮要素31e,32eの後段である高圧圧縮要素31d,32dそれぞれに吸入されて更に圧縮され、各圧縮機31,32から高圧吐出管p11a,p12aそれぞれに吐出される(図1〜図3の点D参照)。ここで、各圧縮機31,32から吐出された高圧の冷媒は、4つの圧縮要素31e,32e,31d,32dによる二段圧縮動作によって、臨界圧力(すなわち、図2に示される臨界点CPにおける臨界圧力Pcp)を超える圧力まで圧縮されている。そして、この高圧の冷媒は、油分離機構21,22を構成する油分離器21a,22aそれぞれに流入し、冷媒中の冷凍機油が分離される。また、油分離器21a,22aにおいて高圧の冷媒から分離された冷凍機油は、油分離機構21,22を構成する油戻し管21c,22cそれぞれに流入し、減圧機構21b,22bで減圧された後、中圧配管p2の吸入側中圧枝管p26,p25それぞれに戻されて、再び、各圧縮機31,32の内部吐出圧縮要素である高圧圧縮要素31d,32dに吸入される。   The intermediate-pressure refrigerant discharged from the low-pressure compression elements 31e and 32e as the previous stage is cooled by exchanging heat with water or air as a cooling source in the intermediate cooler 7 (FIGS. 1 to 3). (See point C). The refrigerant cooled in the intermediate cooler 7 is then sucked into the high-pressure compression elements 31d and 32d, which are the subsequent stages of the low-pressure compression elements 31e and 32e, and further compressed, and is discharged from the compressors 31 and 32 at a high pressure. It discharges to each of pipe | tube p11a, p12a (refer the point D of FIGS. 1-3). Here, the high-pressure refrigerant discharged from the compressors 31 and 32 is subjected to the critical pressure (that is, at the critical point CP shown in FIG. 2) by the two-stage compression operation by the four compression elements 31e, 32e, 31d, and 32d. The pressure is compressed to a pressure exceeding the critical pressure Pcp). The high-pressure refrigerant flows into the oil separators 21a and 22a constituting the oil separation mechanisms 21 and 22, and the refrigerating machine oil in the refrigerant is separated. In addition, the refrigerating machine oil separated from the high-pressure refrigerant in the oil separators 21a and 22a flows into the oil return pipes 21c and 22c constituting the oil separation mechanisms 21 and 22, respectively, and is decompressed by the decompression mechanisms 21b and 22b. Then, the refrigerant is returned to the suction side intermediate pressure branch pipes p26 and p25 of the intermediate pressure pipe p2 and again sucked into the high pressure compression elements 31d and 32d which are internal discharge compression elements of the compressors 31 and 32, respectively.

次に、油分離機構21,22において冷凍機油が分離された後の高圧の冷媒は、吐出枝管p11b,p12b及び高圧配管p1を通じて、冷媒の放熱器として機能する熱源側熱交換器4に送られる。熱源側熱交換器4に送られた高圧の冷媒は、熱源側熱交換器4において、冷却源としての水や空気と熱交換を行って冷却される(図1〜図3の点E参照)。熱源側熱交換器4において冷却された高圧の冷媒は、膨張機構5によって減圧されて低圧の気液二相状態の冷媒となり、冷媒の蒸発器として機能する利用側熱交換器6に送られる(図1〜図3の点F参照)。利用側熱交換器6に送られた低圧の気液二相状態の冷媒は、利用側熱交換器6において、加熱源としての水や空気と熱交換を行って加熱されて、蒸発することになる(図1〜図3の点A参照)。そして、利用側熱交換器6において加熱された低圧の冷媒は、再び、各圧縮機31,32の低圧吸入口から吸入される。このようにして、冷房運転が行われる。   Next, the high-pressure refrigerant after the refrigerating machine oil is separated in the oil separation mechanisms 21 and 22 is sent to the heat source side heat exchanger 4 functioning as a refrigerant radiator through the discharge branch pipes p11b and p12b and the high-pressure pipe p1. It is done. The high-pressure refrigerant sent to the heat source side heat exchanger 4 is cooled by exchanging heat with water or air as a cooling source in the heat source side heat exchanger 4 (see point E in FIGS. 1 to 3). . The high-pressure refrigerant cooled in the heat source-side heat exchanger 4 is decompressed by the expansion mechanism 5 to become a low-pressure gas-liquid two-phase refrigerant, and is sent to the use-side heat exchanger 6 that functions as a refrigerant evaporator ( (See point F in FIGS. 1 to 3). The low-pressure gas-liquid two-phase refrigerant sent to the use side heat exchanger 6 is heated and evaporated in the use side heat exchanger 6 by exchanging heat with water or air as a heating source. (Refer to point A in FIGS. 1 to 3). Then, the low-pressure refrigerant heated in the use side heat exchanger 6 is again sucked from the low-pressure suction ports of the compressors 31 and 32. In this way, the cooling operation is performed.

このように、空気調和装置1では、各低圧圧縮要素31e,32eから吐出された冷媒を各高圧圧縮要素31d,32dに吸入させるための中圧配管p2に中間冷却器7が設けられていることにより、中間冷却器7を冷却器として機能する状態にしている。そのため、中間冷却器7を設けなかった場合(この場合には、図2,図3において、点A→点B→点D’→点E→点Fの順で冷凍サイクルが行われる)に比べて、低圧圧縮要素31e,32eの後段である高圧圧縮要素31d,32dに吸入される冷媒の温度が低下し(図3の点B、C参照)、高圧圧縮要素31d,32dから吐出される冷媒の温度も低下することになる(図3の点D、D’参照)。このため、この空気調和装置1では、高圧の冷媒の放熱器として機能する熱源側熱交換器4において、中間冷却器7を設けなかった場合に比べて、冷却源としての水や空気と冷媒との温度差を小さくすることが可能になり、放熱ロスを小さくできることから、運転効率を向上させることができる。   As described above, in the air conditioner 1, the intermediate cooler 7 is provided in the intermediate pressure pipe p2 for sucking the refrigerant discharged from the low pressure compression elements 31e and 32e into the high pressure compression elements 31d and 32d. Thus, the intermediate cooler 7 is in a state of functioning as a cooler. Therefore, compared with the case where the intercooler 7 is not provided (in this case, the refrigeration cycle is performed in the order of point A → point B → point D ′ → point E → point F in FIGS. 2 and 3). Thus, the temperature of the refrigerant sucked into the high-pressure compression elements 31d and 32d, which are the subsequent stages of the low-pressure compression elements 31e and 32e, decreases (see points B and C in FIG. 3), and the refrigerant discharged from the high-pressure compression elements 31d and 32d. (See points D and D ′ in FIG. 3). For this reason, in this air conditioning apparatus 1, compared with the case where the intermediate cooler 7 is not provided in the heat-source-side heat exchanger 4 that functions as a high-pressure refrigerant radiator, The temperature difference can be reduced and the heat dissipation loss can be reduced, so that the operation efficiency can be improved.

(3)特徴
(3−1)
この空気調和装置1によると、2つの圧縮機31,32のうちいずれか1つの圧縮機(例えば圧縮機32)が駆動を停止しており、他方の圧縮機31が駆動をしている状態においては、調整弁8によって、駆動を停止している圧縮機32と各配管(具体的には、高圧配管p1,中圧配管p2,低圧配管p3)のいずれか1つの間において冷媒が流れ、他の配管とは冷媒の流れが生じないようになる。本実施形態においては、停止圧縮機32における高圧圧縮要素32dの吸入側と中圧配管p2との間のみで冷媒の流れが生じるようにし、高圧配管p1や低圧配管p3と停止圧縮機32との間では冷媒が流れないようにしている。これにより、停止圧縮機32のドーム32a内部は均圧となって中圧配管p2上の冷媒の圧力差がなくなるため、圧力差による冷媒及びこれに伴う冷凍機油の流れは生じない。
(3) Features (3-1)
According to the air conditioner 1, in the state where one of the two compressors 31 and 32 (for example, the compressor 32) has stopped driving and the other compressor 31 is driving. The refrigerant flows between the compressor 32 whose driving is stopped by the regulating valve 8 and any one of the pipes (specifically, the high-pressure pipe p1, the medium-pressure pipe p2, and the low-pressure pipe p3). The flow of refrigerant does not occur with this pipe. In the present embodiment, the refrigerant flows only between the suction side of the high pressure compression element 32d in the stop compressor 32 and the intermediate pressure pipe p2, and the high pressure pipe p1 and the low pressure pipe p3 and the stop compressor 32 are connected. The refrigerant is prevented from flowing between them. Thereby, the inside of the dome 32a of the stop compressor 32 is equalized, and the pressure difference of the refrigerant on the intermediate pressure pipe p2 is eliminated. Therefore, the refrigerant and the accompanying flow of the refrigeration oil due to the pressure difference do not occur.

(3−2)
また、上記停止圧縮機32は、高圧圧縮要素32d及び低圧圧縮要素32eを1つのドーム32a内に収容した1つの圧縮機で構成されている。そのため、停止圧縮機32から他の圧縮機31への冷媒の流れを生じさせず、ドーム32a内部を均圧にすることができる。
(3-2)
The stop compressor 32 is composed of one compressor in which the high pressure compression element 32d and the low pressure compression element 32e are accommodated in one dome 32a. Therefore, the flow of the refrigerant from the stop compressor 32 to the other compressor 31 is not generated, and the inside of the dome 32a can be equalized.

(3−3)
一般的に、低圧圧縮要素によって圧縮された中圧の冷媒がドーム内に充満した状態で停止圧縮機が駆動を停止していると、低圧配管側には低圧の冷媒が流入しているため、停止圧縮機のドーム内部と低圧配管内との圧力差により、中圧状態である停止圧縮機の内部から吸入口を介して該圧縮機の内部よりも圧力の低い低圧配管側へと冷凍機油が流出してしまう恐れがある。
(3-3)
In general, when the stop compressor stops driving in a state where the medium pressure refrigerant compressed by the low pressure compression element is filled in the dome, the low pressure refrigerant flows into the low pressure pipe side. Due to the pressure difference between the inside of the dome of the stop compressor and the inside of the low pressure pipe, the refrigeration oil flows from the inside of the stop compressor, which is in an intermediate pressure state, to the low pressure pipe side where the pressure is lower than the inside of the compressor through the suction port There is a risk of leaking.

しかし、本実施形態においては、低圧側逆止弁85,86(特に、低圧側逆止弁86)が設けられることによって、停止圧縮機32から低圧配管p3側に向かう冷媒の流れは遮断されるため、停止圧縮機32から吸入口を介して低圧配管p3側へと冷凍機油が流出するということが生じなくなる。従って、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   However, in the present embodiment, by providing the low pressure side check valves 85 and 86 (particularly, the low pressure side check valve 86), the flow of the refrigerant from the stop compressor 32 toward the low pressure pipe p3 side is blocked. Therefore, the refrigeration oil does not flow out from the stop compressor 32 to the low-pressure pipe p3 side through the suction port. Therefore, a shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

(3−4)
また、一般的に、低圧圧縮要素によって圧縮された中圧の冷媒がドーム内に充満した状態で停止圧縮機が駆動を停止する場合、停止圧縮機が駆動停止した直後においては、該圧縮機のドーム内の圧力の高低等によっては、停止圧縮機のドーム内部と中圧配管及び/または高圧配管内とに圧力差が生じ、停止圧縮機32からこれらの配管側へと冷媒及びこれに伴う冷凍機油が流出してしまう恐れがある。特に、高圧配管内には高圧の冷媒が流入しているため、ドーム内部よりも高圧配管側の方が圧力は低く、よって高圧配管側からドーム内部へ冷媒及びこれに伴う冷凍機油が流れてしまう恐れがある。
(3-4)
In general, when the stop compressor stops driving with the medium-pressure refrigerant compressed by the low-pressure compression element filled in the dome, immediately after the stop compressor stops driving, Depending on the level of pressure in the dome, a pressure difference is generated between the dome of the stop compressor and the medium-pressure pipe and / or the high-pressure pipe, and the refrigerant and the accompanying refrigeration are transferred from the stop compressor 32 to these pipes. There is a risk of machine oil leaking. In particular, since a high-pressure refrigerant flows into the high-pressure pipe, the pressure on the high-pressure pipe side is lower than that inside the dome, so that the refrigerant and the accompanying refrigeration oil flow from the high-pressure pipe side into the dome. There is a fear.

しかし、本実施形態においては、中圧側逆止弁83,84(特に、中圧側逆止弁84)によって、停止圧縮機32の高圧圧縮要素32dから中圧配管p2を介して低圧圧縮要素32dに向かう冷媒の流れは低圧圧縮要素32eの吐出側にて遮断され、高圧側逆止弁81,82(特に、高圧側逆止弁82)によって、高圧配管p1から停止圧縮機32側に向かう冷媒の流れは遮断される。これにより、駆動停止時にドーム32a内が中圧となる停止圧縮機32において、停止圧縮機32の低圧吐出側(即ち、低圧圧縮要素32eの吐出側)から中圧配管p2、高圧吐出側(即ち、圧縮機32の吐出側)から高圧配管p1側へと冷凍機油が流出するということが生じなくなる。従って、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   However, in the present embodiment, the intermediate pressure side check valves 83 and 84 (particularly, the intermediate pressure side check valve 84) cause the high pressure compression element 32d of the stop compressor 32 to the low pressure compression element 32d via the intermediate pressure pipe p2. The flow of the refrigerant that is directed is interrupted on the discharge side of the low-pressure compression element 32e, and the high-pressure check valves 81 and 82 (particularly, the high-pressure check valve 82) cause the refrigerant flowing from the high-pressure pipe p1 to the stop compressor 32 side. The flow is interrupted. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes an intermediate pressure when the drive is stopped, from the low pressure discharge side of the stop compressor 32 (that is, the discharge side of the low pressure compression element 32e) to the intermediate pressure pipe p2 and the high pressure discharge side (that is, Refrigerator oil does not flow out from the discharge side of the compressor 32 to the high-pressure pipe p1 side. Therefore, a shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

特に、駆動停止時にドーム32a内が中圧状態となる停止圧縮機32においては、調整弁8を逆止弁のみで構成することができる。従って、簡単な構成で冷媒の流れを調整でき、かつ調整弁8が電磁弁等で構成される場合に比してコストを抑えることができる。   In particular, in the stop compressor 32 in which the inside of the dome 32a is in an intermediate pressure state when the drive is stopped, the adjustment valve 8 can be configured with only a check valve. Therefore, the flow of the refrigerant can be adjusted with a simple configuration, and the cost can be reduced as compared with the case where the adjustment valve 8 is configured with an electromagnetic valve or the like.

(4)変形例
(4−1)変形例A
上述の実施形態では、駆動時の各圧縮機31,32は高圧ドーム型の圧縮機であって、停止圧縮機(以下、停止圧縮機を圧縮機32として説明する)は、ドーム32a内部が中圧の状態で駆動を停止する場合について説明した。しかし、停止圧縮機32は、ドーム32a内部が中圧ではなく、高圧の状態で駆動を停止してもよい。
(4) Modification (4-1) Modification A
In the above-described embodiment, the compressors 31 and 32 at the time of driving are high-pressure dome type compressors, and the stop compressor (hereinafter, the stop compressor is described as the compressor 32) is located inside the dome 32a. The case where driving is stopped in the state of pressure has been described. However, the stop compressor 32 may stop driving when the inside of the dome 32a is not at a medium pressure but at a high pressure.

図4は、変形例Aに係る空気調和装置1Aの構成概略図である。空気調和装置1Aは、図1の空気調和装置1と調整弁8の種類及び設けられる位置が異なっている。また、空気調和装置1Aにおいては、駆動を停止している停止止圧縮機32のドーム32a内は、該圧縮機32の高圧圧縮要素32dから吐出される高圧の冷媒で充満した状態となる。そして、空気調和装置1Aに係る調整弁8Aは、中圧吐出側閉止弁(閉止弁に相当)83A,84A、低圧側逆止弁85A,86A、及び中圧吸入側逆止弁87A,88Aで構成される。   FIG. 4 is a schematic configuration diagram of an air conditioner 1A according to Modification A. The air conditioner 1A is different from the air conditioner 1 of FIG. In the air conditioner 1 </ b> A, the dome 32 a of the stop-stop compressor 32 that has stopped driving is filled with the high-pressure refrigerant discharged from the high-pressure compression element 32 d of the compressor 32. The regulating valve 8A according to the air conditioner 1A includes medium pressure discharge side stop valves (corresponding to a close valve) 83A and 84A, low pressure side check valves 85A and 86A, and medium pressure suction side check valves 87A and 88A. Composed.

中圧吐出側閉止弁83A,84Aは、それぞれ中圧配管p2上に設けられている。より具体的には、中圧吐出側閉止弁83A,84Aは、各油分離器25a,26aの吐出口と吐出側中圧母管p23との間に接続されており、電磁弁で構成される。中圧吐出側閉止弁83A,84Aは、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これは、例えば停止圧縮機が圧縮機32であるとすると、停止圧縮機32の駆動時、中圧配管p2には、低圧圧縮要素32eから高圧圧縮要素32dへと中圧の冷媒が流れることとなる。しかし、停止圧縮機32の駆動停止時には、ドーム32a内は高圧の状態に保たれ、一方で駆動停止直後、中圧配管p2のうち停止圧縮機32側となる吐出側中圧枝管p22内には、中圧の冷媒が流入していることとなる。すると、圧力の高いドーム32a内から圧力の低い中圧配管p2へと冷媒が流出してしまうこととなり、この冷媒の流れ方向は、圧縮機32が駆動している場合と同様となる。そこで、変形例Aでは、冷媒の圧力関係によって、停止圧縮機32が駆動を停止している状態時に冷媒の流出する方向が停止圧縮機32の駆動時と同じとなる中圧配管p2のうち、特に停止圧縮機32の吐出側に、逆止弁ではなく電磁弁である中圧吐出側閉止弁83A,84Aが設けられている。これにより、停止圧縮機32が駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   The intermediate pressure discharge side stop valves 83A and 84A are respectively provided on the intermediate pressure pipe p2. More specifically, the intermediate pressure discharge side stop valves 83A and 84A are connected between the discharge ports of the oil separators 25a and 26a and the discharge side intermediate pressure mother pipe p23, and are constituted by electromagnetic valves. . The intermediate pressure discharge side stop valves 83A and 84A are in an “open” state when the compressors 31 and 32 are driven, and when the corresponding compressors 31 and 32 are stopped. , “Closed” state. For example, if the stop compressor is the compressor 32, medium pressure refrigerant flows from the low pressure compression element 32e to the high pressure compression element 32d in the intermediate pressure pipe p2 when the stop compressor 32 is driven. Become. However, when the drive of the stop compressor 32 is stopped, the inside of the dome 32a is kept in a high pressure state. On the other hand, immediately after the drive is stopped, the discharge side intermediate pressure branch pipe p22 on the stop compressor 32 side of the intermediate pressure pipe p2 is placed. Means that medium-pressure refrigerant flows in. Then, the refrigerant flows out from the high-pressure dome 32a to the low-pressure intermediate pressure pipe p2, and the flow direction of the refrigerant is the same as when the compressor 32 is driven. Therefore, in the modified example A, due to the pressure relationship of the refrigerant, the medium pressure pipe p2 in which the direction in which the refrigerant flows out when the stop compressor 32 is stopped is the same as when the stop compressor 32 is driven, In particular, on the discharge side of the stop compressor 32, medium pressure discharge side stop valves 83A and 84A that are electromagnetic valves are provided instead of check valves. Thereby, when the stop compressor 32 stops driving, it is possible to reliably prevent the refrigerant from flowing out.

尚、中圧吐出側閉止弁83A,84Aの開閉動作の制御は、図示しない制御部によって行われる。   The control of the opening / closing operation of the intermediate pressure discharge side stop valves 83A, 84A is performed by a control unit (not shown).

低圧側逆止弁85A,86Aは、図1に係る空気調和装置1の低圧側逆止弁85,86と同様である。つまり、低圧側逆止弁85,86は、各低圧吸入管p31a,p32a上に設けられており、低圧配管p3から圧縮機31,32(特に停止圧縮機32)に向かう冷媒の流れのみを許容し、逆に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。これにより、停止圧縮機32から吸入口を介して低圧配管p3側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The low-pressure check valves 85A and 86A are the same as the low-pressure check valves 85 and 86 of the air conditioner 1 according to FIG. That is, the low pressure side check valves 85 and 86 are provided on the low pressure suction pipes p31a and p32a, respectively, and allow only the flow of refrigerant from the low pressure pipe p3 toward the compressors 31 and 32 (particularly the stop compressor 32). On the contrary, the refrigerant flow from the stop compressor 32 toward the low pressure pipe p3 is blocked. As a result, the refrigeration oil does not flow out from the stop compressor 32 to the low-pressure pipe p3 via the suction port, so that the shortage of the refrigeration oil when starting the stop compressor 32 is less likely to occur. .

中圧吸入側逆止弁87A,88Aは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられている。より具体的には、中圧吸入側逆止弁87A,88Aは、各油分離機構21,22における油戻し管21c,22c及び各吸入側中圧枝管p25,p26の各接続点と、油分離機構25,26における油戻し管25c,26c及び各吸入側中圧枝管p25,p26の各接続点との間に接続されている。中圧吸入側逆止弁87A,88Aは、吸入側中圧母管p24から圧縮機31,32、特に停止圧縮機32の高圧圧縮要素32dの吸入口に向かう冷媒の流れを許容し、逆に圧縮機31,32、特に高圧圧縮要素32dの吸入口から吸入側中圧母管p24に向かう冷媒の流れを遮断する。   The intermediate pressure suction side check valves 87A and 88A are provided in the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2. More specifically, the intermediate pressure suction side check valves 87A and 88A are connected to the connection points of the oil return pipes 21c and 22c and the suction side intermediate pressure branch pipes p25 and p26 in the oil separation mechanisms 21 and 22, respectively. The separation mechanisms 25 and 26 are connected between the oil return pipes 25c and 26c and the connection points of the suction side intermediate pressure branch pipes p25 and p26. The medium pressure suction side check valves 87A and 88A allow the flow of refrigerant from the suction side medium pressure mother pipe p24 to the compressors 31 and 32, particularly the suction port of the high pressure compression element 32d of the stop compressor 32, and conversely. The refrigerant flows from the compressors 31 and 32, particularly the suction port of the high-pressure compression element 32d, toward the suction-side intermediate pressure mother pipe p24.

以上により、圧縮機31が駆動しており停止圧縮機32が停止している状態では、停止圧縮機32のドーム32a内は高圧の状態となり、圧縮機31から吐出された中圧の冷媒は中圧配管p2内に流入している状態となるため、ドーム32a内と中圧配管p2との間で圧力差が生じる。しかし、上述した中圧吸入側逆止弁87A,88Aにより、圧縮機32の高圧圧縮要素32eの吸入側から中圧配管p2へと冷媒及びこれに伴う冷凍機油が流出するのを抑えることができるため、停止圧縮機32のドーム32a内を均圧にすることができる。   As described above, when the compressor 31 is driven and the stop compressor 32 is stopped, the inside of the dome 32a of the stop compressor 32 is in a high pressure state, and the medium-pressure refrigerant discharged from the compressor 31 is medium. Since the pressure pipe p2 flows, a pressure difference is generated between the dome 32a and the intermediate pressure pipe p2. However, the medium pressure suction side check valves 87A and 88A described above can prevent the refrigerant and the accompanying refrigeration oil from flowing out from the suction side of the high pressure compression element 32e of the compressor 32 to the medium pressure pipe p2. Therefore, the inside of the dome 32a of the stop compressor 32 can be equalized.

(4−2)変形例B
上述の実施形態及び変形例Aでは、駆動時の各圧縮機31,32は高圧ドーム型の圧縮機であって、停止圧縮機32は、ドーム32a内部が中圧または高圧の状態で駆動を停止する場合について説明した。しかし、停止圧縮機32は、ドーム32a内部が低圧の状態で駆動を停止してもよい。
(4-2) Modification B
In the above-described embodiment and modification A, the compressors 31 and 32 at the time of driving are high-pressure dome type compressors, and the stop compressor 32 stops driving when the inside of the dome 32a is at an intermediate pressure or high pressure. Explained when to do. However, the stop compressor 32 may stop driving while the inside of the dome 32a is in a low pressure state.

図5は、変形例Bに係る空気調和装置1Bの構成概略図である。空気調和装置1Bは、図1の空気調和装置1と調整弁8の種類及び設けられる位置が異なっている。また、空気調和装置1Bに係る圧縮機31が駆動しており、停止圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、低圧配管p3側から吸入された低圧の冷媒で充満した状態となる。そして、空気調和装置1Bに係る調整弁8Bは、高圧側逆止弁81B,82B、中圧吐出側逆止弁83B,84B、及び中圧吸入側閉止弁(閉止弁に相当)87B,88Bで構成される。   FIG. 5 is a schematic configuration diagram of an air-conditioning apparatus 1B according to Modification B. The air conditioner 1B is different from the air conditioner 1 of FIG. Further, when the compressor 31 according to the air conditioner 1B is driven and the stop compressor 32 stops driving, the inside of the dome 32a of the stop compressor 32 is a low-pressure refrigerant sucked from the low-pressure pipe p3 side. It becomes a full state. The regulating valve 8B related to the air conditioner 1B includes high pressure side check valves 81B and 82B, medium pressure discharge side check valves 83B and 84B, and medium pressure suction side stop valves (corresponding to close valves) 87B and 88B. Composed.

高圧側逆止弁81B,82Bは、図1の高圧側逆止弁81,82と設けられている位置が異なっている。高圧側逆止弁81B,82Bは、高圧吐出管p11a,p12a上、つまりは各圧縮機31,32の吐出口と各油分離器21a,22aの吸入口との間にそれぞれ接続されている。高圧側逆止弁81B,82Bは、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。特に、高圧側逆止弁82Bは、停止している停止圧縮機32の吐出口からの冷媒が油分離機構22に流入してしまう前に、その流れを止めている。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、高圧配管p1側から停止圧縮機32の高圧吐出側へと冷媒及びこれに伴う冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The high pressure side check valves 81B and 82B are different from the high pressure side check valves 81 and 82 in FIG. The high pressure side check valves 81B and 82B are connected to the high pressure discharge pipes p11a and p12a, that is, between the discharge ports of the compressors 31 and 32 and the suction ports of the oil separators 21a and 22a, respectively. The high pressure side check valves 81B and 82B allow the flow of refrigerant from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high pressure pipe p1, and conversely from the high pressure pipe p1 to the compressors 31 and 32, in particular. The refrigerant flow toward the discharge port of the stop compressor 32 is blocked. In particular, the high-pressure check valve 82B stops the flow before the refrigerant from the outlet of the stopped compressor 32 that has stopped flows into the oil separation mechanism 22. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes a low pressure when the drive is stopped, the refrigerant and the accompanying refrigeration oil do not flow out from the high pressure pipe p1 side to the high pressure discharge side of the stop compressor 32. Insufficient refrigerator oil when starting the stop compressor 32 is less likely to occur.

中圧吐出側逆止弁83B,84Bは、図1の中圧側逆止弁83,84と同様、それぞれ各油分離器25a,26aの吐出口と吐出側中圧母管p23との間に接続され、各低圧圧縮要素31e,32eの吐出口から各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32eの吐出口に向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、停止圧縮機32の低圧吐出側から中圧の冷媒が流入している中圧配管p2へと、冷媒およびこれに伴う冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The medium pressure discharge side check valves 83B and 84B are connected between the discharge ports of the oil separators 25a and 26a and the discharge side intermediate pressure mother pipe p23, respectively, similarly to the medium pressure side check valves 83 and 84 in FIG. The refrigerant flows from the discharge ports of the low pressure compression elements 31e and 32e toward the high pressure compression elements 31d and 32d, and conversely from the high pressure compression elements 31d and 32d to the discharge ports of the low pressure compression elements 31e and 32e. Block the flow of refrigerant going. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes a low pressure when the drive is stopped, the refrigerant and the refrigeration associated therewith are transferred from the low pressure discharge side of the stop compressor 32 to the intermediate pressure pipe p2 into which the medium pressure refrigerant flows. Since the machine oil does not flow out, a shortage of refrigeration oil when starting the stop compressor 32 is less likely to occur.

中圧吸入側閉止弁87B,88Bは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられている。より具体的には、中圧吸入側閉止弁87B,88Bは、各油分離機構21,22における油戻し管21c,22c及び各吸入側中圧枝管p26,p25の各接続点と、各油分離機構25,26における油戻し管25c,26c及び各吸入側中圧枝管p25,p26の各接続点との間に接続されている。中圧吸入側閉止弁87B,87Bは、電磁弁で構成され、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これは、停止圧縮機32の駆動時、中圧配管p2には、低圧圧縮要素32eから高圧圧縮要素32dへと中圧の冷媒が流れることとなる。しかし、停止圧縮機32の駆動停止時には、ドーム32a内は低圧の状態に保たれ、一方で駆動停止直後、中圧配管p2には、中圧の冷媒が流入していることとなる。すると、圧力の高い中圧配管p2から圧力の低いドーム32a内へと冷媒が流出してしまうこととなり、この冷媒の流れ方向は、圧縮機32が駆動している場合と同様となる。そこで、変形例Bでは、冷媒の圧力関係によって、停止圧縮機32が駆動を停止している状態時に冷媒の流出する方向が停止圧縮部32の駆動時と同じとなる中圧配管p2のうち、特に停止圧縮機32の吸入側に、逆止弁ではなく電磁弁である中圧吸入側閉止弁87B,88Bが設けられている。これにより、停止圧縮機が駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   The intermediate pressure suction side closing valves 87B and 88B are provided in the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2. More specifically, the intermediate pressure suction side stop valves 87B and 88B are connected to the connection points of the oil return pipes 21c and 22c and the suction side intermediate pressure branch pipes p26 and p25 in the oil separation mechanisms 21 and 22, respectively, The separation mechanisms 25 and 26 are connected between the oil return pipes 25c and 26c and the connection points of the suction side intermediate pressure branch pipes p25 and p26. The intermediate pressure suction side closing valves 87B and 87B are composed of solenoid valves, and when the compressors 31 and 32 are driven, they are in an “open” state, and the corresponding compressors 31 and 32 stop driving. If it is, it will be in the “closed” state. This means that when the stop compressor 32 is driven, medium pressure refrigerant flows through the intermediate pressure pipe p2 from the low pressure compression element 32e to the high pressure compression element 32d. However, when the drive of the stop compressor 32 is stopped, the inside of the dome 32a is kept in a low pressure state. On the other hand, immediately after the drive is stopped, the medium pressure refrigerant flows into the intermediate pressure pipe p2. Then, the refrigerant flows out from the high pressure medium pressure pipe p2 into the low pressure dome 32a, and the flow direction of the refrigerant is the same as when the compressor 32 is driven. Therefore, in the modified example B, due to the pressure relationship of the refrigerant, the medium pressure pipe p2 in which the direction in which the refrigerant flows out when the stop compressor 32 is stopped is the same as that when the stop compressor 32 is driven, In particular, on the suction side of the stop compressor 32, medium pressure suction side closing valves 87B and 88B which are electromagnetic valves instead of check valves are provided. Thereby, when a stop compressor stops a drive, the outflow of a refrigerant | coolant can be prevented reliably.

尚、中圧吸入側閉止弁87B,88Bの開閉動作の制御は、図示しない制御部によって行われる。   Note that the control of the opening / closing operation of the intermediate pressure suction side stop valves 87B, 88B is performed by a control unit (not shown).

(4−3)変形例C
上述の実施形態では、駆動時の各圧縮機31,32が高圧ドーム型の圧縮機である場合について説明した。しかし、各圧縮機31,32は、駆動時、高圧圧縮要素31d,32dではなく、低圧圧縮要素31e,32eから吐出された中圧の冷媒が充満する、中圧ドーム型の圧縮機であってもよい。尚、ここでは、圧縮機31が駆動をしており停止圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、低圧圧縮要素31e,32eから吐出された中圧の冷媒が充満する場合を例に採る。
(4-3) Modification C
In the above-described embodiment, the case where the compressors 31 and 32 at the time of driving are high-pressure dome type compressors has been described. However, the compressors 31 and 32 are medium-pressure dome type compressors that are filled with the medium-pressure refrigerant discharged from the low-pressure compression elements 31e and 32e instead of the high-pressure compression elements 31d and 32d when driven. Also good. Here, when the compressor 31 is driven and the stop compressor 32 stops driving, the medium-pressure refrigerant discharged from the low-pressure compression elements 31e and 32e is inside the dome 32a of the stop compressor 32. Take the case of fullness as an example.

図6は、変形例Cに係る空気調和装置1Cの構成概略図である。空気調和装置1Cは、図1の空気調和装置1と油分離機構21,22,25,26における油戻し管21c,22c,25c,26cの接続先が異なっていると共に、圧縮機31,32内における各吐出管p11a,p12a,p21,p22の接続のされ方が異なっている。   FIG. 6 is a schematic configuration diagram of an air-conditioning apparatus 1C according to Modification C. The air conditioner 1C differs from the air conditioner 1 in FIG. 1 in the connection destinations of the oil return pipes 21c, 22c, 25c, and 26c in the oil separation mechanisms 21, 22, 25, and 26, and in the compressors 31 and 32. The discharge pipes p11a, p12a, p21, and p22 in FIG.

空気調和装置1Cに係る圧縮機31,32においては、低圧圧縮要素31e,32eそれぞれから吐出された冷媒は、いったん各ドーム31a,32a内に吐出される。つまり、低圧圧縮要素31e,32eは内部吐出圧縮要素と言える。この各ドーム31a,32a内に吐出された冷媒は、各ドーム31a,32aに直結された吐出側中圧枝管p21,p22それぞれから、圧縮機31,32の外へと吐出される。一方、高圧圧縮要素31d,32dそれぞれから吐出された冷媒は、該圧縮要素31d,32dと直結されている高圧吐出管p11a,p12aから各ドーム31a,32a外に吐出される。つまり、高圧圧縮要素31d,32は、外部吐出圧縮要素と言える。   In the compressors 31 and 32 according to the air conditioner 1C, the refrigerant discharged from the low-pressure compression elements 31e and 32e is once discharged into the domes 31a and 32a. That is, the low-pressure compression elements 31e and 32e can be said to be internal discharge compression elements. The refrigerant discharged into the domes 31a and 32a is discharged out of the compressors 31 and 32 from the discharge-side intermediate pressure branch pipes p21 and p22 directly connected to the domes 31a and 32a. On the other hand, the refrigerant discharged from each of the high-pressure compression elements 31d and 32d is discharged outside the respective domes 31a and 32a from the high-pressure discharge pipes p11a and p12a directly connected to the compression elements 31d and 32d. That is, the high pressure compression elements 31d and 32 can be said to be external discharge compression elements.

また、油戻し管21cは、一端が油分離器21aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p31aに接続されている。油戻し管22cは、一端が油分離器22aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p32aに接続されている。即ち、各油戻し管21c,22cは、該油分離器21a,22aそれぞれによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である高圧圧縮要素31d,32dを有する圧縮機31,32自身の吸入側(即ち、内部吐出圧縮要素である低圧圧縮要素31e,32eの吸入側)に戻す。   The oil return pipe 21c has one end connected to the oil separator 21a and the other end connected to a low pressure suction pipe p31a branched from the low pressure pipe p3. One end of the oil return pipe 22c is connected to the oil separator 22a, and the other end is connected to a low pressure suction pipe p32a branched from the low pressure pipe p3. That is, each of the oil return pipes 21c and 22c is a compressor having high-pressure compression elements 31d and 32d, which are refrigerant sources from which the refrigerating machine oil accompanied by the refrigerating machine oil is separated by the oil separators 21a and 22a. It returns to the suction side of the machines 31 and 32 itself (that is, the suction side of the low pressure compression elements 31e and 32e which are internal discharge compression elements).

そして、油戻し管25cは、一端が油分離器25aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p32aに接続されている。油戻し管26cは、一端が油分離器26aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p31aに接続されている。即ち、油戻し管25cは、油分離器25aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である低圧圧縮要素31eを有する圧縮機31ではなく、別の圧縮機32の低圧圧縮要素32e(つまり、圧縮機32の内部吐出圧縮要素)の吸入側に戻す。同様にして、油戻し管26cは、油分離器26aによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒の流出元である低圧圧縮要素32eを有する圧縮機32ではなく、別の圧縮機31の低圧圧縮要素31e(つまり、圧縮機31の内部吐出圧縮要素)の吸入側に戻す。つまり、各油戻し管25c,26cと低圧配管p3から分岐した低圧吸入管p31a,p32aとは、いわゆるたすき掛け状態に接続されている。   The oil return pipe 25c has one end connected to the oil separator 25a and the other end connected to a low pressure suction pipe p32a branched from the low pressure pipe p3. The oil return pipe 26c has one end connected to the oil separator 26a and the other end connected to a low pressure suction pipe p31a branched from the low pressure pipe p3. In other words, the oil return pipe 25c is not a compressor 31 having a low-pressure compression element 31e, which is a flow source of refrigerant accompanied by the refrigerating machine oil, separated from the refrigerating machine oil separated by the oil separator 25a. The low pressure compression element 32e of 32 (that is, the internal discharge compression element of the compressor 32) is returned to the suction side. Similarly, the oil return pipe 26c is not a compressor 32 having a low-pressure compression element 32e from which the refrigerant oil separated by the oil separator 26a is flowing out of the refrigerant accompanied by the refrigerator oil. It returns to the suction side of the low-pressure compression element 31e of the compressor 31 (that is, the internal discharge compression element of the compressor 31). That is, the oil return pipes 25c and 26c and the low pressure suction pipes p31a and p32a branched from the low pressure pipe p3 are connected in a so-called staking state.

これにより、低圧圧縮要素31e内に溜まった冷凍機油の量と低圧圧縮要素32e内に溜まった冷凍機油の量との間に生じた偏りに起因して、低圧圧縮要素31eから吐出される中圧の冷媒中の冷凍機油の量と低圧圧縮要素32eから吐出される中圧の冷媒中の冷凍機油の量との間に偏りが生じた場合であっても、低圧圧縮要素31e,32eのうち冷凍機油の量が少ない方に冷凍機油が多く戻ることになり、低圧圧縮要素31e,32e内に溜まった冷凍機油の量の偏りが解消されるようになっている。   As a result, the intermediate pressure discharged from the low pressure compression element 31e due to the bias generated between the amount of refrigeration oil accumulated in the low pressure compression element 31e and the amount of refrigeration oil accumulated in the low pressure compression element 32e. Even if there is a bias between the amount of refrigeration oil in the refrigerant and the amount of refrigeration oil in the medium-pressure refrigerant discharged from the low-pressure compression element 32e, the refrigeration of the low-pressure compression elements 31e and 32e A large amount of refrigeration oil returns to a direction where the amount of machine oil is smaller, so that the bias in the amount of refrigeration oil accumulated in the low-pressure compression elements 31e and 32e is eliminated.

調整弁8Cは、高圧側逆止弁81C,82C、中圧側逆止弁83C,84C及び低圧側逆止弁85C,86Cを有する。低圧側逆止弁85C,86Cは、図1と同様、各低圧吸入管p31a,p32a上に設けられているが、変形例Cでは、低圧側逆止弁85Cは、油戻し管26c及び低圧吸入管p31aの接続点と、油戻し管21c及び低圧吸入管p31aの接続点との間に接続されている。低圧側逆止弁86Cは、油戻し管25c及び低圧吸入管p32aの接続点と、油戻し管22c及び低圧吸入管p32aの接続点との間に接続されている。低圧側逆止弁85C,86Cは、図1と同様、低圧配管p3から圧縮機31,32、特に停止圧縮機32に向かう冷媒の流れのみを許容し、逆に圧縮機31,32、特に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。従って、停止圧縮機32が停止している際、ドーム32a内の圧力が中圧である停止圧縮機32の低圧吸入口から圧力が低圧である低圧配管p3側へと冷媒及びこれに伴う冷凍機油が流出するのを防止することができる。   The adjustment valve 8C includes high-pressure check valves 81C and 82C, intermediate-pressure check valves 83C and 84C, and low-pressure check valves 85C and 86C. The low-pressure check valves 85C and 86C are provided on the low-pressure suction pipes p31a and p32a as in FIG. 1, but in the modified example C, the low-pressure check valve 85C includes the oil return pipe 26c and the low-pressure suction pipe. The connection point between the pipe p31a and the connection point between the oil return pipe 21c and the low pressure suction pipe p31a is connected. The low pressure side check valve 86C is connected between a connection point between the oil return pipe 25c and the low pressure suction pipe p32a and a connection point between the oil return pipe 22c and the low pressure suction pipe p32a. The low pressure side check valves 85C and 86C allow only the refrigerant flow from the low pressure pipe p3 to the compressors 31 and 32, particularly the stop compressor 32, and conversely the compressors 31 and 32, particularly the stop, as in FIG. The flow of the refrigerant from the compressor 32 toward the low pressure pipe p3 is blocked. Therefore, when the stop compressor 32 is stopped, the refrigerant and the accompanying refrigeration oil from the low-pressure inlet of the stop compressor 32 where the pressure in the dome 32a is medium pressure to the low-pressure pipe p3 side where the pressure is low. Can be prevented from flowing out.

また、図1と同様、高圧側逆止弁81C,82Cは、各油分離器21a,22aの吐出口と高圧配管p1との間にそれぞれ接続されている。高圧側逆止弁81C,82Cは、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。従って、圧縮機32が停止している際、圧力が高圧である高圧配管p1側からドーム32a内の圧力が中圧である停止圧縮機32の高圧吐出口へと冷媒及びこれに伴う冷凍機油が流出するのを防止することができる。   Further, as in FIG. 1, the high pressure side check valves 81C and 82C are respectively connected between the discharge ports of the oil separators 21a and 22a and the high pressure pipe p1. The high pressure side check valves 81C and 82C allow the flow of refrigerant from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high pressure pipe p1, and conversely from the high pressure pipe p1 to the compressors 31 and 32, in particular. The refrigerant flow toward the discharge port of the stop compressor 32 is blocked. Therefore, when the compressor 32 is stopped, the refrigerant and the accompanying refrigeration oil flow from the high pressure pipe p1 side where the pressure is high to the high pressure discharge port of the stop compressor 32 where the pressure in the dome 32a is medium pressure. It can be prevented from flowing out.

また、図1と同様、中圧側逆止弁83C,84Cは、それぞれ中圧配管p2上に設けられている。中圧側逆止弁83C,84Cは、各低圧圧縮要素31e,32e、特に停止圧縮機32の吐出口から各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32e、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。   Further, similarly to FIG. 1, the intermediate pressure side check valves 83C and 84C are respectively provided on the intermediate pressure pipe p2. The intermediate pressure check valves 83C and 84C allow the refrigerant to flow from the discharge ports of the low pressure compression elements 31e and 32e, particularly the stop compressor 32, to the high pressure compression elements 31d and 32d, and conversely, the high pressure compression elements 31d. , 32d from the low-pressure compression elements 31e, 32e, in particular, the refrigerant flow toward the discharge port of the stop compressor 32 is blocked.

(4−4)変形例D
ここでは、上述の変形例Cと同様に駆動時の圧縮機31,32が中圧ドーム型であって、かつ停止圧縮機32は、ドーム32a内部が高圧の状態で駆動を停止する場合について説明する。
(4-4) Modification D
Here, similarly to the above-described modified example C, the compressors 31 and 32 at the time of driving are of the medium pressure dome type, and the stop compressor 32 is described in the case where the driving is stopped while the inside of the dome 32a is at a high pressure. To do.

図7は、変形例Dに係る空気調和装置1Dの構成概略図である。空気調和装置1Dは、変形例Cの空気調和装置1Cと調整弁8Dの種類及び設けられる位置が異なっている。また、空気調和装置1Dに係る圧縮機31が駆動しており圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、該圧縮機32の高圧圧縮要素32dから吐出される高圧の冷媒で充満した状態となる。そして、空気調和装置1Dに係る調整弁8Dは、中圧吐出側閉止弁(閉止弁に相当)83D,84D、低圧側逆止弁85D,86D、及び中圧吸入側逆止弁87D,88Dで構成される。   FIG. 7 is a schematic configuration diagram of an air-conditioning apparatus 1D according to Modification D. The air conditioner 1D is different from the air conditioner 1C according to the modified example C in the types and positions of the regulating valves 8D. Further, when the compressor 31 related to the air conditioner 1D is driven and the compressor 32 stops driving, the dome 32a of the stopped compressor 32 has a high pressure discharged from the high-pressure compression element 32d of the compressor 32. It will be in the state filled with the refrigerant. The regulating valve 8D related to the air conditioner 1D includes medium pressure discharge side stop valves (corresponding to a close valve) 83D and 84D, low pressure side check valves 85D and 86D, and medium pressure suction side check valves 87D and 88D. Composed.

中圧吐出側閉止弁83D,84Dは、それぞれ中圧配管p2の吐出側中圧枝管p21,p22上に設けられており、電磁弁で構成される。つまり、中圧吐出側閉止弁83D,84Dは、各油分離機構25,26によって冷凍機油が分離される前の中圧の冷媒が流れる配管p21,p22上に設けられている。中圧吐出側閉止弁83D,84Dは、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これは、停止圧縮機32の駆動時、中圧配管p2には、低圧圧縮要素32eから高圧圧縮要素32dへと中圧の冷媒が流れることとなる。しかし、停止圧縮機32の駆動停止時には、ドーム32a内は高圧の状態に保たれ、一方で駆動停止直後、中圧配管p2のうち停止圧縮機32側の吐出側中圧枝管p22内には、中圧の冷媒が流入していることとなる。すると、圧力の高いドーム32a内から圧力の低い中圧配管p2へと冷媒が流出してしまうこととなり、この冷媒の流れ方向は、圧縮機32が駆動している場合と同様となる。そこで、変形例Dでは、冷媒の圧力関係によって、停止圧縮機32が駆動を停止している状態時に冷媒の流出する方向が停止圧縮部32の駆動時と同じとなる中圧配管p2のうち、特に停止圧縮機32の中圧吐出側に、逆止弁ではなく電磁弁である中圧吐出側閉止弁83D,84Dが設けられている。これにより、停止圧縮機32が駆動を停止する場合、冷媒の流出を確実に防ぐことができる。   The intermediate pressure discharge side stop valves 83D and 84D are respectively provided on the discharge side intermediate pressure branch pipes p21 and p22 of the intermediate pressure pipe p2, and are constituted by electromagnetic valves. That is, the intermediate pressure discharge side stop valves 83D and 84D are provided on the pipes p21 and p22 through which the medium pressure refrigerant flows before the refrigerating machine oil is separated by the oil separation mechanisms 25 and 26, respectively. The intermediate pressure discharge side stop valves 83D and 84D are in an “open” state when the compressors 31 and 32 are driven, and when the corresponding compressors 31 and 32 are stopped. , “Closed” state. This means that when the stop compressor 32 is driven, medium pressure refrigerant flows through the intermediate pressure pipe p2 from the low pressure compression element 32e to the high pressure compression element 32d. However, when the drive of the stop compressor 32 is stopped, the inside of the dome 32a is maintained in a high pressure state. On the other hand, immediately after the drive is stopped, the discharge side intermediate pressure branch pipe p22 on the stop compressor 32 side of the intermediate pressure pipe p2 is placed. The medium-pressure refrigerant flows in. Then, the refrigerant flows out from the high-pressure dome 32a to the low-pressure intermediate pressure pipe p2, and the flow direction of the refrigerant is the same as when the compressor 32 is driven. Therefore, in Modification D, due to the pressure relationship of the refrigerant, in the intermediate pressure pipe p2 in which the direction in which the refrigerant flows out when the stop compressor 32 is stopped is the same as when the stop compressor 32 is driven, In particular, on the intermediate pressure discharge side of the stop compressor 32, medium pressure discharge side stop valves 83D and 84D that are electromagnetic valves are provided instead of check valves. Thereby, when the stop compressor 32 stops driving, it is possible to reliably prevent the refrigerant from flowing out.

尚、中圧吐出側閉止弁83D,84Dの開閉動作の制御は、図示しない制御部によって行われる。   In addition, control of the opening / closing operation | movement of the intermediate pressure discharge side stop valve 83D and 84D is performed by the control part which is not shown in figure.

低圧側逆止弁85D,86D及び中圧吸入側逆止弁87D,88Dは、変形例Aの図4に係る空気調和装置1Aと同様である。つまり、低圧側逆止弁85D,86Dは、それぞれ各低圧吸入管p31a,p32a上に設けられている。更に、変形例Cの図6と同様、低圧側逆止弁85Dは、油戻し管26c及び低圧吸入管p31aの接続点と、油戻し管21c及び低圧吸入管p31aの接続点との間に接続されている。低圧側逆止弁86Dは、油戻し管25c及び低圧吸入管p32aの接続点と、油戻し管22c及び低圧吸入管p32aの接続点との間に接続されている。低圧側逆止弁85D,86Dは、低圧配管p3から圧縮機31,32、特に停止圧縮機32に向かう冷媒の流れのみを許容し、逆に圧縮機31,32、特に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。これにより、停止圧縮機32から低圧吸入口を介して低圧配管p3側へと冷媒及びこれに伴う冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。また、中圧吸入側逆止弁87D,88Dは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられており、吸入側中圧母管p24から圧縮機31,32、特に停止圧縮機32の高圧圧縮要素32dの吸入口に向かう冷媒の流れを許容し、逆に圧縮機31,32、特に高圧圧縮要素32dの吸入口から吸入側中圧母管p24に向かう冷媒の流れを遮断する。これにより、停止圧縮機32から吸入口を介して中圧配管p2側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The low pressure side check valves 85D and 86D and the intermediate pressure suction side check valves 87D and 88D are the same as the air conditioner 1A according to the modified example A shown in FIG. That is, the low pressure side check valves 85D and 86D are provided on the low pressure suction pipes p31a and p32a, respectively. Further, as in FIG. 6 of Modification C, the low pressure side check valve 85D is connected between the connection point of the oil return pipe 26c and the low pressure suction pipe p31a and the connection point of the oil return pipe 21c and the low pressure suction pipe p31a. Has been. The low pressure side check valve 86D is connected between a connection point between the oil return pipe 25c and the low pressure suction pipe p32a and a connection point between the oil return pipe 22c and the low pressure suction pipe p32a. The low pressure side check valves 85D and 86D allow only the flow of refrigerant from the low pressure pipe p3 toward the compressors 31 and 32, particularly the stop compressor 32, and conversely the low pressures from the compressors 31 and 32, particularly the stop compressor 32. The refrigerant flowing toward the pipe p3 is blocked. This prevents the refrigerant and the accompanying refrigeration oil from flowing out from the stop compressor 32 to the low-pressure pipe p3 via the low-pressure intake port, so that there is a shortage of refrigeration oil when starting the stop compressor 32. Is less likely to occur. Further, the intermediate pressure suction side check valves 87D and 88D are provided in the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2, and the compressors 31 and 32, in particular, from the suction side intermediate pressure mother pipe p24. The refrigerant flow toward the suction port of the high-pressure compression element 32d of the stop compressor 32 is allowed, and conversely, the refrigerant flow toward the suction-side intermediate-pressure mother pipe p24 from the suction ports of the compressors 31, 32, particularly the high-pressure compression element 32d. Shut off. As a result, the refrigeration oil does not flow out from the stop compressor 32 to the intermediate pressure pipe p <b> 2 through the suction port, so that the shortage of refrigeration oil when starting the stop compressor 32 is less likely to occur. Yes.

(4−5)変形例E
ここでは、上述の変形例Cと同様に駆動時の圧縮機31,32が中圧ドーム型であって、かつ停止圧縮機32は、ドーム32a内部が低圧の状態で駆動を停止する場合について説明する。
(4-5) Modification E
Here, similarly to the above-described modification C, the compressors 31 and 32 at the time of driving are of the medium pressure dome type, and the stop compressor 32 is described as a case where the driving is stopped while the inside of the dome 32a is in a low pressure state. To do.

図8は、変形例Eに係る空気調和装置1Eの構成概略図である。空気調和装置1Eは、変形例Cの空気調和装置1Cと調整弁8Eの種類及び設けられる位置が異なっている。また、空気調和装置1Eに係る圧縮機31が駆動しており圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、低圧配管p3側から吸入された低圧の冷媒で充満した状態となる。そして、空気調和装置1Eに係る調整弁8Eは、高圧側逆止弁81E,82E、中圧吐出側逆止弁83E,84E、及び中圧吸入側閉止弁(閉止弁に相当)87E,88Eで構成される。   FIG. 8 is a schematic configuration diagram of an air-conditioning apparatus 1E according to Modification E. The air conditioner 1E is different from the air conditioner 1C according to the modified example C in the types and positions of the regulating valves 8E. Further, when the compressor 31 related to the air conditioner 1E is driven and the compressor 32 stops driving, the dome 32a of the stop compressor 32 is filled with the low-pressure refrigerant sucked from the low-pressure pipe p3 side. It becomes a state. The regulating valve 8E related to the air conditioner 1E includes high pressure side check valves 81E and 82E, medium pressure discharge side check valves 83E and 84E, and medium pressure suction side stop valves (corresponding to close valves) 87E and 88E. Composed.

高圧側逆止弁81E,82Eは、吐出枝管p11b,p12b上、つまりは各油分離器21a,22aの吐出口と高圧配管p1との間にそれぞれ接続されている。高圧側逆止弁81E,82Eは、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。特に、高圧側逆止弁81E,82Eは、各油分離機構21,22において冷凍機油が分離された後の冷媒の流れを止めている。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、高圧配管p1側から停止圧縮機32の高圧吐出へと冷媒及びこれに伴う冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The high pressure side check valves 81E and 82E are connected to the discharge branch pipes p11b and p12b, that is, between the discharge ports of the oil separators 21a and 22a and the high pressure pipe p1, respectively. The high pressure side check valves 81E and 82E allow the flow of refrigerant from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high pressure pipe p1, and conversely from the high pressure pipe p1 to the compressors 31 and 32, in particular. The refrigerant flow toward the discharge port of the stop compressor 32 is blocked. In particular, the high pressure side check valves 81E and 82E stop the flow of the refrigerant after the refrigeration oil is separated in the oil separation mechanisms 21 and 22. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes a low pressure when the drive is stopped, the refrigerant and the accompanying refrigeration oil do not flow out from the high pressure pipe p1 side to the high pressure discharge of the stop compressor 32. A shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

中圧吐出側逆止弁83E,84E及び中圧吸入側閉止弁87E,88Eは、変形例Bの図5に係る空気調和装置1Bと同様である。つまり、中圧吐出側逆止弁83E,84Eは、各油分離器25a,26aの吐出口と吐出側中圧母管p23との間に接続され、各圧縮機31,32の低圧圧縮要素31e,32eから各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32eに向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、中圧配管p2側から停止圧縮機32の低圧圧縮要素31e,32eの吐出側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The intermediate pressure discharge side check valves 83E and 84E and the intermediate pressure suction side stop valves 87E and 88E are the same as the air conditioner 1B according to the modified example B shown in FIG. That is, the intermediate pressure discharge side check valves 83E, 84E are connected between the discharge ports of the oil separators 25a, 26a and the discharge side intermediate pressure mother pipe p23, and the low pressure compression elements 31e of the compressors 31, 32 are connected. , 32e is allowed to flow toward the high-pressure compression elements 31d, 32d, and conversely, the refrigerant flow from the high-pressure compression elements 31d, 32d to the low-pressure compression elements 31e, 32e is blocked. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes a low pressure when the drive is stopped, the refrigeration oil flows out from the intermediate pressure pipe p2 side to the discharge side of the low pressure compression elements 31e and 32e of the stop compressor 32. Therefore, the shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

また、中圧吸入側閉止弁87E,88Eは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられており、電磁弁で構成される。中圧吸入側閉止弁87E,88Eは、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これにより、停止圧縮機32が駆動を停止する場合、冷媒及びこれに伴う冷凍機油の流出を確実に防ぐことができる。尚、中圧吸入側閉止弁87E,88Eの開閉動作の制御は、図示しない制御部によって行われる。   Further, the intermediate pressure suction side stop valves 87E and 88E are provided in the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2, and are constituted by electromagnetic valves. The intermediate pressure suction side closing valves 87E and 88E are in an “open” state when the compressors 31 and 32 are driven, and when the corresponding compressors 31 and 32 are stopped. , “Closed” state. Thereby, when the stop compressor 32 stops driving, it is possible to reliably prevent the refrigerant and the accompanying refrigeration oil from flowing out. Note that the control of the opening / closing operation of the intermediate pressure suction side closing valves 87E, 88E is performed by a control unit (not shown).

(4−6)変形例F
ここでは、駆動時の各圧縮機31,32が、低圧配管p3から吸入される低圧の冷媒がそのドーム31a,32a内に充満する、低圧ドーム型の圧縮機である場合について説明する。尚、ここでは、圧縮機31が駆動をしており停止圧縮機32が駆動を停止する場合、停止圧縮機32は、低圧圧縮要素31e,32eから吐出された中圧の冷媒でドーム32a内が充満する場合を例に採る。
(4-6) Modification F
Here, the case where each compressor 31 and 32 at the time of a drive is a low pressure dome type compressor with which the low voltage | pressure refrigerant | coolant suck | inhaled from the low voltage | pressure piping p3 fills in the dome 31a, 32a is demonstrated. Here, when the compressor 31 is driven and the stop compressor 32 stops driving, the stop compressor 32 is a medium-pressure refrigerant discharged from the low-pressure compression elements 31e and 32e. Take the case of fullness as an example.

図9は、変形例Fに係る空気調和装置1Fの構成概略図である。空気調和装置1Fは、図1の空気調和装置1と油分離機構21,22,25,26における油戻し管21c,22c,25c,26cの接続先が異なっている。   FIG. 9 is a schematic configuration diagram of an air-conditioning apparatus 1F according to Modification F. The air conditioner 1F differs from the air conditioner 1 of FIG. 1 in the connection destinations of the oil return pipes 21c, 22c, 25c, and 26c in the oil separation mechanisms 21, 22, 25, and 26.

空気調和装置1Fに係る圧縮機31,32においては、低圧配管p3及び各低圧吸入管p31a,p32aを介して各圧縮機31,32のドーム31a,32a内に吸入された低圧の冷媒は、いったん各ドーム31a,32aに吐出される。この冷媒は、各低圧圧縮要素31e,32eにて圧縮され、更に各高圧圧縮要素31d,32dにて圧縮された後、圧縮機31,32の外へと吐出される。   In the compressors 31 and 32 according to the air conditioner 1F, the low-pressure refrigerant sucked into the domes 31a and 32a of the compressors 31 and 32 through the low-pressure pipes p3 and the low-pressure suction pipes p31a and p32a is temporarily It discharges to each dome 31a, 32a. The refrigerant is compressed by the low-pressure compression elements 31e and 32e, further compressed by the high-pressure compression elements 31d and 32d, and then discharged to the outside of the compressors 31 and 32.

油戻し管21cは、一端が油分離器21aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p31aに接続されている。油戻し管22cは、一端が油分離器22aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p32aに接続されている。油戻し管25cは、一端が油分離器25aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p31aに接続されている。油戻し管26cは、一端が油分離器26aに接続されており、他端は低圧配管p3から分岐した低圧吸入管p32aに接続されている。即ち、各油戻し管21c,22c,25c,26cは、たすきがけの状態ではなく、各油分離器21a,22a,25a,26aそれぞれによって分離された冷凍機油を、該冷凍機油が同伴していた冷媒が溜まっている圧縮機31,32自身の低圧吸入口側に戻す。   The oil return pipe 21c has one end connected to the oil separator 21a and the other end connected to a low pressure suction pipe p31a branched from the low pressure pipe p3. One end of the oil return pipe 22c is connected to the oil separator 22a, and the other end is connected to a low pressure suction pipe p32a branched from the low pressure pipe p3. One end of the oil return pipe 25c is connected to the oil separator 25a, and the other end is connected to a low pressure suction pipe p31a branched from the low pressure pipe p3. One end of the oil return pipe 26c is connected to the oil separator 26a, and the other end is connected to the low pressure suction pipe p32a branched from the low pressure pipe p3. That is, each of the oil return pipes 21c, 22c, 25c, and 26c is not in the state of being brushed, but the refrigerating machine oil is accompanied by the refrigerating machine oil separated by each of the oil separators 21a, 22a, 25a, and 26a. The refrigerant is returned to the low pressure inlet side of the compressors 31 and 32 themselves.

調整弁8Fは、高圧側逆止弁81F,82F、中圧側逆止弁83F,84F及び低圧側逆止弁85F,86Fを有する。高圧側逆止弁81F,82F、中圧側逆止弁83F,84F及び低圧側逆止弁85F,86F、は、図1の空気調和装置1と同様である。つまり、高圧側逆止弁81F,82Fは、各油分離器21a,22aの吐出口と高圧配管p1との間にそれぞれ接続されている。高圧側逆止弁81F,82Fは、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。従って、圧縮機32が停止している際、圧力が高圧である高圧配管p1側からドーム32a内が中圧である停止圧縮機32の高圧吐出口へと冷媒が流出するのを防止することができる。中圧側逆止弁83F,84Fは、それぞれ中圧配管p2上に設けられており、各低圧圧縮要素31e,32eの吐出口から各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32eの吐出口に向かう冷媒の流れを遮断する。低圧側逆止弁85F,86Fは、各低圧吸入管p31a,p32a上に設けられており、低圧配管p3から圧縮機31,32、特に停止圧縮機32に向かう冷媒の流れのみを許容し、逆に圧縮機31,32、特に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。従って、停止圧縮機32が停止している際、ドーム32a内の高圧吐出口側から圧力が低圧である低圧配管p3側へと冷媒及びこれに伴う冷凍機油が流出するのを防止することができる。   The adjustment valve 8F includes high-pressure check valves 81F and 82F, intermediate-pressure check valves 83F and 84F, and low-pressure check valves 85F and 86F. The high pressure side check valves 81F and 82F, the intermediate pressure side check valves 83F and 84F, and the low pressure side check valves 85F and 86F are the same as the air conditioner 1 of FIG. That is, the high pressure side check valves 81F and 82F are respectively connected between the discharge ports of the oil separators 21a and 22a and the high pressure pipe p1. The high pressure side check valves 81F and 82F allow the refrigerant to flow from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high pressure pipe p1, and conversely, from the high pressure pipe p1 to the compressors 31 and 32, in particular. The refrigerant flow toward the discharge port of the stop compressor 32 is blocked. Therefore, when the compressor 32 is stopped, it is possible to prevent the refrigerant from flowing out from the high pressure pipe p1 side where the pressure is high to the high pressure discharge port of the stop compressor 32 where the inside of the dome 32a is medium pressure. it can. The intermediate pressure check valves 83F and 84F are provided on the intermediate pressure pipe p2, respectively, and allow the refrigerant to flow from the discharge ports of the low pressure compression elements 31e and 32e toward the high pressure compression elements 31d and 32d. In addition, the flow of the refrigerant from the high pressure compression elements 31d and 32d toward the discharge ports of the low pressure compression elements 31e and 32e is blocked. The low-pressure side check valves 85F and 86F are provided on the low-pressure suction pipes p31a and p32a, respectively, and allow only the flow of refrigerant from the low-pressure pipe p3 toward the compressors 31 and 32, particularly the stop compressor 32. In addition, the flow of refrigerant from the compressors 31 and 32, particularly the stop compressor 32, to the low pressure pipe p3 is blocked. Therefore, when the stop compressor 32 is stopped, it is possible to prevent the refrigerant and the accompanying refrigeration oil from flowing out from the high pressure discharge port side in the dome 32a to the low pressure pipe p3 side where the pressure is low. .

(4−7)変形例G
ここでは、上述の変形例Fと同様、駆動時の圧縮機31,32が低圧ドーム型であって、かつ停止圧縮機32は、ドーム32a内部が高圧の状態で駆動を停止する場合について説明する。
(4-7) Modification G
Here, similarly to the above-described modification F, the case where the compressors 31 and 32 at the time of driving are low-pressure dome type and the stop compressor 32 stops driving while the inside of the dome 32a is in a high pressure state will be described. .

図10は、変形例Gに係る空気調和装置1Gの構成概略図である。空気調和装置1Gは、変形例Fの空気調和装置1Fと調整弁8Gの種類及び設けられる位置が異なっている。また、空気調和装置1Gに係る圧縮機31が駆動しており,停止圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、該圧縮機32の高圧圧縮要素32dから吐出される高圧の冷媒で充満した状態となる。   FIG. 10 is a schematic configuration diagram of an air-conditioning apparatus 1G according to Modification G. The air conditioner 1G is different from the air conditioner 1F according to the modified example F in the types and positions of the regulating valves 8G. Further, when the compressor 31 related to the air conditioner 1G is driven and the stop compressor 32 stops driving, the inside of the dome 32a of the stop compressor 32 is discharged from the high-pressure compression element 32d of the compressor 32. It becomes a state filled with high-pressure refrigerant.

そして、空気調和装置1Gに係る調整弁8Gは、変形例Aと同様、中圧吐出側閉止弁(閉止弁に相当)83G,84G、低圧側逆止弁85G,86G、及び中圧吸入側逆止弁87G,88Gで構成される。   Then, the adjustment valve 8G related to the air conditioner 1G is similar to the modified example A in that the medium pressure discharge side stop valves (corresponding to the close valves) 83G and 84G, the low pressure side check valves 85G and 86G, and the medium pressure suction side reverse valve It consists of stop valves 87G and 88G.

つまり、中圧吐出側閉止弁83G,84Gは、それぞれ中圧配管p2上に設けられており、電磁弁で構成される。中圧吐出側閉止弁83G,84Gは、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これにより、停止圧縮機32が駆動を停止する場合、冷媒及びこれに伴う冷凍機油の流出を確実に防ぐことができる。尚、中圧吐出側閉止弁83G,84Gの開閉動作の制御は、図示しない制御部によって行われる。   That is, the intermediate pressure discharge side stop valves 83G and 84G are respectively provided on the intermediate pressure pipe p2, and are constituted by electromagnetic valves. The intermediate pressure discharge side stop valves 83G and 84G are in an “open” state when the compressors 31 and 32 are driven, and when the corresponding compressors 31 and 32 are stopped from driving. , “Closed” state. Thereby, when the stop compressor 32 stops driving, it is possible to reliably prevent the refrigerant and the accompanying refrigeration oil from flowing out. In addition, control of the opening / closing operation | movement of the intermediate pressure discharge side stop valve 83G and 84G is performed by the control part which is not shown in figure.

低圧側逆止弁85G,86Gは、各低圧吸入管p31a,p32a上に設けられている。低圧側逆止弁85G,86Gは、低圧配管p3から圧縮機31,32、特に停止圧縮機32に向かう冷媒の流れのみを許容し、逆に圧縮機31,32、特に停止圧縮機32から低圧配管p3に向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が高圧となる停止圧縮機32において、停止圧縮機32の吸入側から低圧配管p3側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The low pressure side check valves 85G and 86G are provided on the low pressure suction pipes p31a and p32a. The low pressure side check valves 85G and 86G allow only the flow of refrigerant from the low pressure pipe p3 toward the compressors 31 and 32, particularly the stop compressor 32, and conversely the low pressures from the compressors 31 and 32, particularly the stop compressor 32. The refrigerant flowing toward the pipe p3 is blocked. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes high when the drive is stopped, the refrigeration oil does not flow out from the suction side of the stop compressor 32 to the low pressure pipe p3 side. Insufficient refrigeration oil during startup is less likely to occur.

中圧吸入側逆止弁87G,88Gは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられている。中圧吸入側逆止弁87G,88Gは、吸入側中圧母管p24から圧縮機31,32、特に停止圧縮機32の高圧圧縮要素32dの吸入口に向かう冷媒の流れを許容し、逆に高圧圧縮要素32dの吸入口から吸入側中圧母管p24に向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が高圧となる停止圧縮機32において、停止圧縮機32の高圧圧縮要素31e,32eの吸入側から中圧配管p2側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The intermediate pressure suction side check valves 87G and 88G are provided in the suction side intermediate pressure branch pipes p25 and p26 of the intermediate pressure pipe p2. The medium pressure suction side check valves 87G and 88G allow the flow of refrigerant from the suction side medium pressure mother pipe p24 to the compressors 31 and 32, particularly the suction port of the high pressure compression element 32d of the stop compressor 32, and conversely. The refrigerant flow from the suction port of the high-pressure compression element 32d toward the suction-side intermediate pressure mother pipe p24 is blocked. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes high when the drive is stopped, the refrigeration oil flows out from the suction side of the high pressure compression elements 31e, 32e of the stop compressor 32 to the intermediate pressure pipe p2. Therefore, the shortage of refrigerating machine oil when starting the stop compressor 32 is less likely to occur.

(4−8)変形例H
ここでは、上述の変形例Fと同様、駆動時の圧縮機31,32が低圧ドーム型であって、かつ停止圧縮機32は、ドーム32a内部が低圧の状態で駆動を停止する場合について説明する。
(4-8) Modification H
Here, similarly to the above-described modification F, the case where the compressors 31 and 32 at the time of driving are of a low pressure dome type and the stop compressor 32 stops driving while the inside of the dome 32a is at a low pressure will be described. .

図11は、変形例Hに係る空気調和装置1Hの構成概略図である。空気調和装置1Hは、変形例Fの空気調和装置1Fと調整弁8Hの種類及び設けられる位置が異なっている。また、空気調和装置1Hに係る圧縮機31が駆動しており、停止圧縮機32が駆動を停止する場合、停止圧縮機32のドーム32a内は、低圧配管p3側から吸入された低圧の冷媒で充満した状態となる。   FIG. 11 is a schematic configuration diagram of an air conditioner 1H according to Modification H. The air conditioner 1H is different from the air conditioner 1F according to the modified example F in the types and positions of the regulating valves 8H. Further, when the compressor 31 related to the air conditioner 1H is driven and the stop compressor 32 stops driving, the inside of the dome 32a of the stop compressor 32 is low-pressure refrigerant sucked from the low-pressure pipe p3 side. It becomes a full state.

そして、空気調和装置1Hに係る調整弁8Hは、変形例Eと同様、高圧側逆止弁81H,82H、中圧吐出側逆止弁83H,84H、及び中圧吸入側閉止弁(閉止弁に相当)87H,88Hで構成される。   Then, the adjustment valve 8H related to the air conditioner 1H is, similarly to the modified example E, the high pressure side check valves 81H and 82H, the medium pressure discharge side check valves 83H and 84H, and the medium pressure suction side stop valve (the close valve). Equivalent) 87H and 88H.

つまり、高圧側逆止弁81H,82Hは、吐出枝管p11b,p12b上にそれぞれ設けられている。高圧側逆止弁81H,82Hは、圧縮機31,32、特に停止圧縮機32の吐出口から高圧配管p1に向かう冷媒の流れを許容し、逆に高圧配管p1から圧縮機31,32、特に停止圧縮機32の吐出口に向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、高圧配管p1側から停止圧縮機32の高圧吐出側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   That is, the high pressure side check valves 81H and 82H are provided on the discharge branch pipes p11b and p12b, respectively. The high-pressure check valves 81H and 82H allow the refrigerant to flow from the discharge ports of the compressors 31 and 32, particularly the stop compressor 32, to the high-pressure pipe p1, and conversely, from the high-pressure pipe p1 to the compressors 31 and 32, The refrigerant flow toward the discharge port of the stop compressor 32 is blocked. Thereby, in the stop compressor 32 in which the inside of the dome 32a becomes low pressure when the drive is stopped, the refrigeration oil does not flow out from the high-pressure pipe p1 side to the high-pressure discharge side of the stop compressor 32. Therefore, the stop compressor 32 Insufficient refrigeration oil when starting up is less likely to occur.

中圧吐出側逆止弁83H,84Hは、それぞれ各油分離器25a,26aの吐出口と吐出側中圧母管p23との間に接続されている。中圧吐出側逆止弁83H,84Hは、各低圧圧縮要素31e,32eから各高圧圧縮要素31d,32dに向かう冷媒の流れを許容し、逆に各高圧圧縮要素31d,32dから各低圧圧縮要素31e,32eに向かう冷媒の流れを遮断する。これにより、駆動停止時にドーム32a内が低圧となる停止圧縮機32において、中圧配管p2側から停止圧縮機32の中圧吐出側へと冷凍機油が流出するということが生じなくなるため、停止圧縮機32を起動する際の冷凍機油の不足が生じにくくなっている。   The intermediate pressure discharge side check valves 83H and 84H are respectively connected between the discharge ports of the oil separators 25a and 26a and the discharge side intermediate pressure mother pipe p23. The medium pressure discharge check valves 83H and 84H allow the flow of refrigerant from the low pressure compression elements 31e and 32e toward the high pressure compression elements 31d and 32d, and conversely from the high pressure compression elements 31d and 32d. The refrigerant flow toward 31e and 32e is blocked. As a result, in the stop compressor 32 in which the inside of the dome 32a is at a low pressure when the drive is stopped, the refrigeration oil does not flow out from the intermediate pressure pipe p2 side to the intermediate pressure discharge side of the stop compressor 32. A shortage of refrigerating machine oil when starting the machine 32 is less likely to occur.

中圧吸入側閉止弁87H,88Hは、中圧配管p2の各吸入側中圧枝管p25,p26に設けられており、電磁弁で構成される。中圧吸入側閉止弁87H,88Hは、各圧縮機31,32が駆動している場合には、“開”の状態となり、対応する圧縮機31,32が駆動を停止している場合には、“閉”の状態となる。これにより、停止圧縮機32が駆動を停止する場合、冷媒及びこれに伴う冷凍機油の流出を確実に防ぐことができる。尚、中圧吸入側閉止弁87H,88Hの開閉動作の制御は、図示しない制御部によって行われる。   The medium pressure suction side closing valves 87H and 88H are provided in the suction side medium pressure branch pipes p25 and p26 of the medium pressure pipe p2, and are constituted by electromagnetic valves. The intermediate pressure suction side shut-off valves 87H and 88H are in an “open” state when the compressors 31 and 32 are driven, and when the corresponding compressors 31 and 32 are stopped from driving. , “Closed” state. Thereby, when the stop compressor 32 stops driving, it is possible to reliably prevent the refrigerant and the accompanying refrigeration oil from flowing out. Note that the control of the opening / closing operation of the intermediate pressure suction side closing valves 87H, 88H is performed by a control unit (not shown).

(4−9)変形例I
上述の実施形態及び変形例A〜Hでは、各圧縮機31,32が2段の圧縮要素31d,31e,32d,32eを有している場合について説明した。しかし、各圧縮機31,32は、2段以上である複数の圧縮要素を有していてもよい。
(4-9) Modification I
In the above-described embodiment and the modifications A to H, the case where each of the compressors 31 and 32 includes the two-stage compression elements 31d, 31e, 32d, and 32e has been described. However, each compressor 31, 32 may have a plurality of compression elements that are two or more stages.

図12では、一例として、各圧縮機31I,32Iが4段の圧縮要素を有している場合の空気調和装置のうち、熱源側熱交換器、膨張機構及び利用側熱交換器を除く他の構成要素を抜き出して示している。   In FIG. 12, as an example, among the air conditioners in which each of the compressors 31I and 32I has a four-stage compression element, other than the heat source side heat exchanger, the expansion mechanism, and the use side heat exchanger are excluded. The components are extracted and shown.

図12において、圧縮機構3Iは、2つの圧縮機31I,32Iが並列接続されることで構成されている。圧縮機31I,32Iは、1つのドーム31a,32a内に、低圧圧縮要素31e,32e、第1中圧圧縮要素31f,32f、第2中圧圧縮要素31g,32g及び高圧圧縮要素31d,32dを有している。各第1中圧圧縮要素31f,32fは、各低圧圧縮要素31e,32eよりも更に冷媒の圧力を高め、各第2中圧圧縮要素31g,32gは、第1中圧圧縮要素31f,32fよりも更に冷媒の能力を高める。各高圧圧縮要素31d,32dは、各第2中圧圧縮要素31g,32gよりも更に冷媒の能力を高める。圧縮機31I内に含まれる4段の圧縮要素31e,31f,31g,31dは、それぞれ直列接続されており、冷媒の圧力を順次高めていく。同様にして、圧縮機32I内に含まれる4段の圧縮要素32e,32f,32g,32dは、それぞれ直列接続されており、冷媒の圧力を順次高めていく。   In FIG. 12, the compression mechanism 3I is configured by connecting two compressors 31I and 32I in parallel. The compressors 31I and 32I include, in one dome 31a and 32a, low pressure compression elements 31e and 32e, first intermediate pressure compression elements 31f and 32f, second intermediate pressure compression elements 31g and 32g, and high pressure compression elements 31d and 32d. Have. The first intermediate pressure compression elements 31f and 32f further increase the refrigerant pressure than the low pressure compression elements 31e and 32e, and the second intermediate pressure compression elements 31g and 32g are higher than the first intermediate pressure compression elements 31f and 32f. Will further increase the capacity of the refrigerant. Each of the high-pressure compression elements 31d and 32d further enhances the refrigerant capacity as compared with each of the second intermediate-pressure compression elements 31g and 32g. The four stages of compression elements 31e, 31f, 31g, 31d included in the compressor 31I are connected in series, and the pressure of the refrigerant is sequentially increased. Similarly, the four-stage compression elements 32e, 32f, 32g, and 32d included in the compressor 32I are connected in series, and the pressure of the refrigerant is sequentially increased.

なお、図12では、一例として、各第2中圧圧縮要素31g,32gが、圧縮した冷媒を自身の圧縮機31I,32Iのドーム31a,32a内にいったん吐出する構成となっている。従って、第2中圧圧縮要素31g,32gは、内部吐出圧縮機であると言える。各ドーム31a,32aには第2中圧吐出管p41,p42それぞれが直結されている。この構成により、各ドーム31a,32a内に第2中圧圧縮要素31g,32gによっていったん吐出された冷媒は、各第2中圧吐出管p41,p42によって圧縮機31,32のドーム31a,32aの外部に吐出される。他の圧縮要素(具体的には、低圧圧縮要素31e,32e、第1中圧圧縮要素31f,32f、高圧圧縮要素31d,32d)は、各吐出管p61a,p62a,p51a,p52a,p11a,p12aと接続されており、各圧縮要素にて吐出された冷媒は、対応する吐出管p61a,p62a,p51a,p52a,p11a,p12aそれぞれを介して自身の圧縮機31I,32Iのドーム31a,32a外に吐出する構成となっている。従って、第2中圧圧縮要素31g,32g以外の他の圧縮要素31e,32e,31f,32f,31d,32dは、外部吐出圧縮機であると言える。   In FIG. 12, as an example, each of the second intermediate pressure compression elements 31g and 32g is configured to temporarily discharge the compressed refrigerant into the dome 31a and 32a of its compressor 31I and 32I. Therefore, it can be said that the second intermediate pressure compression elements 31g and 32g are internal discharge compressors. The second intermediate pressure discharge pipes p41 and p42 are directly connected to the domes 31a and 32a, respectively. With this configuration, the refrigerant once discharged into the respective domes 31a and 32a by the second intermediate pressure compression elements 31g and 32g is transferred to the domes 31a and 32a of the compressors 31 and 32 by the second intermediate pressure discharge pipes p41 and p42. It is discharged outside. The other compression elements (specifically, the low pressure compression elements 31e and 32e, the first intermediate pressure compression elements 31f and 32f, and the high pressure compression elements 31d and 32d) are connected to the discharge pipes p61a, p62a, p51a, p52a, p11a, and p12a. The refrigerant discharged from each compression element is discharged to the outside of the dome 31a, 32a of its own compressor 31I, 32I via the corresponding discharge pipes p61a, p62a, p51a, p52a, p11a, p12a. It is the structure which discharges. Therefore, it can be said that the compression elements 31e, 32e, 31f, 32f, 31d, and 32d other than the second intermediate pressure compression elements 31g and 32g are external discharge compressors.

従って、圧縮機31I,32Iは、駆動時、ドーム31a,32a内には第2中圧圧縮要素31g,32gから吐出された中圧の冷媒が充満する、低圧ドーム型の圧縮機である。尚、ここでは、圧縮機31Iが駆動しており,圧縮機32Iが駆動を停止する場合、停止圧縮機32Iのドーム32a内は、駆動時と同様、第2中圧圧縮要素31g,32gから吐出された中圧の冷媒で充満される場合を例に採る。   Therefore, the compressors 31I and 32I are low-pressure dome-type compressors that are filled with the medium-pressure refrigerant discharged from the second intermediate-pressure compression elements 31g and 32g in the domes 31a and 32a during driving. Here, when the compressor 31I is driven and the compressor 32I stops driving, the inside of the dome 32a of the stopped compressor 32I is discharged from the second intermediate pressure compression elements 31g and 32g as in driving. Take as an example the case of being filled with the medium pressure refrigerant.

また、変形例Iに係る空気調和装置1Iは、高圧配管p1、低圧配管p3の他に、各圧縮機31,32の第2中圧圧縮要素31g,32gと高圧圧縮要素31d,32dとを繋ぐ第1中圧配管p41,p42,p43,p44、各圧縮機31,32の第1中圧圧縮要素31f,32fと低圧圧縮要素31e,32eとを繋ぐ第2中圧配管p61,p62,p63,p64、各圧縮機31,32の中圧圧縮要素31g,32g,31f,32f同士を繋ぐ第3中圧配管p51,p52,p53,p54を有する。   The air conditioner 1I according to the modified example I connects the second intermediate pressure compression elements 31g and 32g and the high pressure compression elements 31d and 32d of the compressors 31 and 32 in addition to the high pressure pipe p1 and the low pressure pipe p3. First intermediate pressure pipes p41, p42, p43, p44, second intermediate pressure pipes p61, p62, p63, which connect the first intermediate pressure compression elements 31f, 32f and the low pressure compression elements 31e, 32e of the compressors 31, 32, respectively. p64, and third intermediate pressure pipes p51, p52, p53, and p54 that connect the intermediate pressure compression elements 31g, 32g, 31f, and 32f of the compressors 31 and 32 to each other.

そして、各圧縮要素31d,32d,31g,32g,31f,32f,31e,32eの吐出側の各配管p11a,p12a,p41a,p42a,p51a,p52a,p61a,p62aには、油分離機構21I,22I,23I,24I,25I,26I,27I,28Iが1つずつ設けられている。油分離機構21I〜28Iの油戻し管21c〜28cのうち、油戻し管21c,22cは、高圧圧縮要素31d,32dそれぞれから吐出された冷媒中の冷凍機油を、該要素31d,32dを含む圧縮機31,32自身の内部吐出圧縮要素(つまり、第2中圧圧縮要素31g,32g)の吸入側に戻す。油戻し管23c,24cは、第2中圧圧縮要素31g,32g、つまりは内部吐出圧縮要素それぞれから吐出された冷媒中の冷凍機油を、該要素31d,32dを含む圧縮機31,32自身ではなく、別の圧縮機31,32の内部吐出圧縮要素(つまり、第2中圧圧縮要素31g,32g)の吸入側に戻す。即ち、油戻し管23c,24cは、たすきがけの状態となっている。油戻し管25c,26cは、第1中圧圧縮要素31f,32fそれぞれから吐出された冷媒中の冷凍機油を、該要素31f,32fを含む圧縮機31,32自身の内部吐出圧縮要素(つまり、第2中圧圧縮要素31g,32g)の吸入側、つまりは第1中圧圧縮要素31f,32fの一段上となる第2中圧圧縮要素31g,32gの吸入側に戻す。油戻し管27c,28cは、低圧圧縮要素31e,32eそれぞれから吐出された冷媒中の冷凍機油を、該要素31e,32eを含む圧縮機31,32自身の第1中圧圧縮要素31f,32fの吸入側に戻す。即ち、内部吐出圧縮要素31g,32gよりも後段となる圧縮要素31d,32dから吐出された冷媒中の冷凍機油は、該冷媒の流出元となる圧縮要素を有する圧縮機自身の、内部吐出圧縮要素31g,32gの吸入側に戻され、内部吐出圧縮要素31g,32gから吐出された冷媒中の冷凍機油は、自身の圧縮機ではなく、別の圧縮機31,32の内部吐出圧縮要素31g,32gの吸入側に戻される。また、内部吐出圧縮要素31g,32gよりも前段となる圧縮要素31e,32e,31f,32fから吐出された冷媒中の冷凍機油は、該冷媒の流出元となる圧縮要素を有する圧縮機自身において、該冷媒の流出元となる圧縮要素の一段後段となる圧縮要素の吸入側に戻される。   Then, oil separation mechanisms 21I, 22I are provided in the pipes p11a, p12a, p41a, p42a, p51a, p52a, p61a, p62a on the discharge side of the compression elements 31d, 32d, 31g, 32g, 31f, 32f, 31e, 32e. , 23I, 24I, 25I, 26I, 27I, and 28I are provided one by one. Of the oil return pipes 21c to 28c of the oil separation mechanisms 21I to 28I, the oil return pipes 21c and 22c compress the refrigerating machine oil in the refrigerant discharged from the high-pressure compression elements 31d and 32d, respectively, including the elements 31d and 32d. Return to the suction side of the internal discharge compression elements (that is, the second intermediate pressure compression elements 31g, 32g) of the machines 31, 32 themselves. The oil return pipes 23c and 24c are used for the second intermediate pressure compression elements 31g and 32g, that is, the refrigerating machine oil in the refrigerant discharged from the internal discharge compression elements respectively in the compressors 31 and 32 themselves including the elements 31d and 32d. Instead, it is returned to the suction side of the internal discharge compression elements (that is, the second intermediate pressure compression elements 31g and 32g) of the other compressors 31 and 32. That is, the oil return pipes 23c and 24c are in a state of brushing. The oil return pipes 25c and 26c are used to convert the refrigeration oil in the refrigerant discharged from the first intermediate pressure compression elements 31f and 32f into the internal discharge compression elements (that is, the compressors 31 and 32 including the elements 31f and 32f). Return to the suction side of the second intermediate pressure compression elements 31g, 32g), that is, to the suction side of the second intermediate pressure compression elements 31g, 32g, which is one stage above the first intermediate pressure compression elements 31f, 32f. The oil return pipes 27c and 28c are used for the refrigerating machine oil in the refrigerant discharged from the low pressure compression elements 31e and 32e, respectively, of the first intermediate pressure compression elements 31f and 32f of the compressors 31 and 32 themselves including the elements 31e and 32e. Return to suction side. That is, the refrigerating machine oil in the refrigerant discharged from the compression elements 31d and 32d downstream from the internal discharge compression elements 31g and 32g is the internal discharge compression element of the compressor itself having the compression element from which the refrigerant flows out. The refrigerating machine oil in the refrigerant returned to the suction side of 31g, 32g and discharged from the internal discharge compression elements 31g, 32g is not its own compressor but the internal discharge compression elements 31g, 32g of the other compressors 31, 32. It is returned to the suction side. In addition, the refrigeration oil in the refrigerant discharged from the compression elements 31e, 32e, 31f, and 32f, which are upstream of the internal discharge compression elements 31g and 32g, in the compressor itself having the compression element that is the outflow source of the refrigerant, The refrigerant is returned to the suction side of the compression element that is the next stage of the compression element from which the refrigerant flows out.

尚、各油分離機構21I〜28Iから吐出された冷媒は、中間冷却器7にて冷却され、その後、該冷媒を吐出した圧縮要素よりも後段となる圧縮要素に吸入される。   The refrigerant discharged from each of the oil separation mechanisms 21I to 28I is cooled by the intermediate cooler 7, and then sucked into a compression element that is downstream of the compression element that discharged the refrigerant.

調整弁8Iは、高圧吐出側逆止弁81I,82I、高圧吸入側閉止弁83I,84I、第2中圧吐出側逆止弁85I,86I、第1中圧吐出側逆止弁87I,88I、第2中圧吸入側逆止弁89I,90I、低圧吐出側閉止弁91I,92I、低圧吸入側逆止弁93I,94Iを有する。高圧吐出側逆止弁81I,82Iは、高圧配管p1と接続された各吐出枝管p11b,p12b上に設けられている。高圧吸入側閉止弁83I,84Iは、各第1中圧配管p43,p44,p41b,p42b上のうち高圧圧縮要素31d,32dの吸入側付近に設けられており、第2中圧吐出側逆止弁85I,86Iは、各第1中圧配管p43,p44,p41b,p42b上であって、各圧縮機31,32の吐出口と中間冷却器7との間に設けられている。第1中圧吐出側逆止弁87I,88Iは、第3中圧配管p51b,p52b上に設けられている。第2中圧吸入側逆止弁89I,90Iは、第2中圧配管p63,p64,p61b,p62b上のうち第1中圧圧縮要素31f,32fの吸入付近に設けられている。低圧吐出側閉止弁91I,92Iは、第2中圧配管p63,p64,p61b,p62b上であって、各低圧圧縮要素31e,32eの吐出口と中間冷却器7との間に設けられている。低圧吸入側逆止弁93I,94Iは、低圧配管p3から分岐された低圧吸入管p31a,p32a上に設けられている。   The adjustment valve 8I includes high pressure discharge side check valves 81I and 82I, high pressure suction side stop valves 83I and 84I, second intermediate pressure discharge side check valves 85I and 86I, first intermediate pressure discharge side check valves 87I and 88I, Second intermediate pressure suction side check valves 89I and 90I, low pressure discharge side closing valves 91I and 92I, and low pressure suction side check valves 93I and 94I are provided. The high pressure discharge side check valves 81I and 82I are provided on the discharge branch pipes p11b and p12b connected to the high pressure pipe p1. The high pressure suction side stop valves 83I and 84I are provided in the vicinity of the suction side of the high pressure compression elements 31d and 32d on the first medium pressure pipes p43, p44, p41b and p42b. The valves 85I and 86I are provided on the first intermediate pressure pipes p43, p44, p41b, and p42b and between the discharge ports of the compressors 31 and 32 and the intercooler 7. The first intermediate pressure discharge check valves 87I and 88I are provided on the third intermediate pressure pipes p51b and p52b. The second intermediate pressure suction side check valves 89I and 90I are provided in the vicinity of the suction of the first intermediate pressure compression elements 31f and 32f on the second intermediate pressure pipes p63, p64, p61b, and p62b. The low pressure discharge side stop valves 91I and 92I are provided on the second intermediate pressure pipes p63, p64, p61b, and p62b and between the discharge ports of the low pressure compression elements 31e and 32e and the intermediate cooler 7. . The low pressure suction side check valves 93I and 94I are provided on the low pressure suction pipes p31a and p32a branched from the low pressure pipe p3.

圧縮機31I,32Iの吐出側に位置する各種逆止弁81I〜82I,85I〜88Iは、圧縮機31I,32Iの各種吐出口から圧縮機31I,32I外部に向かう冷媒の流れのみを許容し、逆に圧縮機31I,32I外部から圧縮機31I,32Iの各種吐出口に向かう冷媒の流れを遮断する。圧縮機31I,32Iの吸入側に位置する各種逆止弁89I〜90I,93I〜94Iは、圧縮機31I,32I外部から圧縮機31I,32Iの各種吸入口に向かう冷媒の流れのみを許容し、逆に圧縮機31I,32Iの各種吸入口から圧縮機31I,32I外部に向かう冷媒の流れを遮断する。また、各種閉止弁83I〜84I,91I〜92Iは、電磁弁で構成され、各圧縮機31I,32Iが駆動している場合には、“開”の状態となり、対応する圧縮機31I,32Iが駆動を停止している場合には、“閉”の状態となる。   The various check valves 81I to 82I and 85I to 88I located on the discharge side of the compressors 31I and 32I allow only the refrigerant flow from the various discharge ports of the compressors 31I and 32I to the outside of the compressors 31I and 32I. Conversely, the flow of refrigerant from the outside of the compressors 31I, 32I to the various discharge ports of the compressors 31I, 32I is blocked. The various check valves 89I to 90I and 93I to 94I located on the suction side of the compressors 31I and 32I allow only the refrigerant flow from the outside of the compressors 31I and 32I to the various suction ports of the compressors 31I and 32I. Conversely, the flow of refrigerant from the various suction ports of the compressors 31I and 32I to the outside of the compressors 31I and 32I is blocked. The various shut-off valves 83I to 84I and 91I to 92I are composed of electromagnetic valves. When the compressors 31I and 32I are driven, they are in an “open” state, and the corresponding compressors 31I and 32I When the drive is stopped, the state is “closed”.

つまり、冷媒の圧力関係により、圧縮機31I,32Iの駆動時と停止時とで、冷媒の流れる方向が逆となる現象が生じる配管p11b,p12b,p41b,p42b,p51b,p52b,p63,p64,p31a,p32aには、逆止弁81I〜82I,85I〜90I,93I〜94Iが調整弁8Iとして設けられる。冷媒の圧力関係により、圧縮機31I,32Iの駆動時と停止時とで、冷媒の流れる方向が同じとなる配管p43,p44,p61b、p62bには、逆止弁83I〜84I,91I〜92Iが調整弁8Iとして設けられる。   That is, the pipes p11b, p12b, p41b, p42b, p51b, p52b, p63, p64, in which a phenomenon occurs in which the refrigerant flow direction is reversed between when the compressors 31I and 32I are driven and when the compressors 31I and 32I are stopped, is determined. Check valves 81I to 82I, 85I to 90I, 93I to 94I are provided as adjusting valves 8I on p31a and p32a. The check valves 83I to 84I and 91I to 92I are provided in the pipes p43, p44, p61b, and p62b in which the refrigerant flows in the same direction when the compressors 31I and 32I are driven and stopped due to the pressure relationship of the refrigerant. Provided as a regulating valve 8I.

このような調整弁8Iにより、例えば圧縮機31Iが駆動し圧縮機32が停止(例えば、停止圧縮機32I)する場合、この停止圧縮機32Iは、高圧配管p1、第1中圧配管p41,p42,p43,p44、第2中圧配管p61,p62,p63,p64、低圧配管p3、及び第3中圧配管p51,p52,p53,p54のいずれか1つとのみ冷媒の流れを許容し他の配管との間では冷媒の流れが生じないようになる。これにより、2段以上の圧縮要素をそれぞれ有する2つの圧縮機31I,32Iが並列接続されている場合においても、停止圧縮部32の内部を均圧にすることができる。   For example, when the compressor 31I is driven by the adjustment valve 8I and the compressor 32 is stopped (for example, the stop compressor 32I), the stop compressor 32I includes the high pressure pipe p1 and the first intermediate pressure pipes p41 and p42. , P43, p44, the second intermediate pressure pipes p61, p62, p63, p64, the low pressure pipe p3, and the third intermediate pressure pipes p51, p52, p53, p54, and allow other refrigerants to flow. No refrigerant flows between the two. Thereby, even when the two compressors 31I and 32I each having two or more stages of compression elements are connected in parallel, the inside of the stop compressor 32 can be equalized.

尚、上述した調整弁8Iは、停止圧縮機32のドーム32a内が、高圧圧縮要素32dの1つ前段となる第2中圧圧縮要素32gから吐出される冷媒で充満する場合の一例である。調整弁8Iの数及び種類は、停止圧縮機のドーム内がどの圧縮要素から吐出される冷媒または停止圧縮機内に吸入される冷媒で充満されるかによって、上述の変形例A〜Hのように変更され得る。例えば、停止圧縮機32のドーム32a内が高圧圧縮要素32dから吐出される高圧の冷媒で充満される場合には、吸入側においては図12よりも電磁弁の数が減少し、代わりに吐出側の逆止弁を電磁弁に変更する必要がある。   The regulating valve 8I described above is an example of the case where the inside of the dome 32a of the stop compressor 32 is filled with the refrigerant discharged from the second intermediate pressure compression element 32g that is one stage before the high pressure compression element 32d. The number and type of the regulating valves 8I are as in the above-described modified examples A to H depending on which compression element the dome of the stop compressor is filled with the refrigerant discharged from the compressor or the refrigerant sucked into the stop compressor. Can be changed. For example, when the inside of the dome 32a of the stop compressor 32 is filled with the high-pressure refrigerant discharged from the high-pressure compression element 32d, the number of solenoid valves is reduced on the suction side compared with FIG. It is necessary to change the check valve to a solenoid valve.

(4−10)変形例J
上述の実施形態においては、二段圧縮式冷凍サイクルを用いて冷房運転が可能な空気調和装置について説明したが、空気調和装置は、図1の構成に加えて、冷房運転と暖房運転を切り換える切換機構を設けることにより、冷房運転と暖房運転とを切換可能に構成することができる。
(4-10) Modification J
In the above-described embodiment, the air conditioner capable of cooling operation using the two-stage compression refrigeration cycle has been described. However, in addition to the configuration of FIG. 1, the air conditioner switches between cooling operation and heating operation. By providing the mechanism, the cooling operation and the heating operation can be switched.

図13は、変形例Jに係る空気調和装置1Jの概略構成図である。空気調和装置1Jは、図13に示されるように、上述の実施形態の冷媒回路2(図1参照)の構成に冷房運転と暖房運転とを切換可能にするための切換機構9a,9b、レシーバ10、エコノマイザ熱交換器12、ブリッジ回路13、及び過冷却熱交換器16が主として加わり、膨張機構5に代えて第1膨張機構5a及び2つの第2膨張機構5cが設けられた冷媒回路2Jを備えて構成される。また、図1の利用側熱交換器6に代えて、2つの利用側熱交換器6aが並列接続されている。   FIG. 13 is a schematic configuration diagram of an air-conditioning apparatus 1J according to Modification J. As shown in FIG. 13, the air conditioner 1 </ b> J includes switching mechanisms 9 a and 9 b and a receiver for enabling switching between the cooling operation and the heating operation in the configuration of the refrigerant circuit 2 (see FIG. 1) of the above-described embodiment. 10, an economizer heat exchanger 12, a bridge circuit 13, and a supercooling heat exchanger 16 are mainly added, and a refrigerant circuit 2J provided with a first expansion mechanism 5a and two second expansion mechanisms 5c instead of the expansion mechanism 5 is provided. It is prepared for. Moreover, it replaces with the utilization side heat exchanger 6 of FIG. 1, and the two utilization side heat exchangers 6a are connected in parallel.

切換機構9a,9bは、冷媒回路2J内における冷媒の流れの方向を切り換えるための機構である。切換機構9aは、冷房運転時には、熱源側熱交換器4を圧縮機構3から吐出される冷媒の放熱器として、かつ、利用側熱交換器6を熱源側熱交換器4において冷却された冷媒の蒸発器として機能させるために、圧縮機構3の高圧配管p1と熱源側熱交換器4の一端とを接続するとともに圧縮機構3の低圧配管p3と各利用側熱交換器6aの他端とを接続する(図4の切換機構9aの実線を参照、以下、この切換機構9aの状態を「冷却運転状態」という)。一方、暖房運転時には、切換機構9aは、利用側熱交換器6を圧縮機構3から吐出される冷媒の放熱器として、かつ、熱源側熱交換器4を利用側熱交換器6において冷却された冷媒の蒸発器として機能させるために、圧縮機構3の高圧配管p1と各利用側熱交換器6aの他端とを接続するとともに圧縮機構3の低圧配管p3と熱源側熱交換器4の一端とを接続する(図4の切換機構9aの破線を参照。即ち、加熱運転状態)。切換機構9bは、冷房運転時には、各低圧圧縮要素31e,32eから吐出された冷媒を、中間冷却器7を通過後に各高圧圧縮要素31d,32dに吸入させ、暖房運転時は、各低圧圧縮要素31e、32eから吐出された冷媒を、中間冷却器7を通過させずに各高圧圧縮要素31d、32dに吸入させる。このように、暖房運転においては、各低圧圧縮要素31e,32eから吐出された冷媒を中間冷却器7を介さずに各高圧圧縮要素31d、32dに吸入させているため、冷房運転と同様に暖房運転においても中間冷却器7を用いる場合に比べて、圧縮機構3から吐出される冷媒の温度の低下が抑えられる。従って、この空気調和装置1Jでは、外部への放熱を抑え、冷媒の放熱器として機能する利用側熱交換器6aに供給される冷媒の温度の低下を抑えることが可能になり、運転効率の低下を防ぐことができる。   The switching mechanisms 9a and 9b are mechanisms for switching the direction of refrigerant flow in the refrigerant circuit 2J. During the cooling operation, the switching mechanism 9a uses the heat source side heat exchanger 4 as a radiator for the refrigerant discharged from the compression mechanism 3 and the use side heat exchanger 6 for the refrigerant cooled in the heat source side heat exchanger 4. In order to function as an evaporator, the high pressure pipe p1 of the compression mechanism 3 and one end of the heat source side heat exchanger 4 are connected, and the low pressure pipe p3 of the compression mechanism 3 and the other end of each use side heat exchanger 6a are connected. (Refer to the solid line of the switching mechanism 9a in FIG. 4, and the state of the switching mechanism 9a is hereinafter referred to as “cooling operation state”). On the other hand, during the heating operation, the switching mechanism 9a is cooled by the use side heat exchanger 6 as a radiator for the refrigerant discharged from the compression mechanism 3 and the heat source side heat exchanger 4 in the use side heat exchanger 6. In order to function as a refrigerant evaporator, the high pressure pipe p1 of the compression mechanism 3 and the other end of each use side heat exchanger 6a are connected, and the low pressure pipe p3 of the compression mechanism 3 and one end of the heat source side heat exchanger 4 are connected to each other. (Refer to the broken line of the switching mechanism 9a in FIG. 4, that is, the heating operation state). The switching mechanism 9b causes the refrigerant discharged from the low-pressure compression elements 31e and 32e to be sucked into the high-pressure compression elements 31d and 32d after passing through the intermediate cooler 7 during the cooling operation, and each low-pressure compression element during the heating operation. The refrigerant discharged from 31e and 32e is sucked into the high-pressure compression elements 31d and 32d without passing through the intercooler 7. Thus, in the heating operation, since the refrigerant discharged from the low pressure compression elements 31e and 32e is sucked into the high pressure compression elements 31d and 32d without going through the intermediate cooler 7, heating is performed in the same manner as in the cooling operation. Compared with the case where the intermediate cooler 7 is used in operation, the temperature of the refrigerant discharged from the compression mechanism 3 can be suppressed from decreasing. Therefore, in this air conditioner 1J, it is possible to suppress heat radiation to the outside, and to suppress a decrease in the temperature of the refrigerant supplied to the use-side heat exchanger 6a that functions as a refrigerant radiator, resulting in a decrease in operating efficiency. Can be prevented.

なお、切換機構9a,9bは、四路切換弁に限定されるものではなく、例えば、複数の電磁弁を組み合わせる等によって、上述と同様の冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。   Note that the switching mechanisms 9a and 9b are not limited to the four-way switching valves, and are configured to have the same function of switching the refrigerant flow direction as described above, for example, by combining a plurality of electromagnetic valves. It may be a thing.

レシーバ10は、冷房運転と暖房運転との間で冷媒回路2Jにおける冷媒の循環量が異なる等の運転状態に応じて発生する余剰冷媒を溜めることができるように、第1膨張機構5aで減圧された後の冷媒を一時的に溜めるために設けられた容器である。そのため、レシーバ10の入口がレシーバ入口管10aに接続されており、その出口がレシーバ出口管10bに接続されている。また、レシーバ10には、レシーバ10内から冷媒を抜き出して圧縮機構3の吸入側(すなわち、各圧縮機31,32の低圧圧縮要素31e,32eの吸入口)に戻すことが可能な吸入戻し管30が接続されている。この吸入戻し管30には、電動弁からなる吸入戻し開閉弁30aが設けられている。   The receiver 10 is depressurized by the first expansion mechanism 5a so as to be able to store surplus refrigerant that is generated in accordance with an operation state such as a difference in the circulation amount of the refrigerant in the refrigerant circuit 2J between the cooling operation and the heating operation. It is the container provided in order to accumulate the refrigerant | coolant after a short time. Therefore, the inlet of the receiver 10 is connected to the receiver inlet pipe 10a, and the outlet thereof is connected to the receiver outlet pipe 10b. The receiver 10 also has a suction return pipe that can extract the refrigerant from the receiver 10 and return it to the suction side of the compression mechanism 3 (that is, the suction ports of the low-pressure compression elements 31e and 32e of the compressors 31 and 32). 30 is connected. The suction return pipe 30 is provided with a suction return on / off valve 30a composed of an electric valve.

エコノマイザ熱交換器12は、熱源側熱交換器4と各利用側熱交換器6aとの間を流れる冷媒とインジェクション管11を流れる冷媒(より具体的には、インジェクション開閉弁11aにおいて中間圧付近まで減圧された後の冷媒)との熱交換を行う熱交換器である。本変形例において、エコノマイザ熱交換器12は、レシーバ入口管10aの第1膨張機構5aの上流側の位置(すなわち、切換機構9aを冷却運転状態にしている際には、熱源側熱交換器4と第1膨張機構5aとの間)を流れる冷媒とインジェクション管11を流れる冷媒との熱交換を行うように設けられており、また、両冷媒が対向するように流れる流路を有している。このエコノマイザ熱交換器12により、熱源側熱交換器4と各利用側熱交換器6aとの間を流れる冷媒は、レシーバ入口管10aにおいて、エコノマイザ熱交換器12にて熱交換される前にインジェクション管11に分岐され、その後に、エコノマイザ熱交換器12において、インジェクション管11を流れる冷媒と熱交換を行うことになる。   The economizer heat exchanger 12 includes a refrigerant flowing between the heat source side heat exchanger 4 and each use side heat exchanger 6a and a refrigerant flowing through the injection pipe 11 (more specifically, to the vicinity of the intermediate pressure in the injection on-off valve 11a). It is a heat exchanger that performs heat exchange with the refrigerant after being depressurized. In this modification, the economizer heat exchanger 12 is positioned upstream of the first expansion mechanism 5a of the receiver inlet pipe 10a (that is, when the switching mechanism 9a is in the cooling operation state, the heat source side heat exchanger 4 And a refrigerant flowing between the first expansion mechanism 5a and the refrigerant flowing through the injection pipe 11, and has a flow path through which both refrigerants face each other. . The economizer heat exchanger 12 causes the refrigerant flowing between the heat source side heat exchanger 4 and each use side heat exchanger 6a to be injected before being heat exchanged in the economizer heat exchanger 12 in the receiver inlet pipe 10a. After branching to the tube 11, the economizer heat exchanger 12 performs heat exchange with the refrigerant flowing through the injection tube 11.

ここで、インジェクション管11は、熱源側熱交換器4と各利用側熱交換器6aとの間を流れる冷媒を分岐して各高圧圧縮要素31d,32dに戻す機能を有している。また、このインジェクション管11には、開度制御が可能なインジェクション開閉弁11aが設けられている。インジェクション開閉弁11aは、電動膨張弁で構成される。   Here, the injection pipe 11 has a function of branching the refrigerant flowing between the heat source side heat exchanger 4 and each use side heat exchanger 6a and returning it to the high pressure compression elements 31d and 32d. The injection pipe 11 is provided with an injection opening / closing valve 11a capable of opening degree control. The injection on / off valve 11a is constituted by an electric expansion valve.

ブリッジ回路13は、熱源側熱交換器4と各利用側熱交換器6aとの間に設けられており、レシーバ10のレシーバ入口管10a及びレシーバ出口管10bに接続されている。ブリッジ回路13は、本変形例において、3つの逆止弁13a,13c,13dと1つの膨張弁13bを有している。そして、入口逆止弁13aは、熱源側熱交換器4からレシーバ入口管10aへの冷媒の流通のみを許容し、入口膨張弁13bは、レシーバ出口管10bから熱源側熱交換器4への冷媒の流通を開閉する。出口逆止弁13cは、レシーバ出口管10bから利用側熱交換器6への冷媒の流通のみを許容し、出口逆止弁13dは、レシーバ出口管10b側からレシーバ入口管10aへの冷媒の流通のみを許容する。   The bridge circuit 13 is provided between the heat source side heat exchanger 4 and each use side heat exchanger 6a, and is connected to the receiver inlet pipe 10a and the receiver outlet pipe 10b of the receiver 10. The bridge circuit 13 has three check valves 13a, 13c, 13d and one expansion valve 13b in this modification. The inlet check valve 13a only allows the refrigerant to flow from the heat source side heat exchanger 4 to the receiver inlet pipe 10a, and the inlet expansion valve 13b is the refrigerant from the receiver outlet pipe 10b to the heat source side heat exchanger 4. Open and close the distribution of The outlet check valve 13c only allows the refrigerant to flow from the receiver outlet pipe 10b to the usage-side heat exchanger 6, and the outlet check valve 13d passes the refrigerant from the receiver outlet pipe 10b to the receiver inlet pipe 10a. Only tolerate.

過冷却熱交換器16は、レシーバ10から各第2膨張機構5cに送られる冷媒を冷却する熱交換器である。より具体的には、過冷却熱交換器16は、冷房運転時に、レシーバ10から各第2膨張機構5cに送られる冷媒の一部を分岐して各圧縮機31,32の吸入側(具体的には、各低圧圧縮要素31e,32eの吸入側)に戻す吸入戻し管16aを流れる冷媒との熱交換を行う熱交換器であり、両冷媒が対向するように流れる流路を有している。ここで、吸入戻し管16aは、放熱器としての熱源側熱交換器4から各第2膨張機構5cに送られる冷媒を分岐して圧縮機構3の吸入側(すなわち、低圧配管p3)に戻す冷媒管である。この吸入戻し管16aには、開度制御が可能な吸入戻し弁16bが設けられており、過冷却熱交換器16において、レシーバ10から各第2膨張機構5cに送られる冷媒と吸入戻し弁16bにおいて低圧付近まで減圧された後の吸入戻し管16aを流れる冷媒との熱交換を行うようになっている。吸入戻し弁16bは、本変形例において、電動膨張弁である。   The supercooling heat exchanger 16 is a heat exchanger that cools the refrigerant sent from the receiver 10 to each second expansion mechanism 5c. More specifically, the supercooling heat exchanger 16 branches a part of the refrigerant sent from the receiver 10 to each of the second expansion mechanisms 5c during the cooling operation, so that the suction side (specifically, the compressors 31 and 32) Is a heat exchanger for exchanging heat with the refrigerant flowing through the suction return pipe 16a returning to the suction side of the low-pressure compression elements 31e, 32e, and has a flow path through which both refrigerants face each other. . Here, the suction return pipe 16a branches the refrigerant sent from the heat source side heat exchanger 4 as a radiator to each second expansion mechanism 5c and returns it to the suction side of the compression mechanism 3 (that is, the low pressure pipe p3). It is a tube. The suction return pipe 16a is provided with a suction return valve 16b whose opening degree can be controlled. In the supercooling heat exchanger 16, the refrigerant sent from the receiver 10 to each second expansion mechanism 5c and the suction return valve 16b. In this case, heat exchange with the refrigerant flowing through the suction return pipe 16a after the pressure is reduced to near low pressure is performed. The suction return valve 16b is an electric expansion valve in this modification.

尚、第1膨張機構5aは、レシーバ入口管10aに設けられた冷媒を減圧する機構であり、本変形例において、電動膨張弁が使用されている。また、本変形例において、第1膨張機構5aは、冷房運転時には、レシーバ10を介して各利用側熱交換器6aに送る前に、熱源側熱交換器4において冷却された高圧の冷媒を冷媒の飽和圧力付近まで減圧する。第1膨張機構5aは、暖房運転時には、レシーバ10を介して熱源側熱交換器4に送る前に、各利用側熱交換器6aにおいて冷却された高圧の冷媒を冷媒の飽和圧力付近まで減圧する。   The first expansion mechanism 5a is a mechanism that depressurizes the refrigerant provided in the receiver inlet pipe 10a, and an electric expansion valve is used in this modification. Further, in the present modification, the first expansion mechanism 5a, during the cooling operation, converts the high-pressure refrigerant cooled in the heat source side heat exchanger 4 into the refrigerant before sending it to each use side heat exchanger 6a via the receiver 10. The pressure is reduced to around the saturation pressure. During the heating operation, the first expansion mechanism 5a depressurizes the high-pressure refrigerant cooled in each use-side heat exchanger 6a to near the saturation pressure of the refrigerant before sending it to the heat source side heat exchanger 4 via the receiver 10. .

第2膨張機構5cは、それぞれ過冷却熱交換器16及び各利用側熱交換器6aの間に設けられている。第2膨張機構5cは、過冷却熱交換器16から流出した冷媒を減圧する機構であり、本変形例において、電動膨張弁が使用されている。   The second expansion mechanism 5c is provided between the subcooling heat exchanger 16 and each use side heat exchanger 6a. The second expansion mechanism 5c is a mechanism that depressurizes the refrigerant that has flowed out of the supercooling heat exchanger 16, and an electric expansion valve is used in this modification.

また、空気調和装置1Jは、上記以外に、中間冷却器7の下流側に設けられた逆止弁7a、切換機構9bと中圧配管p2である吸入側中圧枝管p25,p26との間に設けられた逆止弁9cを備えている。逆止弁7aは、中間冷却器7から各高圧圧縮要素31d,32dへと向かう冷媒の流れのみを許容し、逆止弁9cは、切換機構9bから各高圧圧縮要素31d,32dへと向かう冷媒の流れのみを許容する。更に、空気調和装置1Jは、中圧配管p2である吐出側中圧母管p23と低圧配管p3との間を開閉する電磁弁19a、及び高圧配管p1と中圧配管p2である各吸入側中圧枝管p25,p26との間を開閉する電磁弁19bを備えている。各電磁弁19a,19bは、いずれか一方の圧縮機が停止している状態において、停止圧縮機内の均圧をより確実に保つためのものである。   In addition to the above, the air conditioner 1J includes a check valve 7a provided on the downstream side of the intermediate cooler 7, a switching mechanism 9b, and intermediate pressure pipes p2 and suction side intermediate pressure branch pipes p25 and p26. Is provided with a check valve 9c. The check valve 7a allows only the flow of refrigerant from the intermediate cooler 7 toward the high pressure compression elements 31d and 32d, and the check valve 9c allows the refrigerant to flow from the switching mechanism 9b to the high pressure compression elements 31d and 32d. Only the flow of is allowed. Further, the air conditioner 1J includes an electromagnetic valve 19a that opens and closes between the discharge-side intermediate-pressure mother pipe p23 and the low-pressure pipe p3, which are medium-pressure pipes p2, and each suction-side medium that is the high-pressure pipe p1 and the intermediate-pressure pipe p2. An electromagnetic valve 19b that opens and closes between the pressure branch pipes p25 and p26 is provided. Each solenoid valve 19a, 19b is for maintaining the pressure equalization in the stopped compressor more reliably in a state where any one of the compressors is stopped.

<他の実施形態>
以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
<Other embodiments>
As mentioned above, although embodiment of this invention and its modification were demonstrated based on drawing, specific structure is not restricted to these embodiment and its modification, It changes in the range which does not deviate from the summary of invention. Is possible.

(a)
上述の実施形態及び変形例では、二酸化炭素が冷媒として使用され、超臨界域で作動する二段圧縮式冷凍サイクルが行われる場合について説明した。しかし、本発明の冷凍装置は、超臨界域で作動せずともよく、従って冷媒は、二酸化炭素以外であってもよい。二酸化炭素以外の冷媒としては、R1234等が挙げられる。
(A)
In the above-described embodiment and modification, the case where carbon dioxide is used as the refrigerant and the two-stage compression refrigeration cycle operating in the supercritical region is performed has been described. However, the refrigeration apparatus of the present invention may not operate in the supercritical region, and therefore the refrigerant may be other than carbon dioxide. R1234 etc. are mentioned as refrigerant | coolants other than a carbon dioxide.

(b)
上述の実施形態及び変形例では、一例として、停止圧縮機が圧縮機32である場合について説明した。しかし、本発明では、いずれかの圧縮機31,32が停止し(つまり、停止圧縮機)、他の圧縮機が駆動していればよいため、停止圧縮機は圧縮機31であってもよい。
(B)
In the above-mentioned embodiment and modification, the case where the stop compressor was the compressor 32 was demonstrated as an example. However, in the present invention, since any one of the compressors 31 and 32 is stopped (that is, the stopped compressor) and the other compressor is driven, the stopped compressor may be the compressor 31. .

(c)
上述の実施形態及び変形例では、一例として、圧縮機構3が2台の圧縮機31,32の並列接続によって構成されると説明した。しかし、圧縮機の台数は複数であればよく、従って3台以上の圧縮機が並列接続されることで圧縮機構が構成されていてもよい。
(C)
In the above-described embodiment and modification, as an example, it has been described that the compression mechanism 3 is configured by the parallel connection of the two compressors 31 and 32. However, the number of compressors may be plural, and therefore the compression mechanism may be configured by connecting three or more compressors in parallel.

(d)
上述の実施形態及び変形例A〜Iでは、空気調和装置1,1A〜1Iが冷房運転を行う装置である場合について説明した。つまり、熱源側熱交換器4が冷媒の冷却器、利用側熱交換器6が冷媒の加熱器として機能する場合について説明した。しかし、上記一実施形態及び変形例A〜Iの空気調和装置1,1A〜1Iは、冷房運転ではなく暖房運転のみを行う装置であってもよい。
(D)
In the above-described embodiment and modification examples A to I, the case where the air conditioners 1 and 1A to 1I are devices that perform a cooling operation has been described. That is, the case where the heat source side heat exchanger 4 functions as a refrigerant cooler and the use side heat exchanger 6 functions as a refrigerant heater has been described. However, the air conditioners 1 and 1A to 1I of the above-described embodiment and the modifications A to I may be devices that perform only the heating operation, not the cooling operation.

本発明の冷凍装置は、複数の圧縮部のうちいずれか1つが駆動を停止している停止圧縮部であって、他の圧縮部が駆動している場合において、停止圧縮部の内部を均圧にすることができる。従って、本発明の冷凍装置は、冷媒の圧力を高める複数段の圧縮要素を有する圧縮部が複数並列接続されてなる圧縮機構を有しており、各圧縮部のうちいずれか1つが駆動停止し、他の圧縮機が駆動する装置において適用できる。   The refrigeration apparatus of the present invention is a stop compression unit in which any one of a plurality of compression units stops driving, and when the other compression unit is driven, the inside of the stop compression unit is equalized. Can be. Therefore, the refrigeration apparatus of the present invention has a compression mechanism in which a plurality of compression units having a plurality of stages of compression elements that increase the pressure of the refrigerant are connected in parallel, and any one of the compression units stops driving. It can be applied to devices driven by other compressors.

1 空気調和装置
2 冷媒回路
3 圧縮機構
4 熱源側熱交換器
5 膨張機構
6 利用側熱交換器
7 中間冷却器
8 調整弁
p1 高圧配管
p2 中圧配管
p3 低圧配管
21,22,25,26 油分離機構
21a,22a,25a,26a 油分離器
21b,22b,25b,26b 逆止機構
21c,22c,25c,26c 油戻し管
31,32 圧縮機
31a,32a ドーム
31b,32b 圧縮機駆動モータ
31c,32c 駆動軸
31d,32d 高圧圧縮要素
31e,32e 低圧圧縮要素
31f,32f 第1中圧圧縮要素
31g,32g 第2中圧圧縮要素
81,82 高圧側逆止弁
81I,82I 高圧吐出側逆止弁
83,84 中圧側逆止弁
83A,84A 中圧吐出側閉止弁
83B,84B 中圧吐出側逆止弁
83I,84I 高圧吸入側閉止弁
85,86 低圧側逆止弁
85I,86I 第2中圧吐出側逆止弁
87A,88A 中圧吸入側逆止弁
87B,88B 中圧吸入側閉止弁
87I,88I 第1中圧吐出側逆止弁
89I,90I 第2中圧吸入側逆止弁
91I,92I 低圧吐出側閉止弁
93I,94I 低圧吸入側逆止弁
p41,p42,p43,p44 第1中圧配管
p61,p62,p63,p64 第2中圧配管
p51,p52,p53,p54 第3中圧配管
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Refrigerant circuit 3 Compression mechanism 4 Heat source side heat exchanger 5 Expansion mechanism 6 Use side heat exchanger 7 Intermediate cooler 8 Control valve p1 High pressure piping p2 Medium pressure piping p3 Low pressure piping 21, 22, 25, 26 Oil Separation mechanism 21a, 22a, 25a, 26a Oil separator 21b, 22b, 25b, 26b Check mechanism 21c, 22c, 25c, 26c Oil return pipe 31, 32 Compressor 31a, 32a Dome 31b, 32b Compressor drive motor 31c, 32c Drive shaft 31d, 32d High pressure compression element 31e, 32e Low pressure compression element 31f, 32f First intermediate pressure compression element 31g, 32g Second intermediate pressure compression element 81, 82 High pressure side check valve 81I, 82I High pressure discharge side check valve 83, 84 Medium pressure side check valve 83A, 84A Medium pressure discharge side stop valve 83B, 84B Medium pressure discharge side check valve 83I, 84I High pressure suction side stop valve 85, 6 Low pressure side check valves 85I, 86I Second medium pressure discharge side check valves 87A, 88A Medium pressure suction side check valves 87B, 88B Medium pressure suction side stop valves 87I, 88I First medium pressure discharge side check valves 89I , 90I Second medium pressure suction side check valves 91I, 92I Low pressure discharge side stop valves 93I, 94I Low pressure suction side check valves p41, p42, p43, p44 First medium pressure pipes p61, p62, p63, p64 Second middle Pressure piping p51, p52, p53, p54 Third medium pressure piping

特開2009−133583号公報JP 2009-133583 A

Claims (8)

冷媒の圧力を高める低圧圧縮要素(31e,32e)及び前記低圧圧縮要素よりも更に冷媒の圧力を高める高圧圧縮要素(31d,32d)を有する複数の圧縮部(31,32)が並列接続されてなる圧縮機構(3)と、
冷媒の冷却器または加熱器として機能する熱源側熱交換器(4)と、
冷媒を減圧する膨張機構(5)と、
冷媒の加熱器または冷却器として機能する利用側熱交換器(6)と、
複数の前記圧縮部の前記高圧圧縮要素から吐出された高圧の冷媒が流れる高圧配管(p1)と、
各前記圧縮部における前記高圧圧縮要素と前記低圧圧縮要素とを繋ぎ、中圧の冷媒が流れる中圧配管(p2)と、
複数の前記圧縮部の前記低圧圧縮要素に吸入する低圧の冷媒が流れる低圧配管(p3)と、
複数の前記圧縮部のうちいずれか1つ(以下、停止圧縮部という)が駆動を停止し残りの前記圧縮部が駆動している場合、前記停止圧縮部において、前記高圧配管、前記中圧配管及び前記低圧配管のいずれか1つとのみ冷媒の流れを許容し他の前記配管との間では冷媒の流れが生じないように、前記停止圧縮部と各前記配管との連通状態を調整する調整弁(8)と、
を備える、冷凍装置(1)。
A plurality of compression sections (31, 32) having a low pressure compression element (31e, 32e) for increasing the pressure of the refrigerant and a high pressure compression element (31d, 32d) for increasing the pressure of the refrigerant further than the low pressure compression element are connected in parallel. A compression mechanism (3),
A heat source side heat exchanger (4) functioning as a refrigerant cooler or heater;
An expansion mechanism (5) for depressurizing the refrigerant;
A use side heat exchanger (6) that functions as a refrigerant heater or cooler;
A high-pressure pipe (p1) through which a high-pressure refrigerant discharged from the high-pressure compression elements of the plurality of compression units flows;
An intermediate pressure pipe (p2) that connects the high pressure compression element and the low pressure compression element in each compression section and through which an intermediate pressure refrigerant flows;
A low-pressure pipe (p3) through which a low-pressure refrigerant sucked into the low-pressure compression elements of the plurality of compression sections flows;
When any one of the plurality of compression units (hereinafter referred to as a stop compression unit) stops driving and the remaining compression units are driven, in the stop compression unit, the high pressure pipe and the medium pressure pipe And a regulating valve that adjusts the communication state between the stop compression section and each of the pipes so that only one of the low-pressure pipes allows the flow of the refrigerant and no refrigerant flows between the other pipes. (8) and
A refrigeration apparatus (1).
各前記圧縮部は、1つのドーム内に前記高圧圧縮要素及び前記低圧圧縮要素を収容している圧縮機である、
請求項1に記載の冷凍装置(1)。
Each of the compression units is a compressor that houses the high-pressure compression element and the low-pressure compression element in one dome.
The refrigeration apparatus (1) according to claim 1.
前記停止圧縮部は、前記停止圧縮部の前記高圧圧縮要素または前記低圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止し、
前記調整弁は、前記低圧配管から前記停止圧縮部に向かう冷媒の流れのみを許容する低圧側逆止弁(85,86)を有する、
請求項1または2に記載の冷凍装置(1)。
The stop compression unit stops driving in a state where the refrigerant discharged from the high pressure compression element or the low pressure compression element of the stop compression unit is filled in the dome,
The regulating valve has a low pressure side check valve (85, 86) that allows only a flow of refrigerant from the low pressure pipe toward the stop compression unit,
The refrigeration apparatus (1) according to claim 1 or 2.
前記停止圧縮部は、前記停止圧縮部の前記低圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止し、
前記調整弁は、
前記中圧配管において、前記停止圧縮部の前記低圧圧縮要素から前記高圧圧縮要素に向かう冷媒の流れのみを許容する中圧側逆止弁(83,84)と、
前記停止圧縮部から前記高圧配管に向かう冷媒の流れのみを許容する高圧側逆止弁(81,82)と、
を更に有する、
請求項3に記載の冷凍装置(1)。
The stop compression unit stops driving in a state where the refrigerant discharged from the low pressure compression element of the stop compression unit is filled in the dome,
The regulating valve is
An intermediate pressure check valve (83, 84) that allows only the flow of refrigerant from the low pressure compression element to the high pressure compression element of the stop compression section in the intermediate pressure pipe;
High pressure side check valves (81, 82) that allow only the flow of refrigerant from the stop compression section toward the high pressure pipe;
Further having
The refrigeration apparatus (1) according to claim 3.
前記調整弁は、
冷媒の圧力関係によって、前記停止圧縮部が駆動を停止している状態時に冷媒の流出する方向が前記停止圧縮部の駆動状態時と同じとなる前記中圧配管に設けられた閉止弁(83A,84A,83D,84D,83G,84G,87B,88B,87E,88E,87H,88H)、
を更に有する、
請求項1〜3のいずれか1項に記載の冷凍装置(1)。
The regulating valve is
A stop valve (83A, 83A) provided in the intermediate pressure pipe in which the direction in which the refrigerant flows out in the state where the stop compression unit stops driving is the same as that in the drive state of the stop compression unit due to the pressure relationship of the refrigerant. 84A, 83D, 84D, 83G, 84G, 87B, 88B, 87E, 88E, 87H, 88H),
Further having
The refrigeration apparatus (1) according to any one of claims 1 to 3.
前記閉止弁は、前記停止圧縮部が、前記高圧圧縮要素から吐出される冷媒がそのドーム内に充満した状態で駆動を停止する場合、または前記低圧側吸入管から吸入される冷媒がそのドーム内に充満した状態で駆動を停止する場合に、前記中圧配管に設けられる、
請求項5に記載の冷凍装置(1)。
The stop valve is configured such that when the stop compression unit stops driving in a state where the refrigerant discharged from the high pressure compression element is filled in the dome, or the refrigerant sucked from the low pressure side suction pipe is in the dome. Provided in the intermediate pressure pipe when the drive is stopped in a state where
The refrigeration apparatus (1) according to claim 5.
冷媒の圧力を高める低圧圧縮要素(31e,32e)、前記低圧圧縮要素よりも更に冷媒の圧力を高める中圧圧縮要素(31f,32f,31g,32g)、及び前記中圧圧縮要素よりも更に冷媒の圧力を高める高圧圧縮要素(31d,32d)を有する複数の圧縮部が並列接続されてなる圧縮機構(3I)と、
冷媒の冷却器または加熱器として機能する熱源側熱交換器(4)と、
冷媒を減圧する膨張機構(5)と、
冷媒の加熱器または冷却器として機能する利用側熱交換器(6)と、
複数の前記圧縮部の前記高圧圧縮要素から吐出された高圧の冷媒が流れる高圧配管(p1)と、
各前記圧縮部における前記中圧圧縮要素と前記高圧圧縮要素とを繋ぐ第1中圧配管(p41,p42,p43,p44)と、
各前記圧縮部における前記中圧圧縮要素と前記低圧圧縮要素とを繋ぐ第2中圧配管(p61,p62,p63,p64)と、
複数の前記圧縮部の前記低圧圧縮要素に吸入する低圧の冷媒が流れる低圧配管(p3)と、
複数の前記圧縮部のうちいずれか1つ(以下、停止圧縮機という)が駆動を停止し残りの前記圧縮部が駆動している場合、前記停止圧縮部において、前記高圧配管、前記第1中圧配管、前記第2中圧配管及び前記低圧配管のいずれか1つとのみ冷媒の流れを許容し他の前記配管との間では冷媒の流れが生じないように、前記停止圧縮部と各前記配管との連通状態を調整する調整弁(8I)と、
を備える、冷凍装置(1I)。
Low pressure compression elements (31e, 32e) for increasing the pressure of the refrigerant, intermediate pressure compression elements (31f, 32f, 31g, 32g) for increasing the pressure of the refrigerant further than the low pressure compression elements, and refrigerant further than the intermediate pressure compression elements A compression mechanism (3I) in which a plurality of compression sections having high-pressure compression elements (31d, 32d) for increasing the pressure of
A heat source side heat exchanger (4) functioning as a refrigerant cooler or heater;
An expansion mechanism (5) for depressurizing the refrigerant;
A use side heat exchanger (6) that functions as a refrigerant heater or cooler;
A high-pressure pipe (p1) through which a high-pressure refrigerant discharged from the high-pressure compression elements of the plurality of compression units flows;
A first intermediate pressure pipe (p41, p42, p43, p44) connecting the intermediate pressure compression element and the high pressure compression element in each compression section;
A second intermediate pressure pipe (p61, p62, p63, p64) connecting the intermediate pressure compression element and the low pressure compression element in each compression section;
A low-pressure pipe (p3) through which a low-pressure refrigerant sucked into the low-pressure compression elements of the plurality of compression sections flows;
When any one of the plurality of compression units (hereinafter referred to as a stop compressor) stops driving and the remaining compression units are driven, in the stop compression unit, the high pressure pipe, the first medium The stop compression section and each of the pipes so that the refrigerant flows only between one of the pressure pipe, the second intermediate pressure pipe, and the low-pressure pipe and does not flow between the other pipes. An adjustment valve (8I) for adjusting the communication state with
A refrigeration apparatus (1I).
前記圧縮部は、複数の前記中圧圧縮要素を有し、
各前記圧縮部の前記中圧圧縮要素同士を繋ぐ1または複数の第3中圧配管(p51,p52,p53,p54)、
を更に備え、
前記調整弁は、前記停止圧縮部において、前記高圧配管、前記第1中圧配管、前記第2中圧配管、前記低圧配管、及び1または複数の前記第3中圧配管のいずれか1つとのみ冷媒の流れを許容し他の前記配管との間では冷媒の流れが生じないように、前記停止圧縮部と各前記配管との連通状態を調整する、
請求項7に記載の冷凍装置(1I)。
The compression unit has a plurality of the intermediate pressure compression elements,
One or a plurality of third intermediate pressure pipes (p51, p52, p53, p54) that connect the intermediate pressure compression elements of each compression section;
Further comprising
The regulating valve is only one of the high pressure pipe, the first medium pressure pipe, the second medium pressure pipe, the low pressure pipe, and one or a plurality of the third medium pressure pipes in the stop compression unit. Adjusting the communication state between the stop compression unit and each of the pipes so that the refrigerant flow is allowed and no refrigerant flows between the pipes;
The refrigeration apparatus (1I) according to claim 7.
JP2010081726A 2010-03-31 2010-03-31 Refrigerating device Pending JP2011214758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081726A JP2011214758A (en) 2010-03-31 2010-03-31 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081726A JP2011214758A (en) 2010-03-31 2010-03-31 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2011214758A true JP2011214758A (en) 2011-10-27

Family

ID=44944688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081726A Pending JP2011214758A (en) 2010-03-31 2010-03-31 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2011214758A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122769A (en) * 2012-12-21 2014-07-03 Daikin Ind Ltd Refrigeration apparatus
JP2016128732A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Refrigeration machine
EP3090220A4 (en) * 2013-11-25 2017-08-02 The Coca-Cola Company Compressor with an oil separator
EP3859232A4 (en) * 2018-09-28 2021-10-27 Daikin Industries, Ltd. Multistage compression system
EP3859234A4 (en) * 2018-09-28 2021-11-03 Daikin Industries, Ltd. Multistage compression system
US11428225B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11994127B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Multistage compression system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207982A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Refrigerating apparatus and refrigerator
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2009133584A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207982A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Refrigerating apparatus and refrigerator
JP2009133585A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2009133584A (en) * 2007-11-30 2009-06-18 Daikin Ind Ltd Refrigerating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122769A (en) * 2012-12-21 2014-07-03 Daikin Ind Ltd Refrigeration apparatus
EP3090220A4 (en) * 2013-11-25 2017-08-02 The Coca-Cola Company Compressor with an oil separator
JP2016128732A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Refrigeration machine
EP3859232A4 (en) * 2018-09-28 2021-10-27 Daikin Industries, Ltd. Multistage compression system
EP3859234A4 (en) * 2018-09-28 2021-11-03 Daikin Industries, Ltd. Multistage compression system
US11415342B2 (en) 2018-09-28 2022-08-16 Daikin Industries, Ltd. Multistage compression system
US11428226B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11428225B2 (en) 2018-09-28 2022-08-30 Daikin Industries, Ltd. Multistage compression system
US11994127B2 (en) 2018-09-28 2024-05-28 Daikin Industries, Ltd. Multistage compression system

Similar Documents

Publication Publication Date Title
US9103571B2 (en) Refrigeration apparatus
JP4013981B2 (en) Refrigeration air conditioner
JP2011214758A (en) Refrigerating device
JP2007255889A (en) Refrigerating air conditioning device
JP2003279179A (en) Refrigerating air conditioning device
WO2010052853A1 (en) Refrigeration device
EP3534082B1 (en) Air conditioner
WO2020071299A1 (en) Refrigeration cycle device
KR20130046055A (en) Air conditioner
WO2012120868A1 (en) Air conditioner
WO2019093420A1 (en) Heat pump
JP6253370B2 (en) Refrigeration cycle equipment
JP5895662B2 (en) Refrigeration equipment
WO2013099895A1 (en) Refrigeration device
KR100526204B1 (en) A refrigerator
KR20180093570A (en) Air conditioner
JP5573302B2 (en) Refrigeration equipment
JP2009257704A (en) Refrigerating apparatus
JP2011214757A5 (en)
JP2014001916A (en) Refrigeration cycle device
JP6916716B2 (en) heat pump
JP2014126324A (en) Refrigeration device
JP6354209B2 (en) Refrigeration equipment
JP7190408B2 (en) Refrigerator renewal method and air conditioner renewal method
WO2015122167A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311