JP2011214039A - Method for producing sputtering target material - Google Patents
Method for producing sputtering target material Download PDFInfo
- Publication number
- JP2011214039A JP2011214039A JP2010081434A JP2010081434A JP2011214039A JP 2011214039 A JP2011214039 A JP 2011214039A JP 2010081434 A JP2010081434 A JP 2010081434A JP 2010081434 A JP2010081434 A JP 2010081434A JP 2011214039 A JP2011214039 A JP 2011214039A
- Authority
- JP
- Japan
- Prior art keywords
- target material
- sputtering target
- group
- powder
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、スパッタリング法にて薄膜を形成するために用いられるスパッタリングターゲット材の製造方法に関する。本発明は、磁性を有する合金材料から成り、例えば、磁気記録媒体や光磁気(MO)記録媒体の製造に利用され、高い磁場透過率(PTF)を有するスパッタリングターゲットの製造方法に関するものである。 The present invention relates to a method for producing a sputtering target material used for forming a thin film by a sputtering method. The present invention relates to a method for manufacturing a sputtering target which is made of an alloy material having magnetism and is used for manufacturing, for example, a magnetic recording medium or a magneto-optical (MO) recording medium and having a high magnetic field transmittance (PTF).
例えば、スパッタリングターゲット材は、金属、合金、半導体、セラミックス、誘電体、強誘電体あるいはサーメットの薄膜を形成するために広く利用されている。スパッタリングプロセスにおいて、物質源に、すなわち、スパッタリングターゲットに、プラズマから発生するイオンによる衝撃が加わると、そのイオンが、スパッタリングターゲット表面から原子又は分子を取除くまたははじき出し、はじき出された原子又は分子は、基板上に堆積されて薄膜被覆を形成する。スパッタリングは、薄膜のデータおよび情報記録検索媒体(例えば、磁気および光磁気(MO)媒体等)の製造において、下地層、中間層、磁気層、誘電体層あるいは保護膜層の形成に広く利用されている。 For example, sputtering target materials are widely used for forming thin films of metals, alloys, semiconductors, ceramics, dielectrics, ferroelectrics or cermets. In the sputtering process, when a material source, that is, a sputtering target, is bombarded with ions generated from a plasma, the ions remove or eject atoms or molecules from the surface of the sputtering target, and the ejected atoms or molecules are: Deposited on the substrate to form a thin film coating. Sputtering is widely used for the formation of underlayers, intermediate layers, magnetic layers, dielectric layers or protective film layers in the manufacture of thin film data and information recording and retrieval media (eg, magnetic and magneto-optical (MO) media, etc.). ing.
なお、これら磁気記録媒体の軟磁性下地層(SULs)や磁気的に強い記録層の成膜には、一般にマグネトロンスパッタリング法が用いられている。このマグネトロンスパッタリング法とは、スパッタリングターゲット材の背後に磁石を配置し、スパッタリングターゲット材の表面に磁場を透過させて、その透過磁場にプラズマを収束させることにより高速成膜を可能とするスパッタリング法である。 In general, magnetron sputtering is used to form soft magnetic underlayers (SULs) and magnetically strong recording layers of these magnetic recording media. This magnetron sputtering method is a sputtering method that enables high-speed film formation by placing a magnet behind the sputtering target material, allowing the magnetic field to pass through the surface of the sputtering target material, and converging the plasma to the transmitted magnetic field. is there.
例えば、磁気記録媒体の軟磁性下地層(SULs)や磁気的に強い記録層の形成に利用される合金は一般に透磁率が高い。すなわち、純Coスパッタリングターゲット材において、結晶構造を制御することで純Coスパッタリングターゲット材の透磁率を下げ、スパッタリングターゲット材の表面にマグネトロンスパッタリング法に必要十分な透過磁場を形成することが記載されている(例えば、特許文献1参照。)。また、低温での固化成形時に歪を与えることでスパッタリングターゲット材の透磁率を下げ、スパッタリングターゲット材の表面にマグネトロンスパッタリング法に必要十分な透過磁場を形成することが記載されている(例えば、特許文献2参照。)。 For example, alloys used to form soft magnetic underlayers (SULs) of magnetic recording media and magnetically strong recording layers generally have high magnetic permeability. That is, it is described that in a pure Co sputtering target material, the permeability of the pure Co sputtering target material is lowered by controlling the crystal structure, and a transmission magnetic field necessary and sufficient for the magnetron sputtering method is formed on the surface of the sputtering target material. (For example, refer to Patent Document 1). Further, it is described that the magnetic permeability of the sputtering target material is lowered by applying distortion during solidification molding at a low temperature, and a transmission magnetic field necessary and sufficient for the magnetron sputtering method is formed on the surface of the sputtering target material (for example, patents). Reference 2).
上述したマグネトロンスパッタリング法は、スパッタリングターゲット材のスパッタ表面に磁場を透過させることに特徴があるため、磁気記録媒体の軟磁性下地層(SULs)や磁気的に強い記録層の形成に利用される磁性合金のようなスパッタリングターゲット材自身の透磁率が高い場合には、スパッタリングターゲット材のスパッタ表面にマグネトロンスパッタリング法に必要十分な透過磁場を形成するのが難しくなる。そこで、本発明が解決しようとする課題は、マグネトロンスパッタリング法におけるスパッタリングターゲット材自身の透磁率を極力低減する方法を提供することである。なお、スパッタリングターゲット材の作製方法は、粉末を、熱間で固化成形する方法が一般的である。 The magnetron sputtering method described above is characterized in that a magnetic field is transmitted through the sputtering surface of the sputtering target material, so that the magnetic material used for forming soft magnetic underlayers (SULs) and magnetically strong recording layers of magnetic recording media. When the magnetic permeability of the sputtering target material itself such as an alloy is high, it becomes difficult to form a transmission magnetic field necessary and sufficient for the magnetron sputtering method on the sputtering surface of the sputtering target material. Therefore, the problem to be solved by the present invention is to provide a method for reducing the magnetic permeability of the sputtering target material itself in the magnetron sputtering method as much as possible. As a method for producing a sputtering target material, a method of solidifying and forming a powder hot is common.
透磁率を低減する手法の一例として、特許文献1のように、純Coスパッタリングターゲット材において、結晶構造を制御することで、透磁率を低減するという方法がある。しかし、特許文献1の方法は純Coスパッタリングターゲット材にのみ適応でき、結晶構造の変わるCoを主成分とする材料、またはCo以外の材料には適用できない。また、特許文献2のように、粉末の低温での固化成形時に歪を与えることで透磁率を低減するというような方法がある。しかし、この特許文献2の方法は、歪が回復する温度には適用できないという問題があった。 As an example of a technique for reducing the magnetic permeability, there is a method of reducing the magnetic permeability by controlling the crystal structure in a pure Co sputtering target material as disclosed in Patent Document 1. However, the method of Patent Document 1 can be applied only to a pure Co sputtering target material, and cannot be applied to a material whose main component is Co whose crystal structure changes or a material other than Co. Further, as in Patent Document 2, there is a method in which the magnetic permeability is reduced by applying strain at the time of solidification molding of the powder at a low temperature. However, the method of Patent Document 2 has a problem that it cannot be applied to a temperature at which strain is recovered.
上述したような問題を解消するために、発明者らは鋭意検討した結果、鋳造法や粉末冶金法で得られるスパッタリングターゲット材に対し、熱処理を施すことで歪を与え、結晶構造やスパッタリングターゲット組成、または温度によらず、スパッタリングターゲット材自身の透磁率を低減出来ることを見出し、本発明に到達した。 In order to solve the above-mentioned problems, the inventors have intensively studied. As a result, the sputtering target material obtained by the casting method or the powder metallurgy method is distorted by heat treatment, and the crystal structure and the sputtering target composition. The inventors have found that the magnetic permeability of the sputtering target material itself can be reduced regardless of the temperature, and have reached the present invention.
すなわち、上記の課題を解決するための本発明の手段は、鋳造法や粉末冶金法で作製したスパッタリングターゲット材であって、周期律表の8A族の4周期の元素であるFe、Co、Niからなる、あるいは8A族の4周期の元素のFe、Co、Niから選択した1つ以上の元素で、その合計が60at.%以上である元素を主成分とし、これとAl、Ag、Au、B、C、Ce、Cr、Cu、Ga、Ge、Dy、Gd、Hf、In、La、Mn、Mo、Nb、Nd、P、Pd、Pt、Ru、Si、Sm、Sn、Ta、Ti、V、W、Y、Zn、およびZrから成る元素群から選択した少なくとも主成分以外の1つの元素および不可避的不純物からなる、スパッタリングターゲット材の素材を鋳造であるいは粉末を熱間で成形し、その後に冷却した成形体を、さらに機械加工により所定の寸法に加工してスパッタリングターゲット材とする。さらに、このスパッタリングターゲット材を室温から500〜900℃の温度まで加熱し、その後2160〜540000℃/hrの冷却速度で、上記の加熱温度から室温近傍まで冷却することを特徴とするマグネトロンスパッタリング用のスパッタリングターゲット材の製造方法である。 That is, the means of the present invention for solving the above problems is a sputtering target material produced by a casting method or a powder metallurgy method, and is Fe, Co, Ni, which is an element of group 4A of the 8A group of the periodic table. Or one or more elements selected from Fe, Co, and Ni, which are four-period elements of Group 8A, and the total is 60 at. %, And Al, Ag, Au, B, C, Ce, Cr, Cu, Ga, Ge, Dy, Gd, Hf, In, La, Mn, Mo, Nb, Nd, Consisting of at least one element other than the main component selected from the element group consisting of P, Pd, Pt, Ru, Si, Sm, Sn, Ta, Ti, V, W, Y, Zn, and Zr, and inevitable impurities, The raw material of the sputtering target material is cast or powder is hot-formed, and then the cooled compact is further machined to a predetermined size to obtain a sputtering target material. Furthermore, the sputtering target material is heated from room temperature to a temperature of 500 to 900 ° C., and then cooled from the above heating temperature to the vicinity of room temperature at a cooling rate of 2160 to 540000 ° C./hr. It is a manufacturing method of a sputtering target material.
本発明は、周期律表の8A族の4周期の元素であるFe、Co、Niからなる、あるいは周期律表の8A族の4周期の元素のFe、Co、Niを主成分とし、これとAl、Ag、Au、B、C、Ce、Cr、Cu、Ga、Ge、Dy、Gd、Hf、In、La、Mn、Mo、Nb、Nd、P、Pd、Pt、Ru、Si、Sm、Sn、Ta、Ti、V、W、Y、ZnおよびZrから成る元素群から選択した少なくとも主成分以外の1つの元素からなる、スパッタリングターゲット材の素材から鋳造あるいは素材の粉末の熱間成形し、さらに冷却した上で熱処理を行うことで、安定なマグネトロンスパッタリングを行うに必要十分な透過磁場を形成することのできる磁性スパッタリングターゲット材を製造できる。 The present invention is composed of Fe, Co, Ni, which are elements of the 4A group of the periodic table 8A, or Fe, Co, Ni, which is the element of the 4A group of the periodic table 8A group, Al, Ag, Au, B, C, Ce, Cr, Cu, Ga, Ge, Dy, Gd, Hf, In, La, Mn, Mo, Nb, Nd, P, Pd, Pt, Ru, Si, Sm, Casting from the material of the sputtering target material or hot forming of the powder of the material, comprising at least one element other than the main component selected from the element group consisting of Sn, Ta, Ti, V, W, Y, Zn and Zr, Further, by performing heat treatment after cooling, a magnetic sputtering target material capable of forming a transmission magnetic field necessary and sufficient for performing stable magnetron sputtering can be manufactured.
以下、本発明について詳細に説明する。
周期律表の8A族の4周期の元素のFe、Co、Niからなる、あるいは周期律表の8A族の4周期の元素のFe、Co、Niを主成分とし、これとAl、Ag、Au、B、C、Ce、Cr、Co、Cu、Ga、Ge、Dy、Fe、Gd、Hf、In、La、Mn、Mo、Nb、Nd、Ni、P、Pd、Pt、Ru、Si、Sm、Sn、Ta、Ti、V、W、Y、ZnおよびZrから成る元素群から選択した少なくとも1つの元素および不可避的不純物とからなり、上記の主成分である元素が少なくとも60at.%からなる素材を、鋳造法では、それぞれ真空溶解した後、鋳込んで成形し、あるいは、粉末冶金法では、素材となるそれぞれの粉末を、HIPすなわち熱間等方圧プレス法や、アップセット法や、熱間押し出し法などの熱間で成形して冷却し、これらの成形体を機械加工により所定の寸法に加工してスパッタリングターゲット材とする。
Hereinafter, the present invention will be described in detail.
It consists of Fe, Co, Ni of the 4th group element of the 8A group of the periodic table, or Fe, Co, Ni of the 4th group element of the 8A group of the periodic table as the main components, and Al, Ag, Au B, C, Ce, Cr, Co, Cu, Ga, Ge, Dy, Fe, Gd, Hf, In, La, Mn, Mo, Nb, Nd, Ni, P, Pd, Pt, Ru, Si, Sm , Sn, Ta, Ti, V, W, Y, Zn and at least one element selected from the element group consisting of Zn and Zr and unavoidable impurities, and the element as the main component is at least 60 at. In the casting method, each material is made by vacuum melting and then cast and molded, or in the powder metallurgy method, each powder as the material is HIP, that is, hot isostatic pressing method or upset And hot forming such as a hot extrusion method or the like, and cooling, and these formed bodies are machined into predetermined dimensions to obtain a sputtering target material.
本発明では、この成形品を、さらに500〜900℃まで加熱した後、空冷または水冷により、冷却速度2160〜540000℃/hrとして室温まで冷却してスパッタリングターゲット材とする製造法である。この方法における上述の冷却速度は、その冷却方法とスパッタリングターゲット材の寸法とに依存する。本発明の上述の製造方法では、急冷することによりスパッタリングターゲット材に歪を与えて、透磁率を低減することができる。上述の加熱する温度の条件を500℃以上とした理由は、500℃未満では十分な急冷効果が得られないためである。また、その加熱温度の条件を900℃以下とした理由は、900℃を上回る温度では、高い透磁率の化合物が形成されることにより特性が悪化するので、900℃以下として特性悪化を防止するためである。例えばCoとFeの粉末からなるスパッタリングターゲット材の場合に、900℃を上回る温度までスパッタリングターゲット材を加熱すると、高い透磁率を持つCo−Fe合金が形成され、歪による透磁率の減少効果が打ち消されるためである。 In the present invention, the molded product is further heated to 500 to 900 ° C., and then cooled to room temperature at a cooling rate of 2160 to 540000 ° C./hr by air cooling or water cooling to obtain a sputtering target material. The aforementioned cooling rate in this method depends on the cooling method and the dimensions of the sputtering target material. In the above-described manufacturing method of the present invention, the magnetic permeability can be reduced by distorting the sputtering target material by rapid cooling. The reason why the above-mentioned heating temperature condition is 500 ° C. or more is that if the temperature is less than 500 ° C., a sufficient quenching effect cannot be obtained. The reason for setting the heating temperature to 900 ° C. or lower is that the properties deteriorate due to the formation of a compound having a high magnetic permeability at temperatures exceeding 900 ° C. It is. For example, in the case of a sputtering target material made of Co and Fe powder, if the sputtering target material is heated to a temperature exceeding 900 ° C., a Co—Fe alloy having a high magnetic permeability is formed, and the effect of reducing the magnetic permeability due to strain is negated. Because it is.
以下、本発明について、実施例によって具体的に説明する。なお、スパッタリングターゲット材の透過磁場の多少は、スパッタリングターゲット材の透磁率に起因するものであることから、本発明においては、透磁率の測定によりスパッタリングターゲット材の透過磁場の評価を行うことにした。一方、透磁率は歪により敏感に変化する。すなわち、歪が多いと透磁率は大きく下がり、歪が少ないと透磁率は小さく下がる。そこで、透磁率の測定方法として、スパッタリングターゲット材を機械加工により外径15mm、内径10mm、高さ5mmのリング試験片に作製し、B−Hトレーサーにて印加磁場8kA/mにて透磁率を測定した。透磁率が低いと透過磁場が多くなり、透磁率が高いと透過磁場は少なくなる。周期律表の8A族の4周期の元素のFe、Co、Niからなる素材、あるいは周期律表の8A族の4周期の元素のFe、Co、Niの少なくとも1つを主成分とし、これとAl、Ag、Au、B、C、Ce、Cr、Co、Cu、Ga、Ge、Dy、Fe、Gd、Hf、In、La、Mn、Mo、Nb、Nd、Ni、P、Pd、Pt、Ru、Si、Sm、Sn、Ta、Ti、V、W、Y、ZnおよびZrから成る元素群から選択した少なくとも1つの元素とからなり、主成分が少なくとも60at.%以上である素材を原料とし、表1−1、表1−2、表2−1、表2−2、表3−1、表3−2、表4−1、表4−2、表4−1、表4−1、表6−1、表6−2、表7−1および表7−2に示す加熱温度に加熱し、この加熱温度から冷却方法に示す空冷、水冷、徐冷のいずれかで冷却する熱処理を施した。なお、実施例1〜60、実施例69〜128、実施例136〜195、実施例204〜263、実施例272〜331、実施例340〜399、実施例408〜413および実施例420〜425は本発明の実施例であり、比較例61〜68、比較例129〜135、比較例196〜203、比較例264〜271、比較例332〜339、比較例400〜407、比較例414〜419および比較例426〜431は本発明に対する比較例である。このうち表1−1から表3−2までおよび表7−1は粉末冶金法により作製したターゲット材で、表4−1から表6−2までおよび表7−2は鋳造法により作製したターゲット材である。なお、比較例は、加熱温度あるいは冷却速度の少なくとも1つの条件が本発明の条件から外れているものである。 Hereinafter, the present invention will be specifically described by way of examples. Since some of the transmission magnetic field of the sputtering target material is caused by the magnetic permeability of the sputtering target material, in the present invention, the transmission magnetic field of the sputtering target material was evaluated by measuring the magnetic permeability. . On the other hand, the magnetic permeability changes sensitively with strain. That is, when the strain is large, the magnetic permeability is greatly reduced, and when the strain is small, the magnetic permeability is decreased. Therefore, as a method for measuring the magnetic permeability, a sputtering target material was produced by machining into a ring test piece having an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm, and the magnetic permeability was adjusted with a BH tracer at an applied magnetic field of 8 kA / m. It was measured. When the magnetic permeability is low, the transmitted magnetic field increases, and when the magnetic permeability is high, the transmitted magnetic field decreases. A material composed of Fe, Co, Ni of the 4th periodic element of the 8A group of the periodic table, or at least one of Fe, Co, Ni of the 4th periodic element of the 8A group of the periodic table, and Al, Ag, Au, B, C, Ce, Cr, Co, Cu, Ga, Ge, Dy, Fe, Gd, Hf, In, La, Mn, Mo, Nb, Nd, Ni, P, Pd, Pt, It consists of at least one element selected from the element group consisting of Ru, Si, Sm, Sn, Ta, Ti, V, W, Y, Zn and Zr, and the main component is at least 60 at. %, And the raw material is Table 1-1, Table 1-2, Table 2-1, Table 2-2, Table 3-1, Table 3-2, Table 4-1, Table 4-2, Table. 4-1, Table 4-1, Table 6-1, Table 6-2, Table 7-1 and Table 7-2 are heated to the heating temperatures shown in FIG. The heat processing which cools by any of these was given. Examples 1 to 60, Examples 69 to 128, Examples 136 to 195, Examples 204 to 263, Examples 272 to 331, Examples 340 to 399, Examples 408 to 413, and Examples 420 to 425 are Examples of the present invention, comparative examples 61-68, comparative examples 129-135, comparative examples 196-203, comparative examples 264-271, comparative examples 332-339, comparative examples 400-407, comparative examples 414-419 and Comparative examples 426 to 431 are comparative examples for the present invention. Among these, Table 1-1 to Table 3-2 and Table 7-1 are target materials prepared by the powder metallurgy method, and Table 4-1 to Table 6-2 and Table 7-2 are targets prepared by the casting method. It is a material. In the comparative example, at least one condition of the heating temperature or the cooling rate is out of the condition of the present invention.
いずれのターゲット材も上述の加熱および冷却による熱処理後は表面を研磨している。なお、成形時の上述の冷却速度は、サーモトレーサーにて成形温度から300℃までの温度履歴を評価することで算出した。 Each target material has its surface polished after the heat treatment by heating and cooling described above. In addition, the above-mentioned cooling rate at the time of shaping | molding was computed by evaluating the temperature history from shaping | molding temperature to 300 degreeC with a thermo tracer.
比較例65は800℃に加熱し、冷却速度2000℃/hrで徐冷して熱処理し、透磁率が199であったのに対し、これと同一のスパッタリングターゲット組成である実施例41は800℃に加熱し、冷却速度を2160℃/hrで空冷して熱処理したもので、透磁率は157と低下しており、したがって透過磁場は多くなっている。一方、実施例60は800℃で加熱し、冷却速度540000℃/hrで水冷して熱処理したもので、透磁率は127と低下し、透過磁場はさらに多くなって改善されている。さらに、比較例66は950℃に加熱し、冷却速度540000℃/hrで水冷して熱処理し、透磁率は197となっているのに対し、実施例59は900℃に加熱し、冷却速度540000℃/hrで水冷して熱処理したもので、透磁率が129と改善されている。さらに、同一のスパッタリングターゲット組成である比較例68と実施例40において、比較例68は400℃に加熱し、冷却速度2160℃/hrで水冷して熱処理し、透磁率が199となっているのに対し、実施例40は500℃に加熱し、冷却速度2160℃/hrで空冷して熱処理したもので、透磁率が159と改善されている。 Comparative Example 65 was heated to 800 ° C., slowly cooled at a cooling rate of 2000 ° C./hr and heat-treated, and the magnetic permeability was 199, whereas Example 41 having the same sputtering target composition was 800 ° C. And the heat treatment was performed by air cooling at a cooling rate of 2160 ° C./hr and the magnetic permeability decreased to 157, and thus the transmitted magnetic field increased. On the other hand, Example 60 was heated at 800 ° C., water-cooled at a cooling rate of 540000 ° C./hr, and heat-treated. The magnetic permeability decreased to 127 and the transmitted magnetic field was further increased and improved. Further, Comparative Example 66 was heated to 950 ° C., heat-cooled by water cooling at a cooling rate of 540000 ° C./hr, and the magnetic permeability was 197, whereas Example 59 was heated to 900 ° C. and the cooling rate was 540000. It is heat-treated by cooling with water at ° C./hr, and the magnetic permeability is improved to 129. Furthermore, in Comparative Example 68 and Example 40 having the same sputtering target composition, Comparative Example 68 is heated to 400 ° C., heat-cooled with water at a cooling rate of 2160 ° C./hr, and has a magnetic permeability of 199. On the other hand, Example 40 was heated to 500 ° C., air-cooled at a cooling rate of 2160 ° C./hr and heat-treated, and the magnetic permeability was improved to 159.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081434A JP5467641B2 (en) | 2010-03-31 | 2010-03-31 | Method for producing sputtering target material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010081434A JP5467641B2 (en) | 2010-03-31 | 2010-03-31 | Method for producing sputtering target material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011214039A true JP2011214039A (en) | 2011-10-27 |
JP5467641B2 JP5467641B2 (en) | 2014-04-09 |
Family
ID=44944091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010081434A Expired - Fee Related JP5467641B2 (en) | 2010-03-31 | 2010-03-31 | Method for producing sputtering target material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5467641B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031441A (en) * | 2010-07-28 | 2012-02-16 | Ishifuku Metal Ind Co Ltd | METHOD FOR MANUFACTURING Fe/Co-Pt BASED SINTERED ALLOY |
WO2013001943A1 (en) * | 2011-06-30 | 2013-01-03 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME |
CN106282944A (en) * | 2016-08-31 | 2017-01-04 | 北京埃德万斯离子束技术研究所股份有限公司 | Multielement alloy firm resistance and preparation method and multielement target |
JP2020125508A (en) * | 2019-02-01 | 2020-08-20 | 住友金属鉱山株式会社 | Sputtering target and electrode film |
US10760156B2 (en) | 2017-10-13 | 2020-09-01 | Honeywell International Inc. | Copper manganese sputtering target |
JP2021042437A (en) * | 2019-09-11 | 2021-03-18 | 日本電産株式会社 | Soft magnetic alloy, magnetic core |
US11035036B2 (en) | 2018-02-01 | 2021-06-15 | Honeywell International Inc. | Method of forming copper alloy sputtering targets with refined shape and microstructure |
WO2021141043A1 (en) * | 2020-01-06 | 2021-07-15 | 山陽特殊製鋼株式会社 | Sputtering target material |
EP4012746A1 (en) * | 2020-12-08 | 2022-06-15 | Materion Advanced Materials Germany GmbH | Cozrta(x) sputtering target with improved magnetic properties |
WO2022122525A3 (en) * | 2020-12-08 | 2022-08-11 | Materion Advanced Materials Germany Gmbh | Cozrta(x) sputtering target with improved magnetic properties |
EP4079879A1 (en) * | 2021-04-20 | 2022-10-26 | Materion Advanced Materials Germany GmbH | Cozrta(x) sputtering target with improved magnetic properties |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6071667U (en) * | 1983-10-21 | 1985-05-21 | オリンパス光学工業株式会社 | Target for sputtering |
JPH03115563A (en) * | 1989-09-27 | 1991-05-16 | Nippon Mining Co Ltd | Production of sputtering target material |
JPH03115564A (en) * | 1989-09-27 | 1991-05-16 | Nippon Mining Co Ltd | Production of sputtering target material |
JPH05295537A (en) * | 1992-04-23 | 1993-11-09 | Kobe Steel Ltd | Target material for sputtering cobalt alloy |
JPH108243A (en) * | 1996-06-24 | 1998-01-13 | Sanyo Special Steel Co Ltd | Production of low permeability sputtering cobalt base target material for magnetic recording medium |
JPH11222671A (en) * | 1998-02-02 | 1999-08-17 | Hitachi Metals Ltd | Target for sputtering and its production |
JP2002363615A (en) * | 2002-03-20 | 2002-12-18 | Sanyo Special Steel Co Ltd | METHOD FOR MANUFACTURING Co-TYPE SPUTTERING TARGET MATERIAL WITH LOW MAGNETIC PERMEABILITY FOR MAGNETIC RECORDING MEDIUM |
JP2007242951A (en) * | 2006-03-09 | 2007-09-20 | Nikko Kinzoku Kk | Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film |
-
2010
- 2010-03-31 JP JP2010081434A patent/JP5467641B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6071667U (en) * | 1983-10-21 | 1985-05-21 | オリンパス光学工業株式会社 | Target for sputtering |
JPH03115563A (en) * | 1989-09-27 | 1991-05-16 | Nippon Mining Co Ltd | Production of sputtering target material |
JPH03115564A (en) * | 1989-09-27 | 1991-05-16 | Nippon Mining Co Ltd | Production of sputtering target material |
JPH05295537A (en) * | 1992-04-23 | 1993-11-09 | Kobe Steel Ltd | Target material for sputtering cobalt alloy |
JPH108243A (en) * | 1996-06-24 | 1998-01-13 | Sanyo Special Steel Co Ltd | Production of low permeability sputtering cobalt base target material for magnetic recording medium |
JPH11222671A (en) * | 1998-02-02 | 1999-08-17 | Hitachi Metals Ltd | Target for sputtering and its production |
JP2002363615A (en) * | 2002-03-20 | 2002-12-18 | Sanyo Special Steel Co Ltd | METHOD FOR MANUFACTURING Co-TYPE SPUTTERING TARGET MATERIAL WITH LOW MAGNETIC PERMEABILITY FOR MAGNETIC RECORDING MEDIUM |
JP2007242951A (en) * | 2006-03-09 | 2007-09-20 | Nikko Kinzoku Kk | Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031441A (en) * | 2010-07-28 | 2012-02-16 | Ishifuku Metal Ind Co Ltd | METHOD FOR MANUFACTURING Fe/Co-Pt BASED SINTERED ALLOY |
WO2013001943A1 (en) * | 2011-06-30 | 2013-01-03 | Jx日鉱日石金属株式会社 | Co-Cr-Pt-B ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME |
CN106282944A (en) * | 2016-08-31 | 2017-01-04 | 北京埃德万斯离子束技术研究所股份有限公司 | Multielement alloy firm resistance and preparation method and multielement target |
US10760156B2 (en) | 2017-10-13 | 2020-09-01 | Honeywell International Inc. | Copper manganese sputtering target |
US11035036B2 (en) | 2018-02-01 | 2021-06-15 | Honeywell International Inc. | Method of forming copper alloy sputtering targets with refined shape and microstructure |
JP7188148B2 (en) | 2019-02-01 | 2022-12-13 | 住友金属鉱山株式会社 | Sputtering targets and electrode films |
JP2020125508A (en) * | 2019-02-01 | 2020-08-20 | 住友金属鉱山株式会社 | Sputtering target and electrode film |
JP2021042437A (en) * | 2019-09-11 | 2021-03-18 | 日本電産株式会社 | Soft magnetic alloy, magnetic core |
WO2021049583A1 (en) * | 2019-09-11 | 2021-03-18 | 日本電産株式会社 | Soft magnetic alloy and magnetic core |
JP7450354B2 (en) | 2019-09-11 | 2024-03-15 | ニデック株式会社 | Soft magnetic alloy, magnetic core |
WO2021141043A1 (en) * | 2020-01-06 | 2021-07-15 | 山陽特殊製鋼株式会社 | Sputtering target material |
JP2021109979A (en) * | 2020-01-06 | 2021-08-02 | 山陽特殊製鋼株式会社 | Sputtering target material |
JP7492831B2 (en) | 2020-01-06 | 2024-05-30 | 山陽特殊製鋼株式会社 | Sputtering target material |
WO2022122525A3 (en) * | 2020-12-08 | 2022-08-11 | Materion Advanced Materials Germany Gmbh | Cozrta(x) sputtering target with improved magnetic properties |
EP4012746A1 (en) * | 2020-12-08 | 2022-06-15 | Materion Advanced Materials Germany GmbH | Cozrta(x) sputtering target with improved magnetic properties |
EP4079879A1 (en) * | 2021-04-20 | 2022-10-26 | Materion Advanced Materials Germany GmbH | Cozrta(x) sputtering target with improved magnetic properties |
Also Published As
Publication number | Publication date |
---|---|
JP5467641B2 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5467641B2 (en) | Method for producing sputtering target material | |
JP5337331B2 (en) | Method for producing sputtering target material | |
TWI480385B (en) | Magnetic sputtering target | |
JP6405261B2 (en) | Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium | |
TWI535877B (en) | Co-Cr-Pt-B alloy sputtering target and its manufacturing method | |
JP6483803B2 (en) | Magnetic material sputtering target and manufacturing method thereof | |
JPWO2005012591A1 (en) | Sputtering target and manufacturing method thereof | |
TWI508114B (en) | A magneto-magnetic recording medium for magnetic recording, a sputtering target, and a magnetic recording medium | |
KR102640080B1 (en) | Aluminum alloys for sputtering target with high corrosion resistance and lightness and method of producing the same | |
TW201437386A (en) | Cofe system alloy for soft magnetic film layers in perpendicular magnetic recording media, and sputtering target material | |
JP6231035B2 (en) | Manufacturing method of sputtering target for magnetic recording medium | |
JP6305881B2 (en) | Sputtering target for magnetic recording media | |
JP6094848B2 (en) | Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium | |
TWI500791B (en) | CrTi alloy and sputtering target material, vertical magnetic recording medium and their manufacturing method | |
JP5797398B2 (en) | Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium | |
TWI387497B (en) | Manufacturing method of nickel alloy target | |
JP2018053280A (en) | NiTa-BASED ALLOY, TARGET MATERIAL AND MAGNETIC RECORDING MEDIA | |
SE446990B (en) | PROCEDURE FOR MAKING A MAGNETIC FORM | |
TWI387658B (en) | High magnetic flux of cobalt-based alloy magnetic sputtering target and its manufacturing method | |
JPS6324047A (en) | Iron/chromium/cobalt type alloy | |
JP2011181140A (en) | Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM | |
TW201638351A (en) | Soft magnetic film and sputtering target for forming soft magnetic film | |
JP2015222792A (en) | Permanent magnet material and method for manufacturing the same | |
JP2020135907A (en) | Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof | |
JPH0586459A (en) | Target for sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5467641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |