[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011214018A - Cooling drum and vacuum treatment apparatus including the same, and surface treatment method - Google Patents

Cooling drum and vacuum treatment apparatus including the same, and surface treatment method Download PDF

Info

Publication number
JP2011214018A
JP2011214018A JP2010080241A JP2010080241A JP2011214018A JP 2011214018 A JP2011214018 A JP 2011214018A JP 2010080241 A JP2010080241 A JP 2010080241A JP 2010080241 A JP2010080241 A JP 2010080241A JP 2011214018 A JP2011214018 A JP 2011214018A
Authority
JP
Japan
Prior art keywords
cooling drum
metal foil
oxide layer
copper oxide
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010080241A
Other languages
Japanese (ja)
Inventor
Masateru Murata
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010080241A priority Critical patent/JP2011214018A/en
Publication of JP2011214018A publication Critical patent/JP2011214018A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】真空下で金属箔又は合金箔に表面処理する際、熱によるシワを抑制した冷却ドラム及びそれを備えた真空処理装置、並びに表面処理方法を提供する。
【解決手段】真空下で、連続的に巻出し及び巻き取られる金属箔又は合金箔10に表面処理する真空処理装置1に用いられ、表面に少なくとも40%以上の被覆率で銅酸化物層20aが形成され、金属箔又は合金箔に密着して冷却を行う冷却ドラム20である。
【選択図】図2
A cooling drum, a vacuum processing apparatus including the same, and a surface processing method are provided that suppress wrinkles due to heat when the surface of the metal foil or alloy foil is subjected to surface treatment under vacuum.
A copper oxide layer 20a is used in a vacuum processing apparatus 1 that performs surface treatment on a metal foil or alloy foil 10 that is continuously unwound and wound up under vacuum, with a covering ratio of at least 40% on the surface. Is a cooling drum 20 that cools in close contact with a metal foil or alloy foil.
[Selection] Figure 2

Description

本発明は、真空中で金属箔や合金箔に蒸着やスパッタリング等の表面処理を行う際に用いる冷却ドラムに関する。   The present invention relates to a cooling drum used when a metal foil or alloy foil is subjected to surface treatment such as vapor deposition or sputtering in a vacuum.

従来から、真空下でフィルム等の被表面処理材を連続的に巻出し、その表面に蒸着等の表面処理した後に巻き取る真空処理装置が知られている(特許文献1)。又、蒸着の際、フィルムの熱変形を防止するため、フィルムを冷却ロールに密着させて蒸着を行っている。
このような巻取り式の真空装置は、蒸着装置又はスパッタリング装置と、被表面処理材の巻出し部及び巻取り部と、冷却ドラムと、これらを収容する真空チャンバーとを含んで構成される。さらに必要に応じて、グロー放電やイオンガンなどの前処理装置、中間ロール等を含む。
これら真空処理装置内部のロールはステンレスやアルミニウム製が多く、その表面に耐摩耗性を向上させるCrめっきやNiめっきを施すことが多い。又、被表面処理材としては、PET樹脂やポリイミド樹脂等の樹脂フィルムが多く利用されている。
2. Description of the Related Art Conventionally, a vacuum processing apparatus is known in which a surface-treated material such as a film is continuously unwound under vacuum, and wound after being subjected to surface treatment such as vapor deposition on the surface (Patent Document 1). Moreover, in order to prevent thermal deformation of the film at the time of vapor deposition, the film is vapor-deposited while being in close contact with a cooling roll.
Such a winding-type vacuum apparatus includes a vapor deposition apparatus or a sputtering apparatus, an unwinding section and a winding section for a surface-treated material, a cooling drum, and a vacuum chamber for housing them. Further, a pre-treatment device such as glow discharge and ion gun, an intermediate roll, etc. are included as necessary.
Many of the rolls in these vacuum processing apparatuses are made of stainless steel or aluminum, and the surface thereof is often subjected to Cr plating or Ni plating for improving wear resistance. Further, as the surface treatment material, a resin film such as PET resin or polyimide resin is often used.

ところで、樹脂フィルムを巻き出して蒸着やスパッタリング等の表面処理を行うと、表面処理時に生じる熱によってフィルムや箔にシワが入るという問題がある。
又、樹脂フィルムの代わりに金属箔に真空下でスパッタ等の表面処理を施す場合、樹脂フィルムよりもシワが発生しやすい傾向がある。特に、金属箔が20μmよりも薄くなると、曲げに対する剛性が低くなるため、表面処理時の熱膨張によってシワが発生しやすくなる。そして、一旦シワが発生すると、シワの部分が冷却ロールと接触しなくなるために抜熱量が低下し、さらに温度が上がって熱膨張が顕著になり、最終的にシワ部が塑性変形を受けてしまう。
このようなことから、冷却ドラムの表面材質の熱膨張係数を、被表面処理材である金属箔の熱膨張係数に近いものとする技術が開示されている(特許文献2)。
By the way, when the resin film is unwound and surface treatment such as vapor deposition or sputtering is performed, there is a problem that wrinkles enter the film or foil due to heat generated during the surface treatment.
In addition, when surface treatment such as sputtering is performed on the metal foil under vacuum instead of the resin film, wrinkles tend to occur more easily than the resin film. In particular, when the metal foil is thinner than 20 μm, the rigidity against bending becomes low, so that wrinkles are likely to occur due to thermal expansion during the surface treatment. And once wrinkles are generated, the wrinkled portions do not come into contact with the cooling roll, so the amount of heat removal decreases, the temperature rises further, the thermal expansion becomes significant, and the wrinkles are finally subjected to plastic deformation. .
For this reason, a technique is disclosed in which the thermal expansion coefficient of the surface material of the cooling drum is close to the thermal expansion coefficient of the metal foil that is the surface treatment material (Patent Document 2).

特許第3795518号公報Japanese Patent No. 3795518 特開2008−248296号公報JP 2008-248296 A

しかしながら、冷却ドラムの表面材質の熱膨張係数を、金属箔の熱膨張係数のそれに合わせる方法は有効であるものの、冷却ロールと金属箔との間で温度差が発生してしまい、シワを完全に防止することが難しい。
すなわち、本発明は上記の課題を解決するためになされたものであり、真空下で金属箔又は合金箔に表面処理する際、熱によるシワを抑制した冷却ドラム及びそれを備えた真空処理装置、並びに表面処理方法の提供を目的とする。
However, although it is effective to match the thermal expansion coefficient of the surface material of the cooling drum to that of the metal foil, a temperature difference occurs between the cooling roll and the metal foil, and wrinkles are completely eliminated. It is difficult to prevent.
That is, the present invention has been made to solve the above problems, and when performing surface treatment on a metal foil or alloy foil under vacuum, a cooling drum that suppresses wrinkles due to heat, and a vacuum processing apparatus including the same, An object of the present invention is to provide a surface treatment method.

本発明者らは種々検討した結果、冷却ドラム表面に銅酸化物層を設けることで、冷却ドラムの摩擦係数を小さくし、金属箔のシワが、金属箔が軸方向に滑ることによって除去されることを見出した。
上記の目的を達成するために、本発明の冷却ドラムは、真空下で、連続的に巻出し及び巻き取られる金属箔又は合金箔に表面処理する真空処理装置に用いられ、表面に少なくとも40%以上の被覆率で銅酸化物層が形成され、前記金属箔又は合金箔に密着して冷却を行う冷却ドラムである。
As a result of various studies, the present inventors have reduced the friction coefficient of the cooling drum by providing a copper oxide layer on the surface of the cooling drum, and the wrinkles of the metal foil are removed by sliding the metal foil in the axial direction. I found out.
In order to achieve the above object, the cooling drum of the present invention is used in a vacuum processing apparatus for surface-treating a metal foil or an alloy foil that is continuously unwound and wound under a vacuum, and has a surface of at least 40%. It is a cooling drum in which a copper oxide layer is formed with the above-mentioned covering ratio, and is cooled in close contact with the metal foil or alloy foil.

前記銅酸化物層の被覆率が60%以上であり、かつ前記冷却ドラムの周方向に前記銅酸化物層の非形成領域が連続しないことが好ましい。
前記銅酸化物層の厚さが0.1μm以上、100μm以下であることが好ましい。
Preferably, the coverage of the copper oxide layer is 60% or more, and the non-formation region of the copper oxide layer is not continuous in the circumferential direction of the cooling drum.
The thickness of the copper oxide layer is preferably 0.1 μm or more and 100 μm or less.

本発明の真空処理装置は、前記冷却ドラムと、前記金属箔又は合金箔を巻出す巻出し部と、前記巻出し部から巻出された前記金属箔又は合金箔を巻き取る巻取り部と、前記冷却ドラムに対向し、前記冷却ドラムに密着した前記金属箔又は合金箔に表面処理を行う表面処理部と、これらを収容する真空室とを備え、前記冷却ドラムは前記巻出し部と前記巻取り部との間に配置されている。   The vacuum processing apparatus of the present invention includes the cooling drum, an unwinding unit for unwinding the metal foil or the alloy foil, a winding unit for unwinding the metal foil or the alloy foil unwound from the unwinding unit, A surface treatment unit that performs surface treatment on the metal foil or alloy foil that faces the cooling drum and is in close contact with the cooling drum, and a vacuum chamber that accommodates the surface treatment unit, and the cooling drum includes the unwinding unit and the winding unit. It is arrange | positioned between the taking parts.

本発明の表面処理方法は、前記真空処理装置を用い、真空中で前記金属箔又は合金箔を表面処理する。   In the surface treatment method of the present invention, the metal foil or the alloy foil is surface-treated in a vacuum using the vacuum treatment apparatus.

本発明によれば、真空下で金属箔又は合金箔に表面処理する際、熱によるシワを抑制することができる。   According to the present invention, when a surface treatment is performed on a metal foil or an alloy foil under vacuum, wrinkles due to heat can be suppressed.

本発明の第1の実施形態に係る冷却ドラムを備えた真空処理装置の構成を示す図である。It is a figure which shows the structure of the vacuum processing apparatus provided with the cooling drum which concerns on the 1st Embodiment of this invention. 第1の実施形態に係る冷却ドラムの構成を示す断面図である。It is sectional drawing which shows the structure of the cooling drum which concerns on 1st Embodiment. 第2の実施形態に係る冷却ドラムの構成を示す断面図である。It is sectional drawing which shows the structure of the cooling drum which concerns on 2nd Embodiment. 冷却ドラムの周方向の全周に、銅酸化物層の非形成領域が連続した状態を示す図である。It is a figure which shows the state which the non-formation area | region of the copper oxide layer continued to the perimeter of the circumferential direction of a cooling drum.

以下、図1を参照し、本発明の第1の実施形態に係る冷却ドラムを備えた真空処理装置1の構成について説明する。
図1において、真空処理装置1は、被表面処理材である金属箔10を巻出す巻出し部2と、巻出し部2から巻出された金属箔10を巻き取る巻取り部4と、冷却ドラム20と、冷却ドラム20に対向し該冷却ドラムに密着した金属箔10に表面処理を行うスパッタリング装置(表面処理部)6と、これらを収容する真空チャンバー(真空室)100とを備えている。又、冷却ドラム20は、巻出し部2と巻取り部4との間に配置され、巻出し部2から巻出された金属箔10が冷却ドラム20に密着しつつ、通箔するようになっている。なお、この実施形態では、巻出し部2と冷却ドラム20との間、及び巻取り部4と冷却ドラム20との間に複数の中間ロールが配されている。
Hereinafter, with reference to FIG. 1, the structure of the vacuum processing apparatus 1 provided with the cooling drum which concerns on the 1st Embodiment of this invention is demonstrated.
In FIG. 1, a vacuum processing apparatus 1 includes an unwinding unit 2 for unwinding a metal foil 10 that is a surface treatment material, a winding unit 4 for unwinding the metal foil 10 unwound from the unwinding unit 2, and cooling. A drum 20, a sputtering apparatus (surface treatment unit) 6 that performs surface treatment on the metal foil 10 that faces the cooling drum 20 and is in close contact with the cooling drum, and a vacuum chamber (vacuum chamber) 100 that accommodates these are provided. . The cooling drum 20 is disposed between the unwinding unit 2 and the winding unit 4, and the metal foil 10 unwound from the unwinding unit 2 passes through the foil while being in close contact with the cooling drum 20. ing. In this embodiment, a plurality of intermediate rolls are arranged between the unwinding unit 2 and the cooling drum 20 and between the winding unit 4 and the cooling drum 20.

さらに、この実施形態では、スパッタリング装置6は、それぞれNiスパッタリング装置6a、Crスパッタリング装置6bとからなり、各スパッタリング装置はDCマグネトロンスパッタリング装置である。そして、イオンガン8も冷却ドラム20に対向して真空チャンバー100内に配置され、スパッタリング前に金属箔10の前処理を行えるようになっている。
なお、イオンガン8、Niスパッタリング装置6a、及びCrスパッタリング装置6bは冷却ドラム20の周りに周方向に沿って配置され、イオンガン8による前処理、Niスパッタリング、Crスパッタリングの順で金属箔10を処理するようになっている。
Further, in this embodiment, the sputtering apparatus 6 includes a Ni sputtering apparatus 6a and a Cr sputtering apparatus 6b, respectively, and each sputtering apparatus is a DC magnetron sputtering apparatus. The ion gun 8 is also disposed in the vacuum chamber 100 so as to face the cooling drum 20 so that the pretreatment of the metal foil 10 can be performed before sputtering.
The ion gun 8, the Ni sputtering apparatus 6a, and the Cr sputtering apparatus 6b are arranged around the cooling drum 20 along the circumferential direction, and process the metal foil 10 in the order of pretreatment by the ion gun 8, Ni sputtering, and Cr sputtering. It is like that.

次に、図2を参照し、本発明の特徴部分である冷却ドラム20の構成について説明する。
冷却ドラム20は円筒状をなし、軸Pの周りに回転可能になっている(図1参照)。そして、冷却ドラム20の表面に銅酸化物層20aが形成されている。
Next, the configuration of the cooling drum 20 which is a characteristic part of the present invention will be described with reference to FIG.
The cooling drum 20 has a cylindrical shape and is rotatable around an axis P (see FIG. 1). A copper oxide layer 20 a is formed on the surface of the cooling drum 20.

通常、冷却ドラムの摩擦係数を低くすると冷却ドラムと金属箔の間でスリップが発生し、箔に擦り傷が生じたり、通箔速度を冷却ドラムでコントロールしている場合には通箔速度が不安定となって表面処理が不均一となるため、好ましくない。
ところが、本発明者らが検討したところ、真空中では、大気中のような空気の巻き込みによる摩擦係数の低下が起きないため、実質的な摩擦力は空気中よりも高くなる。そのため、冷却ドラムの摩擦係数を低下させてもスリップが生じ難く、一方で冷却ドラムの摩擦係数を小さくすると、表面処理(蒸着やスパッタリング等)の熱により冷却ドラム上で発生した金属箔のシワが、金属箔と冷却ドラム表面との間の滑りで解消できることが判明した。
そして、本発明者らは金属箔との摩擦係数を低下させる材料として、銅酸化物層20aが適することを見出した。銅酸化物層20aの組成としては、酸化第一銅(CuO)又は酸化第二銅(CuO)が挙げられる。特に酸化第二銅が好ましい。
Normally, when the friction coefficient of the cooling drum is lowered, slip occurs between the cooling drum and the metal foil, scratching occurs on the foil, or the foil feeding speed is unstable when the foil feeding speed is controlled by the cooling drum. This is not preferable because the surface treatment becomes non-uniform.
However, as a result of investigations by the present inventors, in a vacuum, the friction coefficient is not reduced by the entrainment of air as in the atmosphere, so that the substantial frictional force is higher than in the air. Therefore, even if the friction coefficient of the cooling drum is lowered, slip hardly occurs. On the other hand, if the friction coefficient of the cooling drum is reduced, the wrinkles of the metal foil generated on the cooling drum due to the heat of the surface treatment (evaporation, sputtering, etc.) are generated. It was found that this can be eliminated by sliding between the metal foil and the cooling drum surface.
The present inventors have found that the copper oxide layer 20a is suitable as a material for reducing the coefficient of friction with the metal foil. Examples of the composition of the copper oxide layer 20a include cuprous oxide (Cu 2 O) or cupric oxide (CuO). Cupric oxide is particularly preferable.

冷却ドラム20の材質としては、熱伝導率の良い銅、アルミニウム、又は銅合金若しくはアルミニウム合金を好適に用いることができる。そして、銅酸化物層20aは、例えば冷却ドラム20表面に銅めっきを施し、それを酸化して形成することができる。酸化の際には、大気中で加熱する方法、薬液を用いて化学的に酸化する方法、等を用いることが可能である。この際、酸化第二銅の比率が高くなるように酸化することが望ましい。例えば大気酸化を行う場合には少なくとも400℃以上の高温で酸化することで酸化第二銅の比率を高くすることができる。
また、銅酸化物をターゲットとし、マグネトロンスパッタ蒸着法により冷却ドラム20表面に銅酸化物層20aを成膜することも可能である。マグネトロンスパッタ蒸着法は、冷却ドラム表面に容易に銅酸化物層20aを形成することができるとともに酸化物組成を酸化第二銅とすることが容易である利点がある。
銅酸化物層20aと冷却ドラム表面との密着性を上げるため、銅酸化物層20aを形成する前の冷却ドラム表面に、グロー放電やイオンガン等の前処理を施すとよい。但し、冷却ドラム(の少なくとも表層部分)が銅合金からなり、その表面に銅酸化物層を直接形成する場合にように、冷却ドラムの材質に応じて前処理を省略することも可能である。
As a material of the cooling drum 20, copper, aluminum, a copper alloy, or an aluminum alloy with good thermal conductivity can be preferably used. The copper oxide layer 20a can be formed by, for example, performing copper plating on the surface of the cooling drum 20 and oxidizing it. In the oxidation, a method of heating in the atmosphere, a method of chemically oxidizing using a chemical solution, or the like can be used. At this time, it is desirable to oxidize so that the ratio of cupric oxide becomes high. For example, when performing atmospheric oxidation, the ratio of cupric oxide can be increased by oxidizing at a high temperature of at least 400 ° C.
It is also possible to form a copper oxide layer 20a on the surface of the cooling drum 20 by magnetron sputtering deposition using a copper oxide target. The magnetron sputter deposition method has an advantage that the copper oxide layer 20a can be easily formed on the surface of the cooling drum and the oxide composition is easily made of cupric oxide.
In order to improve the adhesion between the copper oxide layer 20a and the cooling drum surface, the cooling drum surface before forming the copper oxide layer 20a is preferably subjected to pretreatment such as glow discharge or ion gun. However, as in the case where the cooling drum (at least the surface layer portion thereof) is made of a copper alloy and the copper oxide layer is directly formed on the surface, the pretreatment can be omitted depending on the material of the cooling drum.

冷却ドラムの表面にクロムめっきやニッケルめっき層を設け、このめっき層上に銅酸化物層20aを形成させてもよい。冷却ドラムが銅やアルミニウム等から成る場合、硬さが低く物理的にドラムに傷が付き易いため、クロムめっきやニッケルめっきで硬さを向上させて傷を防止することができる。
又、冷却ドラムの表面粗さが小さいほど、接触面積が大きくなって熱伝達が促進されるので好ましい。冷却ドラムの表面粗さは、銅酸化物層20aを形成後の算術平均粗さRaで0.2μm以下が好ましく、0.05μm以下がより好ましい。
A chromium plating or nickel plating layer may be provided on the surface of the cooling drum, and the copper oxide layer 20a may be formed on the plating layer. When the cooling drum is made of copper, aluminum, or the like, the hardness is low and the drum is physically easily scratched. Therefore, the hardness can be improved by chromium plating or nickel plating to prevent the scratch.
Further, it is preferable that the surface roughness of the cooling drum is small because the contact area is increased and heat transfer is promoted. The surface roughness of the cooling drum is preferably 0.2 μm or less, more preferably 0.05 μm or less in terms of arithmetic average roughness Ra after forming the copper oxide layer 20a.

銅酸化物層20aの厚さが0.1μm以上、100μm以下であることが好ましい。銅酸化物層20aの厚さが0.1μm未満であると、大気中で通箔したときにスリップ等が生じたときに銅酸化物層20aが磨耗し消失するので、銅酸化物層をひんぱんに形成する必要があるため好ましくない。一方、銅酸化物層20aの厚さが100μmを超えると熱伝達に不利となり、不経済となる場合がある。また、酸化膜が脱離するトラブルも発生しやすくなる。   The thickness of the copper oxide layer 20a is preferably 0.1 μm or more and 100 μm or less. When the thickness of the copper oxide layer 20a is less than 0.1 μm, the copper oxide layer 20a is worn out and disappears when slipping or the like occurs when the foil is passed in the air. Since it is necessary to form, it is not preferable. On the other hand, if the thickness of the copper oxide layer 20a exceeds 100 μm, it may be disadvantageous for heat transfer and may be uneconomical. In addition, troubles that the oxide film is detached easily occur.

ところで、上記したように、冷却ドラム20表面に銅酸化物層20aを設けることで、冷却ドラムの摩擦係数を小さくし、金属箔のシワを冷却ドラム表面との間の滑りで解消できる。しかしながら、冷却ドラムの摩擦係数を小さくし過ぎると、真空中であっても金属箔と冷却ドラム表面との滑りが良くなり過ぎて不具合が生じることがある。
そこで、図2に示すように、冷却ドラム20表面の一部に銅酸化物層20aを形成し、摩擦係数を調整することが好ましい。この場合、銅酸化物層20aを形成しない部分は、冷却ドラム20の材料の摩擦係数を示し、この部分で銅酸化物層20aより摩擦係数が大きくなる。
By the way, by providing the copper oxide layer 20a on the surface of the cooling drum 20 as described above, the friction coefficient of the cooling drum can be reduced, and the wrinkles of the metal foil can be eliminated by sliding with the surface of the cooling drum. However, if the coefficient of friction of the cooling drum is too small, slippage between the metal foil and the surface of the cooling drum may become too good even in vacuum, resulting in problems.
Therefore, as shown in FIG. 2, it is preferable to form a copper oxide layer 20a on a part of the surface of the cooling drum 20 to adjust the friction coefficient. In this case, the portion where the copper oxide layer 20a is not formed shows the friction coefficient of the material of the cooling drum 20, and the friction coefficient becomes larger than the copper oxide layer 20a in this portion.

さらに、冷却ドラム20の全表面に対する銅酸化物層20aの被覆率を40%以上とする。そして、上記被覆率を60%以上とし、かつ冷却ドラム20の周方向dに銅酸化物層の非形成領域が連続しないようにすると好ましい。冷却ドラム20の全表面に対する銅酸化物層20aの被覆率40%未満であると、摩擦係数の高い素地の部分で滑り難くなるため、金属箔と冷却ドラム表面との間の滑りが不十分となる場合がある。
例えば、図2の冷却ドラム20においては、軸方向Lに平行なストライプ状に銅酸化物層20aが被覆されている。この場合、周方向dから見て、周方向の一部d1に銅酸化物層20aが形成され、周方向の一部d2に銅酸化物層20aの非形成領域が存在するが、この非形成領域は周方向dの全周に連続していない。
冷却ドラム20表面に発生した金属箔のシワは、金属箔が軸方向Lに滑ることによって除去される。従って、金属箔が銅酸化物層21aと周方向の一部d1で接していれば、このd1部分では軸方向Lに沿って金属箔が引っ掛かりなく滑ることができ、金属箔のシワを除去することができる。
一方、周方向dの全周に銅酸化物層20aの非形成領域が連続していると、この非形成領域で金属箔が引っ掛かって軸方向Lに滑り難くなり、シワが除去されない傾向にあると考えられる。この点で、冷却ドラム表面に、周方向dに平行なストライプ状に銅酸化物層を被覆するのは、上記図2の場合に比べると好ましくない。
Furthermore, the coverage of the copper oxide layer 20a on the entire surface of the cooling drum 20 is set to 40% or more. It is preferable that the coverage is 60% or more and that the non-formation region of the copper oxide layer is not continuous in the circumferential direction d of the cooling drum 20. If the coverage of the copper oxide layer 20a with respect to the entire surface of the cooling drum 20 is less than 40%, it becomes difficult to slip at the portion of the substrate having a high friction coefficient, and therefore, the slip between the metal foil and the surface of the cooling drum is insufficient. There is a case.
For example, in the cooling drum 20 of FIG. 2, the copper oxide layer 20 a is coated in a stripe shape parallel to the axial direction L. In this case, as viewed from the circumferential direction d, the copper oxide layer 20a is formed in a part d1 in the circumferential direction, and a non-formation region of the copper oxide layer 20a exists in a part d2 in the circumferential direction. The region is not continuous over the entire circumference in the circumferential direction d.
Wrinkles of the metal foil generated on the surface of the cooling drum 20 are removed by sliding the metal foil in the axial direction L. Therefore, if the metal foil is in contact with the copper oxide layer 21a at a part d1 in the circumferential direction, the metal foil can slide along the axial direction L without being caught in this part d1, and the wrinkles of the metal foil are removed. be able to.
On the other hand, when the non-formation region of the copper oxide layer 20a is continuous over the entire circumference in the circumferential direction d, the metal foil is caught in the non-formation region and is difficult to slide in the axial direction L, and wrinkles tend not to be removed. it is conceivable that. In this respect, it is not preferable to cover the surface of the cooling drum with the copper oxide layer in a stripe shape parallel to the circumferential direction d as compared with the case of FIG.

冷却ドラム表面の一部に銅酸化物層を形成する方法としては、冷却ドラム表面にマスキングテープを貼付したり、オイルで非形成部分のパターンを形成した後、銅酸化物層を形成するためのめっきやスパッタリングを行う方法が簡便である。
なお、金属箔の種類、表面粗さ、金属箔の張力、冷却ドラムへの金属箔の巻き付け角度等のよっては、冷却ドラム表面の全面に銅酸化物層を形成しても、スリップの問題が生じないこともあり、この場合には冷却ドラム表面の全面に銅酸化物層を形成することが好ましい。
又、冷却ドラムを適用する被表面処理材としては、金属箔だけでなく合金箔が挙げられる。
As a method of forming a copper oxide layer on a part of the surface of the cooling drum, a masking tape is applied to the surface of the cooling drum or a pattern of a non-formed part is formed with oil, and then a copper oxide layer is formed. A method of performing plating or sputtering is simple.
Depending on the type of metal foil, surface roughness, metal foil tension, winding angle of the metal foil around the cooling drum, etc., even if a copper oxide layer is formed on the entire surface of the cooling drum, there is a problem of slip. In this case, it is preferable to form a copper oxide layer on the entire surface of the cooling drum.
Further, the surface treatment material to which the cooling drum is applied includes not only metal foil but also alloy foil.

次に、図3を参照し、本発明の第2の実施形態に係る冷却ドラム21の構成について説明する。なお、冷却ドラム21は、冷却ドラム20の代わりに上記真空処理装置1に装着することができる。
図3の冷却ドラム21においては、その表面に島状に銅酸化物層21aが形成されている。この場合、周方向dから見て、周方向の一部d3に銅酸化物層21aの非形成領域が存在するが、この非形成領域は周方向dの全周に連続していない。つまり、金属箔が銅酸化物層21aと点で接していれば、軸方向Lに沿って複数の島状体に次々と接触しつつ、金属箔が軸方向Lに引っ掛かりなく滑ることができ、金属箔のシワを除去することができる。
Next, the configuration of the cooling drum 21 according to the second embodiment of the present invention will be described with reference to FIG. The cooling drum 21 can be attached to the vacuum processing apparatus 1 instead of the cooling drum 20.
In the cooling drum 21 of FIG. 3, a copper oxide layer 21a is formed in an island shape on the surface. In this case, as viewed from the circumferential direction d, a non-formation region of the copper oxide layer 21a exists in a part d3 in the circumferential direction, but this non-formation region is not continuous over the entire circumference in the circumferential direction d. That is, if the metal foil is in contact with the copper oxide layer 21a at a point, the metal foil can slide without being caught in the axial direction L while sequentially contacting the plurality of islands along the axial direction L. Wrinkles on the metal foil can be removed.

図4は、図3の冷却ドラム21において、銅酸化物層21aの非形成領域Lxが周方向dの全周に連続した例を示す。この場合、金属箔が軸方向Lに動こうとしても、非形成領域Lxで引っ掛かって軸方向Lに滑り難くなり、シワが除去され難い傾向がある。   FIG. 4 shows an example in which the non-formation region Lx of the copper oxide layer 21a is continuous over the entire circumference in the circumferential direction d in the cooling drum 21 of FIG. In this case, even if the metal foil tries to move in the axial direction L, the metal foil is caught in the non-formation region Lx and is difficult to slide in the axial direction L, so that wrinkles tend not to be removed.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<真空処理装置>
図1に示すように、巻出し部2と、巻取り部4と、冷却ドラム20と、DCマグネトロンスパッタリング装置(表面処理部)6と、イオンガン8と、中間ロールと、これらを収容する真空チャンバー(真空室)100とを備えた真空処理装置1を用意した。スパッタリング装置6のターゲットとして80mass%Ni−20mass%Crを用いた(ターゲットのサイズは縦130mm、横460mm、ターゲットの枚数は1枚)。
又、冷却ドラム20としては、表1に示す各種の被覆方法、及び被覆パターン(それぞれ図2、図3、図4のもの、又はドラム表面の全面)で銅酸化物層を形成したものを用いた。なお、表1において、被覆方法が「スパッタ」とは銅酸化物をターゲットとしたマグネトロンスパッタ蒸着法であり、「電気めっき後大気酸化」とは、冷却ドラム表面に銅めっきを施し、それを大気中で450℃10分保持して酸化したものである。又、「大気酸化」とは、冷却ドラム表面の銅合金を大気中で450℃10分保持して酸化したものである。
被表面処理材である金属箔として、幅300mm、厚み8μmの圧延銅箔コイルを巻出し部2に取り付けた。この圧延銅箔は圧延上がりの銅箔であり、表面処理を行わなかった。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
<Vacuum processing equipment>
As shown in FIG. 1, an unwinding unit 2, a winding unit 4, a cooling drum 20, a DC magnetron sputtering device (surface treatment unit) 6, an ion gun 8, an intermediate roll, and a vacuum chamber that accommodates them. (Vacuum chamber) 100 was prepared. 80 mass% Ni-20 mass% Cr was used as the target of the sputtering apparatus 6 (the target size was 130 mm in length, 460 mm in width, and the number of targets was 1).
Further, as the cooling drum 20, those in which a copper oxide layer is formed by various coating methods and coating patterns shown in Table 1 (each of FIGS. 2, 3, 4, or the entire drum surface) are used. It was. In Table 1, the coating method “sputtering” is a magnetron sputtering deposition method using copper oxide as a target, and “atmospheric oxidation after electroplating” is copper plating on the cooling drum surface, It was oxidized at 450 ° C. for 10 minutes. “Atmospheric oxidation” is the oxidation of the copper alloy on the surface of the cooling drum that is held at 450 ° C. for 10 minutes in the air.
A rolled copper foil coil having a width of 300 mm and a thickness of 8 μm was attached to the unwinding part 2 as a metal foil as a surface treatment material. This rolled copper foil was a rolled copper foil and was not subjected to surface treatment.

<表面処理(スパッタリング)条件>
スパッタリング装置6を用い、1パスで銅箔上にNi−Cr被膜が20nm成膜されるように、スパッタリング出力および通箔速度を調整した。スパッタリング時の真空処理装置1の真空度は0.665Pa(5×10-3Torr)、冷却ドラムの温度は25℃、張力は50MPaもしくは10MPaとした。
<Surface treatment (sputtering) conditions>
Using the sputtering apparatus 6, the sputtering output and the foil passing speed were adjusted so that a Ni-Cr film was formed to a thickness of 20 nm on the copper foil in one pass. The degree of vacuum of the vacuum processing apparatus 1 during sputtering was 0.665 Pa (5 × 10 −3 Torr), the temperature of the cooling drum was 25 ° C., and the tension was 50 MPa or 10 MPa.

<シワの評価>
スパッタリング後、銅箔を装置から取り出し、銅箔のシワの有無を目視し、以下の基準で評価した。評価が△、○であれば実用上問題はない
○:シワ無し
△:わずかにシワ有り
×:折れシワ有り
<スリップ(滑り)の評価>
スパッタリング後、銅箔を装置から取り出し、銅箔のスリップ傷の有無を目視し、以下の基準で評価した。評価が◎又は○であれば実用上問題はない。
◎:スリップ傷無し
○:0.1mm以下の長さのスリップ傷あり
×:0.1mmを超える長さのスリップ傷あり
得られた結果を表1に示す。
<Evaluation of wrinkles>
After sputtering, the copper foil was taken out of the apparatus, visually checked for wrinkles on the copper foil, and evaluated according to the following criteria. If the evaluation is △ or ○, there is no practical problem ○: No wrinkle △: Slightly wrinkled ×: Folded wrinkle <Evaluation of slip (slip)>
After sputtering, the copper foil was taken out of the apparatus, visually checked for the presence or absence of slip scratches on the copper foil, and evaluated according to the following criteria. If the evaluation is A or B, there is no practical problem.
A: There is no slip scratch. O: There is a slip scratch with a length of 0.1 mm or less. X: There is a slip scratch with a length exceeding 0.1 mm. The obtained results are shown in Table 1.

Figure 2011214018
Figure 2011214018

表1から明らかなように、冷却ドラムの表面に40%以上の被覆率で銅酸化物層を形成した実験例1〜10の場合、通箔張力を適切に調整したことで、シワもスリップも発生しなかった。
なお、実施例8の場合、銅酸化物層の被覆率が他の実施例より少ないために冷却ドラムの軸方向に若干滑りにくく、銅箔にわずかに熱シワが生じた。ただし、実用上は問題ない。
また、実施例9の場合、銅酸化物層の厚さが200μmと厚いため、銅酸化物が部分的に剥がれることがあり、その部分の熱伝達が悪くなり、銅箔にわずかに熱シワが生じた。ただし、実用上は問題ない。
さらに、実施例10の場合、銅酸化物が島状に形成され、銅酸化物層の非形成領域が冷却ドラムの周方向の全周に連続している。このため、冷却ドラムの軸方向に銅箔が若干滑り難く、銅箔にわずかにシワが生じた。但し、実用上は問題ない。
As is clear from Table 1, in the case of Experimental Examples 1 to 10 in which the copper oxide layer was formed on the surface of the cooling drum with a coverage of 40% or more, the foil feeding tension was appropriately adjusted, so that wrinkles and slips were observed. Did not occur.
In the case of Example 8, the coverage of the copper oxide layer was smaller than that of the other examples, so that it was slightly slippery in the axial direction of the cooling drum, and slight heat wrinkles were generated on the copper foil. However, there is no problem in practical use.
In the case of Example 9, since the thickness of the copper oxide layer is as thick as 200 μm, the copper oxide may be partially peeled off, the heat transfer of that portion is deteriorated, and the copper foil is slightly wrinkled. occured. However, there is no problem in practical use.
Furthermore, in the case of Example 10, the copper oxide is formed in an island shape, and the non-formation region of the copper oxide layer is continuous over the entire circumference in the circumferential direction of the cooling drum. For this reason, the copper foil was slightly difficult to slide in the axial direction of the cooling drum, and the copper foil was slightly wrinkled. However, there is no problem in practical use.

一方、冷却ドラムの表面に銅酸化物層を形成しなかった比較例1の場合、銅箔にシワが生じ、銅箔と冷却ドラムとの滑りが悪く、シワが生じた。
銅酸化物層の被覆率が40%未満である比較例2、3の場合も銅箔と冷却ドラムとの滑りが悪く、シワが生じた。
通箔張力を低くした比較例4の場合、銅箔と冷却ドラムとが滑り過ぎてスリップ傷が発生した。
On the other hand, in the case of Comparative Example 1 in which the copper oxide layer was not formed on the surface of the cooling drum, wrinkles were generated on the copper foil, the sliding between the copper foil and the cooling drum was bad, and wrinkles were generated.
In Comparative Examples 2 and 3 where the coverage of the copper oxide layer was less than 40%, the sliding between the copper foil and the cooling drum was poor, and wrinkles were generated.
In the case of Comparative Example 4 in which the foil thread tension was lowered, the copper foil and the cooling drum slipped too much and slip scratches were generated.

1 真空処理装置
2 巻出し部
4 巻取り部
6 スパッタリング装置(表面処理部)
10 金属箔
20、21 冷却ドラム
20a、21a 銅酸化物層
100 真空チャンバー(真空室)
DESCRIPTION OF SYMBOLS 1 Vacuum processing apparatus 2 Unwinding part 4 Winding part 6 Sputtering apparatus (surface treatment part)
10 Metal foil 20, 21 Cooling drum 20a, 21a Copper oxide layer 100 Vacuum chamber (vacuum chamber)

Claims (5)

真空下で、連続的に巻出し及び巻き取られる金属箔又は合金箔に表面処理する真空処理装置に用いられ、
表面に少なくとも40%以上の被覆率で銅酸化物層が形成され、前記金属箔又は合金箔に密着して冷却を行う冷却ドラム。
Used in vacuum processing equipment for surface treatment of metal foil or alloy foil that is continuously unwound and wound under vacuum,
A cooling drum in which a copper oxide layer is formed on the surface with a coverage of at least 40% and is cooled in close contact with the metal foil or alloy foil.
前記銅酸化物層の被覆率が60%以上であり、かつ前記冷却ドラムの周方向に前記銅酸化物層の非形成領域が連続しない請求項1に記載の冷却ドラム。 2. The cooling drum according to claim 1, wherein a coverage of the copper oxide layer is 60% or more, and a non-formation region of the copper oxide layer is not continuous in a circumferential direction of the cooling drum. 前記銅酸化物層の厚さが0.1μm以上、100μm以下である請求項1又は2に記載の冷却ドラム。 The cooling drum according to claim 1 or 2, wherein the thickness of the copper oxide layer is 0.1 µm or more and 100 µm or less. 請求項1〜3のいずれかに記載の冷却ドラムと、前記金属箔又は合金箔を巻出す巻出し部と、前記巻出し部から巻出された前記金属箔又は合金箔を巻き取る巻取り部と、前記冷却ドラムに対向し、前記冷却ドラムに密着した前記金属箔又は合金箔に表面処理を行う表面処理部と、これらを収容する真空室とを備え、
前記冷却ドラムは前記巻出し部と前記巻取り部との間に配置されている真空処理装置。
The cooling drum in any one of Claims 1-3, the unwinding part which unwinds the said metal foil or alloy foil, and the winding-up part which winds up the said metal foil or alloy foil unwound from the said unwinding part And a surface treatment unit that performs surface treatment on the metal foil or alloy foil that faces the cooling drum and is in close contact with the cooling drum, and a vacuum chamber that accommodates these.
The said cooling drum is a vacuum processing apparatus arrange | positioned between the said unwinding part and the said winding-up part.
請求項4に記載の真空処理装置を用い、真空中で前記金属箔又は合金箔を表面処理する表面処理方法。 The surface treatment method which uses the vacuum processing apparatus of Claim 4, and surface-treats the said metal foil or alloy foil in a vacuum.
JP2010080241A 2010-03-31 2010-03-31 Cooling drum and vacuum treatment apparatus including the same, and surface treatment method Withdrawn JP2011214018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080241A JP2011214018A (en) 2010-03-31 2010-03-31 Cooling drum and vacuum treatment apparatus including the same, and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080241A JP2011214018A (en) 2010-03-31 2010-03-31 Cooling drum and vacuum treatment apparatus including the same, and surface treatment method

Publications (1)

Publication Number Publication Date
JP2011214018A true JP2011214018A (en) 2011-10-27

Family

ID=44944073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080241A Withdrawn JP2011214018A (en) 2010-03-31 2010-03-31 Cooling drum and vacuum treatment apparatus including the same, and surface treatment method

Country Status (1)

Country Link
JP (1) JP2011214018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076922A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Substrate conveying roller, thin film manufacturing device, and thin film manufacturing method
JP2014186288A (en) * 2013-02-20 2014-10-02 Ricoh Co Ltd Cooling apparatus and image forming apparatus
CN106756708A (en) * 2016-12-06 2017-05-31 王秋林 Energy-saving water cooling hearth roll

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076922A1 (en) * 2011-11-22 2013-05-30 パナソニック株式会社 Substrate conveying roller, thin film manufacturing device, and thin film manufacturing method
US8697582B2 (en) 2011-11-22 2014-04-15 Panasonic Corporation Substrate conveying roller, thin film manufacturing device, and thin film manufacturing method
JP2014186288A (en) * 2013-02-20 2014-10-02 Ricoh Co Ltd Cooling apparatus and image forming apparatus
CN106756708A (en) * 2016-12-06 2017-05-31 王秋林 Energy-saving water cooling hearth roll

Similar Documents

Publication Publication Date Title
JP2006500624A (en) Reducing the vulnerability of titanium nitride to cracking
JP2011214018A (en) Cooling drum and vacuum treatment apparatus including the same, and surface treatment method
JP5741522B2 (en) Long surface treatment apparatus, surface treatment method, and copper clad laminated resin film substrate manufacturing method
US3052014A (en) Flame treatment of aluminum
SE527393C2 (en) Aluminum coated stainless steel strip product for use as a sacrificial anode
JP2015081373A (en) Method and device for double side film deposition, and production method of resin film with metal base layer
US20150203314A1 (en) Continuous reel-to-reel arrangement
JP2010042564A (en) Method for producing flexible substrate and flexible substrate
JP6183284B2 (en) Method for processing long film using can roll equipped with gas release mechanism
JP2014181350A (en) Aluminum foil with metal layer and production method thereof
JP6979265B2 (en) A method and a winding device for winding a long substrate, and a surface treatment device for a long substrate provided with the winding device.
JP6172063B2 (en) Long resin film surface treatment equipment
JP4989274B2 (en) Metal foil cooling drum
JP2011094221A (en) Method of forming long-size heat-resistant resin film and apparatus for producing heat-resistant resin film with metal film
JP6627462B2 (en) Rotational support for web-shaped film-forming target, film-formed body manufacturing method using the same, and apparatus therefor
JP6721079B2 (en) Can roll, vacuum film forming apparatus, and long film forming method
JP4439959B2 (en) Metal vapor deposition film, metal vapor deposition body provided with the metal vapor deposition film, and manufacturing method thereof
JP7420465B2 (en) Continuous film forming apparatus equipped with a roll for preventing wrinkles on long substrates and method for preventing wrinkles
JP6544249B2 (en) CAN ROLL, VACUUM FILM FORMING APPARATUS, AND FILM FORMING METHOD OF LONG BODY
JPS629527A (en) Manufacture of recording medium
JP3274712B2 (en) Aluminum strip degreasing apparatus and manufacturing method
CN119506820A (en) Coating equipment, method and product
JP7102989B2 (en) Anti-adhesive film material and film forming equipment equipped with it
JP2511364B2 (en) Metal foil finishing method and device
JPS61289533A (en) Magnetic recording medium manufacturing method and device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604