JP2011202921A - Evaporator unit - Google Patents
Evaporator unit Download PDFInfo
- Publication number
- JP2011202921A JP2011202921A JP2010072527A JP2010072527A JP2011202921A JP 2011202921 A JP2011202921 A JP 2011202921A JP 2010072527 A JP2010072527 A JP 2010072527A JP 2010072527 A JP2010072527 A JP 2010072527A JP 2011202921 A JP2011202921 A JP 2011202921A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- expansion valve
- evaporator
- flow path
- ejector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/022—Evaporators with plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
- F28D1/0435—Combination of units extending one behind the other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/025—Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F7/00—Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
- F28F7/02—Blocks traversed by passages for heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
- F28F9/002—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0214—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
- F28F9/0217—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions the partitions being separate elements attached to header boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0246—Arrangements for connecting header boxes with flow lines
- F28F9/0251—Massive connectors, e.g. blocks; Plate-like connectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/001—Ejectors not being used as compression device
- F25B2341/0012—Ejectors with the cooled primary flow at high pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/18—Optimization, e.g. high integration of refrigeration components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/16—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Air-Conditioning For Vehicles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、冷凍サイクルに用いられる蒸発器ユニットに関する。 The present invention relates to an evaporator unit used in a refrigeration cycle.
従来、この種の蒸発器ユニットが特許文献1、2に記載されている。特許文献1の従来技術では、蒸発器に内部熱交換器が一体化されている。具体的には、内部熱交換器が蒸発器の熱交換器コアと並んで一体に構成されている。 Conventionally, this type of evaporator unit is described in Patent Documents 1 and 2. In the prior art of Patent Document 1, an internal heat exchanger is integrated with the evaporator. Specifically, the internal heat exchanger is integrally formed side by side with the heat exchanger core of the evaporator.
特許文献2の従来技術では、蒸発器に内部熱交換器と膨張弁とが一体的に組み付けられている。具体的には、蒸発器と内部熱交換器との間に膨張弁が挟まれて組み付けられている。 In the prior art of Patent Document 2, an internal heat exchanger and an expansion valve are integrally assembled with an evaporator. Specifically, an expansion valve is sandwiched and assembled between the evaporator and the internal heat exchanger.
しかしながら、上記特許文献1の従来技術では、膨張弁が蒸発器に一体化されていないので、膨張弁を蒸発器に接続するための接続配管等が必要になって接続構成が複雑化してしまう。 However, since the expansion valve is not integrated with the evaporator in the prior art disclosed in Patent Document 1, connection piping for connecting the expansion valve to the evaporator is required, and the connection configuration is complicated.
この点、上記特許文献2の従来技術では、内部熱交換器および膨張弁が蒸発器に一体的に組み付けられているので、膨張弁を蒸発器に接続するための接続配管が不要であり、接続構成が簡素になる。 In this regard, in the prior art disclosed in Patent Document 2, since the internal heat exchanger and the expansion valve are integrally assembled with the evaporator, a connection pipe for connecting the expansion valve to the evaporator is not necessary. The configuration is simplified.
しかしながら、上記特許文献2の従来技術では、蒸発器と内部熱交換器との間に膨張弁が挟まれているので、蒸発器と膨張弁との接続部、および膨張弁と内部熱交換器との接続部で冷媒漏れが発生する虞がある。 However, since the expansion valve is sandwiched between the evaporator and the internal heat exchanger in the prior art of Patent Document 2, the connection between the evaporator and the expansion valve, and the expansion valve and the internal heat exchanger There is a possibility that refrigerant leakage may occur at the connecting portion.
ここで、蒸発器、膨張弁および内部熱交換器を一体ろう付けすれば、蒸発器、膨張弁および内部熱交換器の接続部における冷媒漏れを効果的に防止できる。しかしながら、膨張弁を一体ろう付けすると膨張弁が熱変形して、膨張弁内部の通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。 Here, if the evaporator, the expansion valve, and the internal heat exchanger are brazed together, it is possible to effectively prevent refrigerant leakage at the connection portion of the evaporator, the expansion valve, and the internal heat exchanger. However, when the expansion valve is integrally brazed, the expansion valve is thermally deformed, and there arises a problem that the shape and dimensions of the passage inside the expansion valve cannot be maintained as intended.
本発明は上記点に鑑みて、接続構成が簡素であり、かつ冷媒漏れに対するシール性が高い蒸発器ユニットを提供することを目的とする。 In view of the above points, an object of the present invention is to provide an evaporator unit having a simple connection configuration and high sealing performance against refrigerant leakage.
上記目的を達成するため、請求項1に記載の発明では、冷凍サイクルを構成する蒸発器(15)と、
冷凍サイクルの高圧側冷媒と低圧側冷媒とを熱交換させる内部熱交換器(13)と、
冷凍サイクルの膨張弁(14)が組み付けられる膨張弁組付部(29)とを備え、
膨張弁組付部(29)には、膨張弁(14)の冷媒入口(14a)に流入する冷媒が流れる入口側流路(29b)と、膨張弁(14)の冷媒出口(14b)から流出した冷媒が流れる出口側流路(29c)とが形成され、
蒸発器(15)、内部熱交換器(13)および膨張弁組付部(29)は、いずれも金属で形成され、かつ互いに一体ろう付けされていることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, an evaporator (15) constituting a refrigeration cycle;
An internal heat exchanger (13) for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the refrigeration cycle;
An expansion valve assembly (29) to which the expansion valve (14) of the refrigeration cycle is assembled,
The expansion valve assembly (29) flows out of the inlet-side flow path (29b) through which the refrigerant flowing into the refrigerant inlet (14a) of the expansion valve (14) flows and the refrigerant outlet (14b) of the expansion valve (14). An outlet-side flow path (29c) through which the refrigerant flows is formed,
The evaporator (15), the internal heat exchanger (13), and the expansion valve assembly (29) are all made of metal and integrally brazed to each other.
これによると、蒸発器(15)のみの一体ろう付けを行った後に内部熱交換器(13)および膨張弁(14)を蒸発器(15)に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、接続構成を簡素化できるとともに、冷媒漏れに対するシール性を高めることができる。 According to this, compared with the case where the internal heat exchanger (13) and the expansion valve (14) are assembled to the evaporator (15) after the integral brazing of only the evaporator (15), after the integral brazing. Can be reduced. As a result, the connection configuration can be simplified and the sealing performance against refrigerant leakage can be enhanced.
請求項2に記載の発明では、請求項1に記載の蒸発器ユニットにおいて、入口側流路(29b)は、内部熱交換器(13)の高圧側冷媒出口(13c)から膨張弁(14)の冷媒入口(14a)に至る内部熱交換器−膨張弁冷媒流路(29b)であり、
出口側流路(29c)は、膨張弁(14)の冷媒出口(14b)から蒸発器(15)に至る膨張弁−蒸発器冷媒流路(29c)であり、
膨張弁組付部(29)には、蒸発器(15)から内部熱交換器(13)のうち低圧側冷媒入口(13d)に至る蒸発器−内部熱交換器冷媒流路(29d)が形成されていることを特徴とする。
According to a second aspect of the present invention, in the evaporator unit according to the first aspect, the inlet-side flow path (29b) extends from the high-pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the expansion valve (14). An internal heat exchanger-expansion valve refrigerant flow path (29b) leading to the refrigerant inlet (14a) of
The outlet side flow path (29c) is an expansion valve-evaporator refrigerant flow path (29c) from the refrigerant outlet (14b) of the expansion valve (14) to the evaporator (15),
In the expansion valve assembly (29), an evaporator-internal heat exchanger refrigerant flow path (29d) extending from the evaporator (15) to the low-pressure side refrigerant inlet (13d) of the internal heat exchanger (13) is formed. It is characterized by being.
これにより、内部熱交換器(13)、膨張弁(14)および蒸発器(15)間の流路を膨張弁組付部(29)に集約することができるので、流路構成を簡素化できる。 Thereby, since the flow path between an internal heat exchanger (13), an expansion valve (14), and an evaporator (15) can be collected in an expansion valve assembly part (29), a flow path structure can be simplified. .
請求項3に記載の発明では、請求項2に記載の蒸発器ユニットにおいて、蒸発器(15)は、熱交換コア部(21a、22a)の冷媒流路を形成する複数のチューブ(23)を有し、
膨張弁−蒸発器冷媒流路(29c)および蒸発器−内部熱交換器冷媒流路(29d)には、複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されていることを特徴とする。
According to a third aspect of the present invention, in the evaporator unit according to the second aspect, the evaporator (15) includes a plurality of tubes (23) forming a refrigerant flow path of the heat exchange core portion (21a, 22a). Have
End portions of at least some of the tubes (23) are inserted into the expansion valve-evaporator refrigerant flow path (29c) and the evaporator-internal heat exchanger refrigerant flow path (29d). It is characterized by.
これによると、膨張弁組付部(29)が、複数のチューブ(23)に対する冷媒の分配・集合を行うタンク部の役割を兼ねることができるので、ユニット体格を小型化できる。 According to this, since the expansion valve assembly part (29) can also serve as a tank part that distributes and collects the refrigerant to the plurality of tubes (23), the unit size can be reduced in size.
具体的には、請求項4に記載の発明のように、請求項3に記載の蒸発器ユニットにおいて、膨張弁組付部(29)には、膨張弁(14)のうち冷媒入口(14a)および冷媒出口(14b)の形成部位が挿入される膨張弁挿入穴(29a)が形成され、
膨張弁挿入穴(29a)は、内部熱交換器−膨張弁冷媒流路(29b)および膨張弁−蒸発器冷媒流路(29c)に連通し、
膨張弁組付部(29)は、膨張弁挿入穴(29a)を形成する膨張弁挿入穴形成部材(30)と、複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されるチューブ挿入部材(31)とに分割して形成されているのが好ましい。
Specifically, as in the invention according to claim 4, in the evaporator unit according to
The expansion valve insertion hole (29a) communicates with the internal heat exchanger-expansion valve refrigerant flow path (29b) and the expansion valve-evaporator refrigerant flow path (29c),
The expansion valve assembly portion (29) is inserted with an expansion valve insertion hole forming member (30) that forms an expansion valve insertion hole (29a), and an end of at least a part of the plurality of tubes (23). It is preferable that the tube insertion member (31) is divided and formed.
請求項5に記載の発明では、請求項2ないし4のいずれか1つに記載の蒸発器ユニットにおいて、内部熱交換器(13)には、高圧側冷媒出口(13c)を形成する高圧側出口端部(13e)と、低圧側冷媒入口(13d)を形成する低圧側入口端部(13e)とが互いに分離して形成され、
内部熱交換器−膨張弁冷媒流路(29b)の入口部には、高圧側出口端部(13e)が挿入され、
蒸発器−内部熱交換器冷媒流路(29d)の出口部には、低圧側入口端部(13e)が挿入されていることを特徴とする。
According to a fifth aspect of the present invention, in the evaporator unit according to any one of the second to fourth aspects, the internal heat exchanger (13) has a high pressure side outlet that forms a high pressure side refrigerant outlet (13c). The end (13e) and the low-pressure side inlet end (13e) forming the low-pressure side refrigerant inlet (13d) are formed separately from each other,
A high-pressure side outlet end (13e) is inserted into the inlet of the internal heat exchanger-expansion valve refrigerant channel (29b),
A low pressure side inlet end (13e) is inserted into the outlet of the evaporator-internal heat exchanger refrigerant channel (29d).
これにより、内部熱交換器(13)と膨張弁組付部(29)とを簡素な構成でもって接続できる。 Thereby, an internal heat exchanger (13) and an expansion valve assembly part (29) can be connected with a simple structure.
請求項6に記載の発明では、請求項2ないし5のいずれか1つに記載の蒸発器ユニットにおいて、ノズル部(40a)から噴射される高い速度の冷媒流により冷媒吸引口(40b)から冷媒を吸引し、ノズル部(40a)から噴射された冷媒と冷媒吸引口(40b)から吸引された冷媒とを混合して吐出するエジェクタ(40)が組み付けられるエジェクタ組付部(43)を備え、
蒸発器(15)は、エジェクタ(40)の出口側に接続されてエジェクタ(40)から吐出された冷媒を蒸発させる第1蒸発器(21)、および冷媒吸引口(40b)に接続されてエジェクタ(40)に吸引される冷媒を蒸発させる第2蒸発器(22)であり、
エジェクタ組付部(43)には、ノズル部(40a)の入口に流入する冷媒が流れるノズル部入口側流路(43b)と、冷媒吸引口(40b)に吸引される冷媒が流れる冷媒吸引口側流路(43c)と、エジェクタ(40)の出口から流出した冷媒が流れるエジェクタ出口側流路(43d)とが形成され、
エジェクタ組付部(43)は、金属で形成され、かつ第1、第2蒸発器(21、22)、内部熱交換器(13)および膨張弁組付部(29)と一体ろう付けされていることを特徴とする。
According to a sixth aspect of the present invention, in the evaporator unit according to any one of the second to fifth aspects, the refrigerant is discharged from the refrigerant suction port (40b) by the high-speed refrigerant flow injected from the nozzle portion (40a). An ejector assembly portion (43) to which an ejector (40) for mixing and discharging the refrigerant injected from the nozzle portion (40a) and the refrigerant sucked from the refrigerant suction port (40b) is assembled,
The evaporator (15) is connected to the outlet side of the ejector (40) and is connected to the first evaporator (21) for evaporating the refrigerant discharged from the ejector (40) and the refrigerant suction port (40b). A second evaporator (22) for evaporating the refrigerant sucked by (40);
The ejector assembly part (43) has a nozzle part inlet side flow path (43b) through which refrigerant flowing into the inlet of the nozzle part (40a) flows, and a refrigerant suction port through which refrigerant sucked into the refrigerant suction port (40b) flows. A side flow path (43c) and an ejector outlet side flow path (43d) through which the refrigerant flowing out from the outlet of the ejector (40) flows are formed,
The ejector assembly (43) is formed of metal and brazed integrally with the first and second evaporators (21, 22), the internal heat exchanger (13), and the expansion valve assembly (29). It is characterized by being.
これにより、エジェクタ(40)を備える冷凍サイクルにおいて、接続構成を簡素化できるとともに、冷媒漏れに対するシール性を高めることができる。 Thereby, in a refrigerating cycle provided with an ejector (40), while being able to simplify a connection structure, the sealing performance with respect to refrigerant | coolant leakage can be improved.
請求項7に記載の発明では、請求項6に記載の蒸発器ユニットにおいて、膨張弁組付部(29)には、内部熱交換器(13)のうち高圧側冷媒の出口とノズル部入口側流路(43b)とを連通する高圧冷媒流路(29e)が形成され、
高圧冷媒流路(29e)およびノズル部入口側流路(43b)は、内部熱交換器(13)の高圧側冷媒出口(13c)からノズル部(40a)の入口に至る内部熱交換器−ノズル部冷媒流路を構成していることを特徴とする。
According to a seventh aspect of the present invention, in the evaporator unit according to the sixth aspect, the expansion valve assembly (29) includes a high-pressure side refrigerant outlet and a nozzle part inlet side of the internal heat exchanger (13). A high-pressure refrigerant flow path (29e) communicating with the flow path (43b) is formed;
The high pressure refrigerant flow path (29e) and the nozzle part inlet side flow path (43b) are an internal heat exchanger-nozzle extending from the high pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the inlet of the nozzle part (40a). A partial refrigerant flow path is configured.
これにより、内部熱交換器(13)、膨張弁(14)および第1、第2蒸発器(21、22)間の流路と、内部熱交換器(13)およびエジェクタ(40)間の流路とを膨張弁組付部(29)およびエジェクタ組付部(43)に集約することができるので、流路構成を簡素化できる。 Thereby, the flow path between the internal heat exchanger (13), the expansion valve (14) and the first and second evaporators (21, 22), and the flow between the internal heat exchanger (13) and the ejector (40). Since the passages can be integrated into the expansion valve assembly portion (29) and the ejector assembly portion (43), the flow path configuration can be simplified.
請求項8に記載の発明では、請求項6または7に記載の蒸発器ユニットにおいて、冷媒吸引口側流路(43c)は、第2蒸発器(22)からエジェクタ(40)の冷媒吸引口(40b)に至る蒸発器−冷媒吸引口冷媒流路(43c)であり、
エジェクタ出口側流路(43d)は、エジェクタ(40)の出口から第1蒸発器(21)に至るエジェクタ−蒸発器冷媒流路(43d)であることを特徴とする。
According to an eighth aspect of the present invention, in the evaporator unit according to the sixth or seventh aspect, the refrigerant suction port side channel (43c) extends from the second evaporator (22) to the refrigerant suction port (40) of the ejector (40). 40b) the evaporator-refrigerant suction port refrigerant flow path (43c),
The ejector outlet side flow path (43d) is an ejector-evaporator refrigerant flow path (43d) extending from the outlet of the ejector (40) to the first evaporator (21).
これにより、第1、第2蒸発器(21、22)およびエジェクタ(40)間の流路をエジェクタ組付部(43)に集約することができるので、流路構成を簡素化できる。 Thereby, since the flow path between the first and second evaporators (21, 22) and the ejector (40) can be concentrated in the ejector assembly (43), the flow path configuration can be simplified.
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。 In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.
(第1実施形態)
以下、本発明における蒸発器ユニットおよびそれを用いた冷凍サイクルの実施形態を説明する。蒸発器ユニットは、冷凍サイクルを構成するために配管を介して冷凍サイクルの他の構成部品である圧縮機および凝縮器と接続される。蒸発器ユニットは、ひとつの形態では室内機として空気を冷却する用途に用いられる。また、蒸発器ユニットは、他の形態では室外機として用いることができる。
(First embodiment)
Hereinafter, embodiments of an evaporator unit and a refrigeration cycle using the same according to the present invention will be described. The evaporator unit is connected to a compressor and a condenser, which are other components of the refrigeration cycle, via pipes in order to configure the refrigeration cycle. In one embodiment, the evaporator unit is used as an indoor unit for cooling air. Moreover, an evaporator unit can be used as an outdoor unit in another form.
図1〜図10は本発明の第1実施形態を示すもので、図1は第1実施形態による冷凍サイクル10を車両用冷凍サイクル装置に適用した例を示す。本実施形態の冷凍サイクル10において、冷媒を吸入圧縮する圧縮機11は、電磁クラッチ、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。
FIGS. 1-10 shows 1st Embodiment of this invention, FIG. 1 shows the example which applied the refrigerating
圧縮機11としては、吐出容量の変化により冷媒吐出能力を調整できる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機作動の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機のいずれを使用してもよい。また、圧縮機11として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。
The
この圧縮機11の冷媒吐出側には放熱器12が配置されている。放熱器12は圧縮機11から吐出された高圧冷媒と図示しない冷却ファンにより送風される外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却する。
A
ここで、冷凍サイクル10の冷媒として、本実施形態ではフロン系、HC系等の冷媒のように高圧圧力が臨界圧力を超えない冷媒を用いて、蒸気圧縮式の亜臨界サイクルを構成している。このため、放熱器12は冷媒を凝縮する凝縮器として作用する。
Here, as the refrigerant of the
放熱器12の出口側には内部熱交換器13が接続されている。内部熱交換器13には、放熱器12から流出した高圧側冷媒が流れる高圧側冷媒流路13aと、圧縮機11に吸入される低圧側冷媒が流れる低圧側冷媒流路13bとが形成されている。
An
内部熱交換器13が高圧側冷媒と低圧側冷媒とを熱交換させることにより、蒸発器15における入口側冷媒と出口側冷媒とのエンタルピ差(冷凍能力)を増大することができる。
When the
内部熱交換器13の高圧側冷媒出口13c側には膨張弁14の冷媒入口14aが接続されている。膨張弁14は内部熱交換器13の高圧側冷媒流路13aからの液冷媒を減圧する減圧手段である。
A
膨張弁14の冷媒出口14b側には蒸発器15が接続されている。蒸発器15の出口側は内部熱交換器13の低圧側冷媒入口13dに接続されている。内部熱交換器13の低圧側冷媒出口は圧縮機11の吸入側に接続されている。
An
蒸発器15は、図示しないケース内に収納され、そして、このケース内に構成される空気通路に共通の電動送風機16により空気(被冷却空気)を矢印A1のごとく送風し、この送風空気を蒸発器15で冷却するようになっている。
The
蒸発器15で冷却された冷風を冷却対象空間(図示せず)に送り込み、これにより、蒸発器15にて冷却対象空間を冷却するようになっている。
The cool air cooled by the
なお、本実施形態の冷凍サイクル10を車両空調用冷凍サイクル装置に適用する場合は車室内空間が冷却対象空間となる。また、本実施形態の冷凍サイクル10を冷凍車用冷凍サイクル装置に適用する場合は冷凍車の冷凍冷蔵庫内空間が冷却対象空間となる。
In addition, when applying the
本実施形態では、内部熱交換器13、膨張弁14および蒸発器15を1つの一体化ユニット20として組み付けている。
In the present embodiment, the
図2は一体化ユニット20の全体構成の概要を示す二面図である。本実施形態では、蒸発器15は、空気流れA1の上流側(風上側)に配置される第1蒸発器21と、空気流れA1の下流側(風下側)に配置される第2蒸発器22とを一体化した構造になっている。
FIG. 2 is a two-view diagram showing an outline of the overall configuration of the
第1、第2蒸発器21、22はそれぞれ熱交換コア部21a、22aと、この熱交換コア部21a、22aの上下両側に位置するタンク部21b、21c、22b、22cとを備えている。
The first and
以下、第1蒸発器21の熱交換コア部21aを第1熱交換コア部21aと言い、第2蒸発器22の熱交換コア部22aを第2熱交換コア部22aと言う。
Hereinafter, the heat
第1、第2熱交換コア部21a、22aは、それぞれ上下方向に延びる複数のチューブ23を備えている。これら複数のチューブ23の間には、被熱交換媒体(冷却される空気)が通る通路が形成される。これら複数のチューブ23相互間には、フィン24を配置し、チューブ23とフィン24とを接合することができる。
The first and second heat
本実施形態では、第1、第2熱交換コア部21a、22aは、チューブ23とフィン24との積層構造からなる。このチューブ23とフィン24は第1、第2熱交換コア部21a、22aの左右方向に交互に積層配置される。
In the present embodiment, the first and second heat
なお、図2では、チューブ23とフィン24の積層構造の一部のみ図示しているが、熱交換コア部21a、22aの全域にチューブ23とフィン24の積層構造が構成され、この積層構造の空隙部を電動送風機16の送風空気が通過するようになっている。
In FIG. 2, only a part of the laminated structure of the
チューブ23は冷媒通路を構成するもので、断面形状が空気流れ方向A1に沿って扁平な扁平チューブよりなる。フィン24は薄板材を波状に曲げ成形したコルゲートフィンであり、チューブ23の平坦な外面側に接合され空気側伝熱面積を拡大する。
The
第1熱交換コア部21aのチューブ23と第2熱交換コア部22aのチューブ23は互いに独立した冷媒通路を構成し、第1熱交換コア部21aの上下両側のタンク部21b、21cと、第2熱交換コア部22aの上下両側のタンク部22b、22cは互いに独立した冷媒通路空間を構成する。
The
第1熱交換コア部21aの上下両側のタンク部21b、21cの内部空間は、第1熱交換コア部21aのチューブ23の上下両端部に連通するようになっている。同様に、第2熱交換コア部22aの上下両側のタンク部22b、22cの内部空間は、第2熱交換コア部22aのチューブ23の上下両端部に連通するようになっている。
The internal spaces of the
これにより、上下両側のタンク部21b、21c、22b、22cは、それぞれ対応する熱交換コア部21a、22aの複数のチューブ23へ冷媒流れを分配する役割、および複数のチューブ23からの冷媒流れを集合する役割を果たす。
Thereby, the
2つの上側タンク部21b、22b、および2つの下側タンク部21c、22cは隣接しているので、2つの上側タンク部21b、22b同士、および2つの下側タンク部21c、22c同士を一体的に成形することができる。もちろん、2つの上側タンク部21b、22b、および2つの下側タンク部21c、22cをそれぞれ独立の部材として成形してもよい。
Since the two
下側タンク部21c、22cの長手方向一端部には、一体化ユニット20の1つの冷媒入口25および1つの冷媒出口26が形成されている。
One
第1、第2熱交換コア部21a、22aの両側面部には、第1、第2熱交換コア部21a、22aを保持するサイドプレート27、28がろう付け固定されている。サイドプレート27、28は、第1、第2熱交換コア部21a、22aの側方にてチューブ23の長手方向に延びる形状を有しており、上下両側のタンク部21b、21c、22b、22cにもろう付け固定されている。
なお、チューブ23、フィン24、タンク部21b、21c、22b、22c、サイドプレート27、28等の蒸発器構成部品の具体的材質としては、熱伝導性やろう付け性に優れた金属であるアルミニウムが好適であり、このアルミニウム材にて各部品を成形することにより、第1、第2蒸発器21、22の全体構成を一体ろう付けにて組み付けることができる。
In addition, as a concrete material of evaporator components, such as the
本実施形態では、内部熱交換器13および膨張弁組付部29もろう付けにて第1、第2蒸発器21、22と一体に組み付けるようになっている。膨張弁組付部29は、蒸発器部品と同様にアルミニウム材(金属材)にて成形されており、第1、第2蒸発器21、22の上側タンク部21b、22bの長手方向一端部にろう付け固定されている。
In the present embodiment, the
これに対し、膨張弁14は内部に微小通路を形成しているので、膨張弁14をろう付けすると、ろう付け時の高温度(アルミニウムのろう付け温度:600℃付近)にて膨張弁14が熱変形して、膨張弁14内部の通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。
On the other hand, since the
そこで、膨張弁14については、図3に示すように、第1、第2蒸発器21、22、内部熱交換器13および膨張弁組付部29の一体ろう付けを行った後に、膨張弁組付部29に組み付けするようにしてある。
Therefore, as shown in FIG. 3, the
より具体的に、第1、第2蒸発器21、22、内部熱交換器13および膨張弁組付部29の組み付け構造を説明すると、内部熱交換器13は、第1、第2蒸発器21、22の両サイドプレート27、28のうち冷媒入口25および冷媒出口26側のサイドプレート27と一体化されている。
More specifically, the assembly structure of the first and
本実施形態では、図4に示すように、サイドプレート27の内部に、高圧側冷媒流路13aおよび低圧側冷媒流路13bをチューブ23の長手方向に直線状かつ平行に貫通するように形成することによって、内部熱交換器13をサイドプレート27と一体化している。このような内部熱交換器13(すなわちサイドプレート27)は押し出し成形にて一体成形することができる。
In the present embodiment, as shown in FIG. 4, the high-pressure side
内部熱交換器13のうち上下タンク部21b、21c、22b、22c側の端部は、膨張弁組付部29に挿入されて接合されている。
Ends on the upper and
本実施形態では、内部熱交換器13のうち上側タンク部21b、22c側の端部は、高圧側冷媒出口13cを形成する高圧側出口端部13eと、低圧側冷媒入口13dを形成する低圧側入口端部13fとに分離されている。具体的には、内部熱交換器13の端部に切欠部13gを形成することによって、高圧側出口端部13eと低圧側入口端部13fとを分離している。
In the present embodiment, the end portions on the
図3に示すように、膨張弁組付部29には、膨張弁14が挿入される膨張弁挿入穴29aが形成されている。膨張弁14は、冷媒入口14aおよび冷媒出口14bが膨張弁挿入穴29a内に位置するように、冷媒入口14aおよび冷媒出口14bの形成部位が膨張弁挿入穴29aに挿入される。
As shown in FIG. 3, the expansion
膨張弁組付部29の内部には、内部熱交換器13の高圧側冷媒出口13cから膨張弁14の冷媒入口14aに至る内部熱交換器−膨張弁冷媒流路29bと、膨張弁14の冷媒出口14bから第2蒸発器22に至る膨張弁−蒸発器冷媒流路29cと、第1蒸発器21から内部熱交換器13の低圧側冷媒入口13dに至る蒸発器−内部熱交換器冷媒流路29dとが形成されている。
Inside the
内部熱交換器−膨張弁冷媒流路29bは、膨張弁14の冷媒入口14aに流入する冷媒が流れる入口側流路である。膨張弁−蒸発器冷媒流路29cは、膨張弁14の冷媒出口14bから流出した冷媒が流れる出口側流路である。
The internal heat exchanger-expansion valve
膨張弁組付部29には、第1、第2熱交換コア部21a、22aの複数のチューブ23のうち一部のチューブの端部が挿入されている。これにより、膨張弁組付部29は、上側タンク部21b、22bの一部を構成している。
End portions of some of the
図5は、一体化ユニット20のうち膨張弁組付部29近傍部位の二面図であり、膨張弁14を取り外した状態を示している。図6は図5のA矢視図およびB−B断面図である。
FIG. 5 is a two-side view of the vicinity of the expansion
本実施形態では、膨張弁組付部29は、膨張弁挿入穴29aを形成する膨張弁挿入穴形成部材30と、複数のチューブ23の端部が挿入されるチューブ挿入部材31とに分割して形成されている。
In this embodiment, the expansion
膨張弁挿入穴形成部材30およびチューブ挿入部材31は、上側タンク部21b、22bも構成している。具体的には、上側タンク部21b、22bは、膨張弁挿入穴形成部材30、チューブ挿入部材31、プレートヘッダ32およびタンクヘッダ33で構成されている。
The expansion valve insertion
より具体的には、上側タンク部21b、22bは、長手方向一端部が膨張弁挿入穴形成部材30、チューブ挿入部材31およびプレートヘッダ32で構成され、残余の部位がチューブ挿入部材31、プレートヘッダ32およびタンクヘッダ33で構成されている。チューブ挿入部材31は、プレートヘッダ32とタンクヘッダ33との間に挟まれる中間プレートの役割を果たしている。
More specifically, the
図6(b)に示すように、プレートヘッダ32には、第1熱交換コア部21aのチューブ23の上端部が嵌合されて接合される第1チューブ嵌合孔32aと、第2熱交換コア部22aのチューブ23の上端部が嵌合されて接合される第2チューブ嵌合孔32bとが形成されている。
As shown in FIG. 6B, the
図7はチューブ挿入部材31の二面図である。図6(b)、図8に示すように、チューブ挿入部材31には、プレートヘッダ32の第1チューブ嵌合孔32aと重合して第1熱交換コア部21aのチューブ23の上端部が挿入される第1チューブ挿入孔31aと、プレートヘッダ32の第2チューブ嵌合孔32bと重合して第2熱交換コア部22aのチューブ23の上端部が挿入される第2チューブ挿入孔31bとが形成されている。
FIG. 7 is a two-side view of the
チューブ挿入部材31は、長手方向一端部が図6(a)に示すように膨張弁挿入穴形成部材30とプレートヘッダ32との間に挟まれてろう付け固定され、残余の部位が図6(b)に示すようにタンクヘッダ33とプレートヘッダ32との間に挟まれてろう付け固定されている。
As shown in FIG. 6A, the
図8は膨張弁挿入穴形成部材30の三面図である。図6、図8に示すように、膨張弁挿入穴形成部材30およびタンクヘッダ33には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第1チューブ挿入孔31aと対向する第1タンク溝30a、33aが形成されている。第1タンク溝30a、33aは、第1蒸発器21の上側タンク部21bの内部空間を構成している。
FIG. 8 is a three-side view of the expansion valve insertion
同様に、膨張弁挿入穴形成部材30およびタンクヘッダ33には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第2チューブ挿入孔31bと対向する第2タンク溝30b、33bが形成されている。第2タンク溝30b、33bは、上側タンク部22bの内部空間を構成している。
Similarly, the expansion valve insertion
図5(b)、図6(b)に示すように、プレートヘッダ32には、内部熱交換器13の高圧側出口端部13eが嵌合されて接合される高圧側出口端部嵌合孔32cと、内部熱交換器13の低圧側入口端部13fが嵌合されて接合される低圧側入口端部嵌合孔32dとが形成されている。
As shown in FIGS. 5B and 6B, the
図6(b)、図7に示すように、チューブ挿入部材31には、プレートヘッダ32の高圧側出口端部嵌合孔32cと重合して内部熱交換器13の高圧側出口端部13eが挿入される高圧側出口端部挿入穴31cと、プレートヘッダ32の低圧側入口端部嵌合孔32dと重合して内部熱交換器13の低圧側入口端部13fが挿入される低圧側入口端部挿入穴31dとが形成されている。図5(a)に示すように、チューブ挿入部材31の低圧側入口端部挿入穴31dは、膨張弁挿入穴形成部材30の第1タンク溝30aと対向している。
As shown in FIG. 6B and FIG. 7, the
図5、図6、図8に示すように、膨張弁挿入穴形成部材30には、冷媒流路をなす第1、第2流路穴30c、30dが形成されている。図5(a)に示すように、第1流路穴30cは、チューブ挿入部材31の高圧側出口端部挿入穴31cと重合し、膨張弁挿入穴29aに連通している。第2流路穴30dは、膨張弁挿入穴29aからタンク溝30bまで延びている。
As shown in FIGS. 5, 6, and 8, the expansion valve insertion
チューブ挿入部材31の高圧側出口端部挿入穴31cおよび膨張弁挿入穴形成部材30の第1流路穴30cは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを構成している。内部熱交換器−膨張弁冷媒流路29bの入口部には、内部熱交換器13の高圧側出口端部13eが挿入されている。
The high pressure side outlet
膨張弁挿入穴形成部材30の第2流路穴30dは、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを構成している。
The second flow path hole 30 d of the expansion valve insertion
膨張弁挿入穴形成部材30のタンク溝30aおよびチューブ挿入部材31の低圧側入口端部挿入穴31dは、膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを構成している。蒸発器−内部熱交換器冷媒流路29dの出口部には、内部熱交換器13の低圧側入口端部13eが挿入されている
ここで、図2に示す第1蒸発器21の上側タンク部21bを第1上側タンク部21bと言い、第2蒸発器22の上側タンク部22bを第2上側タンク部22bと言う。
The
第1上側タンク部21bの内部空間の長手方向の略中央部には仕切板(図示せず)が配置され、この仕切板によって第1上側タンク部21bの内部空間は、長手方向の2つの空間すなわち左側空間34と右側空間35とに仕切られている。第1上側タンク部21bの左側空間34は、膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを介して内部熱交換器13の低圧側冷媒流路入口13f(すなわち低圧側冷媒流路13b)に連通している。
A partition plate (not shown) is disposed at a substantially central portion in the longitudinal direction of the internal space of the first
第2上側タンク部22bの内部空間の長手方向の略中央部には仕切板(図示せず)が配置され、この仕切板によって第2上側タンク部22bの内部空間は、長手方向の2つの空間すなわち左側空間36と右側空間37とに仕切られている。第2上側タンク部22bの左側空間36は、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cに連通している。
A partition plate (not shown) is disposed at a substantially central portion in the longitudinal direction of the internal space of the second
両上側タンク部21b、22bの右側空間35、37同士は、図示しない冷媒流路によって連通している。
The
第1上側タンク部21bの左側空間34は、複数のチューブ23からの冷媒を集合させる集合タンクとしての役割を果たし、第1上側タンク部21bの右側空間35は、冷媒を複数のチューブ23へ分配する分配タンクとしての役割を果たす。
The
第2上側タンク部22bの左側空間36は、冷媒を複数のチューブ23へ分配する分配タンクとしての役割を果たし、第2上側タンク部22bの右側空間37は、複数のチューブ23からの冷媒を集合させる集合タンクとしての役割を果たす。
The
図3に示すように、膨張弁14は、蒸発器21、22等を一体ろう付けする組み付け工程(ろう付け工程)の終了後に、膨張弁組付部29の膨張弁挿入穴29aに差し込まれる。
As shown in FIG. 3, the
具体的には、膨張弁14は、冷媒入口14aが膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bに連通し、冷媒出口14bが膨張弁組付部29の膨張弁−蒸発器冷媒流路29cに連通するように膨張弁組付部29に組み付けられる。
Specifically, in the
これにより、内部熱交換器13の高圧側冷媒流路13aは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを介して膨張弁14の冷媒入口14aと連通し、膨張弁14の冷媒出口14bは、膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを介して上側タンク部22bの左側空間36と連通する。
As a result, the high-pressure side
このとき、膨張弁14とともにOリング38を膨張弁組付部29の膨張弁挿入穴29a内に組み付ける。このOリング38により、膨張弁14の冷媒入口14aと冷媒出口14bとの間がシールされる。
At this time, the O-
さらに、膨張弁14は、膨張弁組付部29のうち膨張弁挿入穴29aが開口する側の端部にシール接合される。本実施形態では、膨張弁14は、膨張弁組付部29とのシール接合部がアルミニウム等の金属材で成形されており、膨張弁組付部29に抵抗溶接により金属シール接合される。これにより、膨張弁14と膨張弁組付部29との間からの冷媒漏れが防止される。
Furthermore, the
本実施形態では、膨張弁14として、コイル14cへの通電によって弁体14dを駆動して弁開度(冷媒流量)を調整する電気式膨張弁を用いている。また、膨張弁14として、圧縮機11の吸入側冷媒(後述の蒸発器出口側冷媒)の温度と圧力とに基づいて圧縮機吸入側冷媒の過熱度を検出し、圧縮機吸入側冷媒の過熱度が予め設定された所定値となるように弁開度(冷媒流量)を調整する温度式膨張弁を用いてもよい。
In the present embodiment, an electric expansion valve that adjusts the valve opening (refrigerant flow rate) by driving the
膨張弁14は、その弁体の変位方向に延びる細長の円筒形状となっており、その細長円筒形状の長手方向を上側タンク部21b、22bの長手方向に一致させて、膨張弁14が上側タンク部21b、22bと平行に設置されている。
The
この構成は、膨張弁14と蒸発器21、22とをコンパクトに配置することができ、ひいては、ユニット全体の体格をコンパクトにまとめることができる。しかも、膨張弁14は、蒸発器21、22と一体ろう付けされた膨張弁組付部29内に配置され、その冷媒入口14aおよび冷媒出口14bを膨張弁組付部29内において直接に開口させて設置されている。この構成は、冷媒配管を減らすことを可能とする。
With this configuration, the
以上の構成において一体化ユニット20全体の冷媒流路を図9、図10により具体的に説明する。なお、図10では、図示の都合上、膨張弁組付部29の内部に挿入されている膨張弁14を実線で示している。
The refrigerant flow path of the entire
一体化ユニット20の冷媒入口25に流入した冷媒はまず、矢印a1のように内部熱交換器13の高圧側冷媒流路13aを通過して熱交換され、この熱交換後の冷媒は、矢印a2のように膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを経て膨張弁14を通過して減圧され、この減圧後の低圧冷媒は膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを経て矢印a3のように第2蒸発器22の上側タンク部22bの左側空間36に流入する。
The refrigerant flowing into the
この左側空間36の冷媒は第2蒸発器22の熱交換コア部22aの左側部の複数のチューブ23を矢印a4のように下降して第2蒸発器22の下側タンク部22c内の左側部に流入する。この下側タンク部22c内には仕切板が設けられていないので、この下側タンク部22cの左側部から冷媒は矢印a5のように右側部へと移動する。
The refrigerant in the
この下側タンク部22cの右側部の冷媒は第2蒸発器22の熱交換コア部22aの右側部の複数のチューブ23を矢印a6のように上昇して第2蒸発器22の上側タンク部22bの右側空間37に流入し、さらに、ここから冷媒は矢印a7のように第1蒸発器21の上側タンク部21bの右側空間35へと流れる。
The refrigerant on the right side of the
この右側空間35の冷媒は矢印a8のように第1蒸発器21の熱交換コア部21aの右側部の複数のチューブ23を下降して第1蒸発器21の下側タンク部21c内の右側部に流入する。この下側タンク部21c内には仕切板が設けられていないので、この下側タンク部21cの右側部から冷媒は矢印a9のように左側部へと移動する。
The refrigerant in the
この下側タンク部21cの左側部の冷媒は第1蒸発器21の熱交換コア部21aの左側部の複数のチューブ23を矢印a10のように上昇して第1蒸発器21の上側タンク部21bの左側空間34に流入する。この左側空間34内の冷媒は矢印a11のように膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを経て、矢印a12のように内部熱交換器13の低圧側冷媒流路13bを通過して熱交換され、この熱交換後の冷媒は一体化ユニット20の冷媒出口26へと流れる。
The refrigerant on the left side of the
一体化ユニット20は以上のような冷媒流路構成を持つため、一体化ユニット20全体として冷媒入口25および冷媒出口26を1つずつ設けるだけでよい。
Since the
次に、第1実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮されて吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は一体化ユニット20の冷媒入口25に流入する。
Next, the operation of the first embodiment will be described. When the
冷媒入口25に流入した冷媒は内部熱交換器13の高圧側冷媒流路13aを通過して、この高圧側冷媒流路13aにて低圧側冷媒流路13bの低圧側冷媒と熱交換され、熱交換後の冷媒が膨張弁14を通過する。
The refrigerant flowing into the
この膨張弁14では、蒸発器15(第1、第2蒸発器21、22)の出口冷媒(圧縮機吸入冷媒)の過熱度が所定値となるように弁開度(冷媒流量)が調整され、高圧冷媒が減圧される。この膨張弁14通過後の冷媒(中間圧冷媒)は蒸発器15における図9の矢印a4〜a10の冷媒流路にて冷媒が流れる。
In the
この間に、蒸発器15では、低温の低圧冷媒が矢印A1方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、内部熱交換器13の低圧側冷媒流路13bを通過して、この低圧側冷媒流路13bにて高圧側冷媒流路13aの高圧側冷媒と熱交換され、熱交換後の冷媒が一体化ユニット20の冷媒出口26から圧縮機11に吸入され、再び圧縮される。
During this time, in the
以上のごとく、本実施形態によると、内部熱交換器13、膨張弁14および蒸発器15を図2に示すように1つの構造体、すなわち一体化ユニット20として組み付け、それにより、一体化ユニット20全体として冷媒入口25および冷媒出口26をそれぞれ1つ設けるだけで済むようにしている。
As described above, according to the present embodiment, the
その結果、冷凍サイクル10の車両への搭載時には、上記各種部品13、14、15を内蔵する一体化ユニット20全体として、1つの冷媒入口25を放熱器12の出口側に接続し、1つの冷媒出口26を圧縮機11の吸入側に接続するだけで、配管接続作業を終了できる。
As a result, when the
そのため、上記各種部品13、14、15をそれぞれ独立の部品として構成し、これら各部品相互間をそれぞれ配管結合する場合と比較して、配管を簡素化して蒸発器15を有する冷凍サイクル10の車両への搭載性を大幅に向上できるとともに、サイクル部品点数を減少してコスト低減を図ることができる。
Therefore, the
さらに、一体化ユニット20によると、上記各種部品13、14、15相互間の接続通路長さを短縮できるので、冷媒流路の圧損を低減できると同時に、低圧冷媒と周辺雰囲気との熱交換を効果的に縮小できる。これにより、蒸発器15の冷却性能を向上できる。
Furthermore, according to the
特に、一体化ユニット20によると、蒸発器15、内部熱交換器13および膨張弁組付部29の一体ろう付けを行った後に膨張弁14を膨張弁組付部29に組み付けするので、蒸発器15のみの一体ろう付けを行った後に内部熱交換器13および膨張弁14を蒸発器15に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、接続構成を簡素化して一体化ユニット20の組み付け工数を低減できるとともに、冷媒漏れに対するシール性を高めることができる。
In particular, according to the
しかも、一体ろう付け後に組み付けされる膨張弁14を膨張弁組付部29に金属シール接合しているので、冷媒漏れに対するシール性をより高めることができる。
And since the
また、本実施形態によると、膨張弁組付部29が上側タンク部21b、22bの一部を構成しているので、膨張弁組付部29による一体化ユニット20の体格増大を抑制できる。
Moreover, according to this embodiment, since the expansion
(第2実施形態)
上記第1実施形態では、内部熱交換器13、膨張弁14および第1、第2蒸発器21、22を1つの一体化ユニット20として組み付けているが、本実施形態では、上記各種部品13、14、21、22に加え、エジェクタ40をも1つの一体化ユニット41として組み付けている。
(Second Embodiment)
In the first embodiment, the
図11に示すように、本実施形態の冷凍サイクル10は、エジェクタ40を備えるエジェクタ式冷凍サイクルを構成しており、内部熱交換器13の高圧側冷媒出口13cと膨張弁14の冷媒入口14aとの間)に設けられた分岐点Zから冷媒分岐通路42が分岐され、この冷媒分岐通路42の下流側にエジェクタ40が接続されている。
As shown in FIG. 11, the
エジェクタ40は冷媒を減圧する減圧手段であるとともに、高速で噴射される冷媒流の吸引作用(巻き込み作用)によって冷媒の循環を行う流体輸送を冷媒循環手段(運動量輸送式ポンプ)でもある。
The
図12に示すように、エジェクタ40には、膨張弁14通過後の冷媒(中間圧冷媒)の通路面積を小さく絞って、冷媒をさらに減圧膨張させるノズル部40aと、ノズル部40aの冷媒噴出口と同一空間に配置され、第2蒸発器22からの気相冷媒を吸引する冷媒吸引口40bとが備えられている。
As shown in FIG. 12, the
さらに、ノズル部40aおよび冷媒吸引口40bの冷媒流れ下流側部位には、ノズル部40aからの高速度の冷媒流と冷媒吸引口40bの吸引冷媒とを混合する混合部40cが設けられている。そして、混合部40cの冷媒流れ下流側に昇圧部をなすディフューザ部40dが配置されている。このディフューザ部40dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギーを圧力エネルギーに変換する作用を果たす。
Furthermore, a
本実施形態では、エジェクタ40として、ノズル部40aの通路面積を調整可能になっている可変エジェクタを用いている。具体的には、ノズル部40aの通路内にニードル40eが挿入され、このニードル40eの位置を電気的アクチュエータにより制御して通路面積を調整する機構となっている。なお、エジェクタ40として、ノズル部40aの通路面積が一定になっている固定エジェクタを用いてもよい。
In the present embodiment, a variable ejector that can adjust the passage area of the
図11に示すように、分岐点Zから分岐した冷媒分岐通路42の下流側はノズル部40aの入口に接続されている。エジェクタ40の出口(すなわちディフューザ部40dの出口)側は第1蒸発器21に接続され、この第1蒸発器21の出口側は内部熱交換器13の低圧側冷媒入口13dに接続される。
As shown in FIG. 11, the downstream side of the
一方、膨張弁14の冷媒出口14b側に第2蒸発器22が接続され、第2蒸発器22の出口側はエジェクタ40の冷媒吸引口40bに接続されている。
On the other hand, the
次に、一体化ユニット41の具体例を図13〜図15により説明すると、図13はこの一体化ユニット41の全体構成の概要を示す二面図である。本実施形態では、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43もろう付けにて第1、第2蒸発器21、22と一体に組み付けるようになっている。
Next, a specific example of the
これに対し、エジェクタ40はノズル部40aに高精度な微小通路を形成しているので、エジェクタ40をろう付けすると、ろう付け時の高温度(アルミニウムのろう付け温度:600℃付近)にてノズル部40aが熱変形して、ノズル部40aの通路形状、寸法等を所期の設計通りに維持できないという不具合が生じる。
On the other hand, since the
そこで、エジェクタ40については、第1、第2蒸発器21、22、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43の一体ろう付けを行った後に、蒸発器側に組み付けするようにしてある。
Accordingly, the
エジェクタ組付部43は、膨張弁組付部29と同様にアルミニウム材(金属材)にて成形されており、第1、第2蒸発器21、22の上側タンク部21b、22bの長手方向他端部(膨張弁組付部29と反対側の端部)にろう付け固定されている。
The
図14に示すように、エジェクタ組付部43には、エジェクタ40が挿入されるエジェクタ挿入穴43aが形成されている。なお、図14では、図示の都合上、エジェクタ組付部43の内部に挿入されているエジェクタ40を実線で示している。
As shown in FIG. 14, an
エジェクタ40は、ノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口の形成部位がエジェクタ挿入穴43aに挿入される。これにより、ノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口がエジェクタ挿入穴43a内に位置することとなる。
As for the
図14、図15に示すように、膨張弁組付部29の内部およびエジェクタ組付部43の内部には、内部熱交換器13の高圧側冷媒出口13cからエジェクタ40のノズル部40aの入口に至る内部熱交換器−ノズル部冷媒流路29e、43bが形成されている。内部熱交換器−ノズル部冷媒流路29e、43bは、図11に示す冷媒分岐通路42を構成している。
As shown in FIGS. 14 and 15, the interior of the
内部熱交換器−ノズル部冷媒流路29e、43bは、膨張弁組付部29に形成された高圧冷媒流路29eと、エジェクタ組付部43に形成されたノズル部入口側流路43bとで構成されている。
The internal heat exchanger-nozzle part
膨張弁組付部29の高圧冷媒流路29eは、内部熱交換器13の高圧側冷媒出口13cとエジェクタ組付部43のノズル部入口側流路43bとを連通する流路である。エジェクタ組付部43のノズル部入口側流路43bは、ノズル部40aの入口に流入する冷媒が流れる流路である。
The high pressure
エジェクタ組付部43の内部には、第2蒸発器15からエジェクタ40の冷媒吸引口40bに至る蒸発器−冷媒吸引口冷媒流路43cと、エジェクタ40のディフューザ部40dの出口から第1蒸発器21に至るエジェクタ−蒸発器冷媒流路43dとが形成されている。
Inside the
蒸発器−冷媒吸引口冷媒流路43cは、冷媒吸引口40bに吸引される冷媒が流れる冷媒吸引口側流路である。エジェクタ−蒸発器冷媒流路43dは、エジェクタ40の出口から流出した冷媒が流れるエジェクタ出口側流路である。
The evaporator-refrigerant suction
エジェクタ組付部43には、第1、第2熱交換コア部21a、22aの複数のチューブ23のうち一部のチューブの端部が挿入されており、エジェクタ組付部43は上側タンク部21b、22bの一部を構成している。
End portions of some of the
本実施形態では、エジェクタ組付部43は、エジェクタ挿入穴43aを形成するエジェクタ挿入穴形成部材44と、管状部材45と、チューブ挿入部材31とに分割して形成されている。管状部材45は、膨張弁挿入穴形成部材30とエジェクタ挿入穴形成部材44との間にて上側タンク部21b、22bの長手方向と平行に配置され、膨張弁組付部29とエジェクタ挿入穴形成部材44とを繋いでいる。
In the present embodiment, the
図15に示すように、管状部材45のうち膨張弁組付部29側の端部は、膨張弁組付部29の内部熱交換器−ノズル部冷媒流路29eに連通している。膨張弁組付部29の内部熱交換器−ノズル部冷媒流路29eは内部熱交換器−膨張弁冷媒流路29bから分岐しており、その分岐点は図11に示す冷媒分岐通路42の分岐点Zを構成している。
As shown in FIG. 15, the end of the
図14に示すように、上側タンク部21b、22bは、長手方向他端部(膨張弁組付部29と反対側の端部)がチューブ挿入部材31、プレートヘッダ32およびエジェクタ挿入穴形成部材44で構成されている。
As shown in FIG. 14, the
エジェクタ挿入穴形成部材44には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第1チューブ挿入孔31aと対向する第1タンク溝44aが形成されている。第1タンク溝44aは、第1蒸発器21の上側タンク部21bの右側空間35を構成している。
The ejector insertion
同様に、エジェクタ挿入穴形成部材44には、上側タンク部21b、22bの長手方向に延びてチューブ挿入部材31の第2チューブ挿入孔31bと対向する第2タンク溝44bが形成されている。第2タンク溝44bは、第2蒸発器22の上側タンク部22bの右側空間37を構成している。
Similarly, the ejector insertion
さらに、エジェクタ挿入穴形成部材44には、冷媒流路をなす第1、第2、第3流路穴44c、44d、44dが形成されている。
Further, the ejector insertion
第1流路穴44cは、管状部材45の他端部とエジェクタ挿入穴43aとを連通している。第2流路穴44dは、第2タンク溝44bからエジェクタ挿入穴43aまで延びている。第3流路穴44eは、エジェクタ挿入穴43aから第1タンク溝44aまで延びている。
The first
管状部材45の内部空間45aおよびエジェクタ挿入穴形成部材44の第1流路穴44cは、エジェクタ組付部43の内部熱交換器−ノズル部冷媒流路43bを構成している。
The
エジェクタ挿入穴形成部材44の第2タンク溝44bおよび第2流路穴44dは、エジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを構成している。
The
エジェクタ挿入穴形成部材44の第3流路穴44eおよび第1タンク溝44aは、エジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを構成している。
The third flow path hole 44e and the
エジェクタ40は、蒸発器21、22等を一体ろう付けする組み付け工程(ろう付け工程)の終了後に、エジェクタ組付部43のエジェクタ挿入穴43aに差し込まれる。
The
具体的には、エジェクタ40は、ノズル部40aの入口がエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路43bに連通し、冷媒吸引口40bがエジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cに連通し、ディフューザ部40dの出口がエジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dに連通するようにエジェクタ組付部43に組み付けられる。
Specifically, in the
これにより、内部熱交換器13の高圧側冷媒流路13aは、膨張弁組付部29およびエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路29e、43bを介してエジェクタ40のノズル部40aの入口と連通し、第2蒸発器22の上側タンク部22bの右側空間37は、エジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを介してエジェクタ40の冷媒吸引口40bと連通し、エジェクタ40のディフューザ部40dの出口は、エジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを介して第1蒸発器21の上側タンク部21bの右側空間35と連通する。
Thereby, the high pressure side
このとき、エジェクタ組付部43のエジェクタ挿入穴43a内にOリング(図示せず)を組み付ける。このOリングにより、エジェクタ40のノズル部40aの入口と冷媒吸引口40bとディフューザ部40dの出口との間がシールされる。
At this time, an O-ring (not shown) is assembled in the
さらに、エジェクタ40は、エジェクタ組付部43のうちエジェクタ挿入穴43aが開口する側の端部にシール接合される。本実施形態では、エジェクタ40は、エジェクタ組付部43とのシール接合部がアルミニウム等の金属材で成形されており、エジェクタ組付部43に抵抗溶接により金属シール接合される。これにより、エジェクタ40とエジェクタ組付部43との間からの冷媒漏れが防止される。
Further, the
エジェクタ40は、そのノズル部40aの軸方向に延びる細長の円筒形状となっており、その細長円筒形状の長手方向を上側タンク部21b、22bの長手方向に一致させて、エジェクタ40が上側タンク部21b、22bと平行に設置されている。
The
この構成は、エジェクタ40と蒸発器21、22とをコンパクトに配置することができ、ひいては、ユニット全体の体格をコンパクトにまとめることができる。しかも、エジェクタ40は、蒸発器21、22と一体ろう付けされたエジェクタ組付部43内に配置され、そのノズル部40aの入口、冷媒吸引口40bおよびディフューザ部40dの出口をエジェクタ組付部43内において直接に開口させて設置されている。この構成は、冷媒配管を減らすことを可能とする。
With this configuration, the
また、本実施形態では、第1蒸発器21が第2蒸発器22と隣接して設けられており、エジェクタ40の下流側端部は、第1蒸発器21の分配タンク(上側タンク部21bの右側空間35)と隣接して設置されている。この構成は、エジェクタ40からの流出冷媒をごく短い簡単な冷媒通路(エジェクタ−蒸発器冷媒流路43d)にて第1蒸発器21側へ供給できるという利点を提供する。
Moreover, in this embodiment, the
以上の構成において一体化ユニット41全体の冷媒流路を図14、図15により具体的に説明すると、一体化ユニット41の冷媒入口25に流入した冷媒はまず、矢印b1のように内部熱交換器13の高圧側冷媒流路13aを通過して低圧側冷媒流路13bを流れる低圧側冷媒と熱交換され、この熱交換後の冷媒は膨張弁組付部29内において、膨張弁14に向かう内部熱交換器−膨張弁冷媒流路29bの流れと、矢印b2の内部熱交換器−ノズル部冷媒流路29e、43bの流れとに分岐される。
The refrigerant flow of the entire
矢印b2の内部熱交換器−ノズル部冷媒流路29e、43bを流れる冷媒は、エジェクタ40(ノズル部40a→混合部40c→ディフューザ部40d)を通過して減圧され、この減圧後の低圧冷媒はエジェクタ組付部43のエジェクタ−蒸発器冷媒流路43dを経て矢印b3のように第1蒸発器21の上側タンク部21bの右側空間35に流入する。
The refrigerant flowing through the internal heat exchanger-nozzle part
この右側空間35の冷媒は第1蒸発器21の熱交換コア部21aの右側部の複数のチューブ23を矢印b4のように下降して第1蒸発器21の下側タンク部21c内の右側部に流入する。この下側タンク部21c内には仕切板が設けてないので、この下側タンク部21cの右側部から冷媒は矢印b5のように左側部へと移動する。
The refrigerant in the
この下側タンク部21cの左側部の冷媒は第1蒸発器21の熱交換コア部21aの左側部の複数のチューブ23を矢印b6のように上昇して第1蒸発器21の上側タンク部21bの左側空間34に流入し、さらに、ここから冷媒は矢印b7のように膨張弁組付部29の蒸発器−内部熱交換器冷媒流路29dを経て矢印b8のように内部熱交換器13の低圧側冷媒流路13bを通過して高圧側冷媒流路13aを流れる高圧側冷媒と熱交換され、この熱交換後の冷媒は一体化ユニット20の冷媒出口26へと流れる。
The refrigerant on the left side of the
これに対し、内部熱交換器−膨張弁冷媒流路29bを膨張弁14へ向かって流れる冷媒は膨張弁14を通過して減圧され、この減圧後の低圧冷媒は膨張弁組付部29の膨張弁−蒸発器冷媒流路29cを経て矢印b9のように第2蒸発器22の上側タンク部22bの左側空間36に流入する。
In contrast, the refrigerant flowing through the internal heat exchanger-expansion valve
この左側空間36の冷媒は第2蒸発器22の熱交換コア部22aの左側部の複数のチューブ23を矢印b10のように下降して第2蒸発器22の下側タンク部22c内の左側部に流入する。この下側タンク部22c内には仕切板が設けてないので、この下側タンク部22cの左側部から冷媒は矢印b11のように右側部へと移動する。
The refrigerant in the
この下側タンク部22cの右側部の冷媒は第2蒸発器22の熱交換コア部22aの右側部の複数のチューブ23を矢印b12のように上昇して上側タンク部22bの右側空間37に流入する。この右側空間37の冷媒は、矢印b13のようにエジェクタ組付部43の蒸発器−冷媒吸引口冷媒流路43cを経て冷媒吸引口40bからエジェクタ40内に吸引される。
The refrigerant on the right side of the
一体化ユニット41は以上のような冷媒流路構成を持つため、一体化ユニット41全体として冷媒入口25および冷媒出口26を1つずつ設けるだけでよい。
Since the
次に、第2実施形態の作動を説明する。圧縮機11を車両エンジンにより駆動すると、圧縮機11で圧縮され吐出された高温高圧状態の冷媒は放熱器12に流入する。放熱器12では高温の冷媒が外気により冷却されて凝縮する。放熱器12から流出した高圧冷媒は一体化ユニット20に設けられた1つの冷媒入口25に流入する。
Next, the operation of the second embodiment will be described. When the
冷媒入口25に流入した冷媒は内部熱交換器13の高圧側冷媒流路13aを通過して、この高圧側冷媒流路13aにて低圧側冷媒流路13bの低圧側冷媒と熱交換される。
The refrigerant flowing into the
ここで、熱交換後の冷媒流れは、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bを経て膨張弁14に向かう冷媒流れと、膨張弁組付部29およびエジェクタ組付部43の内部熱交換器−ノズル部冷媒流路29e、43b(図11の冷媒分岐通路42)を経てエジェクタ40に向かう冷媒流れとに分流する。
Here, the refrigerant flow after heat exchange is the refrigerant flow toward the
そして、エジェクタ40に流入した冷媒流れはノズル部40aで減圧され膨張する。従って、ノズル部40aで冷媒の圧力エネルギーが速度エネルギーに変換され、このノズル部40aの噴出口から冷媒は高速度となって噴出する。この際の冷媒圧力低下により、冷媒吸引口40bから第2蒸発器22通過後の冷媒(気相冷媒)を吸引する。
And the refrigerant | coolant flow which flowed into the
ノズル部40aから噴射された冷媒と冷媒吸引口40bに吸引された冷媒は、ノズル部40a下流側の混合部40cで混合してディフューザ部40dに流入する。このディフューザ部40dでは通路面積の拡大により、冷媒の速度(膨張)エネルギーが圧力エネルギーに変換されるため、冷媒の圧力が上昇する。
The refrigerant injected from the
そして、エジェクタ40のディフューザ部40dから流出した冷媒は第1蒸発器21における図14、図15の矢印b3〜b6の冷媒流路にて冷媒が流れる。この間に、第1蒸発器21では、低温の低圧冷媒が矢印A1方向の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は、内部熱交換器13の低圧側冷媒流路13bを通過して、この低圧側冷媒流路13b内にて高圧側冷媒流路13aを流れる低圧側冷媒と熱交換され、熱交換後の冷媒が、一体化ユニット20に設けられた1つの冷媒出口26から圧縮機11に吸入され、再び圧縮される。
And the refrigerant | coolant which flowed out from the
一方、膨張弁組付部29の内部熱交換器−膨張弁冷媒流路29bから膨張弁14に流入した冷媒流れは、膨張弁14で減圧されて低圧冷媒となり、この低圧冷媒が第2蒸発器22における図14、図15の矢印b9〜b12の冷媒流路にて冷媒が流れる。この間に、第2蒸発器22では、低温の低圧冷媒が第1蒸発器21通過後の送風空気から吸熱して蒸発する。この蒸発後の気相冷媒は冷媒吸引口40bからエジェクタ40内に吸引される。
On the other hand, the refrigerant flow that has flowed into the
以上のごとく、本実施形態によると、エジェクタ40のディフューザ部40dの下流側冷媒を第1蒸発器21に供給するととともに、膨張弁14の下流側の冷媒を第2蒸発器22にも供給できるので、第1、第2蒸発器21、22で同時に冷却作用を発揮できる。そのため、第1、第2蒸発器21、22の両方で冷却された冷風を冷却対象空間に吹き出して、冷却対象空間を冷房(冷却)できる。
As described above, according to the present embodiment, the refrigerant on the downstream side of the
その際に、第1蒸発器21の冷媒蒸発圧力はディフューザ部40dで昇圧した後の圧力であり、一方、第2蒸発器22の出口側はエジェクタ40の冷媒吸引口40bに接続されているから、ノズル部40aでの減圧直後の最も低い圧力を第2蒸発器22に作用させることができる。
At that time, the refrigerant evaporation pressure of the
これにより、第1蒸発器21の冷媒蒸発圧力(冷媒蒸発温度)よりも第2蒸発器22の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。そして、送風空気の流れ方向A1に対して冷媒蒸発温度が高い第1蒸発器21を上流側に配置し、冷媒蒸発温度が低い第2蒸発器22を下流側に配置しているから、第1蒸発器21における冷媒蒸発温度と送風空気との温度差および第2蒸発器22における冷媒蒸発温度と送風空気との温度差を両方とも確保できる。
Thereby, the refrigerant evaporation pressure (refrigerant evaporation temperature) of the
このため、第1、第2蒸発器21、22の冷却性能を両方とも有効に発揮できる。従って、共通の冷却対象空間に対する冷却性能を第1、第2蒸発器21、22の組み合わせにて効果的に向上できる。また、ディフューザ部40dでの昇圧作用により圧縮機11の吸入圧を上昇して、圧縮機11の駆動動力を低減できる。
For this reason, both the cooling performance of the 1st,
さらに、本実施形態によると、内部熱交換器13、膨張弁14、第1、第2蒸発器21、22およびエジェクタ40を図13に示すように1つの構造体、すなわち一体化ユニット41として組み付け、それにより、一体化ユニット41全体として冷媒入口25および冷媒出口26をそれぞれ1つ設けるだけで済むようにしている。
Furthermore, according to this embodiment, the
その結果、エジェクタ40を備える冷凍サイクル40においても、上記第1実施形態と同様に、配管を簡素化して車両への搭載性を大幅に向上できるとともに、サイクル部品点数を減少してコスト低減を図ることができる。
As a result, also in the
さらに、一体化ユニット41によると、上記各種部品13、14、21、22、40相互間の接続通路長さを短縮できるので、冷媒流路の圧損を低減できると同時に、低圧冷媒と周辺雰囲気との熱交換を効果的に縮小できる。これにより、エジェクタ40を備える冷凍サイクル40においても、上記第1実施形態と同様に、蒸発器21、22の冷却性能を向上できる。
Further, according to the
特に、一体化ユニット41によると、第1、第2蒸発器21、22、内部熱交換器13、膨張弁組付部29およびエジェクタ組付部43の一体ろう付けを行った後に、膨張弁14を膨張弁組付部29に組み付けし、エジェクタ40をエジェクタ組付部43に組み付けするので、第1、第2蒸発器21、22のみの一体ろう付けを行った後に、膨張弁14、内部熱交換器13およびエジェクタ40を第1、第2蒸発器21、22に組み付けする場合と比較して、一体ろう付け後の接続箇所を低減できる。その結果、一体化ユニット41の組み付け工数を低減できるとともに、冷媒漏れに対するシール性を高めることができる。
In particular, according to the
しかも、一体ろう付け後に組み付けされる膨張弁14を膨張弁組付部29に金属シール接合し、同じく一体ろう付け後に組み付けされるエジェクタ40をエジェクタ組付部43に金属シール接合しているので、冷媒漏れに対するシール性をより高めることができる。
Moreover, since the
また、本実施形態によると、エジェクタ組付部43が上側タンク部21b、22bの一部を構成しているので、エジェクタ組付部43による一体化ユニット20の体格増大を抑制できる。
Moreover, according to this embodiment, since the
(他の実施形態)
なお、上記第1、第2実施形態では、内部熱交換器13の上端部に切欠部13gを形成することによって高圧側出口端部13eと低圧側入口端部13fとを分離しているが、図16に示すように内部熱交換器13の上端部に屈曲部13hや段付部13iを形成することによって高圧側出口端部13eと低圧側入口端部13fとを分離してもよい。
(Other embodiments)
In the first and second embodiments, the high pressure side
また、上記各実施形態では、冷媒として高圧圧力が臨界圧力を超えないフロン系、HC系等の冷媒を用いる蒸気圧縮式の亜臨界サイクルについて説明したが、冷媒として二酸化炭素(CO2 )のように高圧圧力が臨界圧力を超える冷媒を用いる蒸気圧縮式の超臨界サイクルに本発明を適用してもよい。 In each of the above embodiments, the vapor compression subcritical cycle using a refrigerant such as a chlorofluorocarbon or HC system in which the high pressure does not exceed the critical pressure has been described. However, the refrigerant is, for example, carbon dioxide (CO 2 ). The present invention may also be applied to a vapor compression supercritical cycle that uses a refrigerant whose high pressure exceeds the critical pressure.
但し、超臨界サイクルでは、圧縮機吐出冷媒が放熱器12にて超臨界状態のまま放熱するのみであり、凝縮しないので、高圧側に配置される受液器12aでは冷媒の気液分離作用および余剰液冷媒の貯留作用を発揮できない。そこで、超臨界サイクルでは、図17に示すように蒸発器15の出口側に低圧側気液分離器をなすアキュムレータ50を配置する構成を採用すればよい。
However, in the supercritical cycle, the refrigerant discharged from the compressor is only dissipated in the supercritical state in the
また、上記各実施形態では、内部熱交換器13をサイドプレート27と一体化しているが、内部熱交換器13をサイドプレート27と別体にしてもよい。
Further, in each of the above embodiments, the
また、上記各実施形態は、蒸発器の具体的構成の一例を示したものに過ぎず、これに限定されることなく、蒸発器の具体的構成を種々変形可能である。 Moreover, each said embodiment is only what showed an example of the specific structure of an evaporator, The specific structure of an evaporator can be variously deformed without being limited to this.
また、上記各実施形態では、蒸発器の冷却対象空間として、車室内空間である場合や、冷凍車の冷凍冷蔵庫内空間である場合について述べたが、本発明は、これらの車両用に限らず、定置用等の種々な用途の冷凍サイクルに対して広く適用可能である。 Further, in each of the above-described embodiments, the case where the space to be cooled by the evaporator is a vehicle interior space or the space inside the refrigerator-freezer of the refrigerator car has been described, but the present invention is not limited to these vehicles. It can be widely applied to refrigeration cycles for various uses such as stationary use.
13 内部熱交換器
13c 高圧側冷媒出口
13d 低圧側冷媒入口
14 膨張弁
14a 冷媒入口
14b 冷媒出口
15 蒸発器
21 第1蒸発器
22 第2蒸発器
29 膨張弁組付部
29a 膨張弁挿入穴
29b 内部熱交換器−膨張弁冷媒流路
29c 膨張弁−蒸発器冷媒流路
29d 蒸発器−内部熱交換器冷媒流路
13
Claims (8)
前記冷凍サイクルの高圧側冷媒と低圧側冷媒とを熱交換させる内部熱交換器(13)と、
前記冷凍サイクルの膨張弁(14)が組み付けられる膨張弁組付部(29)とを備え、
前記膨張弁組付部(29)には、前記膨張弁(14)の冷媒入口(14a)に流入する冷媒が流れる入口側流路(29b)と、前記膨張弁(14)の冷媒出口(14b)から流出した冷媒が流れる出口側流路(29c)とが形成され、
前記蒸発器(15)、前記内部熱交換器(13)および前記膨張弁組付部(29)は、いずれも金属で形成され、かつ互いに一体ろう付けされていることを特徴とする蒸発器ユニット。 An evaporator (15) constituting a refrigeration cycle;
An internal heat exchanger (13) for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the refrigeration cycle;
An expansion valve assembly (29) to which the expansion valve (14) of the refrigeration cycle is assembled,
The expansion valve assembly (29) includes an inlet-side flow path (29b) through which refrigerant flowing into the refrigerant inlet (14a) of the expansion valve (14) flows, and a refrigerant outlet (14b) of the expansion valve (14). ) And an outlet side flow path (29c) through which the refrigerant flowing out from
The evaporator (15), the internal heat exchanger (13), and the expansion valve assembly (29) are all made of metal and integrally brazed to each other. .
前記出口側流路(29c)は、前記膨張弁(14)の冷媒出口(14b)から前記蒸発器(15)に至る膨張弁−蒸発器冷媒流路(29c)であり、
前記膨張弁組付部(29)には、前記蒸発器(15)から前記内部熱交換器(13)のうち低圧側冷媒入口(13d)に至る蒸発器−内部熱交換器冷媒流路(29d)が形成されていることを特徴とする請求項1に記載の蒸発器ユニット。 The inlet-side flow path (29b) is an internal heat exchanger-expansion valve refrigerant flow from the high-pressure side refrigerant outlet (13c) of the internal heat exchanger (13) to the refrigerant inlet (14a) of the expansion valve (14). Road (29b)
The outlet side flow path (29c) is an expansion valve-evaporator refrigerant flow path (29c) from the refrigerant outlet (14b) of the expansion valve (14) to the evaporator (15),
The expansion valve assembly (29) includes an evaporator-internal heat exchanger refrigerant flow path (29d) from the evaporator (15) to the low-pressure side refrigerant inlet (13d) of the internal heat exchanger (13). The evaporator unit according to claim 1, wherein the evaporator unit is formed.
前記膨張弁−蒸発器冷媒流路(29c)および前記蒸発器−内部熱交換器冷媒流路(29d)には、前記複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されていることを特徴とする請求項2に記載の蒸発器ユニット。 The evaporator (15) has a plurality of tubes (23) that form refrigerant flow paths of the heat exchange core portions (21a, 22a),
End portions of at least some of the tubes (23) are inserted into the expansion valve-evaporator refrigerant flow path (29c) and the evaporator-internal heat exchanger refrigerant flow path (29d). The evaporator unit according to claim 2, wherein the evaporator unit is provided.
前記膨張弁挿入穴(29a)は、前記内部熱交換器−膨張弁冷媒流路(29b)および前記膨張弁−蒸発器冷媒流路(29c)に連通し、
前記膨張弁組付部(29)は、前記膨張弁挿入穴(29a)を形成する膨張弁挿入穴形成部材(30)と、前記複数のチューブ(23)のうち少なくとも一部のチューブの端部が挿入されるチューブ挿入部材(31)とに分割して形成されていることを特徴とする請求項3に記載の蒸発器ユニット。 The expansion valve assembly portion (29) is formed with an expansion valve insertion hole (29a) into which the formation portion of the refrigerant inlet (14a) and the refrigerant outlet (14b) of the expansion valve (14) is inserted. ,
The expansion valve insertion hole (29a) communicates with the internal heat exchanger-expansion valve refrigerant flow path (29b) and the expansion valve-evaporator refrigerant flow path (29c),
The expansion valve assembly portion (29) includes an expansion valve insertion hole forming member (30) that forms the expansion valve insertion hole (29a), and an end portion of at least a part of the plurality of tubes (23). The evaporator unit according to claim 3, wherein the evaporator unit is divided into a tube insertion member (31) into which the gas is inserted.
前記内部熱交換器−膨張弁冷媒流路(29b)の入口部には、前記高圧側出口端部(13e)が挿入され、
前記蒸発器−内部熱交換器冷媒流路(29d)の出口部には、前記低圧側入口端部(13e)が挿入されていることを特徴とする請求項2ないし4のいずれか1つに記載の蒸発器ユニット。 The internal heat exchanger (13) includes a high pressure side outlet end (13e) that forms the high pressure side refrigerant outlet (13c) and a low pressure side inlet end (13e) that forms the low pressure side refrigerant inlet (13d). Are formed separately from each other,
The high pressure side outlet end (13e) is inserted into the inlet of the internal heat exchanger-expansion valve refrigerant flow path (29b),
The low pressure side inlet end (13e) is inserted into the outlet of the evaporator-internal heat exchanger refrigerant flow path (29d), according to any one of claims 2 to 4. The evaporator unit described.
前記蒸発器(15)は、前記エジェクタ(40)の出口側に接続されて前記エジェクタ(40)から吐出された冷媒を蒸発させる第1蒸発器(21)、および前記冷媒吸引口(40b)に接続されて前記エジェクタ(40)に吸引される冷媒を蒸発させる第2蒸発器(22)であり、
前記エジェクタ組付部(43)には、前記ノズル部(40a)の入口に流入する冷媒が流れるノズル部入口側流路(43b)と、前記冷媒吸引口(40b)に吸引される冷媒が流れる冷媒吸引口側流路(43c)と、前記エジェクタ(40)の出口から流出した冷媒が流れるエジェクタ出口側流路(43d)とが形成され、
前記エジェクタ組付部(43)は、金属で形成され、かつ前記第1、第2蒸発器(21、22)、前記内部熱交換器(13)および前記膨張弁組付部(29)と一体ろう付けされていることを特徴とする請求項2ないし5のいずれか1つに記載の蒸発器ユニット。 The refrigerant is sucked from the refrigerant suction port (40b) by the high-speed refrigerant flow ejected from the nozzle part (40a), and sucked from the refrigerant jetted from the nozzle part (40a) and the refrigerant suction port (40b). An ejector assembly (43) to which an ejector (40) for mixing and discharging the refrigerant is assembled;
The evaporator (15) is connected to the outlet side of the ejector (40) and is connected to a first evaporator (21) that evaporates the refrigerant discharged from the ejector (40), and the refrigerant suction port (40b). A second evaporator (22) connected and evaporating the refrigerant sucked into the ejector (40);
In the ejector assembly (43), the refrigerant sucked into the nozzle inlet side channel (43b) through which the refrigerant flowing into the inlet of the nozzle (40a) flows and the refrigerant suction port (40b) flows. A refrigerant suction port side channel (43c) and an ejector outlet side channel (43d) through which the refrigerant flowing out from the outlet of the ejector (40) flows are formed,
The ejector assembly (43) is made of metal and integrated with the first and second evaporators (21, 22), the internal heat exchanger (13), and the expansion valve assembly (29). The evaporator unit according to claim 2, wherein the evaporator unit is brazed.
前記高圧冷媒流路(29e)および前記ノズル部入口側流路(43b)は、前記内部熱交換器(13)の前記高圧側冷媒出口(13c)から前記ノズル部(40a)の入口に至る内部熱交換器−ノズル部冷媒流路を構成していることを特徴とする請求項6に記載の蒸発器ユニット。 The expansion valve assembly part (29) has a high-pressure refrigerant flow path (29e) that communicates the outlet of the high-pressure side refrigerant and the nozzle part inlet-side flow path (43b) in the internal heat exchanger (13). Formed,
The high-pressure refrigerant flow path (29e) and the nozzle part inlet-side flow path (43b) are formed from the high-pressure refrigerant outlet (13c) of the internal heat exchanger (13) to the inlet of the nozzle part (40a). The evaporator unit according to claim 6, comprising a heat exchanger-nozzle part refrigerant flow path.
前記エジェクタ出口側流路(43d)は、前記エジェクタ(40)の出口から前記第1蒸発器(21)に至るエジェクタ−蒸発器冷媒流路(43d)であることを特徴とする請求項6または7に記載の蒸発器ユニット。 The refrigerant suction side channel (43c) is an evaporator-refrigerant suction port refrigerant channel (43c) from the second evaporator (22) to the refrigerant suction port (40b) of the ejector (40). ,
The said ejector outlet side flow path (43d) is an ejector-evaporator refrigerant flow path (43d) from the outlet of the ejector (40) to the first evaporator (21). 8. The evaporator unit according to 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072527A JP5540816B2 (en) | 2010-03-26 | 2010-03-26 | Evaporator unit |
DE201110014410 DE102011014410A1 (en) | 2010-03-26 | 2011-03-18 | Vedampfereinheit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072527A JP5540816B2 (en) | 2010-03-26 | 2010-03-26 | Evaporator unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202921A true JP2011202921A (en) | 2011-10-13 |
JP5540816B2 JP5540816B2 (en) | 2014-07-02 |
Family
ID=44879761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072527A Expired - Fee Related JP5540816B2 (en) | 2010-03-26 | 2010-03-26 | Evaporator unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5540816B2 (en) |
DE (1) | DE102011014410A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012117751A (en) * | 2010-12-01 | 2012-06-21 | Sharp Corp | Heat exchanger and all-in-one air conditioner equipped therewith |
US20170234456A1 (en) * | 2016-02-11 | 2017-08-17 | Dunan Microstaq, Inc. | Heat exchanger with expansion valve body formed on inlet header thereof |
CN110749127A (en) * | 2019-10-30 | 2020-02-04 | 博耐尔汽车电气系统有限公司 | Outdoor heat exchanger of electric automobile |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014208755A1 (en) | 2013-05-09 | 2014-11-13 | Behr Gmbh & Co. Kg | Evaporation unit and air conditioning device for a motor vehicle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05196321A (en) * | 1991-01-31 | 1993-08-06 | Nippondenso Co Ltd | Vaporizer and refrigeration cycle device |
JPH06288661A (en) * | 1993-04-02 | 1994-10-18 | Zexel Corp | Heat exchanger |
JPH0854159A (en) * | 1994-08-10 | 1996-02-27 | Zexel Corp | Lamination type heat exchanger |
JPH0886536A (en) * | 1994-09-14 | 1996-04-02 | Zexel Corp | Expansion valve mounting member |
JPH08110189A (en) * | 1994-10-11 | 1996-04-30 | Nippondenso Co Ltd | Manufacture of multilayer heat exchanger |
JP2007040690A (en) * | 2005-04-01 | 2007-02-15 | Denso Corp | Ejector type refrigeration cycle |
JP2007218497A (en) * | 2006-02-16 | 2007-08-30 | Denso Corp | Ejector type refrigeration cycle and refrigerant flow controller |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001021234A (en) | 1999-07-05 | 2001-01-26 | Zexel Valeo Climate Control Corp | Cooler |
JP2006097911A (en) | 2004-09-28 | 2006-04-13 | Calsonic Kansei Corp | Heat exchanger |
-
2010
- 2010-03-26 JP JP2010072527A patent/JP5540816B2/en not_active Expired - Fee Related
-
2011
- 2011-03-18 DE DE201110014410 patent/DE102011014410A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05196321A (en) * | 1991-01-31 | 1993-08-06 | Nippondenso Co Ltd | Vaporizer and refrigeration cycle device |
JPH06288661A (en) * | 1993-04-02 | 1994-10-18 | Zexel Corp | Heat exchanger |
JPH0854159A (en) * | 1994-08-10 | 1996-02-27 | Zexel Corp | Lamination type heat exchanger |
JPH0886536A (en) * | 1994-09-14 | 1996-04-02 | Zexel Corp | Expansion valve mounting member |
JPH08110189A (en) * | 1994-10-11 | 1996-04-30 | Nippondenso Co Ltd | Manufacture of multilayer heat exchanger |
JP2007040690A (en) * | 2005-04-01 | 2007-02-15 | Denso Corp | Ejector type refrigeration cycle |
JP2007218497A (en) * | 2006-02-16 | 2007-08-30 | Denso Corp | Ejector type refrigeration cycle and refrigerant flow controller |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012117751A (en) * | 2010-12-01 | 2012-06-21 | Sharp Corp | Heat exchanger and all-in-one air conditioner equipped therewith |
US20170234456A1 (en) * | 2016-02-11 | 2017-08-17 | Dunan Microstaq, Inc. | Heat exchanger with expansion valve body formed on inlet header thereof |
CN110749127A (en) * | 2019-10-30 | 2020-02-04 | 博耐尔汽车电气系统有限公司 | Outdoor heat exchanger of electric automobile |
Also Published As
Publication number | Publication date |
---|---|
DE102011014410A1 (en) | 2011-12-22 |
JP5540816B2 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4259531B2 (en) | Ejector type refrigeration cycle unit | |
JP4770474B2 (en) | Ejector type refrigeration cycle unit and method for manufacturing the same | |
US8099978B2 (en) | Evaporator unit | |
JP4259478B2 (en) | Evaporator structure and ejector cycle | |
JP4692295B2 (en) | Evaporator unit and ejector refrigeration cycle | |
JP5050563B2 (en) | Ejector and ejector type refrigeration cycle unit | |
JP4645681B2 (en) | Evaporator unit | |
US8365552B2 (en) | Evaporator unit having tank provided with ejector nozzle | |
JP2007192503A (en) | Unit for ejector type refrigerating cycle | |
JP4978686B2 (en) | Evaporator unit | |
JP5509942B2 (en) | Ejector unit, heat exchanger unit, and refrigerant short circuit detection method for ejector unit | |
JP5540816B2 (en) | Evaporator unit | |
JP4770891B2 (en) | Ejector type refrigeration cycle unit | |
JP5062066B2 (en) | Ejector type refrigeration cycle evaporator unit | |
JP2008138895A (en) | Evaporator unit | |
JP2008281338A (en) | Ejector cycle | |
JP4910567B2 (en) | Ejector refrigeration cycle | |
JP2009058179A (en) | Ejector type refrigerating cycle unit | |
JP2008144979A (en) | Unit for ejector type refrigerating cycle | |
JP5017925B2 (en) | Ejector, evaporator unit and ejector refrigeration cycle | |
JP6683146B2 (en) | Heat exchanger | |
JP2008075904A (en) | Evaporator unit and ejector type refrigerating cycle | |
JP2005212538A (en) | Condenser for vehicle and air conditioning device for vehicle equipped with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140408 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140421 |
|
LAPS | Cancellation because of no payment of annual fees |