JP2011202210A - Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same - Google Patents
Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same Download PDFInfo
- Publication number
- JP2011202210A JP2011202210A JP2010068616A JP2010068616A JP2011202210A JP 2011202210 A JP2011202210 A JP 2011202210A JP 2010068616 A JP2010068616 A JP 2010068616A JP 2010068616 A JP2010068616 A JP 2010068616A JP 2011202210 A JP2011202210 A JP 2011202210A
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature toughness
- steel
- embrittlement resistance
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、鋼構造物、特に建築用構造物に使用され、火災に曝された場合に、600℃において高い降伏強度を有し、同時に、溶接熱影響部の耐SR(Stress Relief)割れ性(耐再熱脆化性)に優れ、かつ低温靭性にも優れた耐火鋼材及びその製造方法に関する。 The present invention is used in steel structures, particularly construction structures, and has a high yield strength at 600 ° C. when exposed to fire, and at the same time, SR (Stress Relief) crack resistance of the heat affected zone. The present invention relates to a refractory steel material excellent in (reheat embrittlement resistance) and excellent in low-temperature toughness and a method for producing the same.
近年、建築構造物に使用される鋼材には、高温強度に優れた、いわゆる「耐火鋼」の特性(耐火性能)を有することが求められるようになってきた。これは、環境問題等を考慮して鋼材を耐火被覆無しで用いる、「新耐火設計法」に基づいて国土交通省が取り決めている特性であり、国土交通省告示333号(2004年)に基づく性能に準ずるものである。 In recent years, steel materials used for building structures have been required to have so-called “fireproof steel” characteristics (fireproof performance) that are excellent in high-temperature strength. This is a property decided by the Ministry of Land, Infrastructure, Transport and Tourism based on the “New Fire Resistance Design Law”, which uses steel without fireproof coating in consideration of environmental issues, etc., and is based on Ministry of Land, Infrastructure, Transport and Tourism Notification No. 333 (2004) It is based on performance.
耐火性能とは、被覆のない状態で鋼材が火災等に曝された際、ある一定の時間、鋼材が必要とする強度を発揮し続けることである。鋼材の耐火性能を向上させることにより、建築構造物等の倒壊を防止することができる。特に、鋼材に耐火被覆を設けない場合、火災の規模や環境温度等は種々想定されることから、構造物の強度を支える鋼材には、高温強度を可能な限り高くすることが要求される。 Fire resistance performance means that when a steel material is exposed to a fire or the like in a state without a coating, the steel material continues to exhibit the strength required for a certain period of time. By improving the fire resistance of the steel material, it is possible to prevent the collapse of a building structure or the like. In particular, when a fireproof coating is not provided on the steel material, various fire scales, environmental temperatures, and the like are assumed. Therefore, the steel material that supports the strength of the structure is required to have as high a high temperature strength as possible.
従来より、高温強度に寄与する、Mo、Cr、Nb、Cuなどの合金と、Bを添加した耐火鋼が提案されている(例えば、特許文献1〜5、参照)。しかし、合金元素を多量に添加すると、鋼材を溶接した場合、溶接熱影響部(Heat Affected Zone、HAZという。)が高温に曝されると、著しく脆化するという問題がある。高温でのHAZの脆化は、高温変形時の延性を損なう現象で再熱脆化と呼ばれる。 Conventionally, alloys such as Mo, Cr, Nb, and Cu that contribute to high-temperature strength and refractory steel added with B have been proposed (for example, see Patent Documents 1 to 5). However, when a large amount of alloy element is added, when a steel material is welded, there is a problem that when a heat affected zone (referred to as Heat Affected Zone, HAZ) is exposed to a high temperature, it becomes extremely brittle. HAZ embrittlement at high temperatures is a phenomenon that impairs ductility during high temperature deformation and is called reheat embrittlement.
また、鋼材を建築構造物に適用するには、母材及びHAZの低温靭性も要求される。特に、近年、建築物の大型化及び高層化や溶接効率の向上のため、厚鋼材の使用や高入熱溶接の適用が増加しつつある。したがって、鋼材が厚くなり、また、溶接入熱が高くなった場合でも、十分な耐震性を獲得するために、母材及びHAZの低温靭性を高める必要がある。 Moreover, in order to apply steel material to a building structure, the low temperature toughness of a base material and HAZ is also required. In particular, in recent years, the use of thick steel materials and the application of high heat input welding are increasing in order to increase the size and height of buildings and improve welding efficiency. Therefore, even when the steel material becomes thick and the welding heat input becomes high, it is necessary to increase the low temperature toughness of the base material and the HAZ in order to obtain sufficient earthquake resistance.
従来の耐火鋼材は、高温強度を得るために、Mo、Cu、Cr、Nbなどを添加しており、合金コストが高い。また、これらの元素を過剰に添加すると、熱間圧延の変形抵抗が高くなり、製造性を損ない、析出物に起因して、母材やHAZの低温靭性が低下することがある。更に、Mo、Cr、Nbは炭化物を形成する元素であり、Cuも加熱によって鋼中に析出する元素であるため、これらの添加量が増えると、高温に曝される時間が長くなった場合に、延性が低下することがある。 In order to obtain high temperature strength, conventional refractory steel materials have added Mo, Cu, Cr, Nb, etc., and the alloy cost is high. Moreover, when these elements are added excessively, the deformation resistance of hot rolling is increased, the manufacturability is impaired, and the low temperature toughness of the base material and HAZ may be lowered due to precipitates. Furthermore, Mo, Cr, and Nb are elements that form carbides, and Cu is an element that precipitates in the steel by heating. Therefore, when the amount of addition increases, the time of exposure to high temperatures increases. , Ductility may decrease.
本発明は、このような実情に鑑みてなされたものであり、高温強度を高める合金元素の含有量を制限し、かつ、十分な耐火性能及び低温靭性を有する耐火鋼材、即ち、耐再熱脆化性及び低温靭性に優れた耐火鋼材並びにその製造方法を提供するものである。なお、本発明では、高温強度を600℃における耐力、耐再熱脆化性を600℃で1時間保持されたHAZの絞り値、低温靭性を0℃におけるシャルピー吸収エネルギーで評価する。 The present invention has been made in view of such circumstances, and limits the content of alloying elements that increase the high-temperature strength, and has a sufficient fire resistance and low temperature toughness, that is, reheat brittleness. The present invention provides a refractory steel material excellent in heat resistance and low-temperature toughness and a method for producing the same. In the present invention, the high-temperature strength is evaluated by the yield strength at 600 ° C., the reheat embrittlement resistance by the HAZ drawn value held at 600 ° C. for 1 hour, and the low-temperature toughness by the Charpy absorbed energy at 0 ° C.
本発明者らは、Mo、Cu、Cr、Nbなど、従来、高温強度の向上に利用されていた元素のうち、効果的に高温強度を高めるには、Cの添加並びにMo及びBの複合添加による焼入れ性の向上が有効であるという知見を得た。更に、本発明者らは、高温強度を確保しつつ、600℃で1時間保持された際の再熱脆化を抑制するためには、Nbの含有量を徹底的に制限することが必要であることを見出した。本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。 In order to effectively increase the high temperature strength among the elements conventionally used for improving the high temperature strength, such as Mo, Cu, Cr and Nb, the present inventors have added C and combined addition of Mo and B. We obtained the knowledge that the improvement of hardenability by aging is effective. Furthermore, the present inventors need to thoroughly limit the Nb content in order to suppress reheat embrittlement when held at 600 ° C. for 1 hour while ensuring high temperature strength. I found out. This invention is made | formed based on such knowledge, The summary is as follows.
(1) 質量%で、
C :0.01%超、0.050%以下、
Si:0.01%以上、0.50%以下、
Mn:0.50%以上、2.00%以下、
Mo:0.05%以上、0.20%未満、
B :0.0003%以上、0.0030%以下、
N :0.0010%以上、0.0100以下、
Ti:0.005%以上、0.030%以下、
Al:0.002%以上、0.100%以下、
を含有し、Nbの含有量を、
Nb:0.003%未満
に制限し、更に、P、S、Oの各々の含有量を、
P :0.0200%未満、
S :0.0100%未満、
O :0.0100%未満
に制限し、残部がFe及び不可避的不純物からなることを特徴とする耐再熱脆化性及び低温靭性に優れた耐火鋼材。
(1) In mass%,
C: more than 0.01%, 0.050% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.50% or more, 2.00% or less,
Mo: 0.05% or more and less than 0.20%,
B: 0.0003% or more, 0.0030% or less,
N: 0.0010% or more, 0.0100 or less,
Ti: 0.005% or more, 0.030% or less,
Al: 0.002% or more, 0.100% or less,
And the content of Nb,
Nb: Restricted to less than 0.003%, and further, the content of each of P, S, O,
P: less than 0.0200%,
S: less than 0.0100%,
O: A refractory steel material excellent in reheat embrittlement resistance and low temperature toughness, characterized by being limited to less than 0.0100% and the balance being Fe and inevitable impurities.
(2) 更に、質量%で、
Cu:0.30%以下、
Ni:0.30%以下、
V :0.20%以下、
Zr:0.10%以下、
Cr:0.20%以下、
W :0.30%以下
の1種又は2種以上を含有することを特徴とする上記(1)に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材。
(2) Furthermore, in mass%,
Cu: 0.30% or less,
Ni: 0.30% or less,
V: 0.20% or less,
Zr: 0.10% or less,
Cr: 0.20% or less,
W: The fire resistant steel material having excellent reheat embrittlement resistance and low temperature toughness according to (1) above, containing one or more of 0.30% or less.
(3) 更に、質量%で、
Mg:0.0005〜0.0050%、
Ca:0.0005〜0.0050%、
Y :0.001〜0.050%、
La:0.001〜0.050%、
Ce:0.001〜0.050%
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材。
(3) Furthermore, in mass%,
Mg: 0.0005 to 0.0050%,
Ca: 0.0005 to 0.0050%,
Y: 0.001 to 0.050%,
La: 0.001 to 0.050%,
Ce: 0.001 to 0.050%
The fire-resistant steel material having excellent reheat embrittlement resistance and low-temperature toughness as described in (1) or (2) above, comprising one or more of the above.
(4) 更に、下記(式1)によって求められるCeqが0.20〜0.40であり、下記(式2)によって求められるPcmが0.05〜0.20であることを特徴とする上記(1)〜(3)の何れか1項に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5・・・(式1)
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15
+V/10+5B ・・・(式2)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、及び、Bは、各元素の含有量
[質量%]である。
(4) Furthermore, Ceq calculated | required by the following (Formula 1) is 0.20-0.40, Pcm calculated | required by the following (Formula 2) is 0.05-0.20, It is characterized by the above-mentioned. The fire resistant steel material excellent in reheat embrittlement resistance and low temperature toughness according to any one of (1) to (3).
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 (Formula 1)
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15
+ V / 10 + 5B (Formula 2)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, and B are the content [% by mass] of each element.
(5) 上記(1)〜(4)の何れか1項に記載の鋼成分を有する鋼片を、1100℃以上1300℃以下の温度に加熱し、仕上温度を800℃以上として熱間圧延を行い、その後、放冷することを特徴とする耐再熱脆化性及び低温靭性に優れた耐火鋼材の製造方法。 (5) The steel slab having the steel component according to any one of the above (1) to (4) is heated to a temperature of 1100 ° C. or higher and 1300 ° C. or lower, and hot rolling is performed at a finishing temperature of 800 ° C. or higher. A method for producing a refractory steel material excellent in reheat embrittlement resistance and low temperature toughness, characterized in that the method is performed and then allowed to cool.
(6) 更に、400℃以上650℃未満の温度範囲で、5分以上360分以内の焼戻し熱処理を行うことを特徴とする上記(5)に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材の製造方法。 (6) Further, it is excellent in reheat embrittlement resistance and low-temperature toughness as described in (5) above, wherein tempering heat treatment is performed at a temperature range of 400 ° C. or higher and lower than 650 ° C. for 5 minutes or longer and 360 minutes or less. A method for producing refractory steel.
本発明によれば、耐火性能に優れ、特に、600℃における耐力が、室温における耐力の2/3以上であり、耐再熱脆化性及び低温靭性に優れた耐火鋼材並びにその製造方法を提供することが可能になり、また、熱間圧延時の変形抵抗が抑制され、生産性に優れた耐火鋼材の提供が可能となるなど、産業上の貢献が極めて顕著である。 According to the present invention, there is provided a fire resistant steel material excellent in fire resistance, particularly having a yield strength at 600 ° C. that is 2/3 or more of the yield strength at room temperature, excellent in reheat embrittlement resistance and low temperature toughness, and a method for producing the same. In addition, the industrial contribution is extremely significant, such as being able to provide a refractory steel material having excellent productivity and suppressing deformation resistance during hot rolling.
本発明者等は、まず、Cu、Ni、Nb、V、Cr、Wなどの合金元素を添加することなく、高温強度を高め、耐再熱脆化性を確保する方法について検討を行った。鋼材の高温強度は、常温での強化機構と同様、固溶強化、析出強化、転位密度の増加によって向上する。Cは強度の向上に極めて有効な元素であり、焼入れ性を確保するために、0.01質量%超のCの添加が特に好ましいことがわかった。 The inventors first studied a method for increasing the high-temperature strength and ensuring reheat embrittlement resistance without adding alloy elements such as Cu, Ni, Nb, V, Cr, and W. The high temperature strength of a steel material is improved by solid solution strengthening, precipitation strengthening, and an increase in dislocation density, similar to the strengthening mechanism at room temperature. C is an element that is extremely effective for improving the strength, and it has been found that addition of more than 0.01% by mass of C is particularly preferable in order to ensure hardenability.
また、Moは、固溶強化に寄与する元素として知られているが、高温強度の向上にはMo炭化物による析出強化を活用している。一方、Moを過剰に添加すると、耐再熱脆化性が低下するため、適正なMo量の上限は0.20質量%未満であることがわかった。更に、本発明者らは、Mo炭化物の析出を抑制しつつ、高温強度を獲得するために、Bに注目した。即ち、BとMoとを同時に添加すれば、熱間圧延後に加速冷却を行うことなく、ベイナイトやアシキュラーフェライトなど、転位密度が高い組織を生成させることが可能であり、高温強度を確保できると考えた。 Mo is known as an element that contributes to solid solution strengthening, but precipitation strengthening by Mo carbide is used to improve high-temperature strength. On the other hand, when Mo is added excessively, the reheat embrittlement resistance is lowered, and therefore, it was found that the upper limit of the appropriate amount of Mo is less than 0.20% by mass. Furthermore, the present inventors paid attention to B in order to obtain high temperature strength while suppressing precipitation of Mo carbides. That is, if B and Mo are added at the same time, a structure having a high dislocation density such as bainite and acicular ferrite can be generated without performing accelerated cooling after hot rolling, and high temperature strength can be secured. Thought.
Cの添加に加えて、B及びMoを同時に添加すると焼入れ性が著しく向上し、Bを添加すれば、Moの添加量を抑制しても、高温強度の確保が可能であることがわかった。しかし、種々の鋼材から試験片を採取し、再現HAZ熱サイクルを与え、SR絞り試験を行った際、0.01質量%超のCを含有する鋼材では、保持時間を1時間とした場合、再熱脆化の発生が見られた。 It was found that when B and Mo are added simultaneously in addition to the addition of C, the hardenability is remarkably improved, and if B is added, high temperature strength can be ensured even if the addition amount of Mo is suppressed. However, when specimens were collected from various steel materials, subjected to a reproducible HAZ thermal cycle, and subjected to an SR drawing test, a steel material containing more than 0.01% by mass of C had a holding time of 1 hour, The occurrence of reheat embrittlement was observed.
再現HAZ熱サイクルは、具体的には、溶接入熱2kJ/mmを想定し、昇温速度を100℃/sに設定して1400℃に加熱し、2s保持した後、800℃から500℃までの温度域を16sで冷却する熱処理である。SR絞り試験は、再現HAZ熱サイクルを与えた試験片を、直ちに、室温から火災想定温度である600℃に1℃/sで昇温し、1時間保持した後、引張応力を負荷して破断させ、絞り値(SR絞り値)を測定する試験方法である。本発明者らは、研究開発の過程で、この試験が溶接熱影響部(HAZ)の高温延性の評価に適していることを確認した。 The reproducible HAZ thermal cycle specifically assumes a welding heat input of 2 kJ / mm, sets the heating rate to 100 ° C./s, heats it to 1400 ° C., holds it for 2 s, then from 800 ° C. to 500 ° C. It is the heat processing which cools the temperature range of 16 seconds in 16s. In the SR drawing test, a test piece subjected to a reproducible HAZ thermal cycle is immediately heated from room temperature to 600 ° C., which is the expected fire temperature, at 1 ° C./s, held for 1 hour, and then subjected to tensile stress to break. And the aperture value (SR aperture value) is measured. In the course of research and development, the present inventors have confirmed that this test is suitable for evaluating the hot ductility of the weld heat affected zone (HAZ).
本発明者らは、耐再熱脆化性が低下した鋼材の破断面を詳細に検討し、SR絞り値が低下した試験片では、粒界のNb炭化物が粗大化していることを確認した。しかし、C量を低減すると、強度を得るために合金元素の添加量を増やす必要があるため、Nb含有量の抑制による耐再熱脆化性の確保を検討した。その結果、Nbは、Cの添加量が多い場合、極めて微量であっても炭化物が粗大化しやすく、特にC量が0.01質量%を超えると、Nb量を0.003質量%未満に制限しなければならないことがわかった。 The inventors of the present invention examined in detail the fracture surface of a steel material having reduced reheat embrittlement resistance, and confirmed that the Nb carbide at the grain boundary was coarsened in the test piece having a reduced SR drawing value. However, if the amount of C is reduced, it is necessary to increase the amount of alloy element added to obtain strength. Therefore, securing reheat embrittlement resistance by suppressing the Nb content was examined. As a result, when Nb is added in a large amount, the carbide tends to be coarsened even if it is very small. Especially when the C content exceeds 0.01% by mass, the Nb content is limited to less than 0.003% by mass. I knew I had to do it.
以下、本発明の耐再熱脆化性及び低温靭性に優れた耐火鋼材について説明する。まず、化学成分について説明する。なお、以下の説明において、各元素の添加量は全て質量%で表す。 Hereinafter, the refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of the present invention will be described. First, chemical components will be described. In addition, in the following description, all the addition amounts of each element are represented by mass%.
C:0.010%超、0.050%以下
Cは、鋼材の強度の向上に有効な元素であり、室温及び高温での強度を確保するため、0.010%超を添加する。C量の好ましい下限値は0.012%以上であり、更に好ましくは0.015%以上を添加する。Cは、600℃で安定な炭化物を析出させ、高温強度の確保に寄与するものの、0.050%超を添加すると、母材やHAZの低温靭性、耐再熱脆化性が低下するため、上限を0.050%以下とする。C量の好ましい上限は、0.045%以下である。
C: More than 0.010% and not more than 0.050% C is an element effective for improving the strength of steel, and more than 0.010% is added to ensure strength at room temperature and high temperature. The preferable lower limit of the amount of C is 0.012% or more, more preferably 0.015% or more. C precipitates a stable carbide at 600 ° C. and contributes to securing high-temperature strength. However, if added over 0.050%, the low-temperature toughness and reheat embrittlement resistance of the base material and HAZ decrease, The upper limit is 0.050% or less. The upper limit with preferable C amount is 0.045% or less.
Si:0.01%以上、0.50%以下
Siは、脱酸元素であるとともに、焼入れ性の向上にも寄与する元素であり、0.01%以上を添加する。Si量の好ましい下限は、0.05%以上であり、0.10%以上の添加が更に好ましい。一方、Siを過剰に添加した場合、HAZに残留オーステナイトが生成し、低温靭性が低下するため、上限を0.50%以下とする。Si量の好ましい上限は、0.45%以下であり、0.40%以下が更に好ましい。
Si: 0.01% or more and 0.50% or less Si is a deoxidizing element and also an element contributing to improvement of hardenability, and 0.01% or more is added. The minimum with the preferable amount of Si is 0.05% or more, and addition of 0.10% or more is still more preferable. On the other hand, when Si is added excessively, retained austenite is generated in the HAZ, and the low temperature toughness is lowered. Therefore, the upper limit is made 0.50% or less. The upper limit with the preferable amount of Si is 0.45% or less, and 0.40% or less is still more preferable.
Mn:0.50%以上、2.00%以下
Mnは、焼入れ性の向上に寄与する元素であり、強度及び靭性を向上させるために0.50%以上を添加する。高温強度を高めるには、0.80%以上のMnを添加することが好ましい。Mn量のより好ましい下限は、1.00%以上である。一方、2.00%を超えてMnを添加すると、Ac1変態点が低下し、600℃に再熱された際にHAZの粒界がオーステナイトに変態し、耐再熱脆化性を損なう。Mn量の上限は、1.80%以下が好ましく、1.70%以下が更に好ましい。
Mn: 0.50% or more, 2.00% or less Mn is an element that contributes to improvement of hardenability, and 0.50% or more is added to improve strength and toughness. In order to increase the high temperature strength, it is preferable to add 0.80% or more of Mn. A more preferable lower limit of the amount of Mn is 1.00% or more. On the other hand, when Mn is added in excess of 2.00%, the Ac 1 transformation point is lowered, and when reheated to 600 ° C., the grain boundaries of HAZ are transformed into austenite, thereby impairing reheat embrittlement resistance. The upper limit of the amount of Mn is preferably 1.80% or less, and more preferably 1.70% or less.
Mo:0.05%以上、0.20%未満
Moは、Bと同時に添加することによって、焼入れ性を顕著に高める元素である。また、Moは炭化物を形成する元素であり、高温強度を確保するために、0.05%以上を添加する。Mo量の好ましい下限は、0.08%以上である。一方、過剰に添加すると、600℃程度の高温に加熱された際に、炭化物が粗大化し、耐再熱脆化性が低下するため、上限を0.20%未満とする。Mo量の好ましい上限は、0.15%以下である。
Mo: 0.05% or more and less than 0.20% Mo is an element that remarkably improves hardenability when added simultaneously with B. Mo is an element that forms carbides, and 0.05% or more is added in order to ensure high temperature strength. A preferable lower limit of the amount of Mo is 0.08% or more. On the other hand, if added excessively, the carbides become coarse when heated to a high temperature of about 600 ° C., and the reheat embrittlement resistance is lowered, so the upper limit is made less than 0.20%. The upper limit with preferable Mo amount is 0.15% or less.
B:0.0003%以上、0.0030%以下
Bは、微量の添加で焼入れ性を上昇させる元素であり、特に、Moと同時に添加すると、著しく焼入れ性が向上する。効果を得るには、0.0003%以上のBを添加することが必要である。アシキュラーフェライトやベイナイトなど、転位密度が高い組織の生成を促進し、高温強度を高めるには、0.0005%以上のBを添加することが好ましい。一方、B量が、0.0030%を超えると、HAZにBの窒化物が析出し、耐再熱脆化特性を損なうため、上限を0.0030%以下とする。B量の好ましい上限は0.0020%以下であり、0.0015%以下が更に好ましい。
B: 0.0003% or more and 0.0030% or less B is an element that increases the hardenability by adding a small amount. In particular, when it is added simultaneously with Mo, the hardenability is remarkably improved. In order to obtain the effect, it is necessary to add 0.0003% or more of B. In order to promote the formation of a structure having a high dislocation density such as acicular ferrite and bainite and increase the high temperature strength, it is preferable to add 0.0005% or more of B. On the other hand, if the amount of B exceeds 0.0030%, B nitride precipitates in the HAZ and impairs the reheat embrittlement resistance, so the upper limit is made 0.0030% or less. The upper limit with the preferable amount of B is 0.0020% or less, and 0.0015% or less is still more preferable.
N:0.0010%以上、0.0100%以下
Nは、窒化物を生成する元素であり、鋼材の組織を微細化し、特にHAZの低温靭性低温靭性を高めるために、含有量の下限を0.0010%以上とする。一方、Nを過剰に添加すると、窒化物が粗大かし、低温靭性、特にHAZの低温靭性を損なうため、上限を0.0100%以下とする。また、N量が多い場合、HAZにBの窒化物が生成し、耐再熱脆化性を損なうことがあるため、N量の上限を0.0080%以下にすることが好ましい。N量の更に好ましい上限は、0.0070%以下である。
N: 0.0010% or more and 0.0100% or less N is an element that produces nitride, and in order to refine the structure of the steel material, and particularly to increase the low temperature toughness and low temperature toughness of HAZ, the lower limit of the content is 0. 0010% or more. On the other hand, when N is added excessively, nitrides are coarsened, and low temperature toughness, particularly low temperature toughness of HAZ, is impaired, so the upper limit is made 0.0100% or less. Further, when the amount of N is large, a nitride of B is formed in the HAZ and the reheat embrittlement resistance may be impaired. Therefore, the upper limit of the amount of N is preferably set to 0.0080% or less. A more preferable upper limit of the N amount is 0.0070% or less.
Ti:0.005%以上、0.030%以下
Tiは、炭化物及び窒化物を形成する元素であり、鋼材の組織を微細化し、低温靭性、特にHAZの低温靭性を向上させるために、0.005%以上を添加する。Ti量の下限は、0.010%以上が好ましい。一方、Tiを過剰に添加すると、粗大な炭化物や窒化物が生成し、低温靭性や耐再熱脆化性を損なうため、上限を0.030%以下とする。Ti量の上限は、0.025%以下が好ましく、0.020%以下がより好ましい。
Ti: 0.005% or more and 0.030% or less Ti is an element that forms carbides and nitrides, and in order to refine the structure of a steel material and improve low-temperature toughness, particularly HAZ low-temperature toughness. Add 005% or more. The lower limit of the Ti amount is preferably 0.010% or more. On the other hand, if Ti is added excessively, coarse carbides and nitrides are formed, and low temperature toughness and reheat embrittlement resistance are impaired. Therefore, the upper limit is made 0.030% or less. The upper limit of Ti content is preferably 0.025% or less, and more preferably 0.020% or less.
Al:0.002%以上、0.100%以下
Alは、鋼材の脱酸に必要な元素であり、0.002%以上を添加する。Al量の下限値は、0.005%以上が好ましい。一方、Al含有量が0.100%を超えると、粗大な酸化物クラスターを形成し、鋼材の低温靭性を損なう場合があることから、上限値を0.10%以下とする。Al量の上限は、0.050%以下が好ましい。
Al: 0.002% or more and 0.100% or less Al is an element necessary for deoxidation of steel materials, and 0.002% or more is added. The lower limit of the amount of Al is preferably 0.005% or more. On the other hand, if the Al content exceeds 0.100%, coarse oxide clusters are formed, and the low temperature toughness of the steel material may be impaired. Therefore, the upper limit is set to 0.10% or less. The upper limit of the amount of Al is preferably 0.050% or less.
Nb:0.003%未満
Nbは、炭化物を生成する元素であり、本発明では、耐再熱脆化性を確保するために、含有量を制限しなければならない。0.003%以上のNbを含有すると、600℃に加熱した際に、HAZの粒界に粗大なNbCが析出し、著しい再熱脆化を引き起こす。したがって、本発明では、Nbを意図的に添加せず、製鋼工程でのNbの混入をも防止すべきであり、Nbの含有量を0.003%未満に制限する。Nb量は少ないほど好ましいため、下限は規定しない。
Nb: less than 0.003% Nb is an element that forms carbides. In the present invention, the content must be limited in order to ensure reheat embrittlement resistance. When 0.003% or more of Nb is contained, coarse NbC precipitates at the grain boundaries of the HAZ when heated to 600 ° C., and causes significant reheat embrittlement. Therefore, in the present invention, Nb should not be added intentionally, and Nb contamination should be prevented in the steelmaking process, and the Nb content is limited to less than 0.003%. Since the Nb amount is preferably as small as possible, the lower limit is not specified.
P:0.0200%未満
S:0.0100%未満
O:0.0100%未満
P、S、Oは、不純物であり、過剰に含有すると、母材及びHAZの低温靭性に影響を及ぼし、耐再熱脆化性が低下を損なうため、それぞれ、0.0200%未満、0.0100%未満、0.0100%未満に制限する。P、S、Oの好ましい上限は、0.015%以下、0.008%以下、0.003%以下である。P、S、Oの含有量は、少ないほど好ましいため下限を規定しないが、工業的には不可避的に、それぞれ、0.0005%以上、0.0001%以上、0.0005%以上が含まれる。
P: less than 0.0200% S: less than 0.0100% O: less than 0.0100% P, S, and O are impurities. When excessively contained, the low temperature toughness of the base material and HAZ is affected, Since reheat embrittlement impairs the decrease, it is limited to less than 0.0200%, less than 0.0100%, and less than 0.0100%, respectively. The upper limit with preferable P, S, and O is 0.015% or less, 0.008% or less, and 0.003% or less. The lower the content of P, S, and O, the better, so the lower limit is not specified, but industrially unavoidably includes 0.0005% or more, 0.0001% or more, and 0.0005% or more, respectively. .
室温及び高温での強度を高めるため、焼入れ性の向上や析出強化に寄与する、Cu、Ni、V、Cr、Wの1種又は2種以上を添加してもよい。ただし、本発明では、コスト、製造性、低温靭性、耐再熱脆化性の観点から、これらの合金の添加量を抑制することが好ましい。 In order to increase the strength at room temperature and high temperature, one or more of Cu, Ni, V, Cr, and W that contribute to improvement of hardenability and precipitation strengthening may be added. However, in this invention, it is preferable to suppress the addition amount of these alloys from a viewpoint of cost, manufacturability, low temperature toughness, and reheat embrittlement resistance.
Cu:0.30%以下
Cuは、焼入れ性を高め、析出強化に寄与する元素であり、効果を得るために0.01%以上を添加してもよい。しかし、Cuを過剰に添加すると、析出物を生じて低温靭性や耐再熱脆化性を損なうため、Cuを添加する場合は上限を0.30%以下とする。また、Cuを過剰に添加すると、HAZの粒界がオーステナイトに変態して、粒界強度が低下し、耐再熱脆化性を損なうことがある。
Cu: 0.30% or less Cu is an element that enhances hardenability and contributes to precipitation strengthening, and 0.01% or more may be added to obtain an effect. However, if Cu is added excessively, precipitates are generated and the low temperature toughness and reheat embrittlement resistance are impaired. Therefore, when Cu is added, the upper limit is made 0.30% or less. Moreover, when Cu is added excessively, the grain boundary of HAZ transforms to austenite, the grain boundary strength is lowered, and reheat embrittlement resistance may be impaired.
Ni:0.30%以下
Niは、焼入れ性を向上させ、低温靭性の向上にも寄与する元素であり、効果を得るために0.01%以上を添加してもよい。一方、Niを過剰に添加すると、HAZの粒界がオーステナイトに変態して、粒界強度が低下し、耐再熱脆化性を損なうため、Niを添加する場合は、上限を0.30%以下とする。
Ni: 0.30% or less Ni is an element that improves hardenability and contributes to the improvement of low-temperature toughness, and 0.01% or more may be added to obtain the effect. On the other hand, if Ni is added excessively, the grain boundary of HAZ is transformed to austenite, the grain boundary strength is lowered, and the reheat embrittlement resistance is impaired. Therefore, when Ni is added, the upper limit is 0.30%. The following.
V:0.20%以下
Vは、炭化物や窒化物を生成し、鋼材の低温靭性や強度の向上に寄与する元素である。Vは、鋼材の焼入れ性を高める元素でもあり、効果を得るために0.01%以上を添加してもよい。一方、Vの添加量が0.20%を超えると、耐再熱脆化性を損なうため、Vを添加する場合は、上限を0.20%以下とする。
V: 0.20% or less V is an element that generates carbides and nitrides and contributes to low-temperature toughness and strength improvement of steel materials. V is also an element that enhances the hardenability of the steel material, and 0.01% or more may be added to obtain an effect. On the other hand, when the addition amount of V exceeds 0.20%, the reheat embrittlement resistance is impaired. Therefore, when V is added, the upper limit is made 0.20% or less.
Zr:0.10%以下
Zrは、炭化物や窒化物を生成し、鋼材の組織の微細化による低温靭性の向上や、析出強化による強度の向上に寄与する元素であり、効果を得るために0.001%以上を添加してもよい。一方、Zrの添加量が0.10%を超えると、析出物が粗大になり、特にHAZの低温靭性を損なうため、Zrを添加する場合は、上限を0.10%以下とする。
Zr: 0.10% or less Zr is an element that generates carbides and nitrides and contributes to improvement of low-temperature toughness by refinement of the structure of steel materials and improvement of strength by precipitation strengthening. 0.001% or more may be added. On the other hand, if the amount of Zr added exceeds 0.10%, the precipitates become coarse, and particularly the low temperature toughness of HAZ is impaired. Therefore, when Zr is added, the upper limit is made 0.10% or less.
Cr:0.20%以下
Crは、鋼材の焼入れ性を高める元素であり、効果を得るために0.01%以上を添加してもよい。一方、Crは、炭化物を生成する元素でもあるため、過剰に添加すると、母材の低温靱性を損なうため、Crを添加する場合は、上限を0.20%以下とする。
Cr: 0.20% or less Cr is an element that enhances the hardenability of the steel material, and 0.01% or more may be added to obtain an effect. On the other hand, since Cr is also an element that generates carbides, if added excessively, the low temperature toughness of the base material is impaired. Therefore, when adding Cr, the upper limit is made 0.20% or less.
W:0.30%以下
Wは、鋼材の焼入れ性を高める元素であり、Bと同時に添加すると、Bの焼入れ性を著しく向上させる効果を有することから、0.01%以上を添加してもよい。一方、Wを過剰に添加すると、粗大な金属間化合物が析出して耐再熱脆化性を損なうため、Wを添加する場合は上限を0.30%以下とする。
W: 0.30% or less W is an element that enhances the hardenability of the steel material. When added simultaneously with B, W has an effect of significantly improving the hardenability of B. Therefore, even if 0.01% or more is added. Good. On the other hand, when W is added excessively, a coarse intermetallic compound is precipitated and the reheat embrittlement resistance is impaired. Therefore, when W is added, the upper limit is made 0.30% or less.
更に、酸化物や硫化物など、介在物の形態を制御し、熱間加工性の改善や低温靭性の向上に寄与する元素であるMg、Ca、Y、La、Ceの1種又は2種以上を添加してもよい。 Furthermore, one or more of Mg, Ca, Y, La, and Ce, which are elements that control the form of inclusions such as oxides and sulfides and contribute to improvement of hot workability and low temperature toughness May be added.
Mg:0.0005〜0.0050%以下
Ca:0.0005〜0.0050%以下
Y :0.001〜0.050%以下
La:0.001〜0.050%以下
Ce:0.001〜0.050%以下
Mg、Ca、Y、La、Ceは、強力な脱酸元素であり、微細な酸化物を生成して、HAZの粒径の粗大化の防止に有効である。また、Mg、Ca、Y、La、Ceは硫化物を生成する元素でもあり、圧延方向に延伸したMnSの生成を抑制し、熱間加工性や低温靭性の向上に寄与する。これらの効果を得るために、Mg:0.0005%以上、Ca:0.0005%以上、Y:0.001%以上、La:0.001%以上、Ce:0.001%以上の1種又は2種以上を添加してもよい。一方、Mg、Ca、Y、La、Ceを、過剰に添加すると、粗大な酸化物を生成して低温靭性を損なうことがあるため、それぞれ、上限を、Mg:0.005%以下、Ca:0.005%以下、Y:0.050%以下、La:0.050%以下、Ce:0.050%以下にすることが好ましい。低温靭性を確保するためには、それぞれ、上限を、Mg:0.004%以下、Ca:0.004%以下、Y:0.040%以下、La:0.040%以下、Ce:0.040%以下にすることが好ましい。
Mg: 0.0005 to 0.0050% or less Ca: 0.0005 to 0.0050% or less Y: 0.001 to 0.050% or less La: 0.001 to 0.050% or less Ce: 0.001 0.050% or less Mg, Ca, Y, La, and Ce are powerful deoxidizing elements and are effective in preventing the coarsening of the HAZ particle size by generating fine oxides. Mg, Ca, Y, La, and Ce are also elements that generate sulfides, and suppress the generation of MnS stretched in the rolling direction, thereby contributing to improvement in hot workability and low temperature toughness. In order to obtain these effects, Mg: 0.0005% or more, Ca: 0.0005% or more, Y: 0.001% or more, La: 0.001% or more, Ce: 0.001% or more Or you may add 2 or more types. On the other hand, if Mg, Ca, Y, La, and Ce are added excessively, coarse oxides may be generated and low-temperature toughness may be impaired. Therefore, the upper limit is set to Mg: 0.005% or less, Ca: It is preferable to make 0.005% or less, Y: 0.050% or less, La: 0.050% or less, and Ce: 0.050% or less. In order to ensure low temperature toughness, the upper limits are respectively Mg: 0.004% or less, Ca: 0.004% or less, Y: 0.040% or less, La: 0.040% or less, Ce: 0.0. It is preferable to make it 040% or less.
更に、本発明では、焼入れ性を高めて、ラス状組織を内包するアシキュラーフェライト、ベイナイトなどの転位密度が高い組織の生成を促進し、室温強度及び高温強度を確保することから、炭素当量Ceqを0.20〜0.40とすることが好ましい。炭素当量Ceqのより好ましい範囲は、0.22〜0.38であり、0.23〜0.36が更に好ましい。炭素当量Ceqは、C、Mn、Ni、Cu、Cr、Mo、及び、Vの含有量[質量%]から、下記(式1)によって計算される。 Furthermore, in the present invention, the hardenability is enhanced, the generation of a structure having a high dislocation density such as acicular ferrite and bainite enclosing a lath-like structure is promoted, and room temperature strength and high temperature strength are ensured. Is preferably 0.20 to 0.40. A more preferable range of the carbon equivalent Ceq is 0.22 to 0.38, and 0.23 to 0.36 is more preferable. The carbon equivalent Ceq is calculated by the following (formula 1) from the contents [mass%] of C, Mn, Ni, Cu, Cr, Mo, and V.
また、溶接性の観点から、溶接性指標Pcmを0.20以下にすることが好ましい。溶接性指標Pcmの更に好ましい上限は、0.15である。一方、溶接性指標Pcmを下げすぎると焼入れ性が不足することがあり、溶接性指標Pcmの下限値を0.05以上にすることが好ましい。溶接性指標Pcmの更に好ましい下限は、0.10である。溶接性指標Pcmは、C、Si、Mn、Cu、Cr、Ni、Mo、V、及び、Bの含有量[質量%]から、下記(式2)によって計算される。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5・・・(式1)
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15
+V/10+5B ・・・(式2)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、及び、Bは、各元素の含有量
[質量%]である。このうち、選択的に含有される元素である、Ni、Cu、Cr、Vを意図的に添加しない場合は、上記(式1)及び(式2)においては、0として計算する。
Further, from the viewpoint of weldability, it is preferable to set the weldability index Pcm to 0.20 or less. A more preferable upper limit of the weldability index Pcm is 0.15. On the other hand, if the weldability index Pcm is too low, the hardenability may be insufficient, and the lower limit value of the weldability index Pcm is preferably 0.05 or more. A more preferable lower limit of the weldability index Pcm is 0.10. The weldability index Pcm is calculated by the following (formula 2) from the contents [mass%] of C, Si, Mn, Cu, Cr, Ni, Mo, V, and B.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 (Formula 1)
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15
+ V / 10 + 5B (Formula 2)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, and B are the content [% by mass] of each element. Of these, when Ni, Cu, Cr, and V, which are selectively contained elements, are not intentionally added, in the above (formula 1) and (formula 2), calculation is made as 0.
本発明の耐火鋼材の鋼の金属組織は、成分組成や製造条件、特に、熱間圧延後の冷却速度に応じて、ポリゴナルなフェライトや、ラス状組織を内包するアシキュラーフェライト及びベイナイトが生じる。これらアシキュラーフェライト及びベイナイトは、転位密度が高く、室温強度だけでなく、高温強度の向上に有効である。ベイナイトは、粒内に炭化物が生成しているため、粒内の炭化物の有無によってベイナイトとアシキュラーフェライトとを判別することができる。 The metal structure of the steel of the refractory steel material of the present invention produces polygonal ferrite, acicular ferrite and bainite containing a lath-like structure, depending on the component composition and production conditions, particularly the cooling rate after hot rolling. These acicular ferrites and bainite have a high dislocation density and are effective in improving not only room temperature strength but also high temperature strength. Since bainite has carbides formed in the grains, it can be distinguished from bainite and acicular ferrite by the presence or absence of carbides in the grains.
なお、本発明の耐再熱脆化性及び低温靭性に優れた耐火鋼材は、600℃における高温耐力に優れる鋼材である。このような高温耐力は、鋼材の組成によって温度毎に変化する。例えば、700℃以上の温度で高温耐力に優れた鋼材が、必ずしも700℃未満の温度で高い高温耐力を発揮するわけではない。これは、材料が火災の環境に曝されたときに、予め合金成分として含有する炭化物等の析出(2次硬化と称される)が、どの温度域で生じるかによって高温耐力が大きく影響されるためである。本発明は、600℃の高温耐力を獲得するための合金組成を新たに提案するものであり、他の温度域での高温耐力に優れた鋼材とは全く異なる設計思想に基づくものである。 In addition, the refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of the present invention is a steel material excellent in high temperature proof stress at 600 ° C. Such a high temperature proof stress changes for every temperature with the composition of steel materials. For example, a steel material excellent in high temperature yield strength at a temperature of 700 ° C. or higher does not necessarily exhibit high high temperature yield strength at a temperature below 700 ° C. This is because, when the material is exposed to a fire environment, the high-temperature proof stress is greatly influenced by the temperature range in which precipitation of carbide or the like previously contained as an alloy component (called secondary hardening) occurs. Because. The present invention newly proposes an alloy composition for obtaining a high temperature yield strength of 600 ° C., and is based on a design philosophy that is completely different from a steel material excellent in high temperature yield strength in other temperature ranges.
また、本発明の耐再熱脆化性及び低温靭性に優れた耐火鋼材の強度の目標値は、室温での引張強度(TS)が400〜550MPaであり、室温での耐力(YS)が235MPa以上である。また、高温強度(高温耐力)は、600℃での耐力の下限値が、室温の耐力の下限値235MPaの2/3であること、即ち、157MPa以上を目標値とする。また、低温靭性については、0℃におけるシャルピー吸収エネルギーが27J以上であることが必要である。これらの機械特性及び高温特性の範囲及び下限値の基準は、必ずしも実際の工業規格に定められたものではなく、設計計算で推定される値であり、安全率を含んだ目安である。 Moreover, the target value of the strength of the refractory steel material excellent in reheat embrittlement resistance and low temperature toughness according to the present invention is that the tensile strength (TS) at room temperature is 400 to 550 MPa, and the proof stress at room temperature (YS) is 235 MPa. That's it. Further, the high temperature strength (high temperature proof stress) is set such that the lower limit value of the proof stress at 600 ° C. is 2/3 of the lower limit value 235 MPa of the proof stress at room temperature, that is, 157 MPa or more. Moreover, about low temperature toughness, the Charpy absorbed energy in 0 degreeC needs to be 27J or more. These mechanical property and high temperature property ranges and lower limit criteria are not necessarily defined in actual industrial standards, but are values estimated by design calculations, and include safety factors.
耐再熱脆化性については、SR絞り値が30%以上を目標の下限値とする。SR絞り値は600℃でのHAZの絞り値であり、HAZを含む試験片又は再現熱サイクルを施した試験片を用いて600℃で引張試験を行い、評価する。SR絞り値の目標の下限値は、破断後の断面を電子顕微鏡観察し、その際に見られる不安定粒界破壊の破面が、全破面に占める割合の50%となる時の絞り値として、30%以上とした。すなわち、SR絞り値が30%以上であれば、破断面の粒界破面率が50%以下となり、高温延性が獲得できることを実験的に確認して決定した。 Regarding the reheat embrittlement resistance, the SR lower limit is 30% or more as the target lower limit. The SR aperture value is the HAZ aperture value at 600 ° C., and is evaluated by performing a tensile test at 600 ° C. using a test piece containing HAZ or a test piece subjected to a reproduction thermal cycle. The lower limit of the target SR aperture value is the aperture value when the fracture surface of the unstable grain boundary fracture observed at the time of observation of the cross-section after fracture is 50% of the total fracture surface. As 30% or more. That is, when the SR drawing value was 30% or more, it was determined by experimentally confirming that the grain boundary fracture surface ratio of the fracture surface was 50% or less and that high-temperature ductility could be obtained.
次に、本発明の耐再熱脆化性と低温靭性に優れた耐火鋼材の製造方法について説明する。耐火鋼材は、形状から厚鋼板とH形鋼に大別されるが、鋼片を加熱し、熱間圧延を行って、製造される。熱間圧延後に焼戻し熱処理を施してもよい。 Next, the manufacturing method of the refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of the present invention will be described. The refractory steel material is roughly classified into a thick steel plate and an H-shaped steel according to the shape, and is manufactured by heating a steel piece and performing hot rolling. A tempering heat treatment may be performed after the hot rolling.
鋼を溶製し、鋳造して鋼片とする。生産性の観点から、連続鋳造が好ましい。得られた鋼片は、熱間圧延によって鋼板又は形鋼に成形され、冷却される。なお、本発明が対象とする鋼材は、圧延された鋼板、H形鋼、I形鋼、山形鋼、溝形鋼、不等辺不等厚山形鋼等の形鋼が含まれる。この内、耐火性及び耐再熱脆化特性が要求される建材には、特にH形鋼が好適である。 Steel is melted and cast into steel pieces. From the viewpoint of productivity, continuous casting is preferable. The obtained steel slab is formed into a steel plate or a shaped steel by hot rolling and cooled. In addition, steel materials which this invention makes object include shape steels, such as a rolled steel plate, H-shape steel, I-shape steel, angle steel, groove shape steel, an unequal side unequal thickness angle steel. Of these, H-shaped steel is particularly suitable for building materials that require fire resistance and reheat embrittlement resistance.
鋼片加熱温度:1100℃以上1300℃以下
熱間圧延をオーステナイト域で行うために、鋼片を1100〜1300℃に加熱する。鋼片の加熱温度を1100℃以上にするのは、十分に析出物を鋼中に固溶させるためである。一方、鋼片の加熱温度が高すぎると、組織が粗大になり、低温靭性が低下するため、加熱温度を1300℃以下とする。
Billet heating temperature: 1100 ° C to 1300 ° C In order to perform hot rolling in the austenite region, the billet is heated to 1100 to 1300 ° C. The reason why the heating temperature of the steel slab is 1100 ° C. or higher is to sufficiently dissolve the precipitate in the steel. On the other hand, if the heating temperature of the steel slab is too high, the structure becomes coarse and the low-temperature toughness decreases, so the heating temperature is set to 1300 ° C. or lower.
熱間圧延の仕上温度:800℃以上
加熱後、所定の板厚まで複数回の熱間圧延を行い、仕上温度を800℃以上とする。これは、熱間圧延の仕上温度が800℃未満になると変形抵抗が高くなるためである。また、熱間圧延の仕上温度が800℃未満になると、冷却開始温度が低下して組織が制御できず、低温靭性を損なうことがある。
Hot rolling finishing temperature: 800 ° C. or higher After heating, hot rolling is performed a plurality of times to a predetermined plate thickness, and the finishing temperature is set to 800 ° C. or higher. This is because the deformation resistance increases when the hot rolling finish temperature is less than 800 ° C. Moreover, when the finishing temperature of hot rolling is less than 800 ° C., the cooling start temperature is lowered, the structure cannot be controlled, and the low temperature toughness may be impaired.
本発明の耐火鋼材は、熱間圧延後、放冷することによって、強度及び低温靭性を確保することができる。即ち、本発明の耐火鋼材は、C、Mo及びBを同時に添加しているため焼入れ性に優れ、また、析出強化元素の含有量を抑制しているため、空冷しても転位密度が高くアシキュラーフェライト及びベイナイトが生成し、析出物の生成は抑制される。なお、熱間圧延後、水冷など、加速冷却を行ってもよいが、この場合は、冷却速度を3〜15℃/sとすることが好ましい。 The refractory steel material of the present invention can ensure strength and low temperature toughness by allowing to cool after hot rolling. That is, the refractory steel material of the present invention is excellent in hardenability because C, Mo and B are added at the same time, and the content of precipitation strengthening elements is suppressed. Curular ferrite and bainite are generated, and the formation of precipitates is suppressed. In addition, although accelerated cooling, such as water cooling, may be performed after hot rolling, in this case, it is preferable that a cooling rate shall be 3-15 degreeC / s.
H形鋼を製造する場合、熱間圧延は、孔型圧延によるブレークダウン工程、エッジャー圧延機及びユニバーサル圧延機による中間圧延工程、及び、ユニバーサル圧延機による仕上圧延工程によって実施される。なお、H形鋼のウェブ高を制御するスキューロール圧延工程を含んでもよい。 When manufacturing H-section steel, hot rolling is performed by a breakdown process by hole-type rolling, an intermediate rolling process by an edger rolling mill and a universal rolling mill, and a finish rolling process by a universal rolling mill. In addition, you may include the skew roll rolling process which controls the web height of H-section steel.
焼戻し熱処理温度:400℃以上650℃未満
焼戻し熱処理の保持時間:5分以上360分以内
熱間圧延を行い、放冷した後、焼戻し熱処理を施してもよい。400℃以上で焼戻し熱処理を行うことにより、低温靭性を顕著に高めることができる。低温靭性を高めるためには、焼戻し熱処理の保持時間を5分以上にすることが好ましい。一方、焼戻し熱処理の温度が高すぎると、析出物が粗大化して、高温強度や耐再熱脆化性を損なうことがあるため、650℃未満で焼戻し熱処理を行うことが好ましい。また、焼戻し熱処理の保持時間が360分を超えると、生産性が低下し、加熱温度によっては析出物が粗大化して、高温強度や耐再熱脆化性を損なうことがある。
Tempering heat treatment temperature: 400 ° C. or more and less than 650 ° C. Tempering heat treatment holding time: 5 minutes or more and 360 minutes or less Hot rolling may be performed and allowed to cool, followed by tempering heat treatment. By performing the tempering heat treatment at 400 ° C. or higher, the low temperature toughness can be remarkably enhanced. In order to increase the low temperature toughness, it is preferable that the holding time of the tempering heat treatment be 5 minutes or longer. On the other hand, if the temperature of the tempering heat treatment is too high, the precipitates are coarsened and the high temperature strength and reheat embrittlement resistance may be impaired. Therefore, it is preferable to perform the tempering heat treatment at less than 650 ° C. Further, when the holding time of the tempering heat treatment exceeds 360 minutes, the productivity is lowered, and depending on the heating temperature, the precipitates may be coarsened to impair the high temperature strength and reheat embrittlement resistance.
表1及び2に示す成分組成を有する鋼を溶製し、連続鋳造により鋼片を鋳造した。表1及び2には、各鋼のCeq、Pcmの計算値も示した。得られた鋼片を表3及び4に示す条件で、熱間圧延し、放冷して鋼板を製造した。一部の鋼板には焼戻し熱処理を施し、その他の鋼板は熱間圧延ままとした。鋼板の板厚中央部から、圧延方向に対して垂直方向となる板幅方向を長手として、常温引張特性、シャルピー特性及び高温引張特性を調査するためのサンプルを採取した。 Steel having the composition shown in Tables 1 and 2 was melted, and steel pieces were cast by continuous casting. Tables 1 and 2 also show the calculated values of Ceq and Pcm for each steel. The obtained steel pieces were hot-rolled under the conditions shown in Tables 3 and 4 and allowed to cool to produce steel plates. Some steel plates were tempered and others were hot rolled. A sample for examining room temperature tensile properties, Charpy properties, and high temperature tensile properties was collected from the central portion of the plate thickness of the steel plate, with the plate width direction perpendicular to the rolling direction as the longitudinal direction.
室温の引張特性は、JIS Z 2241に準拠して評価した。試験数を2として、降伏強度及び引張強度の平均値を算出した。室温における強度については、耐力が235MPa以上、引張強度が400〜550MPaを良好と評価した。母材の低温靭性は、JIS Z 2242に準拠し、試験温度を0℃としてシャルピー衝撃試験を行って評価した。なお、母材の低温靭性は、試験数を3としてシャルピー吸収エネルギーの平均値を算出し、27J以上を良好と評価した。 The tensile properties at room temperature were evaluated according to JIS Z 2241. The average number of yield strength and tensile strength was calculated with 2 tests. Regarding the strength at room temperature, a proof stress of 235 MPa or more and a tensile strength of 400 to 550 MPa were evaluated as good. The low temperature toughness of the base material was evaluated by conducting a Charpy impact test at a test temperature of 0 ° C. in accordance with JIS Z 2242. As for the low temperature toughness of the base material, the average value of Charpy absorbed energy was calculated by setting the number of tests to 3, and 27 J or more was evaluated as good.
また、高温強度(高温耐力)については、平行部の直径6mm、平行部長さ30mmの高温引張試験片を用いて、JIS G 0567の高温引張試験の規定に基づき、引張歪み速度0.5%/分で試験片を変形させ、応力歪み線図を採取して高温耐力を測定した。この際の耐力は、全て0.2%耐力とした。600℃における耐力は、室温の耐力のしきい値235MPaの2/3である157MPa以上を良好と評価した。 As for the high-temperature strength (high-temperature proof stress), a tensile strain rate of 0.5% /% is used based on the JIS G 0567 high-temperature tensile test using a high-temperature tensile test piece having a parallel part diameter of 6 mm and a parallel part length of 30 mm. The test piece was deformed in minutes, and a stress-strain diagram was collected to measure the high temperature proof stress. The yield strength at this time was all 0.2% yield strength. As for the yield strength at 600 ° C., 157 MPa or more, which is 2/3 of the threshold value 235 MPa of the yield strength at room temperature, was evaluated as good.
更に、直径10mmの試験片を鋼材から採取し、再現熱サイクルを付与し、引張試験後、絞り値(SR絞り値)を測定した。再現熱サイクルは、昇温速度の設定値を100℃/sとして1400℃に加熱して2s保持し、800℃から500℃までを16sで冷却するものである。SR絞り値は、再現熱サイクルが付与された試験片を室温から600℃に1℃/sで加熱し、1時間保持した後、引張応力を加え、破断させて、絞り値を測定した。SR絞り値は、30%以上を良好と評価した。 Furthermore, a test piece having a diameter of 10 mm was taken from the steel material, provided with a reproducible thermal cycle, and after the tensile test, a drawing value (SR drawing value) was measured. In the reproduction heat cycle, the temperature rise rate is set to 100 ° C./s, heated to 1400 ° C. and held for 2 s, and cooled from 800 ° C. to 500 ° C. in 16 s. The SR drawing value was measured by heating a test piece provided with a reproducible heat cycle from room temperature to 600 ° C. at 1 ° C./s and holding it for 1 hour, then applying a tensile stress and breaking the test piece. The SR aperture value was evaluated as good when 30% or more.
また、HAZの低温靭性については、45度のX開先を加工した鋼板をサブマージアーク溶接し、得られた溶接継手を用いて評価した。この際、溶接入熱は常時2k〜3kJ/mmであることを、溶接時の出力、電流、電圧値より計算して確認した。JIS Z 3128に準拠して、溶接継手から試験片を採取し、0℃でシャルピー試験を行って評価した。試験片のVノッチは、溶融線から母材側に1mmの位置に設けた。なお、HAZの低温靭性は、試験数を3としてシャルピー吸収エネルギーの平均値を算出し、27J以上を良好と評価した。 Moreover, about the low temperature toughness of HAZ, the steel plate which processed 45 degree | times X groove | channel was submerged-arc-welded, and it evaluated using the obtained welded joint. At this time, it was confirmed by calculating from the output, current, and voltage values during welding that the welding heat input was always 2 k to 3 kJ / mm. In accordance with JIS Z 3128, a test piece was collected from the welded joint and evaluated by performing a Charpy test at 0 ° C. The V notch of the test piece was provided at a position of 1 mm on the base metal side from the melting line. As for the low temperature toughness of HAZ, the average number of Charpy absorbed energy was calculated with 3 tests, and 27J or more was evaluated as good.
結果を表5及び6に示す。「室温引張特性」の「YS」及び「TS」は、それぞれ、室温における耐力及び引張強度であり、vE0は、0℃におけるシャルピー吸収エネルギーである。「高温特性(600℃)」の「YS」及び「SR絞り値」は、それぞれ、600℃における耐力及びSR絞り値である。低温靭性、高温強度、耐再熱脆化性鋼No.1〜29は、成分組成、製造条件が本発明の範囲内であり、室温の引張特性、低温靭性、高温強度、耐再熱脆化性に優れている。 The results are shown in Tables 5 and 6. “YS” and “TS” of “room temperature tensile properties” are proof stress and tensile strength at room temperature, respectively, and vE 0 is Charpy absorbed energy at 0 ° C. “YS” and “SR aperture value” of “High-temperature characteristics (600 ° C.)” are the yield strength and SR aperture value at 600 ° C., respectively. Low temperature toughness, high temperature strength, reheat embrittlement resistant steel No. In Nos. 1 to 29, the component composition and production conditions are within the scope of the present invention, and the room temperature tensile properties, the low temperature toughness, the high temperature strength, and the reheat embrittlement resistance are excellent.
一方、鋼材No.30はC量が多いため、強度が高くなり、HAZの低温靭性及び耐再熱脆化性が低下している。鋼材No.31は、C量が少なく、室温及び高温での強度が低下している。鋼材No.32はSi量が多いため、HAZの低温靭性が低下している。鋼材No.33は、Si量が少なく、焼入れ性が不足し、室温強度及び低温靭性が低下している。鋼材No.34はMn量が多いため、耐再熱脆化性が低下している。鋼材No.35は、Mn量が少なく、室温強度及び高温強度が低下している。 On the other hand, the steel material No. Since 30 has a large amount of C, the strength is high, and the low temperature toughness and reheat embrittlement resistance of HAZ are reduced. Steel No. No. 31 has a small amount of C, and the strength at room temperature and high temperature is low. Steel No. Since 32 has a large amount of Si, the low temperature toughness of HAZ is lowered. Steel No. No. 33 has a small amount of Si, lacks hardenability, and has reduced room temperature strength and low temperature toughness. Steel No. Since 34 has a large amount of Mn, the reheat embrittlement resistance is low. Steel No. No. 35 has a small amount of Mn and has reduced room temperature strength and high temperature strength.
鋼材No.36はMo量が多く、鋼材No.38はB量が多いため、耐再熱脆化性が低下している。鋼材No.37はMo量が少なく、鋼材No.39はB量が少ないため、高温強度が低下している。鋼材No.40はTi量が多く、鋼材No.42はN量が多いため、HAZの低温靭性及び耐再熱脆化性が低下している。鋼材No.41はTi量が少なく、鋼材No.43はN量が少ないため、HAZの低温靭性が低下している。 Steel No. No. 36 has a large amount of Mo. Since 38 has a large amount of B, its resistance to reheat embrittlement is lowered. Steel No. No. 37 has a small amount of Mo, and steel material No. Since No. 39 has a small amount of B, the high-temperature strength is lowered. Steel No. No. 40 has a large amount of Ti. Since 42 has a large amount of N, the low temperature toughness and reheat embrittlement resistance of HAZ are lowered. Steel No. No. 41 has a small amount of Ti. Since 43 has a small amount of N, the low temperature toughness of HAZ is lowered.
鋼材No.44はCr量が多く、鋼材No.45はV量が多く、鋼材No.46はNi量が多く、鋼材No.47はCu量が多く、鋼材No.48はW量が多いため、耐再熱脆化性が低下している。鋼材No.49はZr量が多く、HAZの低温靭性が低下している。鋼材No.50はO量が多く、鋼材No.51はP量が多く、鋼材No.52はS量が多いため、母材及びHAZの低温靭性が低く、耐再熱脆化性も低下している。鋼No.53は、Nb量が多いため、耐再熱脆化性が低下している。 Steel No. No. 44 has a large amount of Cr. No. 45 has a large amount of V. No. 46 has a large amount of Ni. 47 has a large amount of Cu. Since 48 has a large amount of W, the resistance to reheat embrittlement is lowered. Steel No. No. 49 has a large amount of Zr, and the low temperature toughness of HAZ is lowered. Steel No. No. 50 has a large amount of O. No. 51 has a large amount of P. Since No. 52 has a large amount of S, the low-temperature toughness of the base material and HAZ is low, and the reheat embrittlement resistance is also lowered. Steel No. 53 has a large amount of Nb, and therefore its resistance to reheat embrittlement is lowered.
表7に示す成分組成を有する鋼を溶製し、連続鋳造により鋼片を鋳造した。表7には、各鋼のCeq、Pcmの計算値を示す。得られた鋼片をユニバーサル圧延設備列により、表8に示す条件で、熱間圧延し、放冷してH形鋼を製造した。一部のH形鋼には焼戻し熱処理を施し、その他のH形鋼は熱間圧延ままとした。 Steel having the component composition shown in Table 7 was melted, and a steel slab was cast by continuous casting. Table 7 shows the calculated values of Ceq and Pcm for each steel. The obtained steel slab was hot-rolled by a universal rolling equipment line under the conditions shown in Table 8 and allowed to cool to produce an H-section steel. Some H-section steels were tempered and other H-section steels were hot rolled.
H形鋼のフランジの板厚の中心部でフランジ幅全長)の1/4の部位から、常温引張特性、シャルピー特性及び高温引張特性を調査するためのサンプルを採取した。なお、HAZの低温靭性を評価した溶接継手は、H形鋼のフランジから試料を採取して評価した。結果を表9に示す。鋼材No.101〜117は、成分組成、製造条件が本発明の範囲内であり、室温の引張特性、低温靭性、高温強度、耐再熱脆化性に優れている。 Samples were collected for investigating normal temperature tensile characteristics, Charpy characteristics, and high temperature tensile characteristics from a quarter of the flange thickness length at the center of the flange thickness of the H-shaped steel. In addition, the welded joint which evaluated the low temperature toughness of HAZ evaluated by extracting the sample from the flange of H-section steel. The results are shown in Table 9. Steel No. 101-117 has a component composition and manufacturing conditions within the scope of the present invention, and is excellent in tensile properties at room temperature, low temperature toughness, high temperature strength, and resistance to reheat embrittlement.
Claims (6)
C :0.01%超、0.050%以下、
Si:0.01%以上、0.50%以下、
Mn:0.50%以上、2.00%以下、
Mo:0.05%以上、0.20%未満、
B :0.0003%以上、0.0030%以下、
N :0.0010%以上、0.0100%以下、
Ti:0.005%以上、0.030%以下、
Al:0.002%以上、0.100%以下
を含有し、Nbの含有量を、
Nb:0.003%未満
に制限し、更に、P、S、Oの各々の含有量を、
P :0.0200%未満、
S :0.0100%未満、
O :0.0100%未満
に制限し、残部がFe及び不可避的不純物からなることを特徴とする耐再熱脆化性及び低温靭性に優れた耐火鋼材。 % By mass
C: more than 0.01%, 0.050% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.50% or more, 2.00% or less,
Mo: 0.05% or more and less than 0.20%,
B: 0.0003% or more, 0.0030% or less,
N: 0.0010% or more, 0.0100% or less,
Ti: 0.005% or more, 0.030% or less,
Al: 0.002% or more, 0.100% or less, Nb content,
Nb: Restricted to less than 0.003%, and further, the content of each of P, S, O,
P: less than 0.0200%,
S: less than 0.0100%,
O: A refractory steel material excellent in reheat embrittlement resistance and low temperature toughness, characterized by being limited to less than 0.0100% and the balance being Fe and inevitable impurities.
Cu:0.30%以下、
Ni:0.30%以下、
V :0.20%以下、
Zr:0.10%以下、
Cr:0.20%以下、
W :0.30%以下
の1種又は2種以上を含有することを特徴とする請求項1に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材。 Furthermore, in mass%,
Cu: 0.30% or less,
Ni: 0.30% or less,
V: 0.20% or less,
Zr: 0.10% or less,
Cr: 0.20% or less,
The fire resistant steel material having excellent reheat embrittlement resistance and low temperature toughness according to claim 1, wherein W: 0.30% or less.
Mg:0.0005〜0.0050%、
Ca:0.0005〜0.0050%、
Y :0.001〜0.050%、
La:0.001〜0.050%、
Ce:0.001〜0.050%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐再熱脆化性及び低温靭性に優れた耐火鋼材。 Furthermore, in mass%,
Mg: 0.0005 to 0.0050%,
Ca: 0.0005 to 0.0050%,
Y: 0.001 to 0.050%,
La: 0.001 to 0.050%,
Ce: 0.001 to 0.050%
1 or 2 types of these are contained, The refractory steel materials excellent in the reheat embrittlement resistance and low-temperature toughness of Claim 1 or 2 characterized by the above-mentioned.
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5・・・(式1)
Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15
+V/10+5B ・・・(式2)
ここで、C、Si、Mn、Ni、Cu、Cr、Mo、V、及び、Bは、各元素の含有量
[質量%]である。 Furthermore, Ceq calculated | required by the following (Formula 1) is 0.20-0.40, and Pcm calculated | required by the following (Formula 2) is 0.05-0.20. 4. A refractory steel material excellent in reheat embrittlement resistance and low-temperature toughness as set forth in any one of 3 above.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 (Formula 1)
Pcm = C + Si / 30 + (Mn + Cu + Cr) / 20 + Ni / 60 + Mo / 15
+ V / 10 + 5B (Formula 2)
Here, C, Si, Mn, Ni, Cu, Cr, Mo, V, and B are the content [% by mass] of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010068616A JP2011202210A (en) | 2010-03-24 | 2010-03-24 | Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010068616A JP2011202210A (en) | 2010-03-24 | 2010-03-24 | Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011202210A true JP2011202210A (en) | 2011-10-13 |
Family
ID=44879155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010068616A Pending JP2011202210A (en) | 2010-03-24 | 2010-03-24 | Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011202210A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103658178A (en) * | 2012-08-31 | 2014-03-26 | 宝山钢铁股份有限公司 | Method for producing high-strength thin strip steel in short process |
CN104018076A (en) * | 2014-06-25 | 2014-09-03 | 武汉钢铁(集团)公司 | High temperature resisting reinforced steel bar and production method thereof |
WO2014142060A1 (en) * | 2013-03-14 | 2014-09-18 | 新日鐵住金株式会社 | H-shaped steel and process for manufacturing same |
CN104178697A (en) * | 2014-08-26 | 2014-12-03 | 武汉钢铁(集团)公司 | High-temperature-resistant aseismic reinforcement and production method thereof |
US9863022B2 (en) | 2011-12-15 | 2018-01-09 | Nippon Steel & Sumitomo Metal Corporation | High-strength ultra-thick H-beam steel |
KR20180073494A (en) * | 2016-12-22 | 2018-07-02 | 도요타지도샤가부시키가이샤 | Hybrid vehicle and method of controlling hybrid vehicle |
CN112045331A (en) * | 2020-08-12 | 2020-12-08 | 钢铁研究总院 | Welding material for high-toughness, corrosion-resistant and fire-resistant low-alloy high-strength steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005226080A (en) * | 2004-02-10 | 2005-08-25 | Jfe Steel Kk | Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness |
JP2007046096A (en) * | 2005-08-09 | 2007-02-22 | Nippon Steel Corp | Method for producing thick high strength steel plate having excellent toughness, and thick high strength steel plate having excellent toughness |
JP2008261012A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for producing high strength steel having 500 mpa or more yield stress and 570 mpa or more tensile strength and excellent in toughness of welding heat-affected part |
JP2009068078A (en) * | 2007-09-13 | 2009-04-02 | Kobe Steel Ltd | Welded joint with excellent toughness and fatigue crack inhibiting property |
-
2010
- 2010-03-24 JP JP2010068616A patent/JP2011202210A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005226080A (en) * | 2004-02-10 | 2005-08-25 | Jfe Steel Kk | Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness |
JP2007046096A (en) * | 2005-08-09 | 2007-02-22 | Nippon Steel Corp | Method for producing thick high strength steel plate having excellent toughness, and thick high strength steel plate having excellent toughness |
JP2008261012A (en) * | 2007-04-12 | 2008-10-30 | Nippon Steel Corp | Method for producing high strength steel having 500 mpa or more yield stress and 570 mpa or more tensile strength and excellent in toughness of welding heat-affected part |
JP2009068078A (en) * | 2007-09-13 | 2009-04-02 | Kobe Steel Ltd | Welded joint with excellent toughness and fatigue crack inhibiting property |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9863022B2 (en) | 2011-12-15 | 2018-01-09 | Nippon Steel & Sumitomo Metal Corporation | High-strength ultra-thick H-beam steel |
CN103658178A (en) * | 2012-08-31 | 2014-03-26 | 宝山钢铁股份有限公司 | Method for producing high-strength thin strip steel in short process |
WO2014142060A1 (en) * | 2013-03-14 | 2014-09-18 | 新日鐵住金株式会社 | H-shaped steel and process for manufacturing same |
JP5867651B2 (en) * | 2013-03-14 | 2016-02-24 | 新日鐵住金株式会社 | H-section steel and its manufacturing method |
EP2975149A4 (en) * | 2013-03-14 | 2016-11-16 | Nippon Steel & Sumitomo Metal Corp | H-shaped steel and process for manufacturing same |
US9834931B2 (en) | 2013-03-14 | 2017-12-05 | Nippon Steel & Sumitomo Metal Corporation | H-section steel and method of producing the same |
CN104018076A (en) * | 2014-06-25 | 2014-09-03 | 武汉钢铁(集团)公司 | High temperature resisting reinforced steel bar and production method thereof |
CN104018076B (en) * | 2014-06-25 | 2016-06-15 | 武汉钢铁(集团)公司 | A kind of high temperature resistant reinforcing bar and production method |
CN104178697A (en) * | 2014-08-26 | 2014-12-03 | 武汉钢铁(集团)公司 | High-temperature-resistant aseismic reinforcement and production method thereof |
KR20180073494A (en) * | 2016-12-22 | 2018-07-02 | 도요타지도샤가부시키가이샤 | Hybrid vehicle and method of controlling hybrid vehicle |
KR101975122B1 (en) | 2016-12-22 | 2019-05-03 | 도요타지도샤가부시키가이샤 | Hybrid vehicle and method of controlling hybrid vehicle |
CN112045331A (en) * | 2020-08-12 | 2020-12-08 | 钢铁研究总院 | Welding material for high-toughness, corrosion-resistant and fire-resistant low-alloy high-strength steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2502820C1 (en) | Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture | |
JP4538094B2 (en) | High strength thick steel plate and manufacturing method thereof | |
JP4542624B2 (en) | High strength thick steel plate and manufacturing method thereof | |
JP6149368B2 (en) | Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance | |
JP5354164B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP5037744B2 (en) | High strength steel plate and manufacturing method thereof | |
WO2013089156A1 (en) | High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof | |
JP6645107B2 (en) | H-section steel and manufacturing method thereof | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
JP2011202210A (en) | Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same | |
JP2012122111A (en) | Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP4730088B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP6277679B2 (en) | High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness | |
JP5200600B2 (en) | Manufacturing method of high strength and low yield ratio steel | |
JP5510620B1 (en) | steel sheet | |
JP2016117932A (en) | Rolling h-shaped steel and manufacturing method therefor | |
JP5477457B2 (en) | High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less | |
JP2011208213A (en) | Low-yield ratio high-tensile strength thick steel plate having excellent weld crack resistance and weld heat-affected zone toughness | |
JP2017057483A (en) | H-shaped steel and production method therefor | |
JP5494090B2 (en) | Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness and method for producing the same | |
JP2023031269A (en) | Ultra-low yield ratio high tensile strength thick steel sheet, and method for producing the same | |
JP2014029004A (en) | Method of producing high tensile steel sheet excellent in weldability and delayed fracture resistance | |
JP2023045253A (en) | Steel plate and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131023 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140204 |