JP2011201309A - Polypropylene resin foamed molding and method of manufacturing the same - Google Patents
Polypropylene resin foamed molding and method of manufacturing the same Download PDFInfo
- Publication number
- JP2011201309A JP2011201309A JP2011117377A JP2011117377A JP2011201309A JP 2011201309 A JP2011201309 A JP 2011201309A JP 2011117377 A JP2011117377 A JP 2011117377A JP 2011117377 A JP2011117377 A JP 2011117377A JP 2011201309 A JP2011201309 A JP 2011201309A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- mold
- less
- foamed
- polypropylene resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、ポリプロピレン系樹脂からなる射出発泡成形体およびその製造方法に関する。 The present invention relates to an injection foam molded body made of polypropylene resin and a method for producing the same.
ポリプロピレン系樹脂の射出成形において、軽量化、コストダウン、成形体の反り・ヒケ防止を目的に発泡を行ういわゆる射出発泡成形が従来から行われてきた(例えば特許文献1)。しかし、ポリプロピレン系樹脂は結晶性でメルトテンション(溶融張力)が低く、気泡が破壊されやすい。その結果、成形体表面にシルバーストリーク(またはスワールマーク)と呼ばれる外観不良が発生しやすかったり、さらには内部にボイドが発生しやすく、発泡倍率を高くすることが困難であった。また、気泡が不均一で大きいために得られた成形体の剛性も十分でなかった。なお、本件でいうボイドとは内部の気泡が連通化するなどして生じる粗大な気泡で、実質その径が1.5mmを越える気泡のことをいう。 In the injection molding of polypropylene-based resins, so-called injection foam molding has been conventionally performed in which foaming is performed in order to reduce weight, reduce costs, and prevent warping and sink marks of the molded body (for example, Patent Document 1). However, the polypropylene resin is crystalline and has a low melt tension (melting tension), and bubbles are easily destroyed. As a result, appearance defects called silver streaks (or swirl marks) are likely to occur on the surface of the molded body, and voids are easily generated inside, making it difficult to increase the expansion ratio. In addition, since the bubbles were non-uniform and large, the resulting molded article was not sufficiently rigid. In addition, the void as used in the present case is a coarse bubble generated by internal bubbles communicating with each other and substantially means a bubble having a diameter exceeding 1.5 mm.
発泡性を改良する方法として、架橋剤やシラングラフト熱可塑性樹脂を添加してポリプロピレン系樹脂のメルトテンションを高める方法が提案されている(例えば特許文献2、特許文献3)。しかし、この方法では高発泡倍率の発泡成形体が得られるものの溶融時の粘度が上がりすぎ、射出成形が困難となるとともに、得られた成形体の表面性も悪いものであった。 As a method for improving foamability, a method has been proposed in which a crosslinking agent or a silane-grafted thermoplastic resin is added to increase the melt tension of a polypropylene resin (for example, Patent Document 2 and Patent Document 3). However, in this method, although a foamed molded product having a high expansion ratio can be obtained, the viscosity at the time of melting is excessively increased, and injection molding becomes difficult, and the surface properties of the obtained molded product are also poor.
放射線照射により長鎖分岐を導入することで、通常の線状ポリプロピレン系樹脂に比べてメルトテンションが高く、さらに溶融物の延伸歪みの増加に伴い粘度が上昇する、いわゆる歪硬化性を示すポリプロピレン系樹脂がサンアロマー社よりHMS−PP(ハイ・メルトストレングス・ポリプロピレン)として市販されている(特許文献4)。このようなHMS−PPを基材樹脂として射出発泡成形に使用することで発泡成形体が得られることは知られている(特許文献5)。通常、剛性を維持した上で大幅な軽量化を達成するには、軽量化前の非発泡射出成形体に対して射出充填時の金型キャビティ・クリアランス厚み(発泡前厚み)を大幅に薄くし、高発泡させることが必要になる。しかし、ここで使用されているHMS−PPはメルトフローレートが4g/10分程度しかなく、溶融時の流動性が低いために、大幅な薄肉化、例えば1〜2mm程度の薄肉部分を有する成形においてはショートショットになりやすい問題があった。一方、メルトフローレートが高いHMS−PP(30g/10分)も知られているが、歪硬化性は示すものの、メルトテンションが0.3cN程度しかなく、高発泡倍率の発泡成形体を得ることは困難であった。しかも、これらのHMS−PPの製造は高価な放射線設備を使用しているため、製造されるHMS−PPも高価となり、それから得られる製品を安価に提供することは困難である。 By introducing long-chain branching by radiation irradiation, the melt tension is higher than that of ordinary linear polypropylene resin, and the viscosity increases as the stretch distortion of the melt increases. The resin is commercially available from Sun Allomer as HMS-PP (High Melt Strength Polypropylene) (Patent Document 4). It is known that a foam molded article can be obtained by using such HMS-PP as a base resin for injection foam molding (Patent Document 5). Usually, in order to achieve significant weight reduction while maintaining rigidity, the mold cavity clearance thickness (thickness before foaming) at the time of injection filling is significantly reduced compared to the non-foamed injection molded body before weight reduction. It is necessary to make it highly foamed. However, since the HMS-PP used here has a melt flow rate of only about 4 g / 10 min and low fluidity at the time of melting, it is greatly thinned, for example, a molding having a thin portion of about 1 to 2 mm. However, there was a problem that a short shot was likely to occur. On the other hand, HMS-PP (30 g / 10 min) with a high melt flow rate is also known, but although it exhibits strain hardening, it has a melt tension of only about 0.3 cN and obtains a foamed molded article with a high expansion ratio. Was difficult. And since manufacture of these HMS-PP uses an expensive radiation equipment, manufactured HMS-PP also becomes expensive and it is difficult to provide the product obtained from it at low cost.
また、特定の極限粘度を有するポリエチレンが混合されたメルトフローレートおよびメルトテンションがいずれも高いポリプロピレン系樹脂(特許文献6)や、多段重合により特定の極限粘度を有する成分を含有する高メルトテンションのポリプロピレン系樹脂と高メルトフローレートのポリプロピレン系樹脂との混合物(特許文献7)を射出発泡成形に使用する方法も提案されている。しかし、このようなポリプロピレン系樹脂は、前記長鎖分岐を有するHMS−PPのような顕著な歪硬化性を示さないため、発泡倍率が2倍越えるような高発泡倍率の場合には気泡が破壊され、内部ボイドが発生しやすい傾向になり、高度な剛性、軽量化のニーズに応えることができなかった。 Also, a polypropylene resin (Patent Document 6) having a high melt flow rate and a high melt tension mixed with polyethylene having a specific intrinsic viscosity, and a high melt tension containing a component having a specific intrinsic viscosity by multistage polymerization. A method has also been proposed in which a mixture of a polypropylene resin and a high melt flow rate polypropylene resin (Patent Document 7) is used for injection foam molding. However, since such a polypropylene resin does not show a remarkable strain hardening property like the HMS-PP having a long-chain branch, the bubbles are destroyed at a high expansion ratio such that the expansion ratio exceeds 2. As a result, internal voids tend to occur, and it was not possible to meet the needs for high rigidity and light weight.
一方、二段階で金型を開く発泡工程を含む方法で2倍以上の高発泡倍率を有する射出発泡成形体を得る方法が知られている(特許文献8、特許文献9、特許文献10)。とくに、特許文献8に記載の方法は、充填完了後の所定時間後に第一次金型拡大工程を行い、次いで所定時間キャビティの拡大を停止した後に、キャビティを最終拡大幅まで拡大する方法であり、高発泡倍率が得られやすい点で好ましい。しかし、ここで使用される基材樹脂は前記長鎖分岐を有するHMS−PPで、流動性が悪いため3mm未満の薄肉キャビティに射出充填することは困難であり、大幅な軽量化は期待できない。また、射出充填後に所定時間充填時の形状を保持し、第一次金型拡大工程におけるキャビティ拡大速度を2〜5mm/秒のような低速で行うために、薄肉で射出充填する場合には、金型内での樹脂温度が発泡に適正な温度以下になってしまうために、高発泡化を行うことが困難であり、得られた成形体も表面平滑性に劣る。とくに、発泡成形体が箱形状のものである場合には、底面部にボイドが発生しやすい問題点があった。 On the other hand, there is known a method for obtaining an injection foam molded article having a high expansion ratio of 2 times or more by a method including a foaming step of opening a mold in two stages (Patent Document 8, Patent Document 9, and Patent Document 10). In particular, the method described in Patent Document 8 is a method of performing a primary mold expansion step after a predetermined time after completion of filling, and then stopping the expansion of the cavity for a predetermined time, and then expanding the cavity to the final expansion width. It is preferable because a high expansion ratio is easily obtained. However, the base resin used here is HMS-PP having the above-mentioned long-chain branch, and since it has poor fluidity, it is difficult to injection-fill into a thin cavity of less than 3 mm, and a significant weight reduction cannot be expected. In addition, in order to maintain the shape at the time of filling for a predetermined time after injection filling and perform the cavity expansion speed in the primary mold expansion process at a low speed such as 2 to 5 mm / second, Since the resin temperature in the mold is equal to or lower than the temperature suitable for foaming, it is difficult to achieve high foaming, and the resulting molded article is also inferior in surface smoothness. In particular, when the foam-molded product is a box-shaped one, there is a problem that voids are likely to occur at the bottom surface.
以上のように、これまでは射出発泡成形性が良好で、高発泡倍率で大幅な軽量化が可能であり、表面平滑性、剛性に優れた射出発泡成形体を安価に得ることは困難であった。 As described above, until now, it has been difficult to obtain an injection foam molded article excellent in surface smoothness and rigidity, which has good injection foam moldability and can be significantly reduced in weight at a high expansion ratio. It was.
本発明の目的は、薄肉射出充填が可能で高発泡倍率であるがために軽量性、剛性、表面平滑性に優れた、とくに箱形状の発泡成形体を容易に、安価に得られる製造方法を提供することである。 An object of the present invention is to provide a production method that can easily and inexpensively obtain a box-shaped foamed molded article that is excellent in lightness, rigidity, and surface smoothness because of its thin foam injection filling and high foaming ratio. Is to provide.
本発明者らは、特定のポリプロピレン系樹脂を基材樹脂に用いること、および2段階で金型キャビティを特定の金型開速度で開くことで、高発泡倍率で大幅な軽量化が可能であり、かつ剛性、表面平滑性に優れ、とくにこれまで製造することが困難であった箱形状の発泡成形体が安価に得られることを見出し本発明の完成に至った。 By using a specific polypropylene resin as a base resin and opening a mold cavity at a specific mold opening speed in two stages, the present inventors can achieve a significant weight reduction with a high expansion ratio. In addition, the present inventors have found that a box-shaped foamed molded article having excellent rigidity and surface smoothness and particularly difficult to produce has been obtained at low cost, and the present invention has been completed.
すなわち本発明の第1は、ポリプロピレン系樹脂と発泡剤を含んでなるポリプロピレン系樹脂組成物の溶融物を金型内に射出して発泡成形体を製造する方法において、前記ポリプロピレン系樹脂が(A)メルトフローレートが10g/10分以上100g/10分以下、メルトテンションが2cN以下である線状ポリプロピレン系樹脂40重量部以上95重量部以下と、(B)メルトフローレートが0.1g/10分以上10g/10分未満、メルトテンションが5cN以上で、かつ歪硬化性を示す改質ポリプロピレン系樹脂5重量部以上60重量部以下(ただし、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)の合計は100重量部)とからなり、金型が固定型と前進および後退が可能な可動型とから構成され、最終製品の形状位置に相当する金型キャビティ・クリアランスt2よりも小さい金型キャビティ・クリアランスt0を有する金型キャビティ中に前記溶融混合物を射出充填する射出工程、その直後にt2よりも小さく、t0よりも大きい金型キャビティ・クリアランスt1まで可動型を後退させる第一段発泡工程、次いでt1のクリアランスを所定の設定時間保持した後に、さらに最終製品の形状位置に相当する金型キャビティ・クリアランスt2まで可動型を後退させる第二段発泡工程を含むことを特徴とする射出発泡成形体の製造方法に関する。 That is, a first aspect of the present invention is a method for producing a foamed molded article by injecting a melt of a polypropylene resin composition comprising a polypropylene resin and a foaming agent into a mold, wherein the polypropylene resin (A ) 40 to 95 parts by weight of a linear polypropylene resin having a melt flow rate of 10 g / 10 min to 100 g / 10 min and a melt tension of 2 cN or less; and (B) a melt flow rate of 0.1 g / 10. Min. To less than 10 g / 10 min, melt tension of 5 cN or more, and 5 to 60 parts by weight of a modified polypropylene resin exhibiting strain hardening (however, linear polypropylene resin (A) and modified polypropylene resin) The total amount of the resin (B) is 100 parts by weight), and the mold is composed of a fixed mold and a movable mold capable of moving forward and backward. Injection step of injecting and filling the molten mixture into a mold cavity having a small mold cavity clearance t 0 than the mold cavity clearance t 2 which corresponds to the shape position of the goods, less than t 2 immediately thereafter, A first stage foaming step of retracting the movable mold to a mold cavity clearance t 1 larger than t 0 , and then a mold cavity corresponding to the shape position of the final product after holding the clearance of t 1 for a predetermined set time. - a process for the production of injection-foamed molded, characterized in that it comprises a second stage foaming step of retracting the movable mold up to the clearance t 2.
好ましい実施態様としては、
(1)前記改質ポリプロピレン系樹脂(B)が、線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られたものであること、
(2)前記第一段発泡工程における金型開速度が7mm/秒以上100mm/秒以下であること、
(3)前記第二段発泡工程における金型開速度が0.5mm/秒以上20mm/秒以下であること、
(4)前記t0、t1、t2の関係が次式で示されること、
As a preferred embodiment,
(1) The modified polypropylene resin (B) is obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound,
(2) The mold opening speed in the first stage foaming step is 7 mm / second or more and 100 mm / second or less,
(3) The mold opening speed in the second stage foaming step is 0.5 mm / second or more and 20 mm / second or less,
(4) The relationship between the t 0 , t 1 , and t 2 is expressed by the following equation:
(5)前記第二段発泡工程における金型キャビティ・クリアランスt1を保持する設定時間が1秒以上20秒以下であること、
を特徴とする前記記載の射出発泡成形体の製造方法に関する。
(5) setting the time to hold the mold cavity clearance t 1 in the second step expansion process is less than 20 seconds 1 seconds,
A method for producing the injection foam molded article as described above.
本発明の第2は前記記載の方法により製造される発泡成形体に関し、好ましい態様としては、
(1)平均気泡径が500μm以下の発泡層と、該発泡層の少なくとも片側の表面に形成される厚み10μm以上1000μm以下の非発泡層とを有する、発泡倍率が2倍以上10倍以下であることであること、
(2)次式で示される軽量化率(L)が20%以上であること、
The second aspect of the present invention relates to a foamed molded article produced by the above-described method.
(1) The foaming ratio is 2 times or more and 10 times or less, having a foam layer having an average cell diameter of 500 μm or less and a non-foam layer having a thickness of 10 μm or more and 1000 μm or less formed on at least one surface of the foam layer. That
(2) The weight reduction rate (L) represented by the following formula is 20% or more,
(3)前記発泡成形体が底面部と、該底面部と一体的に成形された立壁部とからなる箱形状であること、
を特徴とする前記記載の発泡成形体に関する。
(3) The foamed molded body has a box shape including a bottom surface portion and a standing wall portion formed integrally with the bottom surface portion,
This relates to the above-mentioned foamed molded article.
本発明の射出発泡成形体の製造方法は、溶融時の流動性が高く、且つ、メルトテンションも高いポリプロピレン系樹脂を使用することにより、大幅な軽量化に必要な薄肉射出充填が可能であり、溶融状態にある前記ポリプロピレン系樹脂を金型キャビティに射出充填後すぐに、二段階で特定の速度で可動型を後退させて発泡させることによって、高発泡倍率であるがために軽量性、剛性、表面平滑性に優れた発泡成形体が得られる。この効果は、特に箱形状の発泡成形体において顕著に現われる。 The method for producing an injection-foamed molded article of the present invention is capable of thin-wall injection filling necessary for significant weight reduction by using a polypropylene-based resin that has high fluidity at the time of melting and high melt tension. Immediately after the polypropylene resin in the molten state is injected and filled into the mold cavity, the movable mold is retracted and foamed at a specific speed in two stages, so that it has high foaming ratio, but it is lightweight, rigid, A foamed molded article having excellent surface smoothness can be obtained. This effect is particularly prominent in a box-shaped foam molded article.
本発明のポリプロピレン系樹脂射出発泡成形体の製造方法の第一の特徴は、メルトフローレートおよびメルトテンションがそれぞれ異なる二種類のポリプロピレン系樹脂(A)、(B)を使用することである。 The first feature of the method for producing a polypropylene resin injection foam molded article of the present invention is that two types of polypropylene resins (A) and (B) having different melt flow rates and melt tensions are used.
本発明で使用するポリプロピレン系樹脂は、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)とからなる。 The polypropylene resin used in the present invention comprises a linear polypropylene resin (A) and a modified polypropylene resin (B).
線状ポリプロピレン系樹脂(A)は、メルトフローレートが10g/10分以上100g/10分以下、好ましくは30g/10分以上60g/10分以下であり、メルトテンションが2cN以下、好ましくは1cN以下である。メルトフローレートが10g/10分以上100g/10分以下の範囲であると、射出発泡成形体を製造する際に、金型キャビティのクリアランスが0.5mm以上3mm未満程度の薄肉部分を有する成形においてもショートショットになりにくく、連続して安定した成形が行える。また、高発泡倍率であり、且つ、発泡時に気泡が破壊されにくいため、表面外観美麗な発泡成形体が得られる。また、メルトテンションが2cN以下であれば、金型面への転写性が良好であり、表面外観美麗な発泡成形体が得られる。 The linear polypropylene resin (A) has a melt flow rate of 10 g / 10 min to 100 g / 10 min, preferably 30 g / 10 min to 60 g / 10 min, and a melt tension of 2 cN or less, preferably 1 cN or less. It is. When the melt flow rate is in the range of 10 g / 10 min or more and 100 g / 10 min or less, when producing an injection-foamed molded article, in the molding having a thin portion with a mold cavity clearance of about 0.5 mm or more and less than 3 mm. Is less prone to short shots and enables continuous and stable molding. In addition, since the foaming ratio is high and bubbles are not easily destroyed during foaming, a foamed molded article having a beautiful surface appearance can be obtained. Moreover, if the melt tension is 2 cN or less, the transferability to the mold surface is good, and a foamed molded article having a beautiful surface appearance can be obtained.
メルトフローレートとは、ASTM D−1238に準拠し、230℃、2.16kg荷重下で測定したものを言い、メルトテンションとは、メルトテンション測定用アタッチメントを付けたキャピログラフ(東洋精機製作所製)を使用して、230℃でφ1mm、長さ10mmの孔を有するダイスから、ピストン降下速度10mm/分で降下させたストランドを1m/分で引き取り、安定後に40m/分2で引き取り速度を増加させたとき、破断したときのロードセル付きプーリーの引き取り荷重を言う。 The melt flow rate is a value measured under a load of 2.16 kg at 230 ° C. in accordance with ASTM D-1238. The melt tension is a capillograph (manufactured by Toyo Seiki Seisakusho) with an attachment for measuring the melt tension. Used, a strand lowered at a piston descending speed of 10 mm / min was taken out at 1 m / min from a die having a hole of φ1 mm and a length of 10 mm at 230 ° C., and the take-up speed was increased at 40 m / min 2 after stabilization. Sometimes, it refers to the take-up load of the pulley with a load cell when it breaks.
ここでいう線状ポリプロピレン系樹脂(A)とは、線状の分子構造を有しているポリプロピレン系樹脂であり、通常の重合方法、例えば担体に担持させた遷移金属化合物と有機金属化合物から得られる触媒系(例えばチーグラー・ナッタ触媒)の存在下の重合で得られる。具体的には、プロピレンの単独重合体、ブロック共重合体およびランダム共重合体であって、結晶性の重合体があげられる。プロピレンの共重合体としては、プロピレンを75重量%以上含有しているものが、ポリプロピレン系樹脂の特徴である結晶性、剛性、耐薬品性などが保持されている点で好ましい。共重合可能なα−オレフィンは、エチレン、1−ブテン、イソブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセン、1−オクテン、1−デセンなどの炭素数2または4〜12のα−オレフィン、シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]−4−ドデセンなどの環状オレフィン、5−メチレン−2−ノルボルネン、5−エチリデン−2−ノルボルネン、1,4−ヘキサジエン、メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどのジエン、塩化ビニル、塩化ビニリデン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、無水マレイン酸、スチレン、メチルスチレン、ビニルトルエン、ジビニルベンゼンなどのビニル単量体などが挙げられる。これらのうち、エチレン、1−ブテンが耐寒脆性向上、安価等という点で好ましい。 The linear polypropylene resin (A) here is a polypropylene resin having a linear molecular structure, and is obtained from a usual polymerization method, for example, a transition metal compound supported on a carrier and an organometallic compound. Obtained in the presence of a catalyst system such as a Ziegler-Natta catalyst. Specific examples include propylene homopolymers, block copolymers, and random copolymers, which are crystalline polymers. As a copolymer of propylene, a copolymer containing propylene in an amount of 75% by weight or more is preferable in that the crystallinity, rigidity, chemical resistance, etc., which are characteristics of the polypropylene resin, are maintained. The copolymerizable α-olefin is ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene. , 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, and the like, α-olefins having 2 or 4 to 12 carbon atoms, cyclopentene, norbornene, tetracyclo [6,2,1 1,8 , 1 Cyclic olefins such as 3,6 ] -4-dodecene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl-1,6 -Diene such as octadiene, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, ethyl acrylate , Butyl acrylate, methyl methacrylate, maleic anhydride, styrene, methyl styrene, vinyl toluene, and vinyl monomers such as divinylbenzene. Among these, ethylene and 1-butene are preferable in terms of improving cold brittleness resistance and low cost.
本発明で使用する改質ポリプロピレン系樹脂(B)は、メルトフローレートが0.1g/10分以上10g/10分未満、好ましくは0.3g/10分以上5g/10分以下であり、メルトテンションが5cN以上、好ましくは8cN以上で、かつ歪硬化性を示すものである。メルトフローレートが0.1g/10分以上10g/10分未満であると、線状ポリプロピレン系樹脂(A)への分散性が良好であり、高発泡倍率であり気泡が均一の、表面性が良い本発明の発泡成形体が得られる。また、金型面への転写性が良好で、美麗な表面外観が得られる。また、メルトテンションが5cN以上の場合には2倍以上の均一微細な気泡の発泡成形体が得られる。 The modified polypropylene resin (B) used in the present invention has a melt flow rate of 0.1 g / 10 min or more and less than 10 g / 10 min, preferably 0.3 g / 10 min or more and 5 g / 10 min or less. The tension is 5 cN or more, preferably 8 cN or more, and exhibits strain hardening. When the melt flow rate is 0.1 g / 10 min or more and less than 10 g / 10 min, the dispersibility in the linear polypropylene resin (A) is good, the foaming ratio is high, the bubbles are uniform, and the surface property is high. A good foamed molded product of the present invention is obtained. In addition, transferability to the mold surface is good, and a beautiful surface appearance can be obtained. In addition, when the melt tension is 5 cN or more, a foamed molded product having uniform and fine cells twice or more can be obtained.
ここでいう歪硬化性は、溶融物の延伸歪みの増加に伴い粘度が上昇することとして定義され、通常は特開昭62−121704号公報に記載の方法、すなわち市販のレオメーターにより測定した伸長粘度と時間の関係をプロットすることで判定することができる。また、例えばメルトテンション測定時の溶融ストランドの破断挙動からも歪硬化性を判定できる。すなわち、引き取り速度を増加させたときに急激にメルトテンションが増加し、切断に至るときは歪硬化性を示す場合である。改質ポリプロピレン系樹脂(B)が歪硬化性を示し、メルトテンションが高い場合に発泡倍率が2倍以上の高発泡倍率の発泡成形体が得られ、射出成形時の溶融樹脂流動先端部で破泡しやすくなることによっておこるシルバーストリークが出にくくなる等の理由から表面平滑性に優れた発泡成形体が得られる。 Strain hardening here is defined as that the viscosity increases as the stretch strain of the melt increases, and is usually the method described in Japanese Patent Application Laid-Open No. 62-121704, that is, the elongation measured by a commercially available rheometer. This can be determined by plotting the relationship between viscosity and time. Further, for example, strain hardening can be determined from the breaking behavior of the molten strand at the time of melt tension measurement. That is, when the take-up speed is increased, the melt tension increases abruptly, and when cutting, strain hardening is exhibited. The modified polypropylene resin (B) exhibits strain-hardening properties, and when the melt tension is high, a foamed molded product with a high foaming ratio of 2 times or more can be obtained and broken at the molten resin flow front end during injection molding. A foam molded article having excellent surface smoothness can be obtained for the reason that silver streaks that occur due to easy foaming are less likely to occur.
このような改質ポリプロピレン系樹脂(B)としては、例えば線状ポリプロピレン系樹脂に放射線を照射するか、または線状ポリプロピレン系樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合するなどの方法により得られる分岐構造あるいは高分子量成分を含有する改質ポリプロピレン系樹脂が挙げられる。これらの中で、本発明においては、線状ポリプロピレン樹脂、ラジカル重合開始剤、共役ジエン化合物を溶融混合して得られる改質ポリプロピレン系樹脂が、高価な設備を必要としない点から安価に製造できる点から好ましい。この改質ポリプロピレン系樹脂(B)の製造に用いられる原料ポリプロピレン系樹脂としては、前記線状ポリプロピレン系樹脂(A)と同じものが例示できる。 As such a modified polypropylene resin (B), for example, the linear polypropylene resin is irradiated with radiation, or the linear polypropylene resin, radical polymerization initiator, conjugated diene compound is melt mixed. Examples thereof include a modified polypropylene resin containing the resulting branched structure or high molecular weight component. Among these, in the present invention, a modified polypropylene resin obtained by melt-mixing a linear polypropylene resin, a radical polymerization initiator, and a conjugated diene compound can be manufactured at low cost because it does not require expensive equipment. It is preferable from the point. Examples of the raw material polypropylene resin used in the production of the modified polypropylene resin (B) include the same as the linear polypropylene resin (A).
前記共役ジエン化合物としては例えばブタジエン、イソプレン、1,3−ヘプタジエン、2,3−ジメチルブタジエン、2,5−ジメチル−2,4−ヘキサジエンなどがあげられるが、これらを単独または組み合わせ使用してもよい。これらの中では、ブタジエン、イソプレンが安価で取り扱いやすく、反応が均一に進みやすい点からとくに好ましい。 Examples of the conjugated diene compound include butadiene, isoprene, 1,3-heptadiene, 2,3-dimethylbutadiene, 2,5-dimethyl-2,4-hexadiene, and these may be used alone or in combination. Good. Among these, butadiene and isoprene are particularly preferable because they are inexpensive and easy to handle and the reaction easily proceeds uniformly.
前記共役ジエン化合物の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.01重量部以上20重量部以下が好ましく、0.05重量部以上5重量部以下がさらに好ましい。0.01重量部未満では改質の効果が得られにくい場合があり、また20重量部を越える添加量においては効果が飽和してしまい、経済的でない場合がある。 The addition amount of the conjugated diene compound is preferably 0.01 parts by weight or more and 20 parts by weight or less, and more preferably 0.05 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the linear polypropylene resin. If the amount is less than 0.01 parts by weight, the effect of the modification may be difficult to obtain, and if the amount exceeds 20 parts by weight, the effect is saturated, which may not be economical.
前記共役ジエン化合物と共重合可能な単量体、たとえば塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、アクリル酸金属塩、メタクリル酸金属塩、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ステアリルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリルなどのメタクリル酸エステルなどを併用してもよい。 Monomers copolymerizable with the conjugated diene compounds, such as vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, vinyl acetate, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, metal acrylate Salt, metal methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, and other acrylic esters, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Methacrylic acid esters such as ethylhexyl and stearyl methacrylate may be used in combination.
ラジカル重合開始剤としては、一般に過酸化物、アゾ化合物などが挙げられるが、ポリプロピレン系樹脂や前記共役ジエン化合物からの水素引き抜き能を有するものが好ましく、一般にケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの有機過酸化物が挙げられる。これらのうち、とくに水素引き抜き能が高いものが好ましく、たとえば1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタンなどのパーオキシケタール、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)−3−ヘキシンなどのジアルキルパーオキサイド、ベンゾイルパーオキサイドなどのジアシルパーオキサイド、t−ブチルパーオキシオクテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ブチルパーオキシ3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシイソプロピルカーボネート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシイソフタレートなどのパーオキシエステルなどの1種または2種以上が挙げられる。
The radical polymerization initiator generally includes peroxides, azo compounds, and the like, but those having a capability of extracting hydrogen from a polypropylene resin or the conjugated diene compound are preferable. Generally, ketone peroxides, peroxyketals, hydroperoxides are used. Organic peroxides such as oxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, and peroxyesters are listed. Of these, those having particularly high hydrogen abstraction ability are preferred, such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, Peroxyketals such as n-butyl 4,4-bis (t-butylperoxy) valerate, 2,2-bis (t-butylperoxy) butane, dicumyl peroxide, 2,5-dimethyl-2,5 -Di (t-butylperoxy) hexane, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl Diacyl peroxides such as dialkyl peroxides such as -2,5-di (t-butylperoxy) -3-hexyne and benzoyl peroxides Oxide, t-butyl peroxyoctate, t-butyl peroxyisobutyrate, t-butyl peroxylaurate, t-
ラジカル重合開始剤の添加量としては、線状ポリプロピレン系樹脂100重量部に対して、0.01重量部以上10重量部以下が好ましく、0.05重量部以上2重量部以下がさらに好ましい。0.01重量部未満では改質の効果が得られにくい場合があり、また10重量部を越える添加量では、改質の効果が飽和してしまい経済的でない場合がある。 The addition amount of the radical polymerization initiator is preferably 0.01 parts by weight or more and 10 parts by weight or less, more preferably 0.05 parts by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the linear polypropylene resin. If the amount is less than 0.01 part by weight, the effect of reforming may be difficult to obtain, and if the amount exceeds 10 parts by weight, the effect of reforming may be saturated and not economical.
線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を反応させるための装置としては、ロール、コニーダー、バンバリーミキサー、ブラベンダー、単軸押出機、2軸押出機などの混練機、2軸表面更新機、2軸多円板装置などの横型撹拌機、ダブルヘリカルリボン撹拌機などの縦型撹拌機、などが挙げられる。これらのうち、混練機を使用することが好ましく、とくに押出機が生産性の点から好ましい。 The apparatus for reacting the linear polypropylene resin, the conjugated diene compound, and the radical polymerization initiator includes a roll, a kneader, a Banbury mixer, a Brabender, a single screw extruder, a kneader such as a twin screw extruder, a twin screw, etc. Examples of the surface renewal machine include a horizontal stirrer such as a biaxial multi-disk device, and a vertical stirrer such as a double helical ribbon stirrer. Among these, a kneader is preferably used, and an extruder is particularly preferable from the viewpoint of productivity.
線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を混合、混練(撹拌)する順序、方法にはとくに制限はない。線状ポリプロピレン系樹脂、共役ジエン化合物、およびラジカル重合開始剤を混合したのち溶融混練(撹拌)してもよいし、ポリプロピレン系樹脂を溶融混練(撹拌)したのち、共役ジエン化合物あるいはラジカル開始剤を同時にあるいは別々に、一括してあるいは分割して混合してもよい。混練(撹拌)機の温度は130〜300℃が、線状ポリプロピレン系樹脂が溶融し、かつ熱分解しないという点で好ましい。またその時間は一般に1〜60分が好ましい。 There is no particular limitation on the order and method of mixing and kneading (stirring) the linear polypropylene resin, the conjugated diene compound, and the radical polymerization initiator. The linear polypropylene-based resin, the conjugated diene compound, and the radical polymerization initiator may be mixed and then melt-kneaded (stirred). After the polypropylene-based resin is melt-kneaded (stirred), the conjugated diene compound or the radical initiator may be mixed. They may be mixed simultaneously or separately, collectively or divided. The temperature of the kneading (stirring) machine is preferably 130 to 300 ° C. in that the linear polypropylene resin melts and does not thermally decompose. The time is generally preferably 1 to 60 minutes.
このようにして、本発明に用いる改質ポリプロピレン系樹脂(B)を製造することができる。 In this way, the modified polypropylene resin (B) used in the present invention can be produced.
ポリプロピレン系樹脂(A)、(B)の形状、大きさに制限はなく、ペレット状でもよい。 There is no restriction | limiting in the shape and magnitude | size of polypropylene resin (A) and (B), and a pellet form may be sufficient.
本発明で使用する線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)の合計100重量部中、線状ポリプロピレン樹脂(A)は、40重量部以上95重量部以下であり、好ましくは50重量部以上80重量部以下である。改質ポリプロピレン系樹脂(B)は5重量部以上60重量部以下であり、好ましくは10重量部以上50重量部以下である。前記配合量であれば、均一微細な気泡を有する、発泡倍率が2倍以上の発泡成形体が得られる。また、薄肉部分を有する成形でショートショットが起こらず、連続して安定した生産が行えるほか、表面平滑性に優れた発泡成形体を安価に提供することが出来る。 Of the total 100 parts by weight of the linear polypropylene resin (A) and the modified polypropylene resin (B) used in the present invention, the linear polypropylene resin (A) is 40 to 95 parts by weight, preferably Is 50 parts by weight or more and 80 parts by weight or less. The modified polypropylene resin (B) is 5 to 60 parts by weight, preferably 10 to 50 parts by weight. If it is the said compounding quantity, the foaming molding with a foaming ratio of 2 times or more which has a uniform fine bubble will be obtained. In addition, short shots do not occur in molding having a thin portion, continuous production can be performed stably, and a foam molded article having excellent surface smoothness can be provided at low cost.
本発明で使用する射出発泡成形用ポリプロピレン系樹脂は、線状ポリプロピレン系樹脂(A)と改質ポリプロピレン系樹脂(B)を混合することで得ることが出来る。混合方法は特に限定はなく、公知の方法で行うことが出来、例えば、ペレット状の樹脂をブレンダー、ミキサー等を用いてドライブレンドする、溶融混合する、溶剤に熔解して混合する等の方法が挙げられる。本発明においてはドライブレンドした上で射出発泡成形に供する方法が、熱履歴が少なくて済み、メルトテンションの低下が少なくなる為、好ましい。 The polypropylene resin for injection foam molding used in the present invention can be obtained by mixing a linear polypropylene resin (A) and a modified polypropylene resin (B). The mixing method is not particularly limited and can be performed by a known method. For example, dry blending of pellet-shaped resin using a blender, mixer, etc., melt mixing, melting and mixing in a solvent, etc. Can be mentioned. In the present invention, the method of dry blending and then subjecting to injection foam molding is preferable because it requires less heat history and decreases the melt tension.
本発明における発泡成形体の製造方法の第二の特徴は、前記射出発泡成形用ポリプロピレン系樹脂と発泡剤を含んでなるポリプロピレン系樹脂組成物の溶融物を金型キャビティに射出充填後すぐに、二段階で特定の速度で可動型を後退させて発泡させることである。 The second feature of the method for producing a foamed molded article of the present invention is that immediately after injection-filling a melt of a polypropylene resin composition comprising the polypropylene resin for injection foam molding and a foaming agent into a mold cavity, In two stages, the movable mold is retracted and foamed at a specific speed.
前記射出発泡成形用ポリプロピレン系樹脂は、発泡剤を含んだ状態で射出成形機へ供給される。本発明で使用できる発泡剤は、化学発泡剤、物理発泡剤など射出発泡成形に通常使用できるものであればとくに制限はない。化学発泡剤は、前記樹脂と予め混合してから射出成形機に供給され、シリンダ内で分解して炭酸ガス等の気体を発生するものである。化学発泡剤としては、重炭酸ナトリウム、炭酸アンモニウム等の無機系化学発泡剤や、アゾジカルボンアミド、N,N’−ジニトロソペンタテトラミン等の有機系化学発泡剤があげられる。物理発泡剤は、成形機のシリンダ内の溶融樹脂にガス状または超臨界流体として注入され、分散または溶解されるもので、金型内に射出後、圧力開放されることによって発泡剤として機能する物である。物理発泡剤としては、プロパン、ブタン等の脂肪族炭化水素類、シクロブタン、シクロペンタン等の脂環式炭化水素類、クロロジフルオロメタン、ジクロロメタン等のハロゲン化炭化水素類、窒素、炭酸ガス、空気等の無機ガスがあげられる。これらは単独または2種以上混合して使用してよい。 The polypropylene resin for injection foam molding is supplied to an injection molding machine in a state containing a foaming agent. The foaming agent that can be used in the present invention is not particularly limited as long as it can be usually used for injection foam molding, such as a chemical foaming agent and a physical foaming agent. The chemical foaming agent is mixed with the resin in advance and then supplied to the injection molding machine, and decomposes in the cylinder to generate a gas such as carbon dioxide. Examples of the chemical foaming agent include inorganic chemical foaming agents such as sodium bicarbonate and ammonium carbonate, and organic chemical foaming agents such as azodicarbonamide and N, N′-dinitrosopentatetramine. A physical foaming agent is injected into a molten resin in a cylinder of a molding machine as a gaseous or supercritical fluid, dispersed or dissolved, and functions as a foaming agent by being released from pressure after being injected into a mold. It is a thing. Physical foaming agents include aliphatic hydrocarbons such as propane and butane, alicyclic hydrocarbons such as cyclobutane and cyclopentane, halogenated hydrocarbons such as chlorodifluoromethane and dichloromethane, nitrogen, carbon dioxide, air, etc. Inorganic gas. You may use these individually or in mixture of 2 or more types.
これらの発泡剤の中では、通常の射出成形機が安全に使用でき、均一微細な気泡が得られやすいものとして、化学発泡剤としては無機系化学発泡剤、物理発泡剤としては窒素、炭酸ガス、空気等の無機ガスが好ましい。これらの発泡剤には、発泡成形体の気泡を安定的に均一微細にするために必要に応じて、例えばクエン酸のような有機酸等の発泡助剤やタルク、炭酸リチウムのような無機微粒子等の造核剤を添加してもよい。通常、上記無機系化学発泡剤は取扱性、貯蔵安定性、ポリプロピレン系樹脂への分散性の点から、10〜50重量%濃度のポリオレフィン系樹脂のマスターバッチとして使用されるのが好ましい。 Among these foaming agents, normal injection molding machines can be used safely, and uniform fine bubbles are easily obtained. Chemical foaming agents are inorganic chemical foaming agents, physical foaming agents are nitrogen and carbon dioxide. Inorganic gas such as air is preferable. These foaming agents include, for example, foaming aids such as organic acids such as citric acid and inorganic fine particles such as talc and lithium carbonate, in order to stably and uniformly make the foamed foam air bubbles. A nucleating agent such as may be added. Usually, the inorganic chemical foaming agent is preferably used as a masterbatch of a polyolefin resin having a concentration of 10 to 50% by weight from the viewpoints of handleability, storage stability, and dispersibility in a polypropylene resin.
上記発泡剤の使用量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度によって適宜設定すればよい。例えば、通常無機系化学発泡剤の場合は、本発明のポリプロピレン系樹脂100重量部に対して好ましくは、0.5重量部以上20重量部以下、さらに好ましくは1重量部以上10重量部以下の範囲で使用される。この範囲で使用することにより、経済的に発泡倍率が2倍以上、且つ均一微細気泡の発泡成形体が得られやすい。 What is necessary is just to set the usage-amount of the said foaming agent suitably with the foaming magnification of the final product, the kind of foaming agent, and the resin temperature at the time of shaping | molding. For example, usually in the case of an inorganic chemical foaming agent, it is preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polypropylene resin of the present invention. Used in range. By using in this range, it is easy to economically obtain a foamed molded article having a foaming ratio of 2 times or more and uniform fine cells.
さらに必要に応じて、本発明の効果を損なわない範囲で、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸着剤などの安定剤、架橋剤、連鎖移動剤、核剤、滑剤、可塑剤、充填材、強化材、顔料、染料、難燃剤、帯電防止剤などの添加剤を併用してもよい。必要に応じて用いられるこれらの添加剤は、本発明の効果を損なわない範囲で使用されるのはもちろんであるが、一般に本発明のポリプロピレン系樹脂組成物100重量部に対して、好ましくは0.01重量部以上10重量部以下使用される。 Further, if necessary, as long as the effects of the present invention are not impaired, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, antacid adsorption An additive such as a stabilizer such as an agent, a crosslinking agent, a chain transfer agent, a nucleating agent, a lubricant, a plasticizer, a filler, a reinforcing material, a pigment, a dye, a flame retardant, and an antistatic agent may be used in combination. Of course, these additives used as necessary are used within the range not impairing the effects of the present invention, but generally 0 parts by weight with respect to 100 parts by weight of the polypropylene resin composition of the present invention. 0.01 parts by weight or more and 10 parts by weight or less is used.
以下に述べる本発明の射出発泡成形体の製造方法においては、金型が箱形状の場合には、各キャビティ・クリアランスt0、t1、t2は底面部のキャビティ・クリアランスを示す。 In the method for producing an injection-foamed molded article of the present invention described below, when the mold is box-shaped, each cavity clearance t 0 , t 1 , t 2 indicates the cavity clearance of the bottom surface portion.
発泡剤と前記射出発泡成形用ポリプロピレン系樹脂を含んでなる射出発泡成形用樹脂組成物は、射出成形機シリンダ内で溶融混練された後に、金型が、固定型と前進および後退が可能な可動型とから構成され、最終製品の形状位置に相当する金型キャビティ・クリアランスt2よりも小さい金型キャビティ・クリアランスt0を有する金型キャビティ中に射出充填される(射出工程)。ここで、t0は0.5mm以上、3mm未満であることが好ましい。t0が0.5mm未満の場合には本発明の基材樹脂を用いても安定的に射出充填することが困難な場合があり、また2倍以上の高発泡化も難しい傾向がある。また、t0が3mm以上の場合には軽量化の効果が得られにくい傾向がある。 A resin composition for injection foam molding comprising a foaming agent and the polypropylene resin for injection foam molding is movable so that the mold can move forward and backward with a fixed mold after being melt-kneaded in an injection molding machine cylinder. A mold cavity having a mold cavity clearance t 0 smaller than the mold cavity clearance t 2 corresponding to the shape position of the final product is injection-filled (injection process). Here, t 0 is preferably 0.5 mm or more and less than 3 mm. When t 0 is less than 0.5 mm, it may be difficult to stably inject and fill even if the base resin of the present invention is used, and high foaming more than twice tends to be difficult. Also, if t 0 is equal to or greater than 3mm tend to difficult to obtain the effect of weight reduction.
射出工程の直後に、前記t2よりも小さく、t0よりも大きい金型キャビティ・クリアランスt1まで可動型を後退させる(第一段発泡工程)。ここで、「射出充填工程の直後に」とは、充填完了と略同時に可動型を後退、すなわち金型キャビティを開くことをいう。充填完了してから金型キャビティを開くまでの設定保持時間としては、好ましくは0.5秒未満、さらに好ましくは0.3秒未満である。充填完了してから金型キャビティを開く時間が0.5秒以上になる場合は、本発明のような薄肉キャビティ内に射出充填すると金型キャビティ内の樹脂温度が発泡適性温度を下まわる傾向にあり、2倍以上の高発泡倍率を成形体の一部または全体において得ることが困難になる傾向にある。また、第一段発泡工程における可動型後退後の金型キャビティ・クリアランスt1は、前記t0、t2と次式の関係であることが好ましい。 Immediately after the injection process, the movable mold is retracted to a mold cavity clearance t 1 smaller than t 2 and larger than t 0 (first stage foaming process). Here, “immediately after the injection filling process” means that the movable mold is retracted, that is, the mold cavity is opened substantially simultaneously with the completion of filling. The set holding time from the completion of filling to the opening of the mold cavity is preferably less than 0.5 seconds, more preferably less than 0.3 seconds. If the time to open the mold cavity after filling is 0.5 seconds or more, the resin temperature in the mold cavity tends to fall below the foaming suitable temperature when injection filling into the thin cavity as in the present invention. Yes, it tends to be difficult to obtain a high expansion ratio of 2 times or more in a part or the whole of the molded body. Moreover, it is preferable that the mold cavity clearance t 1 after the movable mold retreats in the first-stage foaming step has a relationship of the following equation with t 0 and t 2 .
前記第一段発泡工程における金型開速度は、7mm/秒以上100mm/秒以下が好ましく、10mm/秒以上70mm/秒以下であることがさらに好ましい。金型開速度が7mm/秒未満の場合は、気泡が不均一になり、成形体内部にボイドが発生しやすくなるため剛性が低下する傾向にある。金型開速度が100mm/秒を越える場合は、基材樹脂の発泡が金型開速度に追従しにくくなるために表面平滑性が劣る傾向がある。 The mold opening speed in the first stage foaming step is preferably 7 mm / second or more and 100 mm / second or less, and more preferably 10 mm / second or more and 70 mm / second or less. When the mold opening speed is less than 7 mm / second, the bubbles are not uniform, and voids are likely to be generated inside the molded body, so that the rigidity tends to decrease. When the mold opening speed exceeds 100 mm / second, the surface smoothness tends to be inferior because the base resin foam is difficult to follow the mold opening speed.
第1発泡工程の後、可動型を停止させて、前記最終製品の形状位置に相当する金型キャビティ・クリアランスt2よりも小さく、射出充填時の金型キャビティ・クリアランスt0よりも大きい金型キャビティ・クリアランスt1に所定の設定時間保持した後に、最終製品の形状位置に相当する金型キャビティ・クリアランスt2まで可動型を後退させる(第二段発泡工程)。 After the first foaming step, the movable mold is stopped and the mold is smaller than the mold cavity clearance t 2 corresponding to the shape position of the final product and larger than the mold cavity clearance t 0 at the time of injection filling. After holding the cavity clearance t 1 for a predetermined set time, the movable mold is retracted to the mold cavity clearance t 2 corresponding to the shape position of the final product (second stage foaming step).
ここで、前記金型キャビティ・クリアランスt1を保持する設定時間は、好ましくは1秒以上20秒以下、さらに好ましくは3秒以上10秒以下である。t1を保持する設定時間が1秒未満の場合は、成形体内部のボイドが発生しやすく、20秒を越える場合には高発泡化が困難となり、表面平滑性が悪くなる傾向がある。 Here, the set time for holding the mold cavity clearance t 1 is preferably 1 second to 20 seconds, more preferably 3 seconds to 10 seconds. If the set time for holding the t 1 is less than 1 second, voids are likely to occur in the molded body portion, when exceeding 20 seconds becomes difficult to high foaming, it tends to surface smoothness is deteriorated.
さらに、第二段発泡工程における金型開速度は、0.5mm/秒以上20mm/秒以下であることが好ましく、1mm/秒以上10mm/秒以下であることがさらに好ましい。金型開速度が0.5mm/秒未満の場合は、発泡不良となり高発泡化が困難になる場合がある。また、20mm/秒を越える場合には、基材樹脂の発泡が金型開速度に追従しにくくなる場合があり、表面平滑性が劣る場合がある。 Furthermore, the mold opening speed in the second stage foaming step is preferably 0.5 mm / second or more and 20 mm / second or less, more preferably 1 mm / second or more and 10 mm / second or less. If the mold opening speed is less than 0.5 mm / second, foaming may be poor and high foaming may be difficult. On the other hand, if it exceeds 20 mm / sec, foaming of the base resin may be difficult to follow the mold opening speed, and the surface smoothness may be inferior.
その他の成形条件は、各ポリプロピレン系樹脂のMFR、発泡剤の種類、成形機の種類あるいは金型の形状によって適宜調整すればよい。通常、樹脂温度170〜250℃、金型温度10〜100℃、成形サイクル1〜60分、射出速度10〜300mm/秒、射出圧力10〜100MPa等の条件で行われる。 Other molding conditions may be appropriately adjusted according to the MFR of each polypropylene resin, the type of foaming agent, the type of molding machine, or the shape of the mold. Usually, the resin temperature is 170 to 250 ° C., the mold temperature is 10 to 100 ° C., the molding cycle is 1 to 60 minutes, the injection speed is 10 to 300 mm / second, the injection pressure is 10 to 100 MPa, and the like.
このようにして得られる本発明の発泡成形体は、平均気泡径が好ましくは500μm以下、さらに好ましくは200μm以下の発泡層と、該発泡層の少なくとも片側の表面に形成される厚みが好ましくは10μm以上1000μm以下、さらに好ましくは100μm以上500μm以下の非発泡層とを有する。発泡層の平均気泡径が500μmを越える場合は優れた剛性が得られない場合がある。非発泡層の厚みが10μm未満では外観美麗な表面にならず、剛性も低下する傾向があり、1000μmを越える場合は軽量性が得られにくい恐れがある。 The foamed molded article of the present invention thus obtained has an average cell diameter of preferably 500 μm or less, more preferably 200 μm or less, and a thickness formed on the surface of at least one side of the foam layer, preferably 10 μm. And a non-foamed layer having a thickness of 100 μm or more and 500 μm or less. When the average cell diameter of the foam layer exceeds 500 μm, excellent rigidity may not be obtained. If the thickness of the non-foamed layer is less than 10 μm, the surface is not beautiful and the rigidity tends to decrease. If it exceeds 1000 μm, the lightness may not be obtained.
また、本発明の発泡成形体の発泡倍率は、好ましくは2倍以上10倍以下、さらに好ましくは2.5倍以上6倍以下である。発泡倍率が2倍未満では軽量性が得られ難く、10倍を越える場合には剛性の低下が著しくなる傾向がある。発泡倍率は、射出発泡成形用ポリプロピレン系樹脂組成物を発泡剤を添加しない以外は発泡成形体と同条件で射出成形した非発泡成形体との比重の比から得られた値である。 The expansion ratio of the foamed molded article of the present invention is preferably 2 times or more and 10 times or less, more preferably 2.5 times or more and 6 times or less. If the expansion ratio is less than 2 times, it is difficult to obtain light weight, and if it exceeds 10 times, the rigidity tends to be significantly reduced. The expansion ratio is a value obtained from the ratio of the specific gravity of the foamed molded product and the non-foamed molded product that was injection molded under the same conditions except that the foaming agent was not added to the polypropylene resin composition for injection foam molding.
さらに、本発明の発泡成形体の次式で示される軽量化率Lは、好ましくは20%以上、さらに好ましくは25%以上である。 Furthermore, the weight reduction rate L shown by the following formula of the foamed molded product of the present invention is preferably 20% or more, and more preferably 25% or more.
本発明における射出発泡成形体の製造方法は、種々の発泡成形体を製造することが可能であるが、とくに底面部と一体的に成形された立壁部とからなる箱形状の発泡成形体を創造する場合に効果を発揮する。通常、箱形状の高発泡成形体を金型キャビティ・クリアランスを拡大させて製造する場合には、底面部にボイドが発生しやすく、剛性低下の原因となることが多かった。本発明の製造方法によれば、箱形状の発泡成形体であっても、2倍を越えるような高発泡化が可能である。 The method for producing an injection-foamed molded article in the present invention can produce various foam-molded articles, and in particular, creates a box-shaped foam-molded article comprising a bottom wall portion and an upright wall portion integrally molded. It is effective when you do. Usually, when a box-shaped highly foamed molded article is manufactured with an enlarged mold cavity clearance, voids are likely to occur on the bottom surface, which often causes a reduction in rigidity. According to the production method of the present invention, even a box-shaped foamed molded article can be highly foamed more than twice.
以下に実施例によって本発明をより詳しく説明するが、本発明はこれらによって何ら制限されるものではない。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
実施例および比較例において、各種の評価方法に用いられた試験法および判定基準は次の通りである。
(1)メルトフローレート:ASTM1238に準拠し、温度230℃、荷重2.16kgで測定した。
(2)メルトテンション:メルトテンション測定用アタッチメントを付けたキャピログラフ(東洋精機製作所製)を使用した。230℃でφ1mm、長さ10mmの孔を有するダイスから、ピストン降下速度10mm/分で降下させたストランドを1m/分で引き取り、安定後に40m/分2で引き取り速度を増加させたとき、破断したときのロードセル付きプーリーの引き取り荷重をメルトテンションとした。
(3)歪硬化性:上記メルトテンション測定時、引き取り速度を増加させたときに急激に引き取り荷重が増加し、破断に至った場合を「歪硬化性を示す」、そうでない場合を「歪硬化性を示さない」とした。
(4)射出発泡成形性:連続して20ショット成形したときにショートショットになった個数(不良個数)を求めて、次の3段階で評価した。
In the examples and comparative examples, the test methods and criteria used in various evaluation methods are as follows.
(1) Melt flow rate: Measured in accordance with ASTM 1238 at a temperature of 230 ° C. and a load of 2.16 kg.
(2) Melt tension: A capilograph (manufactured by Toyo Seiki Seisakusho) with an attachment for measuring melt tension was used. When a strand lowered at a piston descending speed of 10 mm / min was drawn at 1 m / min from a die having a hole of φ1 mm and a length of 10 mm at 230 ° C., it broke when the take-up speed was increased at 40 m / min 2 after stabilization. The take-up load of the pulley with the load cell at that time was taken as melt tension.
(3) Strain hardenability: When measuring the above-mentioned melt tension, when the take-up speed is increased, the take-up load suddenly increases, and when it reaches breakage, it indicates “strain hardenability”; It does not show sex ".
(4) Injection foam moldability: The number of short shots (number of defects) when 20 shots were continuously molded was determined and evaluated in the following three stages.
不良個数が0個・・・・・・・○
不良個数が1〜2個・・・・・△
不良個数が3個以上・・・・・×
(5)表面平滑性:発泡成形体の表面凹凸の程度を次の3段階で評価した。
The number of defects is 0 ...
The number of defects is 1-2.
The number of defects is 3 or more.
(5) Surface smoothness: The degree of surface irregularities of the foamed molded product was evaluated in the following three stages.
表面凹凸のほとんどないもの・・・○
表面凹凸が若干あるもの・・・・・△
表面凹凸が多いもの・・・・・・・×
(6)発泡倍率:発泡成形体の底面部から表面の非発泡層も含めた試片を切り出し、別途作製した肉厚3mmの非発泡成形体(参考例1)の底面部との比重の比から求めた。
(7)平均気泡径、非発泡層厚み:発泡成形体の底面部を厚み方向に切断した断面の顕微鏡写真より求めた。平均気泡径については任意に選んだ20個の平均値とした。非発泡層は可動型側と固定型側の平均値とした。
(8)内部ボイド:発泡成形体の底面部を厚み方向に切断した断面を観察し、発泡層中の大きさ1mm以上のボイドの有無をしらべた。
No surface irregularities ... ○
Some irregularities on the surface ... △
Many surface irregularities ...
(6) Foaming ratio: A specimen including a non-foamed layer on the surface was cut out from the bottom part of the foam molded article, and the ratio of specific gravity to the bottom part of a separately produced non-foamed molded article having a thickness of 3 mm (Reference Example 1). I asked for it.
(7) Average cell diameter, non-foamed layer thickness: It was determined from a micrograph of a cross section obtained by cutting the bottom surface of the foamed molded product in the thickness direction. The average cell diameter was an average value of 20 arbitrarily selected. The non-foamed layer was an average value of the movable mold side and the fixed mold side.
(8) Internal Void: A cross section obtained by cutting the bottom surface of the foamed molded product in the thickness direction was observed, and the presence or absence of a void having a size of 1 mm or more in the foamed layer was examined.
内部ボイドがほとんどないもの・・・・・○
有るもの・・・・・・・・・・・・・・・×
(9)剛性:JIS−K6911に準拠して試片の長手方向が射出樹脂流れ方向に直角になるように、発泡成形体の底面部から10mm巾に切り出した試片について測定した曲げ弾性率(E)と断面二次モーメント(I)から、次式を用いて曲げ剛性(G)を求めた。
No internal voids ... ○
Something ...
(9) Rigidity: Flexural modulus measured on a specimen cut to a width of 10 mm from the bottom surface of the foamed molded product so that the longitudinal direction of the specimen is perpendicular to the injection resin flow direction in accordance with JIS-K6911 ( The bending stiffness (G) was determined from the following equation using E) and the secondary moment of inertia (I).
(A)線状ポリプロピレン系樹脂
PP−1:プロピレン・エチレン・ブロックコポリマー、メルトフローレート45g/10分、メルトテンション1cN以下
PP−2:プロピレン・エチレン・ブロックコポリマー、メルトフローレート30g/10分、メルトテンション1cN以下
PP−3:プロピレン・エチレン・ブロックコポリマー、メルトフローレート5g/10分、メルトテンション1cN以下
(B)改質ポリプロピレン系樹脂
MP−1:線状ポリプロピレン系樹脂としてメルトフローレート4g/10分のポリプロピレン・ホモポリマー100重量部と、ラジカル重合開始剤としてt−ブチルパーオキシイソプロピルカーボネート0.4重量部の混合物を、ホッパーから50kg/時で46mmφ二軸押出機(L/D=40)に供給してシリンダ温度200℃で溶融混練し、途中に設けた圧入部よりイソプレンモノマーを定量ポンプを用いて0.3kg/時の速度で供給し、ストランドを水冷、細断することにより得た改質ポリプロピレン系樹脂(メルトフローレート0.5g/10分、メルトテンション16cN、歪硬化性を示す)
MP−2:線状ポリプロピレン系樹脂としてメルトフローレート15g/10分のポリプロピレン・ホモポリマー、ラジカル重合開始剤の混合量として0.7重量部、イソプレンモノマーの供給量を1kg/時とした以外はMP−1と同様にして得た改質ポリプロピレン系樹脂(メルトフローレート3g/10分、メルトテンション14cN、歪硬化性を示す)
MP−3:チッソ社製FH6000(ホモポリマー、メルトフローレート0.5g/10分、メルトテンション7cN、歪硬化性を示さない)
(C)発泡剤
BA−1:化学発泡剤マスターバッチ(永和化成社製ポリスレンEE275、分解ガス量40ml/g)
BA−2:炭酸ガス(純度99%以上)
(A) Linear polypropylene resin PP-1: propylene / ethylene block copolymer, melt flow rate 45 g / 10 min, melt tension 1 cN or less PP-2: propylene / ethylene block copolymer, melt flow rate 30 g / 10 min, Melt tension 1 cN or less PP-3: Propylene / ethylene block copolymer, melt flow rate 5 g / 10 min, Melt tension 1 cN or less (B) Modified polypropylene resin MP-1: Melt flow rate 4 g / g as linear polypropylene resin A mixture of 100 parts by weight of a polypropylene homopolymer of 10 minutes and 0.4 parts by weight of t-butylperoxyisopropyl carbonate as a radical polymerization initiator was transferred from a hopper at a rate of 50 kg / hr to a 46 mmφ twin screw extruder (L / D = 40 ) Supplied and melt-kneaded at a cylinder temperature of 200 ° C., and isoprene monomer was supplied at a rate of 0.3 kg / hour using a metering pump from a press-fitting portion provided in the middle, and the strand was cooled with water and shredded. Polypropylene resin (melt flow rate 0.5 g / 10 min, melt tension 16 cN, showing strain hardening)
MP-2: Polypropylene homopolymer having a melt flow rate of 15 g / 10 min as a linear polypropylene resin, 0.7 parts by weight as the mixing amount of the radical polymerization initiator, and the supply amount of isoprene monomer being 1 kg / hour Modified polypropylene resin obtained in the same manner as MP-1 (melt flow rate 3 g / 10 min, melt tension 14 cN, showing strain hardening)
MP-3: FH6000 manufactured by Chisso Corporation (homopolymer, melt flow rate 0.5 g / 10 min, melt
(C) Foaming agent BA-1: Chemical foaming agent master batch (Polyslen EE275 manufactured by Eiwa Kasei Co., Ltd.,
BA-2: Carbon dioxide (purity 99% or more)
(実施例1〜7)
線状ポリプロピレン系樹脂(A)、改質ポリプロピレン系樹脂(B)、発泡剤(C)を表1に示す組成比でドライブレンドし、射出発泡成形用ポリプロピレン系樹脂組成物を得た。
(Examples 1-7)
The linear polypropylene resin (A), the modified polypropylene resin (B), and the foaming agent (C) were dry blended at the composition ratio shown in Table 1 to obtain a polypropylene resin composition for injection foam molding.
宇部興産機械(株)製「MD350S−IIIDP型」(シャットオフノズル仕様)の射出成形機で、樹脂温度200℃、背圧5MPaで前記発泡剤を含む樹脂組成物を溶融混練した後、40℃に設定された、φ2mmのピンゲートを有し、固定型と前進および後退が可能な可動型とから構成される、縦330mm×横230mm×高さ100mmの箱形状のキャビティ(立壁部:傾斜10度、クリアランス3mm、底面部:クリアランスt0)を有する金型中に、射出速度100mm/秒で射出充填した(射出工程)。射出充填完了直後に(設定保持時間が0秒)、底面部の金型キャビティ・クリアランスt1まで可動型を後退させ、キャビティ内の樹脂を発泡させた(第一段発泡工程)。
After melt-kneading the resin composition containing the foaming agent at a resin temperature of 200 ° C. and a back pressure of 5 MPa using an injection molding machine of “MD350S-IIIDP type” (shutoff nozzle specification) manufactured by Ube Industries, Ltd., 40 ° C. A box-shaped cavity having a pin gate of φ2 mm and configured to be a fixed type and a movable type that can be moved forward and backward (vertical wall portion: vertical wall portion: 10 ° inclination) In a mold having a clearance of 3 mm and a bottom surface portion: clearance t 0 ), injection filling was performed at an injection speed of 100 mm / second (injection process). Immediately after the completion of injection filling (set holding
次に、前記金型底面部のクリアランスt1の状態で所定の設定時間保持した後、さらに最終製品の形状位置に相当する底面部の金型キャビティ・クリアランスt2まで可動型を後退させて再度発泡を行った(第二段発泡工程)。発泡完了後60秒間冷却してから発泡成形体を取り出した。 Then, after holding the predetermined set time in the state of the clearance t 1 of the mold bottom part, again retract the movable mold until the mold cavity clearance t 2 of the bottom portion further corresponding to the shape position of the final product Foaming was performed (second stage foaming step). After completion of foaming, the foamed molded product was taken out after cooling for 60 seconds.
このときの各工程におけるそれぞれの金型底面部のクリアランス、可動型の後退速度、設定保持時間を表2に示す。また、射出発泡成形性、得られた発泡成形体の剛性および軽量化率を表3に示す。 Table 2 shows the clearance at the bottom of each mold, the retreat speed of the movable mold, and the set holding time in each process. Further, Table 3 shows injection foam moldability, rigidity and weight reduction ratio of the obtained foamed molded article.
本発明のポリプロピレン系樹脂は流動性に優れていることから、射出充填時の金型キャビティ・クリアランスが2mm以下においても、連続成形時のショートショットが起こりにくく、射出発泡成形性が良好である。また、このような成形方法によって得られた箱形状の発泡成形体は、表面凹凸がほとんどなく表面平滑性に優れたものであり、発泡倍率2.4〜4.8倍の範囲内にあり、高発泡倍率のものである。平均気泡径は150μm以下で200〜400μmの非発泡層(スキン層)を有しており、成形体内部のボイドもほとんどなかった。この結果、箱形状の発泡成形体にもかかわらず、同等の剛性を有する非発泡成形体に対して、27〜41%の軽量化率を達成した。 Since the polypropylene resin of the present invention is excellent in fluidity, even when the mold cavity clearance at the time of injection filling is 2 mm or less, short shots at the time of continuous molding hardly occur and the injection foam moldability is good. In addition, the box-shaped foam molded article obtained by such a molding method has almost no surface irregularities and is excellent in surface smoothness, and is in the range of a foaming ratio of 2.4 to 4.8 times. High expansion ratio. The average cell diameter was 150 μm or less and had a non-foamed layer (skin layer) of 200 to 400 μm, and there was almost no void inside the molded body. As a result, a weight reduction rate of 27 to 41% was achieved with respect to the non-foamed molded body having the same rigidity in spite of the box-shaped foamed molded body.
(参考例)
実施例において、改質ポリプロピレン系樹脂、発泡剤を使用せず射出充填し、60秒間冷却した後に非発泡成形体を取り出した。このとき、初期の金型底面部のクリアランスを変えることにより、底面部の肉厚の異なる成形体が得られた。
(Reference example)
In Examples, the non-foamed molded article was taken out after injection-filling without using a modified polypropylene resin and a foaming agent and cooling for 60 seconds. At this time, by changing the clearance of the initial mold bottom surface, molded bodies having different bottom wall thicknesses were obtained.
(比較例1)
キャビティ拡大による発泡を一段階で行った以外は、実施例6と同様にして実施した。結果を表3に示す。発泡倍率が成形体内部にボイドが発生し、表面平滑性、剛性が低下した。
(Comparative Example 1)
The same operation as in Example 6 was performed except that foaming by expanding the cavity was performed in one step. The results are shown in Table 3. The expansion ratio caused voids in the molded body, and the surface smoothness and rigidity decreased.
(比較例2)
第二段発泡工程の設定保持時間が無かった以外は、実施例6と同様にして実施した。結果を表3に示す。発泡倍率が成形体内部にボイドが発生し、表面平滑性、剛性が低下した。
(Comparative Example 2)
The same operation as in Example 6 was performed, except that there was no set holding time in the second stage foaming step. The results are shown in Table 3. The expansion ratio caused voids in the molded body, and the surface smoothness and rigidity decreased.
(比較例3)
改質ポリプロピレン系樹脂を使用しなかった以外は、実施例6と同様にして実施した。結果を表3に示す。発泡倍率が2倍程度しか得られず、成形体内部にボイドが発生し、表面平滑性も悪かった。剛性が著しく低下したため、軽量化率も20%未満であった。
(Comparative Example 3)
The same operation as in Example 6 was performed except that the modified polypropylene resin was not used. The results are shown in Table 3. The expansion ratio was only about 2 times, voids were generated inside the molded body, and the surface smoothness was poor. Since the rigidity was significantly reduced, the weight reduction rate was less than 20%.
(比較例4)
改質ポリプロピレン系樹脂がMP−3(本発明の歪硬化性を示さない)を使用した以外は、実施例6と同様にして実施した。結果を表3に示す。発泡倍率が2倍程度しか得られず、成形体内部にボイドが発生し、表面平滑性も悪かった。剛性が著しく低下したため、軽量化率も20%未満であった。
(Comparative Example 4)
The same operation as in Example 6 was conducted except that the modified polypropylene resin used was MP-3 (not showing the strain hardening property of the present invention). The results are shown in Table 3. The expansion ratio was only about 2 times, voids were generated inside the molded body, and the surface smoothness was poor. Since the rigidity was significantly reduced, the weight reduction rate was less than 20%.
(比較例5)
線状ポリプロピレン系樹脂がPP−3(メルトフローレートが本発明の範囲外)を使用した以外は、実施例6と同様にして実施した。結果を表3に示す。連続成形において20ショット中、2ショットにショートショットが発生し、射出発泡成形性に劣ることが判明した。
(Comparative Example 5)
The same operation as in Example 6 was carried out except that PP-3 (melt flow rate outside the range of the present invention) was used as the linear polypropylene resin. The results are shown in Table 3. During 20 shots in continuous molding, short shots occurred in 2 shots, and it was found that the injection foam moldability was poor.
(比較例6)
線状ポリプロピレン系樹脂を使用しなかった以外は、実施例6と同様にして実施した。結果を表3に示す。連続成形において20ショット中、5ショットにショートショットが発生し、射出発泡成形性に劣ることが判明した。
(Comparative Example 6)
It implemented like Example 6 except not having used linear polypropylene resin. The results are shown in Table 3. During 20 shots in continuous molding, short shots occurred in 5 shots, and it was found that the injection foam moldability was poor.
(実施例8〜10)
線状ポリプロピレン系樹脂(A)、改質ポリプロピレン系樹脂(B)に発泡造核剤として前記化学発泡剤マスターバッチB−1を表4に示す組成比でドライブレンドし、射出発泡成形用ポリプロピレン系樹脂混合物を得た。
(Examples 8 to 10)
The chemical foaming agent masterbatch B-1 as a foam nucleating agent is dry blended into the linear polypropylene resin (A) and the modified polypropylene resin (B) at a composition ratio shown in Table 4 to produce a polypropylene system for injection foam molding. A resin mixture was obtained.
実施例1〜7で使用した射出成形機をベントタイプ仕様に変え、さらに旭エンジニアリング(株)製「炭酸ガス供給装置MAC−100」を用いて炭酸ガスを圧力一定で供給できるようにした。溶融樹脂に対する炭酸ガス溶解量は、表4に示すように炭酸ガス供給圧力で制御した。成形条件を表5に示す。その他の成形条件は実施例1〜7と同様にした。 The injection molding machine used in Examples 1 to 7 was changed to a vent type specification, and carbon dioxide gas could be supplied at a constant pressure using “CO2 gas supply device MAC-100” manufactured by Asahi Engineering Co., Ltd. The amount of carbon dioxide dissolved in the molten resin was controlled by the carbon dioxide supply pressure as shown in Table 4. Table 5 shows the molding conditions. Other molding conditions were the same as in Examples 1-7.
このときの射出発泡成形性、得られた発泡成形体の剛性および軽量化率を表6に示す。本発明のポリプロピレン系樹脂は流動性に優れていることから連続成形時のショートショットが起こりにくく、射出発泡成形性が良好である。また、このような成形方法によって得られた箱形状の発泡成形体は、表面凹凸がほとんどなく表面平滑性に優れたものであり、発泡倍率2.5倍〜3.1倍であり、高発泡倍率のものである。平均気泡径は160μm以下で300〜400μmの非発泡層(スキン層)を有しており、成形体内部のボイドもほとんどなかった。この結果、箱形状の発泡成形体にもかかわらず、同等の剛性を有する非発泡成形体に対して、27〜41%の軽量化率を達成した。 Table 6 shows the injection foamability at this time, the rigidity and the weight reduction rate of the obtained foamed molded article. Since the polypropylene resin of the present invention is excellent in fluidity, short shots do not easily occur during continuous molding, and injection foam moldability is good. In addition, the box-shaped foamed molding obtained by such a molding method has almost no surface irregularities and excellent surface smoothness, and has a foaming ratio of 2.5 to 3.1 times, which is highly foamed. Magnification. The average cell diameter was 160 μm or less and had a non-foamed layer (skin layer) of 300 to 400 μm, and there was almost no void inside the molded body. As a result, a weight reduction rate of 27 to 41% was achieved with respect to the non-foamed molded body having the same rigidity in spite of the box-shaped foamed molded body.
(比較例7)
キャビティ拡大による発泡を一段階で行った以外は、実施例8と同様にして実施した。結果を表6に示す。発泡倍率が成形体内部にボイドが発生し、表面平滑性、剛性が低下した。
(Comparative Example 7)
The same operation as in Example 8 was performed except that foaming by expanding the cavity was performed in one step. The results are shown in Table 6. The expansion ratio caused voids in the molded body, and the surface smoothness and rigidity decreased.
(比較例8)
改質ポリプロピレン系樹脂を使用しなかった以外は、実施例8と同様にして実施した。結果を表6に示す。発泡倍率が2倍程度しか得られず、成形体内部にボイドが発生し、表面平滑性も悪かった。剛性が著しく低下したため、軽量化率も20%未満であった。
(Comparative Example 8)
The same operation as in Example 8 was performed except that the modified polypropylene resin was not used. The results are shown in Table 6. The expansion ratio was only about 2 times, voids were generated inside the molded body, and the surface smoothness was poor. Since the rigidity was significantly reduced, the weight reduction rate was less than 20%.
本発明の射出発泡成形体の製造方法は、溶融時の流動性が高く、且つ、メルトテンションも高いポリプロピレン系樹脂を使用することにより、大幅な軽量化に必要な薄肉射出充填が可能である。また、得られた発泡成形体は、高発泡倍率であるがために軽量性、剛性、表面平滑性に優れている。さらに、本発明の製造方法によれば、箱形状の発泡成形体で効果を発揮することから、ラゲージボックス、コンソールボックス、ツールボックス等の自動車内装材をはじめ、食品包装用容器、家電ハウジング、日用雑貨品のボックス類等に広く使用できる。 The method for producing an injection-foamed molded article of the present invention enables thin-injection filling necessary for significant weight reduction by using a polypropylene-based resin having high fluidity at the time of melting and high melt tension. Moreover, although the obtained foaming molding is high foaming magnification, it is excellent in lightweight property, rigidity, and surface smoothness. Furthermore, according to the production method of the present invention, since the effect is exhibited by the box-shaped foamed molded article, it can be used for automobile packaging materials such as luggage boxes, console boxes, tool boxes, food packaging containers, household appliance housings, It can be widely used for general merchandise boxes.
1 可動型
2 固定型
3 ゲート
4 射出成形機のノズル先端部
5 底面部
6 立壁部
7 金型キャビティ内に射出充填された樹脂
8 発泡成形体
DESCRIPTION OF SYMBOLS 1 Movable type | mold 2 Fixed mold | type 3 Gate 4 Nozzle front-end | tip
Claims (8)
その直後にt2よりも小さく、t0よりも大きい金型キャビティ・クリアランスt1まで可動型を後退させる第一段発泡工程、
次いでt1のクリアランスを所定の設定時間保持した後に、さらに最終製品の形状位置に相当する金型キャビティ・クリアランスt2まで可動型を後退させる第二段発泡工程
を含むことを特徴とする射出発泡成形体の製造方法であって、
前記t0、t1、t2の関係が次式
で示されることを特徴とする射出発泡成形体の製造方法。 In a mold cavity having a mold cavity clearance t 0 smaller than the mold cavity clearance t 2 corresponding to the shape position of the final product, wherein the mold is composed of a fixed mold and a movable mold capable of moving forward and backward An injection step of injecting and filling the molten mixture into,
Immediately thereafter, a first stage foaming step of retracting the movable mold to a mold cavity clearance t 1 that is smaller than t 2 and larger than t 0 ;
Then after a clearance t 1 holds a predetermined set time, injection foam characterized in that it comprises a second stage foaming step to further retract the mold cavity clearance t 2 to the movable mold corresponding to the shape position of the final product A method for producing a molded body, comprising:
The relationship between the t 0 , t 1 and t 2 is
The manufacturing method of the injection-foaming molded object characterized by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117377A JP2011201309A (en) | 2011-05-25 | 2011-05-25 | Polypropylene resin foamed molding and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011117377A JP2011201309A (en) | 2011-05-25 | 2011-05-25 | Polypropylene resin foamed molding and method of manufacturing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005058669A Division JP4851104B2 (en) | 2005-03-03 | 2005-03-03 | Polypropylene resin foam molded article and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011201309A true JP2011201309A (en) | 2011-10-13 |
Family
ID=44878490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011117377A Pending JP2011201309A (en) | 2011-05-25 | 2011-05-25 | Polypropylene resin foamed molding and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011201309A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000210969A (en) * | 1999-01-22 | 2000-08-02 | Tohoku Munekata Co Ltd | Foam injection molding method and apparatus |
JP2001088235A (en) * | 1999-09-20 | 2001-04-03 | Sekisui Chem Co Ltd | Thermoplastic resin porous material |
JP2001105447A (en) * | 1999-10-08 | 2001-04-17 | Sekisui Chem Co Ltd | Method for producing foamed molded object |
JP2003266469A (en) * | 2002-03-15 | 2003-09-24 | Sekisui Chem Co Ltd | Thermoplastic resin foam and manufacturing method therefor |
JP2006240051A (en) * | 2005-03-03 | 2006-09-14 | Kaneka Corp | Foamed polypropylene resin molding and its production method |
JP2007062365A (en) * | 2005-08-03 | 2007-03-15 | Kaneka Corp | Manufacturing method for thermoplastic resin foamed molded body, and molded body |
-
2011
- 2011-05-25 JP JP2011117377A patent/JP2011201309A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000210969A (en) * | 1999-01-22 | 2000-08-02 | Tohoku Munekata Co Ltd | Foam injection molding method and apparatus |
JP2001088235A (en) * | 1999-09-20 | 2001-04-03 | Sekisui Chem Co Ltd | Thermoplastic resin porous material |
JP2001105447A (en) * | 1999-10-08 | 2001-04-17 | Sekisui Chem Co Ltd | Method for producing foamed molded object |
JP2003266469A (en) * | 2002-03-15 | 2003-09-24 | Sekisui Chem Co Ltd | Thermoplastic resin foam and manufacturing method therefor |
JP2006240051A (en) * | 2005-03-03 | 2006-09-14 | Kaneka Corp | Foamed polypropylene resin molding and its production method |
JP2007062365A (en) * | 2005-08-03 | 2007-03-15 | Kaneka Corp | Manufacturing method for thermoplastic resin foamed molded body, and molded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4745057B2 (en) | POLYPROPYLENE RESIN COMPOSITION, FOAM MOLDING COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME | |
JP5770634B2 (en) | Polypropylene resin, polypropylene resin composition, and injection-foamed molded article | |
JP5368148B2 (en) | Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition | |
JP5628553B2 (en) | Thermoplastic elastomer composition for injection foam molding and injection foam molded article comprising the resin composition | |
JP5112674B2 (en) | Polypropylene resin composition for injection foam molding and injection foam molded body comprising the resin composition | |
JP2009001772A (en) | Polypropylene resin foam injection-molded article | |
JP4908043B2 (en) | Polypropylene resin injection foam | |
JP5122760B2 (en) | Polypropylene resin injection foam | |
JP2007245450A (en) | Thermoplastic resin foamed molded object and its manufacturing method | |
JP4851104B2 (en) | Polypropylene resin foam molded article and method for producing the same | |
JP4963266B2 (en) | Polypropylene resin injection foam | |
JP4519477B2 (en) | Polypropylene-based resin foam molding and its production method | |
JP2010269530A (en) | Method of manufacturing thermoplastic resin injection foamed molding | |
JP5037198B2 (en) | Mold for injection foam molding and manufacturing method | |
JP2012107097A (en) | Polypropylene-based resin composition and injection foaming molded article comprising the resin composition | |
JP2009298113A (en) | Method of manufacturing thermoplastic resin injection-foamed molded article | |
JP2005271499A (en) | Method for manufacturing thermoplastic resin expansion molded body and molded body | |
JP2010106093A (en) | Injection foam molding polypropylene-based resin composition and injection foam molded product composed of the resin composition | |
JP2011094068A (en) | Polypropylene-based resin composition for injection foam molding and injection foam molded article comprising the resin composition | |
JP2007062365A (en) | Manufacturing method for thermoplastic resin foamed molded body, and molded body | |
JP2017171788A (en) | Polypropylene-based resin composition for injection foam molding and injection foam molded body | |
JP4536446B2 (en) | Method for producing thermoplastic resin foam molded body and molded body | |
JP5638928B2 (en) | Polypropylene resin for injection foam molding and injection foam molded body thereof | |
JP2006056910A (en) | Polypropylene resin composition for injection expansion molding and molded product thereof | |
JP2011110911A (en) | Method for manufacturing thermoplastic resin injection foamed molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130924 |