JP2011251298A - Pb-FREE SOLDER ALLOY CONSISTING MAINLY OF Zn - Google Patents
Pb-FREE SOLDER ALLOY CONSISTING MAINLY OF Zn Download PDFInfo
- Publication number
- JP2011251298A JP2011251298A JP2010125103A JP2010125103A JP2011251298A JP 2011251298 A JP2011251298 A JP 2011251298A JP 2010125103 A JP2010125103 A JP 2010125103A JP 2010125103 A JP2010125103 A JP 2010125103A JP 2011251298 A JP2011251298 A JP 2011251298A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- alloy
- solder
- solder alloy
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1301—Thyristor
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Die Bonding (AREA)
Abstract
Description
本発明は、Pbを含まない、いわゆるPbフリーはんだ合金に関するものであり、特に高温用であってZnを主成分とするPbフリーはんだ合金およびそのPbフリーはんだ合金を用いて接合された電子基板、並びにその電子基板が搭載された各種装置に関する。 The present invention relates to a so-called Pb-free solder alloy that does not contain Pb, in particular, a high-temperature Pb-free solder alloy mainly composed of Zn, and an electronic substrate joined using the Pb-free solder alloy, The present invention also relates to various devices on which the electronic substrate is mounted.
パワートランジスタ素子のダイボンディングを始めとして、各種電子部品の組立工程におけるはんだ付では高温はんだ付が行われており、300℃程度の比較的高温の融点を有するはんだ合金が用いられている。この時使用されるはんだ合金には、Pb−5質量%Sn合金に代表されるPb系はんだ合金が従来から主に用いられている。しかし、近年では環境汚染に対する配慮からPbの使用を制限する動きが強くなってきており、例えばRohs指令などではPbは規制対象物質になっている。こうした動きに対応して、電子部品の組立の分野においてもPbを含まないはんだ合金が求められている。 Starting with die bonding of power transistor elements, high temperature soldering is performed in soldering in the assembly process of various electronic components, and a solder alloy having a relatively high melting point of about 300 ° C. is used. As the solder alloy used at this time, a Pb-based solder alloy represented by a Pb-5 mass% Sn alloy has been mainly used conventionally. However, in recent years, there has been a strong movement to limit the use of Pb due to consideration for environmental pollution. For example, Pb is a regulated substance in the RoHS directive. Corresponding to such a movement, a solder alloy containing no Pb is also required in the field of assembling electronic components.
中低温用(約140℃〜230℃)のはんだ合金に関しては、Snを主成分とするものでPbフリー化がすでに実用化されている。例えば、特許文献1には、Snを主成分とし、Agを1.0〜4.0質量%、Cuを2.0質量%以下、Niを0.5質量%以下、Pを0.2質量%以下含有するPbフリーはんだ合金の組成が記載されている。また、特許文献2には、Agを0.5〜3.5質量%、Cuを0.5〜2.0質量%含有し、残部がSnからなるPbフリーはんだ合金が記載されている。 For solder alloys for medium and low temperatures (about 140 ° C. to 230 ° C.), those containing Sn as the main component and being Pb-free have already been put into practical use. For example, in Patent Document 1, Sn is the main component, Ag is 1.0 to 4.0 mass%, Cu is 2.0 mass% or less, Ni is 0.5 mass% or less, and P is 0.2 mass%. The composition of the Pb-free solder alloy containing up to 10% is described. Patent Document 2 describes a Pb-free solder alloy containing 0.5 to 3.5% by mass of Ag, 0.5 to 2.0% by mass of Cu, and the balance being Sn.
一方、300℃程度のリフロー温度に十分耐え得る高温用のはんだ材料でのPbフリー化に関しては、Bi系はんだ合金やZn系はんだ合金などがさまざまな機関で開発されている。例えば、Bi系はんだ合金においては、特許文献3に、Biを30〜80質量%含有し、溶融される温度が350〜500℃であるBi/Agろう材が開示されている。また、特許文献4には、Biを含む共晶合金に2元共晶合金を加え、さらに添加元素を加えることによって、液相線温度の調整とばらつきの減少が可能な生産方法が開示されている。 On the other hand, regarding the Pb-free use of a high-temperature solder material that can sufficiently withstand a reflow temperature of about 300 ° C., Bi-based solder alloys and Zn-based solder alloys have been developed by various organizations. For example, in a Bi-based solder alloy, Patent Document 3 discloses a Bi / Ag brazing material containing 30 to 80% by mass of Bi and having a melting temperature of 350 to 500 ° C. Patent Document 4 discloses a production method capable of adjusting the liquidus temperature and reducing variations by adding a binary eutectic alloy to a eutectic alloy containing Bi and further adding additional elements. Yes.
Zn系はんだ合金においては、例えば、特許文献5に、Znに融点を下げるべくAlが添加されたZn−Al合金を基本とし、これにGeおよび/またはMgを添加することによりさらなる低融点化が図られたZn系はんだ合金が開示されている。また、Snおよび/またはInを添加することによって、より一層融点を下げる効果があることも述べられている。具体的には、特許文献5にはAlを1〜9質量%または5〜9質量%含み、Geを0.05〜1質量%および/またはMgを0.01〜0.5質量%含み、必要に応じてSnおよび/またはInを0.1〜25質量%含み、残部がZnおよび不可避不純物からなる高温はんだ付用Zn合金が開示されている。 In a Zn-based solder alloy, for example, Patent Document 5 basically uses a Zn-Al alloy in which Al is added to lower the melting point of Zn, and further lowering of the melting point can be achieved by adding Ge and / or Mg thereto. The illustrated Zn-based solder alloy is disclosed. It is also described that the addition of Sn and / or In has an effect of further lowering the melting point. Specifically, Patent Document 5 contains 1 to 9% by mass or 5 to 9% by mass of Al, 0.05 to 1% by mass of Ge and / or 0.01 to 0.5% by mass of Mg, A Zn alloy for high temperature soldering containing 0.1 to 25% by mass of Sn and / or In as required and the balance being Zn and inevitable impurities is disclosed.
一般的な電子部品や基板の材料には熱可塑性樹脂や熱硬化性樹脂などが多用されているため、接合時の作業温度は400℃未満、望ましくは370℃以下にする必要がある。しかしながら、特許文献3のはんだ合金は、液相線温度が400〜700℃と高いため、接合時の作業温度も400〜700℃以上になると推測され、接合される電子部品や基板が耐えうる温度を超えていると考えられる。また、特許文献4の方法は、液相線の温度調整のみで4元系以上の多元系はんだ合金になるうえ、Biが有する脆弱な機械的特性については特に検討がなされていない。 Thermoplastic resins and thermosetting resins are frequently used as materials for general electronic components and substrates, and therefore, the working temperature during bonding needs to be less than 400 ° C., preferably 370 ° C. or less. However, since the solder alloy of Patent Document 3 has a liquidus temperature as high as 400 to 700 ° C., the working temperature at the time of joining is estimated to be 400 to 700 ° C. or higher, and the temperature that can be withstood by the electronic components and substrates to be joined. It is thought that it is over. Further, the method of Patent Document 4 becomes a quaternary or higher multi-component solder alloy only by adjusting the temperature of the liquidus, and the fragile mechanical properties of Bi are not particularly studied.
さらに、特許文献5に開示されている組成の範囲内では合金の加工性が十分とは言えず、最も高い加工性が要求されるワイヤに適用する場合は困難を伴うことが考えられる。さらに、Znは還元性が強いため自らは酸化され易く、よって、濡れ性が悪くなることが懸念される。とりわけ、このはんだ合金を用いてCu基板やNiを最上層に有するCu基板などに電子部品を接合した場合、当初は接合されていても、車載用などのように厳しい環境下で使用し続けると問題を生じるおそれがある。 Furthermore, the workability of the alloy cannot be said to be sufficient within the range of the composition disclosed in Patent Document 5, and it may be difficult when applied to a wire that requires the highest workability. Furthermore, since Zn is highly reducible, it is likely to be oxidized by itself, and there is a concern that wettability will deteriorate. In particular, when an electronic component is bonded to a Cu substrate or a Cu substrate having Ni as the uppermost layer using this solder alloy, even if it is initially bonded, it will continue to be used in harsh environments such as in-vehicle use. May cause problems.
GeやMgが添加されていても酸化したZnは還元できず濡れ性を向上させることはできないため、信頼性が大きく向上するとは考えにくい。この点に関し、特許文献5には、接合性に関して比較例に比べ実施例の方が優れていると記載されてはいるものの、車載用などの厳しい環境下において長期に亘って問題なく使用できる接合性が得られているとは考えにくい。 Even if Ge or Mg is added, oxidized Zn cannot be reduced and the wettability cannot be improved, so it is unlikely that the reliability will be greatly improved. In this regard, although Patent Document 5 describes that the embodiment is superior to the comparative example in terms of bondability, the bond can be used without any problem for a long time in a severe environment such as in-vehicle use. It is hard to believe that sex has been obtained.
このように、高温用Pbフリーはんだ合金は、濡れ性をはじめとして解決すべき課題が多く、従来のPb系はんだ合金を代替できる実用的なPbフリーはんだ合金はまだ提案されていないのが実情である。本発明は、かかる事情に鑑みてなされたものであり、電子部品の組立などで用いるのに好適な300℃〜400℃程度の融点を有し、濡れ性、接合性、信頼性等に優れたZnを主成分とする高温用Pbフリーはんだ合金、およびその高温用Pbフリーはんだ合金を用いて接合された電子基板、並びにその電子基板が搭載された各種装置を提供することを目的としている。 As described above, Pb-free solder alloys for high temperatures have many problems to be solved including wettability, and practical Pb-free solder alloys that can replace conventional Pb-based solder alloys have not yet been proposed. is there. The present invention has been made in view of such circumstances, has a melting point of about 300 ° C. to 400 ° C. suitable for use in assembling electronic components, etc., and has excellent wettability, bondability, reliability, and the like. It is an object of the present invention to provide a high-temperature Pb-free solder alloy containing Zn as a main component, an electronic substrate bonded using the high-temperature Pb-free solder alloy, and various devices on which the electronic substrate is mounted.
本発明者は、鋭意研究を重ねた結果、第1元素であるZnを主成分とするPbフリーはんだにおいて、第2元素としてGeを含有し、第3元素としてAlおよびSnの内の少なくとも一方を含有し、Pは所定の量を超えて含まれていないようにすることにより、濡れ性、接合性、信頼性等に優れ、且つ300℃程度のリフロー温度に十分耐えうるはんだ材料を実現できることを発見し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that the Pb-free solder mainly composed of Zn as the first element contains Ge as the second element and at least one of Al and Sn as the third element. It is possible to realize a solder material that is excellent in wettability, bondability, reliability, etc. and can sufficiently withstand a reflow temperature of about 300 ° C. by containing P and not including P in excess of a predetermined amount. It discovered and came to complete this invention.
すなわち、本発明が提供するPbフリーはんだ合金は、Znを主成分とし、第2元素としてGeを0.01質量%以上16.0質量%以下含有し、第3元素としてAlおよびSnの内の少なくとも一方をAlの場合は0.01質量%以上1.0質量%未満、Snの場合は0.01質量%以上10.0質量%以下含有し、Pは0.500質量%を超えて含有していないことを特徴としている。 That is, the Pb-free solder alloy provided by the present invention contains Zn as a main component, contains Ge as a second element in an amount of 0.01% to 16.0% by mass, and contains Al and Sn as a third element. When at least one is Al, it is 0.01% by mass or more and less than 1.0% by mass. In the case of Sn, 0.01% by mass or more and 10.0% by mass or less is contained, and P is contained by more than 0.50% by mass. It is characterized by not doing.
また、本発明は、上記Pbフリーはんだ合金を用いて電子部品が接合されている電子基板、およびこの電子基板が搭載されている各種装置を提供する。 The present invention also provides an electronic substrate to which electronic components are joined using the Pb-free solder alloy, and various devices on which the electronic substrate is mounted.
本発明によれば、実質的に300℃程度のリフロー温度に耐えることが可能な、濡れ性、接合性、および信頼性に優れた高温用のPbフリーはんだ合金を提供することができる。これにより、高い強度が必要な電子部品と基板との接合部分に高温でのPbフリーはんだ付けが可能となり、このPbフリーはんだを利用した電子基板や該電子基板が搭載された各種装置の信頼性を著しく高めることができるので、工業的な貢献度は極めて高い。 According to the present invention, it is possible to provide a high-temperature Pb-free solder alloy that can withstand a reflow temperature of about 300 ° C. and is excellent in wettability, bondability, and reliability. As a result, Pb-free soldering can be performed at a high temperature on the joint between the electronic component and the substrate that require high strength, and the reliability of the electronic substrate using the Pb-free solder and various devices on which the electronic substrate is mounted. Therefore, the industrial contribution is extremely high.
本発明者等は、上記課題を解決すべく、まず金属の融点に着目し、さらに必須元素であるZnとGeの2元系合金に着目した。すなわち、高温用のはんだ合金では接合温度は300℃〜400℃程度であるのに対して、Znだけでは融点が419℃と高すぎるため、Geを添加することにより融点を下げた。これにより、Zn−Ge合金は共晶温度が394℃であるため、狙いとする融点を実現できた。さらに、GeはZnよりも酸化されにくいため、接合時にはんだ表面に酸化膜ができにくくなる。その結果、濡れ性および接合性が向上した。 In order to solve the above problems, the present inventors first focused on the melting point of the metal, and further focused on the binary alloy of Zn and Ge, which are essential elements. That is, the bonding temperature of high-temperature solder alloys is about 300 ° C. to 400 ° C., whereas the melting point of Zn alone is too high at 419 ° C. Therefore, the melting point was lowered by adding Ge. Thereby, since the eutectic temperature of the Zn—Ge alloy was 394 ° C., the target melting point could be realized. Furthermore, since Ge is less oxidized than Zn, it is difficult to form an oxide film on the solder surface during bonding. As a result, wettability and bondability were improved.
Geの含有量は0.01質量%以上16.0質量%以下とする。この含有量が0.01質量%未満では、後述する第3元素や第4元素を添加しても融点が高すぎて所望の接合温度が得られない。一方、この量が16.0質量%を超えると、Zn−Ge2元合金で液相温度が500℃を超えてしまい、第3元素や第4元素を添加しても融点が高すぎる。 The Ge content is set to 0.01 mass% or more and 16.0 mass% or less. If this content is less than 0.01% by mass, even if a third element or a fourth element described later is added, the melting point is too high to obtain a desired bonding temperature. On the other hand, when this amount exceeds 16.0% by mass, the liquidus temperature of the Zn—Ge binary alloy exceeds 500 ° C., and the melting point is too high even when the third element or the fourth element is added.
Zn−Ge2元系合金では融点が接合温度の上限に近いため、融点の範囲を広げてより使い易い材料にするため、本発明のはんだ合金は第3元素としてAlまたはSnを必須元素としている。これは、AlとSnは、ともに融点を下げる効果を有しているからである。 Since the melting point of the Zn—Ge binary alloy is close to the upper limit of the bonding temperature, the solder alloy of the present invention uses Al or Sn as an essential element as the third element in order to widen the melting point range and make the material easier to use. This is because both Al and Sn have the effect of lowering the melting point.
本発明では、はんだ合金にAlとSnの内のいずれか一方のみが含まれているのがより好ましい。なぜなら、AlとSnとが両方とも含まれている場合は、Zn−Al−Sn合金を形成し、これが悪影響を及ぼす恐れがあるからである。すなわち、Zn−Al−Sn合金は所定の条件下で経時変化し、より脆化していくことが確認されるからである。例えば、ある合金組成のZn−Al−Sn合金をシート状に加工し、これをデシケーター内で5日間保管した後に取り出すと、加工直後に比べ脆くなり、曲げるだけで容易に折れてしまうことがある。 In the present invention, it is more preferable that the solder alloy contains only one of Al and Sn. This is because when both Al and Sn are contained, a Zn—Al—Sn alloy is formed, which may have an adverse effect. That is, it is confirmed that the Zn—Al—Sn alloy changes with time under predetermined conditions and becomes more brittle. For example, if a Zn-Al-Sn alloy having a certain alloy composition is processed into a sheet shape and then taken out after being stored in a desiccator for 5 days, it becomes brittle compared to immediately after processing, and may be easily broken only by bending. .
当然のことながら、Zn−Al−Sn合金の組成や含有する割合が上記脆化の度合いに影響を及ぼすため、例えばZn−Al−Sn合金が少量しか含まれていない場合は、あまり問題にならない。例えば、Znを主成分として、Al、Snがそれぞれ1質量%未満程度の添加量であれば、強度の諸特性が急激な経時変化を起こすことはなく問題にならない。とはいえ、Zn−Al−Sn合金が存在していなければ、上記経時変化の恐れがなくなるので、前述したように、第3元素としてはAlおよびSnの内のいずれか一方のみが含まれているのが望ましい。 As a matter of course, since the composition and content ratio of the Zn—Al—Sn alloy affect the degree of embrittlement, for example, when only a small amount of Zn—Al—Sn alloy is contained, there is not much problem. . For example, when Zn is the main component and Al and Sn are added in amounts of less than about 1% by mass, various strength characteristics do not cause a rapid change with time, which is not a problem. However, if there is no Zn—Al—Sn alloy, there is no fear of the change with time, and as described above, only one of Al and Sn is included as the third element. It is desirable.
次に各元素について詳細に説明する。第3元素として添加されるAlは、Zn−Al2元系合金において共晶点を有し、融点を下げる効果が大きい。しかし、AlはZnよりも酸化しやすいため、ある量以上含まれていると濡れ性を低下させてしまう。したがって、Alの含有量は1.0質量%未満、好ましくは0.7質量%未満である。一方、含有量が0.01質量%未満では、Alの実質的な効果が現れず意味を成さない。 Next, each element will be described in detail. Al added as the third element has a eutectic point in the Zn—Al binary alloy and has a large effect of lowering the melting point. However, since Al is easier to oxidize than Zn, if a certain amount or more is contained, the wettability is lowered. Therefore, the Al content is less than 1.0% by mass, preferably less than 0.7% by mass. On the other hand, if the content is less than 0.01% by mass, the substantial effect of Al does not appear and it does not make sense.
次に、第3元素として添加されるもう一方の元素であるSnについて説明する。SnはAlよりも融点を下げる効果があり、この点においてAlよりも好ましい。しかし、Sn−Zn2元系合金は固相温度が199℃であるため、多量に添加するとリフロー時に液相が生じ、電子部品の固定ができなくなる恐れがある。 Next, Sn, which is the other element added as the third element, will be described. Sn has an effect of lowering the melting point than Al, and is more preferable than Al in this respect. However, since the Sn—Zn binary alloy has a solid phase temperature of 199 ° C., if it is added in a large amount, a liquid phase is generated during reflow, and there is a possibility that the electronic component cannot be fixed.
Snの含有量の上限値は、このリフロー時に許容される液相の量から定められる。すなわち、リフロー時に許容される液相の存在量は、接合する電子部品や基板、接合時の雰囲気ガスや温度プロファイル等の接合条件に依存するものの、概ね10質量%以下である。一方、Snの含有量の下限値は、0.01質量%である。これより低い含有量では、Snの実質的な効果が現れず意味を成さない。 The upper limit of the Sn content is determined from the amount of liquid phase allowed during this reflow. That is, the amount of liquid phase that is allowed during reflow is approximately 10% by mass or less, although it depends on bonding conditions such as electronic components and substrates to be bonded, atmospheric gas and temperature profile at the time of bonding. On the other hand, the lower limit of the Sn content is 0.01% by mass. If the content is lower than this, the substantial effect of Sn does not appear and it does not make sense.
第4元素としてPを添加する効果は大きい。つまり、Pは自らが酸化して気化するため、接合時におけるはんだ表面の酸化膜除去に大きく役立つ。特にZnを主成分とするはんだのように酸化しやすい材料の場合に効果を発揮する。ただし、上記した3または4元素で濡れ性が十分である場合はPを添加しなくてもよい。Pの含有量は0.500質量%以下である。この量が0.500質量%を超えると、Pが偏析して加工性を悪化させたり、接合性や信頼性を逆に低下させたりすることになるからである。 The effect of adding P as the fourth element is great. That is, since P is oxidized and vaporized by itself, it is very useful for removing the oxide film on the solder surface during bonding. In particular, it is effective in the case of a material that easily oxidizes, such as solder containing Zn as a main component. However, P may not be added when the above-described 3 or 4 elements have sufficient wettability. The P content is 0.500% by mass or less. When this amount exceeds 0.500% by mass, P segregates and deteriorates workability, or conversely decreases bondability and reliability.
以上説明した本発明のPbフリーはんだ合金を用いて電子部品を基板に接合して得た電子基板は耐久性を備えているため、ヒートサイクルが繰り返されるような過酷な条件下においても長期に亘って問題なく使用することができる。よって、この電子基板を、例えばサイリスタやインバータなどのパワー半導体装置、自動車などに搭載される各種制御装置、太陽電池などの過酷な条件下で使用される装置に搭載することによって、それら各種装置の信頼性をより一層高めることができる。 Since the electronic substrate obtained by joining the electronic component to the substrate using the Pb-free solder alloy of the present invention described above has durability, it can be used for a long time even under severe conditions where the heat cycle is repeated. Can be used without problems. Therefore, by mounting this electronic board on power semiconductor devices such as thyristors and inverters, various control devices mounted on automobiles, and devices used under harsh conditions such as solar cells, Reliability can be further increased.
以下、具体的な実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.
まず、原料として、それぞれ純度99.9質量%以上のZn、Ge、Al、Sn、およびPを準備した。大きな薄片やバルク状の原料については、溶解後の合金においてサンプリング場所による組成のばらつきがなく均一になるように留意しながら切断、粉砕等を行い、3mm以下の大きさになるように細かくした。次に、高周波溶解炉用グラファイトるつぼに、これらの原料の所定量を秤量して入れた。溶融しにくい高融点金属については、あらかじめ固溶しやすい金属と溶融させて合金を作り、砕いて再溶解させた。 First, Zn, Ge, Al, Sn, and P each having a purity of 99.9% by mass or more were prepared as raw materials. Large flakes and bulk raw materials were cut and pulverized so as to have a size of 3 mm or less while paying attention to the composition of the melted alloy so as to be uniform with no variation in sampling location. Next, predetermined amounts of these raw materials were weighed into a graphite crucible for a high-frequency melting furnace. About the high melting point metal which is hard to melt, it was melted with a metal that is easy to dissolve in advance to make an alloy, and then crushed and remelted.
原料の入ったるつぼを高周波溶解炉に入れ、酸化を抑制するために窒素を原料1kg当たり0.7L/分以上の流量で流した。この状態で溶解炉の電源を入れ、原料を加熱溶融させた。金属が溶融しはじめたら混合棒でよく攪拌し、局所的な組成のばらつきが起きないように均一に混ぜた。十分溶融したことを確認した後、高周波電源を切って速やかにるつぼを取り出し、るつぼ内の溶湯を鋳型に流し込んではんだ母合金を作製した。鋳型は、はんだ母合金の製造の際に一般的に使用している形状と同様のものを使用した。 The crucible containing the raw material was placed in a high-frequency melting furnace, and nitrogen was flowed at a flow rate of 0.7 L / min or more per 1 kg of the raw material in order to suppress oxidation. In this state, the melting furnace was turned on to heat and melt the raw material. When the metal began to melt, it was stirred well with a mixing rod and mixed uniformly so as not to cause local compositional variations. After confirming sufficient melting, the high frequency power supply was turned off and the crucible was quickly taken out, and the molten metal in the crucible was poured into the mold to produce a solder mother alloy. A mold having the same shape as that generally used in the production of a solder mother alloy was used.
このようにして、各原料の混合比率を変えることにより試料1〜15のはんだ母合金を作製した。これら試料1〜15のはんだ母合金の組成をICP発光分光分析器(SHIMAZU S−8100)を用いて分析した。その分析結果を下記の表1に示す。 Thus, the solder mother alloys of Samples 1 to 15 were produced by changing the mixing ratio of each raw material. The compositions of the solder mother alloys of Samples 1 to 15 were analyzed using an ICP emission spectroscopic analyzer (SHIMAZU S-8100). The analysis results are shown in Table 1 below.
次に、上記表1の試料1〜15のはんだ母合金の各々を圧延機でシート状に加工し、はんだ合金の加工性を評価した。また、シート状のはんだ合金に対して、下記の方法で濡れ性(接合性)の評価およびヒートサイクル試験を行った。なお、はんだの濡れ性や接合性等の評価は、通常はんだ形状に依存しないため、ワイヤ、ボール、ペーストなどの形状で評価してもよいが、本実施例においては、シートに成形して評価した。 Next, each of the solder mother alloys of Samples 1 to 15 in Table 1 was processed into a sheet shape with a rolling mill, and the workability of the solder alloy was evaluated. Moreover, the wettability (joinability) evaluation and the heat cycle test were performed on the sheet-like solder alloy by the following methods. Note that evaluation of solder wettability and bondability does not usually depend on the shape of the solder, so it may be evaluated by the shape of a wire, ball, paste, etc. In this example, it is molded into a sheet and evaluated. did.
<はんだ合金の加工性>
上記表1に示す試料1〜15のはんだ母合金(厚さ5mmの板状インゴット)を、圧延機を用いて0.10mmの厚さまで圧延した。その際、インゴットの送り速度を調整しながら圧延し、その後スリッター加工により25mmの幅に裁断した。このようにしてシート状に加工した後、得られたシートのはんだ合金を観察して、傷やクラックがなかった場合を「○」、シート10m当たり割れやクラックが1〜3箇所あった場合を「△」、4箇所以上あった場合を「×」として評価した。
<Processability of solder alloy>
The solder mother alloys (plate-like ingots having a thickness of 5 mm) of Samples 1 to 15 shown in Table 1 were rolled to a thickness of 0.10 mm using a rolling mill. At that time, the sheet was rolled while adjusting the feed speed of the ingot, and then cut into a width of 25 mm by slitting. After processing into a sheet shape in this manner, the solder alloy of the obtained sheet was observed, and “◯” when there was no scratch or crack, and when there were 1 to 3 cracks or cracks per 10 m of the sheet. The case where “Δ” was 4 or more was evaluated as “x”.
<濡れ性(接合性)の評価>
上記のごとくシート状に加工したはんだ合金を、濡れ性試験機(装置名:雰囲気制御式濡れ性試験機)を用いて評価した。すなわち、濡れ性試験機のヒーター部分に2重のカバーをしてヒーター部の周囲4箇所から窒素を流しながら(窒素流量:各12L/分)、ヒーター設定温度を試料の融点より約10℃高い温度に設定して加熱した。ヒーター温度が設定温度で安定した後、Cu基板(板厚:約0.70mm)をヒーター部にセッティングし、25秒加熱した。
<Evaluation of wettability (bondability)>
The solder alloy processed into a sheet as described above was evaluated using a wettability tester (device name: atmosphere control type wettability tester). That is, the heater set temperature is about 10 ° C. higher than the melting point of the sample while covering the heater portion of the wettability tester with a double cover and flowing nitrogen from four locations around the heater portion (nitrogen flow rate: 12 L / min each). Heated to set temperature. After the heater temperature was stabilized at the set temperature, a Cu substrate (plate thickness: about 0.70 mm) was set in the heater part and heated for 25 seconds.
次に、シート状のはんだ合金をCu基板の上に載せ、25秒加熱した。加熱が完了した後、Cu基板をヒーター部から取り上げてその横の窒素雰囲気が保たれている場所に移して冷却した。十分に冷却した後、大気中に取り出して接合部分を確認した。Cu基板に接合できなかった場合を「×」、接合できたが濡れ広がりが悪かった場合(はんだが盛り上がった状態)を「△」、接合でき且つ濡れ広がった場合(はんだが薄く濡れ広がった状態)を「○」と評価した。 Next, a sheet-like solder alloy was placed on the Cu substrate and heated for 25 seconds. After the heating was completed, the Cu substrate was picked up from the heater part, moved to a place where the nitrogen atmosphere next to the Cu substrate was maintained, and cooled. After sufficiently cooling, it was taken out into the atmosphere and a joint portion was confirmed. “X” indicates that bonding was not possible to the Cu substrate, “△” indicates that bonding was successful but the wetting spread was poor (solder was swelled), and when bonding was possible and wetting spread (the solder was thinly spreading wet) ) Was evaluated as “◯”.
<ヒートサイクル試験>
はんだ接合の信頼性を評価するためにヒートサイクル試験を行った。なお、この試験は、上記濡れ性評価で「○」又は「△」と評価されたもののみを対象とした。まず、はんだ合金が接合されたCu基板に対して、−50℃の冷却と135℃の加熱を1サイクルとして、これを500サイクルまで繰り返し行った。
<Heat cycle test>
A heat cycle test was conducted to evaluate the reliability of solder joints. In addition, this test was intended only for those evaluated as “◯” or “Δ” in the wettability evaluation. First, with respect to the Cu board | substrate with which the solder alloy was joined, -50 degreeC cooling and 135 degreeC heating were made into 1 cycle, and this was repeated to 500 cycles.
その後、はんだ合金が接合されたCu基板を樹脂に埋め込み、断面研磨を行い、SEM(装置名:HITACHI S−4800)により接合面の観察を行った。接合面にはがれやはんだにクラックが入っていた場合を「×」、そのような不良がなく、初期状態と同様の接合面を保っていた場合を「○」とした。これらの評価結果を下記の表2に示す。 Thereafter, the Cu substrate to which the solder alloy was bonded was embedded in the resin, the cross-section was polished, and the bonded surface was observed by SEM (device name: HITACHI S-4800). The case where the joint surface was peeled or cracked in the solder was indicated as “×”, and the case where there was no such defect and the same joint surface as in the initial state was maintained as “◯”. The evaluation results are shown in Table 2 below.
上記表2から判るように、本発明の要件を満たしている試料1〜7のはんだ母合金は、各評価項目において良好な特性を示している。つまり、シートに加工しても傷やクラックは無く、濡れ性も非常に良好でありCu基板に濡れ広がった。さらにヒートサイクル試験においても500回まで加熱冷却を繰り返しても割れなどが発生せず良好な接合性、信頼性を示した。このように、本発明の要件を満たすはんだ合金は、非常に優れていることが確認できた。 As can be seen from Table 2 above, the solder mother alloys of Samples 1 to 7 that satisfy the requirements of the present invention show good characteristics in each evaluation item. That is, even when processed into a sheet, there were no scratches or cracks, the wettability was very good, and the Cu substrate wetted and spread. Further, in the heat cycle test, even if heating and cooling were repeated up to 500 times, no cracks were generated, and good bondability and reliability were shown. Thus, it was confirmed that the solder alloy satisfying the requirements of the present invention is very excellent.
一方、本発明の要件を満たしていない比較例の試料8〜15のはんだ母合金は、いずれかの評価において好ましくない結果が生じており、特に加工性においては全ての試料において傷やクラックが発生した。また、濡れ性の評価では特に問題のない試料であっても、ヒートサイクル試験で500回までに不良が発生した。 On the other hand, the solder mother alloys of Comparative Samples 8 to 15 that do not satisfy the requirements of the present invention have produced undesirable results in any of the evaluations. In particular, in terms of workability, all samples have scratches and cracks. did. Moreover, even if the sample had no particular problem in the evaluation of wettability, defects occurred up to 500 times in the heat cycle test.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010125103A JP5652001B2 (en) | 2010-05-31 | 2010-05-31 | Pb-free solder alloy based on Zn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010125103A JP5652001B2 (en) | 2010-05-31 | 2010-05-31 | Pb-free solder alloy based on Zn |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011251298A true JP2011251298A (en) | 2011-12-15 |
JP5652001B2 JP5652001B2 (en) | 2015-01-14 |
Family
ID=45415676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010125103A Expired - Fee Related JP5652001B2 (en) | 2010-05-31 | 2010-05-31 | Pb-free solder alloy based on Zn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5652001B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013233577A (en) * | 2012-05-10 | 2013-11-21 | Sumitomo Metal Mining Co Ltd | Pb FREE In SOLDER ALLOY |
WO2024176357A1 (en) * | 2023-02-21 | 2024-08-29 | 三菱電機株式会社 | Solder material, method for producing solder sheet, and method for producing semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11172353A (en) * | 1997-12-04 | 1999-06-29 | Sumitomo Metal Mining Co Ltd | Zn alloy for high temperature soldering |
JP2000208533A (en) * | 1999-01-14 | 2000-07-28 | Sumitomo Metal Mining Co Ltd | Die bonding zn alloy |
JP2004358540A (en) * | 2003-06-06 | 2004-12-24 | Sumitomo Metal Mining Co Ltd | High-temperature brazing filler metal |
JP2005052869A (en) * | 2003-08-06 | 2005-03-03 | Sumitomo Metal Mining Co Ltd | Brazing material for high temperature soldering and semiconductor device using it |
JP2007209989A (en) * | 2006-02-07 | 2007-08-23 | Sumitomo Metal Mining Co Ltd | High-temperature brazing filler metal |
JP2011235342A (en) * | 2010-05-13 | 2011-11-24 | Sumitomo Metal Mining Co Ltd | COATING FILM-ATTACHED Pb-FREE Zn-BASED SOLDER ALLOY AND METHOD FOR MANUFACTURING SAME |
-
2010
- 2010-05-31 JP JP2010125103A patent/JP5652001B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11172353A (en) * | 1997-12-04 | 1999-06-29 | Sumitomo Metal Mining Co Ltd | Zn alloy for high temperature soldering |
JP2000208533A (en) * | 1999-01-14 | 2000-07-28 | Sumitomo Metal Mining Co Ltd | Die bonding zn alloy |
JP2004358540A (en) * | 2003-06-06 | 2004-12-24 | Sumitomo Metal Mining Co Ltd | High-temperature brazing filler metal |
JP2005052869A (en) * | 2003-08-06 | 2005-03-03 | Sumitomo Metal Mining Co Ltd | Brazing material for high temperature soldering and semiconductor device using it |
JP2007209989A (en) * | 2006-02-07 | 2007-08-23 | Sumitomo Metal Mining Co Ltd | High-temperature brazing filler metal |
JP2011235342A (en) * | 2010-05-13 | 2011-11-24 | Sumitomo Metal Mining Co Ltd | COATING FILM-ATTACHED Pb-FREE Zn-BASED SOLDER ALLOY AND METHOD FOR MANUFACTURING SAME |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013233577A (en) * | 2012-05-10 | 2013-11-21 | Sumitomo Metal Mining Co Ltd | Pb FREE In SOLDER ALLOY |
WO2024176357A1 (en) * | 2023-02-21 | 2024-08-29 | 三菱電機株式会社 | Solder material, method for producing solder sheet, and method for producing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP5652001B2 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5206779B2 (en) | Pb-free solder alloy based on Zn | |
JP2018079480A (en) | Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE | |
JP5962461B2 (en) | Au-Ge-Sn solder alloy | |
JP6036202B2 (en) | Au-Ag-Ge solder alloy | |
JP5672132B2 (en) | Pb-free solder alloy mainly composed of Zn and method for producing the same | |
JP5652001B2 (en) | Pb-free solder alloy based on Zn | |
JP2015098046A (en) | Bi-BASE SOLDER ALLOY, AND BONDING METHOD OF ELECTRONIC PART AND ELECTRONIC PART MOUNTING SUBSTRATE USING THE SAME | |
JP5699897B2 (en) | Pb-free solder alloy based on Zn | |
WO2023103289A1 (en) | Lead-free solder alloy, preparation method therefor and use thereof | |
JP2013123741A (en) | Pb-free solder alloy having excellent plastic deformation property | |
JP2013052433A (en) | SOLDER ALLOY OF Pb-FREE Zn SYSTEM | |
JP2011235314A (en) | Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT | |
JP2017035708A (en) | Sb-Cu SOLDER ALLOY CONTAINING NO Pb | |
JP2011240372A (en) | Pb-FREE SOLDER ALLOY COMPOSED PRINCIPALLY OF Zn | |
JP5471985B2 (en) | Pb-free solder alloy based on Zn | |
JP2016016453A (en) | Au-Ge-Sn-based solder alloy | |
JP5861526B2 (en) | Ge-Al solder alloy not containing Pb | |
JP2014233737A (en) | Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY | |
JP5699898B2 (en) | Pb-free solder alloy based on Zn | |
JP2016028829A (en) | Au-Sn-Ag GROUP SOLDER ALLOY, ELECTRONIC PART SEALED BY USING THE Au-Sn-Ag GROUP SOLDER ALLOY, AND ELECTRONIC PART MOUNTING DEVICE | |
JP2011235315A (en) | Pb-FREE SOLDER ALLOY HAVING ZN AS MAIN COMPONENT | |
JP2014024109A (en) | Bi-Sb-BASED Pb-FREE SOLDER ALLOY | |
JP2017225979A (en) | Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE | |
JP2017185520A (en) | Au-Sn-BASED SOLDER ALLOY | |
JP2016097444A (en) | Pb-FREE Sb-In-BASED SOLDER ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141021 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141103 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5652001 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |