[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011249953A - Optical receiving circuit - Google Patents

Optical receiving circuit Download PDF

Info

Publication number
JP2011249953A
JP2011249953A JP2010118925A JP2010118925A JP2011249953A JP 2011249953 A JP2011249953 A JP 2011249953A JP 2010118925 A JP2010118925 A JP 2010118925A JP 2010118925 A JP2010118925 A JP 2010118925A JP 2011249953 A JP2011249953 A JP 2011249953A
Authority
JP
Japan
Prior art keywords
optical
skew
phase component
optical fiber
intensity modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010118925A
Other languages
Japanese (ja)
Inventor
Shinji Iio
晋司 飯尾
Tetsushi Namatame
哲志 生田目
Junichiro Asano
純一郎 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010118925A priority Critical patent/JP2011249953A/en
Publication of JP2011249953A publication Critical patent/JP2011249953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an optical receiving circuit capable of reducing a skew between optical fibers by flexibly adjusting optical length of each optical fiber, having a skew adjusting section located on the each optical fiber path through an optical signal demodulating section to an intensity modulation photoelectric conversion section.SOLUTION: An optical receiving circuit includes: an optical signal demodulating section that inputs and branches a phase modulated optical signal and outputs a differential optical intensity modulated signal composed of an in-phase component and a reverse phase component; optical fibers that individually input and propagate the in-phase component and the reverse phase component of the differential optical intensity modulated signal output by the optical signal demodulating section; an skew adjusting section that is located on any location along the length of the optical fibers and individually adjusts the skew of each of the optical fibers; and an intensity modulation photoelectric converting section that outputs an electrical signal based on the in-phase component and the reverse phase component of the differential optical intensity modulated signal output from the fibers.

Description

本発明は、位相変調方式の光通信モジュールの光受信回路に関し、更に詳しくは、光受信回路に用いられる光ファイバのスキュー調整に関する。   The present invention relates to an optical receiver circuit of a phase modulation type optical communication module, and more particularly to skew adjustment of an optical fiber used in the optical receiver circuit.

現在のディジタル情報通信環境は、FTTH(Fiber To The Home)のような大容量を扱える通信手段が各家庭までに整備され、オフィス内でもギガビットイーサネット(登録商標)など、容易に大容量LAN(Loacal Area Network)を構築できるようになってきた。   In the current digital information communication environment, communication means capable of handling a large capacity such as FTTH (Fiber To The Home) has been set up in each home, and a large capacity LAN (Loacal) such as Gigabit Ethernet (registered trademark) can be easily used in the office. (Area Network) can be constructed.

大容量ディジタル伝送の要求は、さらに長距離伝送への要求にまで広がり、これまでの光通信方式の主流であった「光強度変調方式」から、波長分散・偏波分散の耐力のある「光位相変調方式」へと移行しつつある。その「光位相変調方式」の中でもDPSK(Differential Phase Shift Keying:差動位相変調)方式,DQPSK(Differential Quadrature Phase Shift Keying:差動4値位相変調)方式は、次世代光通信方式として期待されている方式で、すでに海底系・基幹系通信ネットワークの一部がこれらの通信方式に置き換わっている。   The demand for large-capacity digital transmission has further extended to the demand for long-distance transmission. From the “light intensity modulation method”, which has been the mainstream of conventional optical communication methods, the “optical light” that is resistant to chromatic dispersion and polarization dispersion. It is shifting to “phase modulation system”. Among the optical phase modulation methods, DPSK (Differential Phase Shift Keying) and DQPSK (Differential Quadrature Phase Shift Keying) are expected as next-generation optical communication methods. Already, some of the submarine and backbone communication networks have already been replaced by these communication methods.

このDPSK,DQPSKの光通信方式の受信側では、光信号復調部(遅延干渉計等)で位相変調を強度変調に変換し強度変調光電変換部(フォトダイオードモジュール等)で電気信号に変換する。光信号復調部は、DPSK方式では1組の同相成分と逆相成分の差動光強度変調信号(計2ポート)を出力し、DQPSK方式では2組の同相成分と逆相成分の差動光強度変調信号(計4ポート)を出力する構成となる。   On the receiving side of the DPSK and DQPSK optical communication systems, an optical signal demodulator (delay interferometer or the like) converts phase modulation into intensity modulation, and an intensity modulation photoelectric conversion unit (photodiode module or the like) converts it into an electrical signal. The optical signal demodulator outputs a pair of in-phase component and anti-phase component differential optical intensity modulation signals (2 ports in total) in the DPSK method, and two sets of in-phase component and anti-phase component differential light in the DQPSK method. The intensity modulation signal (4 ports in total) is output.

このような従来の装置例を、図面を用いて詳細に説明する。図7は、従来の光受信回路の構成例を示した図である。
光送信回路(図示せず)の光信号は光ファイバ1に入力される。
光信号は、光ファイバ1を介して伝播し、光信号復調部2へ入力される。光信号復調部2は、例えばDPSK方式の遅延干渉計である。光信号復調部2は、入力した光信号を差動光強度変調信号に変換し、(DPSK方式の遅延干渉計では2ポートの)光ファイバ3に出力する。
差動光強度変調信号は、光ファイバ3によって伝播され、強度変調光電変換部4に入力し、電気信号に変換される。
Such a conventional apparatus example will be described in detail with reference to the drawings. FIG. 7 is a diagram showing a configuration example of a conventional optical receiving circuit.
An optical signal from an optical transmission circuit (not shown) is input to the optical fiber 1.
The optical signal propagates through the optical fiber 1 and is input to the optical signal demodulator 2. The optical signal demodulator 2 is a DPSK delay interferometer, for example. The optical signal demodulator 2 converts the input optical signal into a differential optical intensity modulation signal, and outputs the differential optical intensity modulation signal to the optical fiber 3 (2 ports in the DPSK delay interferometer).
The differential light intensity modulation signal is propagated through the optical fiber 3, input to the intensity modulation photoelectric conversion unit 4, and converted into an electric signal.

このような、装置の動作例を、図面を用いて詳細に説明する。
図示しない光送信回路により位相変調された光信号は光ファイバ1を介して光信号復調部2へ入力される。光信号復調部2は、例えばDPSK方式の遅延干渉計等では、入力した光信号を同相成分と逆相成分から成る一組の差動光強度変調信号に分岐して、2ポートの光ファイバ3にそれぞれ出力する。
2ポートの光ファイバ3によって伝播された同相成分と逆相成分の差動光強度変調信号は、強度変調光電変換部4によって電気信号に変換される。
An operation example of such an apparatus will be described in detail with reference to the drawings.
The optical signal phase-modulated by an optical transmission circuit (not shown) is input to the optical signal demodulator 2 through the optical fiber 1. The optical signal demodulator 2 divides the input optical signal into a set of differential optical intensity modulation signals composed of in-phase components and anti-phase components in, for example, a DPSK type delay interferometer, and the like. Respectively.
The differential optical intensity modulation signal of the in-phase component and the anti-phase component propagated by the two-port optical fiber 3 is converted into an electric signal by the intensity modulation photoelectric conversion unit 4.

特許文献1には、位相変調の復調に遅延干渉計を用いた光伝送システムの構成が記載されている。   Patent Document 1 describes a configuration of an optical transmission system using a delay interferometer for demodulation of phase modulation.

特開2006−352678号公報JP 2006-352678 A

従来の光受信回路において、光信号復調部2で生成された差動光強度変調信号は、強度変調光電変換部4で電気信号に変換されるが、その際、光信号復調部2から強度変調光電変換部4までのそれぞれのポートの光ファイバ3の光学長差によって差動光信号遅延差(以下スキューと呼ぶ)を生じることがある。このスキューが信号ビットレートから求まる1ビットタイムに対して数%に達すると、OSNR(光信号対雑音比)耐量の劣化などの伝送品質に影響が現れてくることが知られている。そのため、このスキューを一定レベル以下に抑制する必要があり、現状では、光受信回路の作りこみの際に光信号復調部2と強度変調光電変換部4との間の光ファイバ3の光路長を、スキューが生じないよう微調整することで対応している。   In the conventional optical receiver circuit, the differential optical intensity modulation signal generated by the optical signal demodulator 2 is converted into an electric signal by the intensity modulation photoelectric converter 4. A differential optical signal delay difference (hereinafter referred to as skew) may occur due to the optical length difference of the optical fiber 3 of each port up to the photoelectric conversion unit 4. It is known that when this skew reaches several percent with respect to one bit time obtained from the signal bit rate, the transmission quality such as deterioration of OSNR (optical signal-to-noise ratio) tolerance is affected. For this reason, it is necessary to suppress this skew below a certain level. At present, the optical path length of the optical fiber 3 between the optical signal demodulator 2 and the intensity modulation photoelectric converter 4 is reduced when the optical receiver circuit is built. This can be done by making fine adjustments so that no skew occurs.

しかしながら、光ファイバ3の光路長の調整がサブミリメートルオーダーであるという技術的な困難さに加え、一端作りこんでしまった後には、再度のスキューを調整することができないという課題があった。   However, in addition to the technical difficulty that the adjustment of the optical path length of the optical fiber 3 is on the order of submillimeters, there is a problem that the skew cannot be adjusted again after it has been made.

そこで本発明の目的は、光信号復調部から強度変調光電変換部へ至るそれぞれの光ファイバの経路上にスキュー調整部を設け、それぞれの光ファイバの光学長を自在に調整し、光ファイバ間のスキューを低減できる光受信回路を実現することにある。   Accordingly, an object of the present invention is to provide a skew adjustment unit on each optical fiber path from the optical signal demodulation unit to the intensity modulation photoelectric conversion unit, and freely adjust the optical length of each optical fiber, An object of the present invention is to realize an optical receiving circuit capable of reducing skew.

このような課題を解決するために、本発明のうち請求項1記載の発明は、
位相変調された光信号を入力し、同相成分と逆相成分とから成る差動光強度変調信号に分岐して出力する光信号復調部と、
この光信号復調部が出力する差動光強度変調信号の同相成分と逆相成分のそれぞれを入力し伝搬する光ファイバと、
この光ファイバのいずれかの位置に設けられ、それぞれの光ファイバのスキューを個別に調整するスキュー調整部と、
前記光ファイバから出力される差動光強度変調信号の同相成分と逆相成分に基づいて電気信号を出力する強度変調光電変換部と、
を備えること特徴とする。
In order to solve such a problem, the invention according to claim 1 of the present invention,
An optical signal demodulator that inputs a phase-modulated optical signal and branches and outputs a differential optical intensity modulation signal composed of an in-phase component and an anti-phase component;
An optical fiber that inputs and propagates each of the in-phase component and the anti-phase component of the differential optical intensity modulation signal output by the optical signal demodulator;
A skew adjustment unit that is provided at any position of this optical fiber and individually adjusts the skew of each optical fiber;
An intensity modulation photoelectric conversion unit that outputs an electrical signal based on the in-phase component and the anti-phase component of the differential light intensity modulation signal output from the optical fiber;
It is characterized by providing.

請求項2記載の発明は、請求項1記載の発明であって、
前記光信号復調部は、DPSK方式の遅延干渉計で、1組の同相成分と逆相成分とから成る差動光強度変調信号を出力することを特徴とする。
Invention of Claim 2 is invention of Claim 1, Comprising:
The optical signal demodulator is a DPSK delay interferometer, and outputs a differential optical intensity modulation signal composed of a pair of in-phase components and anti-phase components.

請求項3記載の発明は、請求項1記載の発明であって、
前記光信号復調部は、DQPSK方式の遅延干渉計で、2組の同相成分と逆相成分とから成る差動光強度変調信号を出力することを特徴とする。
Invention of Claim 3 is invention of Claim 1, Comprising:
The optical signal demodulator is a DQPSK delay interferometer, and outputs a differential optical intensity modulation signal composed of two sets of in-phase components and anti-phase components.

請求項4記載の発明は、請求項1〜3のいずれかに記載の発明であって、
前記スキュー調整部は、前記光ファイバを円状に周回させてスキューを調整することを特徴とする。
Invention of Claim 4 is invention in any one of Claims 1-3, Comprising:
The skew adjusting unit adjusts the skew by rotating the optical fiber in a circular shape.

請求項5記載の発明は、請求項1〜3のいずれかに記載の発明であって、
前記スキュー調整部は、曲率が調整自在のガイドによって前記光ファイバに曲げを加えることによりスキューを調整することを特徴とする。
Invention of Claim 5 is invention in any one of Claims 1-3, Comprising:
The skew adjusting unit adjusts the skew by bending the optical fiber with a guide having an adjustable curvature.

請求項6記載の発明は、請求項5記載の発明であって、
前記ガイドは、バイメタルにより形成されることを特徴とする。
Invention of Claim 6 is invention of Claim 5, Comprising:
The guide is formed of bimetal.

請求項7記載の発明は、請求項5記載の発明であって、
前記ガイドは、形状記憶合金により形成されることを特徴とする。
Invention of Claim 7 is invention of Claim 5, Comprising:
The guide is formed of a shape memory alloy.

請求項8記載の発明は、請求項1〜3のいずれかに記載の発明であって、
前記スキュー調整部は、前記光ファイバに軸と直角方向の応力を負荷してスキューを調整することを特徴とする。
Invention of Claim 8 is invention in any one of Claims 1-3, Comprising:
The skew adjusting unit adjusts the skew by applying a stress in a direction perpendicular to the axis to the optical fiber.

請求項9記載の発明は、請求項1〜3のいずれかに記載の発明であって、
前記スキュー調整部は、前記光ファイバに軸方向の引っ張りまたは圧縮応力を負荷してスキューを調整することを特徴とする。
Invention of Claim 9 is invention in any one of Claims 1-3, Comprising:
The skew adjusting unit adjusts the skew by applying an axial tensile or compressive stress to the optical fiber.

本発明によれば、光信号復調部が、位相変調された光信号を入力し同相成分と逆相成分とから成る差動光強度変調信号に分岐して出力し、光ファイバが差動光強度変調信号の同相成分と逆相成分のそれぞれを入力して伝搬し、スキュー調整部が、それぞれの光ファイバのスキューを個別に調整し、強度変調光電変換部が、光ファイバから出力される差動光強度変調信号の同相成分と逆相成分に基づいて電気信号を出力するので、それぞれの光ファイバの光学長を自在に調整し、光ファイバ間のスキューを低減することが可能な光受信回路を実現することができる。   According to the present invention, the optical signal demodulator inputs the phase-modulated optical signal, branches and outputs the differential optical intensity modulation signal composed of the in-phase component and the anti-phase component, and the optical fiber has the differential optical intensity. Each of the in-phase component and the opposite-phase component of the modulation signal is input and propagated, the skew adjustment unit individually adjusts the skew of each optical fiber, and the intensity modulation photoelectric conversion unit outputs the differential output from the optical fiber. Since an electric signal is output based on the in-phase component and the anti-phase component of the light intensity modulation signal, an optical receiver circuit capable of freely adjusting the optical length of each optical fiber and reducing the skew between the optical fibers. Can be realized.

本発明の一実施例の構成を示した図である。It is the figure which showed the structure of one Example of this invention. 本発明の他の実施例の構成を示した図である。It is the figure which showed the structure of the other Example of this invention. スキュー調整部の構成例を示した図である。It is the figure which showed the structural example of the skew adjustment part. スキュー調整部の構成例を示した図である。It is the figure which showed the structural example of the skew adjustment part. スキュー調整部の構成例を示した図である。It is the figure which showed the structural example of the skew adjustment part. スキュー調整部の構成例を示した図である。It is the figure which showed the structural example of the skew adjustment part. 従来の光受信回路の構成例を示した図である。It is the figure which showed the structural example of the conventional optical receiver circuit.

以下本発明を、図面を用いて詳細に説明する。
図1は本発明の一実施例の構成を示した図である。ここで、図7と同一のものは、同一符号を付して説明を省略する。
図1において、スキュー調整部5は、2ポートの光ファイバ3のいずれかの位置に取り付けられ、各ポートの光ファイバのスキューを独立に調整する。
スキュー調整部5には、例えば曲率が調整可能で、光ファイバ3をはめ込む溝を有するガイド51を使用する。
スキュー調整部5を経由し光ファイバ3によって伝播された差動光強度変調信号は、強度変調光電変換部4によって電気信号に変換される。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. Here, the same components as those in FIG.
In FIG. 1, a skew adjustment unit 5 is attached to any position of a two-port optical fiber 3 and independently adjusts the skew of the optical fiber of each port.
For the skew adjusting unit 5, for example, a guide 51 having a groove in which the curvature can be adjusted and the optical fiber 3 is fitted is used.
The differential light intensity modulation signal propagated by the optical fiber 3 via the skew adjustment unit 5 is converted into an electric signal by the intensity modulation photoelectric conversion unit 4.

このような装置の動作例を、図1を用いて詳細に説明する。
DPSK方式の遅延干渉計である光信号復調部2は、入力した光信号を同相成分と逆相成分から成る一組の差動光強度変調信号に分岐させて、2ポートの光ファイバ3にそれぞれ出力する。
それぞれのポートの光ファイバ3は、スキュー調整部5のガイド51によって生じる曲げによって歪が生じ、物理長や屈折率等に変化が生じ、光ファイバ3の光学長も変化させることができるので、伝播する光信号のスキューを調整することが可能となる。
2ポートの光ファイバ3によって伝播された差動光強度変調信号は、強度変調光電変換部4によって電気信号に変換される。
An example of the operation of such an apparatus will be described in detail with reference to FIG.
The optical signal demodulator 2 which is a DPSK delay interferometer splits the input optical signal into a pair of differential optical intensity modulation signals composed of in-phase components and anti-phase components, and supplies them to a 2-port optical fiber 3 respectively. Output.
The optical fiber 3 of each port is distorted by bending caused by the guide 51 of the skew adjusting unit 5, changes in physical length, refractive index, etc., and can also change the optical length of the optical fiber 3. The skew of the optical signal to be adjusted can be adjusted.
The differential light intensity modulation signal propagated by the two-port optical fiber 3 is converted into an electric signal by the intensity modulation photoelectric conversion unit 4.

このように、光信号復調部2が、位相変調された光信号を入力し同相成分と逆相成分とから成る差動光強度変調信号に分岐して出力し、光ファイバ3が、差動光強度変調信号の同相成分と逆相成分のそれぞれを入力して伝搬し、スキュー調整部5のガイド51が、光ファイバ3を調整自在の曲率で曲げを加えてそれぞれの光ファイバ3のスキューを個別に調整し、強度変調光電変換部4が、光ファイバ3から出力される差動光強度変調信号の同相成分と逆相成分に基づいて電気信号を出力するので、それぞれの光ファイバ3の光学長を自在に調整し、光ファイバ3間のスキューを低減することが可能な光受信回路を実現することができる。   In this way, the optical signal demodulator 2 inputs the phase-modulated optical signal, branches and outputs the differential optical intensity modulation signal composed of the in-phase component and the anti-phase component, and the optical fiber 3 outputs the differential light. Each of the in-phase component and the opposite-phase component of the intensity modulation signal is input and propagated, and the guide 51 of the skew adjustment unit 5 bends the optical fiber 3 with an adjustable curvature to individually adjust the skew of each optical fiber 3. Since the intensity modulation photoelectric conversion unit 4 outputs an electric signal based on the in-phase component and the anti-phase component of the differential light intensity modulation signal output from the optical fiber 3, the optical length of each optical fiber 3 is adjusted. It is possible to realize an optical receiving circuit that can freely adjust the above and reduce the skew between the optical fibers 3.

なお、光信号復調部2にDPSK方式の遅延干渉計を用いる例を示したが、DQPSK方式の遅延干渉計でもよい。この場合、光信号復調部2は、差動4値位相変調された入力光信号を二組の同相成分と逆相成分から成る差動光強度変調信号に分岐して、合計4ポートの光ファイバにそれぞれ出力するので、4ポートの光ファイバそれぞれにスキュー調整部を取り付ける構成となる。   Although an example in which a DPSK delay interferometer is used for the optical signal demodulator 2 is shown, a DQPSK delay interferometer may be used. In this case, the optical signal demodulator 2 branches the input optical signal subjected to differential quaternary phase modulation into a differential optical intensity modulation signal composed of two sets of in-phase components and anti-phase components, for a total of 4 ports of optical fiber Therefore, the skew adjustment unit is attached to each of the four-port optical fibers.

光信号復調部2は、DP−QPSK方式(デジタルコヒーレント方式)の位相信号の復調部であってもよい。DP−QPSK方式とは、光受信回路内で局部発振光を参照光として生成し、復調部が光信号と参照光との位相差に基づいて差動光強度変調信号を出力する方式のことである。   The optical signal demodulator 2 may be a DP-QPSK (digital coherent) phase signal demodulator. The DP-QPSK method is a method in which a local oscillation light is generated as a reference light in an optical receiving circuit, and a demodulation unit outputs a differential light intensity modulation signal based on a phase difference between the optical signal and the reference light. is there.

また、図2のように、それぞれの光ファイバを、径の調整可能な円状(図2の直径Φ1とΦ2)に周回させてスキューを調整するスキュー調整部6を設けてもよい。   Further, as shown in FIG. 2, a skew adjusting unit 6 may be provided for adjusting the skew by rotating each optical fiber in a circular shape (diameters Φ1 and Φ2 in FIG. 2) whose diameter can be adjusted.

スキュー調整部は、光ファイバ3の軸と直角方向に応力を加える構成としてもよい。この場合、例えば図3のように、ネジ孔を有するベース部71とネジ72との間に光ファイバ3を挟み、ネジ72の締結によって光ファイバ3の軸と直角方向に応力を加える応力付加部7を構成でもよいし、または、図4のように、温度によって曲がり方が変化するバイメタル81を利用し、光ファイバ3の軸と直角方向に応力を加える応力付加部8を構成してもよい。   The skew adjustment unit may be configured to apply stress in a direction perpendicular to the axis of the optical fiber 3. In this case, for example, as shown in FIG. 3, the optical fiber 3 is sandwiched between a base portion 71 having a screw hole and a screw 72, and a stress applying portion that applies stress in a direction perpendicular to the axis of the optical fiber 3 by fastening the screw 72. 7 may be configured, or as shown in FIG. 4, a stress applying portion 8 that applies stress in a direction perpendicular to the axis of the optical fiber 3 may be configured by using a bimetal 81 whose bending changes depending on temperature. .

スキュー調整部は、図5のように、応力付加部9によって光ファイバ3の軸方向に引っ張りまたは圧縮応力を加える構成としてもよい。   As shown in FIG. 5, the skew adjusting unit may be configured to apply tensile or compressive stress in the axial direction of the optical fiber 3 by the stress applying unit 9.

また、ガイド51には、図6のようにバイメタル511を使用してもよい。この場合、温度の変化によって曲がり方が変化する性質を利用して、温度に応じてガイド51の曲率を調整し、光ファイバ3の温度変化に応じて生じるスキューを調整することが可能となる。   Further, a bimetal 511 may be used for the guide 51 as shown in FIG. In this case, it is possible to adjust the curvature of the guide 51 according to the temperature and adjust the skew generated according to the temperature change of the optical fiber 3 by utilizing the property that the bending method changes according to the temperature change.

また、ガイド51および応力付加部8には、バイメタルの代わりに、温度で形状の制御が可能な形状記憶合金や、電場を加えると伸縮するチタン酸ジルコニウム酸鉛(PZT)等の圧電材料を用いてもよい。   For the guide 51 and the stress applying portion 8, a shape memory alloy whose shape can be controlled by temperature, or a piezoelectric material such as lead zirconate titanate (PZT) that expands and contracts when an electric field is applied, is used instead of the bimetal. May be.

2 光信号復調部
3 光ファイバ
4 強度変調光電変換部
5,6 スキュー調整部
51 ガイド
511バイメタル
7,8,9 応力付加部
2 Optical signal demodulation unit 3 Optical fiber 4 Intensity modulation photoelectric conversion unit 5, 6 Skew adjustment unit 51 Guide 511 Bimetal 7, 8, 9 Stress application unit

Claims (9)

位相変調された光信号を入力し、同相成分と逆相成分とから成る差動光強度変調信号に分岐して出力する光信号復調部と、
この光信号復調部が出力する差動光強度変調信号の同相成分と逆相成分のそれぞれを入力し伝搬する光ファイバと、
この光ファイバのいずれかの位置に設けられ、それぞれの光ファイバのスキューを個別に調整するスキュー調整部と、
前記光ファイバから出力される差動光強度変調信号の同相成分と逆相成分に基づいて電気信号を出力する強度変調光電変換部と、
を備えること特徴とする光受信回路。
An optical signal demodulator that inputs a phase-modulated optical signal and branches and outputs a differential optical intensity modulation signal composed of an in-phase component and an anti-phase component;
An optical fiber that inputs and propagates each of the in-phase component and the anti-phase component of the differential optical intensity modulation signal output by the optical signal demodulator;
A skew adjustment unit that is provided at any position of this optical fiber and individually adjusts the skew of each optical fiber;
An intensity modulation photoelectric conversion unit that outputs an electrical signal based on the in-phase component and the anti-phase component of the differential light intensity modulation signal output from the optical fiber;
An optical receiver circuit comprising:
前記光信号復調部は、DPSK方式の遅延干渉計で、1組の同相成分と逆相成分とから成る差動光強度変調信号を出力することを特徴とする請求項1記載の光受信回路。   2. The optical receiver circuit according to claim 1, wherein the optical signal demodulator outputs a differential optical intensity modulation signal composed of a pair of in-phase components and anti-phase components by a DPSK delay interferometer. 前記光信号復調部は、DQPSK方式の遅延干渉計で、2組の同相成分と逆相成分とから成る差動光強度変調信号を出力することを特徴とする請求項1記載の光受信回路。   2. The optical receiver circuit according to claim 1, wherein the optical signal demodulator is a DQPSK delay interferometer and outputs a differential optical intensity modulation signal comprising two sets of in-phase components and anti-phase components. 前記スキュー調整部は、前記光ファイバを円状に周回させてスキューを調整することを特徴とする請求項1〜3のいずれかに記載の光受信回路。   The optical receiver circuit according to claim 1, wherein the skew adjustment unit adjusts the skew by rotating the optical fiber in a circular shape. 前記スキュー調整部は、曲率が調整自在のガイドによって前記光ファイバに曲げを加えることによりスキューを調整することを特徴とする請求項1〜3のいずれかに記載の光受信回路。   The optical receiver circuit according to claim 1, wherein the skew adjusting unit adjusts the skew by bending the optical fiber with a guide having an adjustable curvature. 前記ガイドは、バイメタルにより形成されることを特徴とする請求項5記載の光受信回路。   6. The optical receiver circuit according to claim 5, wherein the guide is formed of bimetal. 前記ガイドは、形状記憶合金により形成されることを特徴とする請求項5記載の光受信回路。   6. The optical receiver circuit according to claim 5, wherein the guide is made of a shape memory alloy. 前記スキュー調整部は、前記光ファイバに軸と直角方向の応力を負荷してスキューを調整することを特徴とする請求項1〜3のいずれかに記載の光受信回路。     The optical receiver circuit according to claim 1, wherein the skew adjusting unit adjusts the skew by applying a stress in a direction perpendicular to the axis to the optical fiber. 前記スキュー調整部は、前記光ファイバに軸方向の引っ張りまたは圧縮応力を負荷してスキューを調整することを特徴とする請求項1〜3のいずれかに記載の光受信回路。     The optical receiver circuit according to claim 1, wherein the skew adjusting unit adjusts the skew by applying an axial tensile or compressive stress to the optical fiber.
JP2010118925A 2010-05-25 2010-05-25 Optical receiving circuit Pending JP2011249953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118925A JP2011249953A (en) 2010-05-25 2010-05-25 Optical receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118925A JP2011249953A (en) 2010-05-25 2010-05-25 Optical receiving circuit

Publications (1)

Publication Number Publication Date
JP2011249953A true JP2011249953A (en) 2011-12-08

Family

ID=45414707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118925A Pending JP2011249953A (en) 2010-05-25 2010-05-25 Optical receiving circuit

Country Status (1)

Country Link
JP (1) JP2011249953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523780A (en) * 2012-05-25 2015-08-13 コーニング インコーポレイテッド Differential optical signal transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523780A (en) * 2012-05-25 2015-08-13 コーニング インコーポレイテッド Differential optical signal transmission system

Similar Documents

Publication Publication Date Title
US7630650B2 (en) Multi-level modulation receiving device
JP5373901B2 (en) Optical 90 degree hybrid circuit
US9641255B1 (en) Wavelength control of two-channel DEMUX/MUX in silicon photonics
JP4710387B2 (en) Optical receiver and optical receiving method corresponding to differential M phase shift keying
US10164405B2 (en) Wavelength locker integrated with a silicon photonics system
JP5243607B2 (en) Optical 90 degree hybrid circuit
US7907806B2 (en) Optical mixer
Chagnon et al. Digital signal processing for dual-polarization intensity and interpolarization phase modulation formats using stokes detection
JP5712935B2 (en) Method and apparatus for detecting chromatic dispersion and method and apparatus for compensating chromatic dispersion
JP5373908B2 (en) Optical 90 degree hybrid circuit
JP5959505B2 (en) Optical waveguide circuit
JP2007158415A (en) Optical transmitter
Zhang et al. Transmission of single-carrier 400G signals (515.2-Gb/s) based on 128.8-GBaud PDM QPSK over 10,130-and 6,078 km terrestrial fiber links
Zhou et al. 112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier
JP2008124893A (en) Variance pre-equalization optical transmitter and optical communication system
JP6701144B2 (en) Light modulator
JP5075739B2 (en) Optical PSK demodulator and optical filter phase control method using optical PSK demodulator
KR20160050687A (en) Apparatus and Method for Optical Receiving based on Multi-Mode Fiber
JP2011249953A (en) Optical receiving circuit
JP5316593B2 (en) Optical transmitter
Chang Recent advances of emerging PAM4 signaling with real-time processing for 100/400Gbps data center connectivity
JP2010152206A (en) Optical interferometer and optical receiver
Singh et al. Comparative performance analysis of DCF and FBG for dispersion compensation in optical fiber communication
Yu et al. Method of digital signal process aided by control signal for burst-mode coherent receivers
JP5062303B2 (en) Optical receiver and optical receiving method corresponding to differential M phase shift keying