JP2011247649A - Method and program for identifying surface shape of ultrasonic wave flaw detection test piece, aperture synthesis processing program, and phased array flaw detection program - Google Patents
Method and program for identifying surface shape of ultrasonic wave flaw detection test piece, aperture synthesis processing program, and phased array flaw detection program Download PDFInfo
- Publication number
- JP2011247649A JP2011247649A JP2010118832A JP2010118832A JP2011247649A JP 2011247649 A JP2011247649 A JP 2011247649A JP 2010118832 A JP2010118832 A JP 2010118832A JP 2010118832 A JP2010118832 A JP 2010118832A JP 2011247649 A JP2011247649 A JP 2011247649A
- Authority
- JP
- Japan
- Prior art keywords
- transducer
- shape
- specimen
- test body
- surface shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は、超音波探傷法を適用する試験体の表面形状を同定する方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラムに関する。さらに詳述すると、本発明は、フェーズドアレイを用いた超音波探傷において好適な試験体の表面形状を同定する方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラムに関する。 The present invention relates to a method for identifying a surface shape of a specimen to which an ultrasonic flaw detection method is applied, an identification program, an aperture synthesis processing program, and a phased array flaw detection program. More specifically, the present invention relates to a method for identifying a surface shape of a test specimen suitable for ultrasonic flaw detection using a phased array, an identification program, an aperture synthesis processing program, and a phased array flaw detection program.
配管溶接部の探傷においては、超音波探触子の機械走査が溶接余盛により制限されるため、形状変化部表層域の探傷が困難となる。このように探触子のアクセスが悪い場合、配管内側裏面に超音波ビームを反射させて探傷する一回反射法が有効である。しかし、この一回反射法では、超音波の拡散減衰や裏面形状による超音波の散乱、伝播方向の変化などの影響で直射法と比較すると探傷精度は低下する。 In the flaw detection of the pipe welded portion, since the mechanical scanning of the ultrasonic probe is limited by the welding surplus, flaw detection in the surface area of the shape change portion becomes difficult. When the access of the probe is poor as described above, a one-time reflection method is effective in which an ultrasonic beam is reflected on the inner back surface of the pipe for flaw detection. However, in this single reflection method, the flaw detection accuracy is lower than that in the direct irradiation method due to the influence of ultrasonic diffusion and attenuation, ultrasonic scattering due to the back surface shape, and change in propagation direction.
一方、火力発電設備における高温高圧配管では、高クロム鋼が使用されており、同材料の溶接継手における熱影響部細粒域に、クリープによるタイプIV損傷が発生することが確認されている。このタイプIV 損傷は火力発電設備の構造健全性確保の面で重要な問題である。タイプIV損傷は、熱影響部細粒域に肉厚内部から発生するクリープによる損傷形態であり、溶接熱影響部細粒域に沿って発生し、溶接止端部下側の表層域で進行する場合がある。このため、図15に示すように溶接止端部下側の表層域の探傷においては、接近限界により探触子の機械走査が制限され、また、タイプIV損傷の傾きによっては入射した超音波がほとんど返ってこない場合がある。さらに、タイプIV き裂発生前のクリープボイドが密集し始めた段階では、超音波探傷により得られる信号強度が微弱であるため検出が困難である。 On the other hand, high-chromium steel is used in high-temperature and high-pressure piping in thermal power generation facilities, and it has been confirmed that type IV damage due to creep occurs in the heat-affected zone fine-grained area of weld joints of the same material. This type IV damage is an important issue in ensuring the structural integrity of thermal power generation facilities. Type IV damage is a form of damage caused by creep that occurs in the heat-affected zone fine-grained area from inside the wall, occurs along the heat-affected zone fine-grained area, and proceeds in the surface layer area below the weld toe There is. For this reason, as shown in FIG. 15, in the flaw detection in the surface layer area below the weld toe, the mechanical scanning of the probe is limited due to the approach limit, and the incident ultrasonic wave is almost all depending on the inclination of the type IV damage. It may not return. Further, at the stage where creep voids before the occurrence of type IV cracks begin to be dense, detection is difficult because the signal intensity obtained by ultrasonic flaw detection is weak.
このことから、余盛のような形状変化部の上から直射法で探傷できるフェーズドアレイ法や開口合成法の開発が要望されている。特に、タイプIV き裂発生前のクリープボイドが密集し始めた段階では、超音波探傷により得られる信号強度が微弱であるため検出が困難であるが、信号増幅や方位分解能、SN比の向上が可能な開口合成法を適用することで検出性能の向上が期待できる。 For this reason, there is a demand for the development of a phased array method and an aperture synthesis method that can detect flaws by a direct method from a shape change portion such as a surplus. In particular, at the stage where creep voids before Type IV cracks start to gather, detection is difficult because the signal intensity obtained by ultrasonic flaw detection is weak, but signal amplification, azimuth resolution, and SN ratio are improved. Improvement of detection performance can be expected by applying a possible aperture synthesis method.
従来、形状変化部の上から直射法で超音波探傷を行う手法としては、試験体の表面形状に沿って形態を変化させうる媒質、例えば水やジェルなどの媒質をウェッジの代わりに用いる局部水浸法などが一般的である。しかしながら、フェーズドアレイ法や開口合成法は、表面形状が平坦な試験体に対して適用されることを前提としている(特許文献1〜3、非特許文献1〜3)。したがって、この局部水浸法などにフェーズドアレイ法による探傷を単に適用しても、平坦な試験体表面形状を想定した遅延制御では、余盛形状により超音波ビームが集束しなかったり、設定した方向に伝播しない場合がある。また、開口合成法を単に適用する場合においても、同様である。そこで、超音波試験に先立って、表面形状の測定技術として一般的な型取りを用いた機械的測定やレーザー変位計測等によって試験体の表面形状をあらかじめ把握することにより、余盛形状に応じた超音波の伝播経路を計算し、各振動子の遅延時間を制御したり、受信波形の位相を合わせたりする必要がある。 Conventionally, as a technique for performing ultrasonic flaw detection by direct irradiation method from above the shape change part, a local water that uses a medium that can change its form along the surface shape of the specimen, for example, a medium such as water or gel, instead of a wedge. The immersion method is common. However, the phased array method and the aperture synthesis method are premised on being applied to a specimen having a flat surface shape (Patent Documents 1 to 3, Non-Patent Documents 1 to 3). Therefore, even if flaw detection by the phased array method is simply applied to this local water immersion method, etc., in the delay control assuming a flat specimen surface shape, the ultrasonic beam does not converge due to the extra shape, or the set direction May not propagate to The same applies to the case where the aperture synthesis method is simply applied. Therefore, prior to the ultrasonic test, the surface shape of the test specimen was grasped in advance by mechanical measurement using a general mold as a surface shape measurement technique, laser displacement measurement, etc. It is necessary to calculate the propagation path of the ultrasonic wave, control the delay time of each transducer, and match the phase of the received waveform.
また、最近では、フェーズドアレイ探触子の振動子群が1つずつ上下動可能に支持されると共に常時試験体表面に向けて付勢されるようにしたものが提案されている(非特許文献4)。このフェーズドアレイ探触子によれば、形状変化部に沿って振動子の1つ1つを可動し、この可動量をもって表面形状を機械的に測定しながら、各振動子の励振を遅延制御して、複雑形状部の上から超音波ビームを集束させることができる。 In addition, recently, there has been proposed one in which the transducer groups of the phased array probe are supported one by one so as to be vertically movable and are always urged toward the surface of the specimen (non-patent document). 4). According to this phased array probe, each of the transducers is moved along the shape changing portion, and the excitation of each transducer is controlled with delay while mechanically measuring the surface shape with this movable amount. Thus, the ultrasonic beam can be focused from above the complicated shape portion.
しかしながら、超音波試験に先立って、予め表面形状を把握するために、型取りを用いた機械的測定やレーザー変位計測等を実行する場合、探傷器の他の測定機器を設置してから検査するため多くの検査時間を要すると共に、探傷器の他の測定機器を必要とするために費用が増大する問題がある。 However, prior to the ultrasonic test, in order to grasp the surface shape in advance, when performing mechanical measurement using a mold, laser displacement measurement, etc., inspect after installing other measurement equipment of the flaw detector Therefore, there is a problem that a lot of inspection time is required and the cost is increased because other measuring instruments for the flaw detector are required.
また、非特許文献4で提案されている手法では、振動子自体が試験体の表面形状に沿って個々に変位することで接触するようにしているので、スネルの法則による横波入射ができず、縦波斜角探傷に限られるという問題がある。横波は縦波と比較して一般に分解能に優れることから、超音波探傷により得られる信号強度が微弱な傷、例えばタイプIV き裂発生前のクリープボイドが密集し始めた段階を検出するには、横波斜角探傷も行えるようにすることが望まれる。 Further, in the method proposed in Non-Patent Document 4, since the vibrator itself is brought into contact by being individually displaced along the surface shape of the test body, the transverse wave cannot be incident by Snell's law, There is a problem that it is limited to longitudinal wave oblique angle flaw detection. Since shear waves are generally superior in resolution compared to longitudinal waves, it is possible to detect flaws with weak signal strength obtained by ultrasonic flaw detection, for example, the stage where creep voids before the occurrence of type IV cracks begin to crowd. It is desirable to be able to perform shear wave oblique angle flaw detection.
そこで、本発明は、超音波を試験体に入射させたときの表面からの反射波を利用して試験体の表面形状を把握可能とする超音波探傷試験体の表面形状の同定方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラムを提供することを目的とする。 Therefore, the present invention provides a method for identifying the surface shape of an ultrasonic flaw detection test body and an identification program that make it possible to grasp the surface shape of the test body using reflected waves from the surface when ultrasonic waves are incident on the test body. Another object is to provide an aperture synthesis processing program and a phased array flaw detection program.
かかる目的を達成するため、本発明者等が種々研究した結果、ビームの広がりにより試験体の表面で反射が起きる座標を特定することで、試験体表面を再現することが可能であり、超音波を試験体に入射させたときの表面からの反射波を利用して表面形状の同定が可能であることを知見するに至った。本発明は、かかる知見に基づいて行われたものであって、超音波を試験体に入射されたときの表面からの反射波を利用して表面形状の測定を行うようにしている。 As a result of various studies conducted by the present inventors in order to achieve such an object, it is possible to reproduce the surface of the specimen by specifying the coordinates at which reflection occurs on the surface of the specimen due to the spread of the beam. As a result, it has been found that the surface shape can be identified by using the reflected wave from the surface when the sample is incident on the specimen. The present invention has been made on the basis of such knowledge, and the surface shape is measured using a reflected wave from the surface when ultrasonic waves are incident on the test body.
即ち、請求項1記載の発明にかかる試験体の表面形状同定方法は、表面形状が変化した形状変化部を有する試験体の表面に、前記試験体の表面形状に沿って形態を変化させうる媒質を介してフェーズドアレイを配置し、前記フェーズドアレイの各振動子毎に超音波を試験体に向けて射出させて表面エコーを受信し、各振動子毎に取得された前記試験体の表面からの反射波を検出して各振動子から前記試験体の表面までのビーム路程を求めると共に、各振動子を中心とし各振動子毎に求まるビーム路程を半径とする円を想定し、隣り合う振動子を中心とする前記円の共通外接線を求め、前記共通外接線が求まる区間では前記共通外接線上の点を二次補間し、これを試験体表面と同定し、前記共通外接線が求まらない区間ではそれら振動子間を形状変化の境界と判断して、各区間で二次補間し得られた曲線を外挿して前記境界における表面形状として同定し、試験体表面形状を求めるようにしている。 That is, the method for identifying the surface shape of a test body according to the first aspect of the present invention is a medium that can change the shape along the surface shape of the test body on the surface of the test body having a shape changing portion whose surface shape has changed. A phased array is arranged via each of the phased arrays, ultrasonic waves are emitted toward the test body for each transducer of the phased array, and a surface echo is received from the surface of the test body acquired for each transducer. Adjacent transducers are assumed by detecting a reflected wave and calculating a beam path from each transducer to the surface of the test body, and assuming a circle with a radius of the beam path determined for each transducer centered on each transducer. A common tangent line of the circle centered at the center is obtained, and in the section where the common tangent line is obtained, a point on the common tangent line is subjected to quadratic interpolation, and this is identified as the surface of the specimen, and the common tangent line is obtained. In the interval that is not It is determined that the boundary change, the curve that is obtained by the secondary interpolation in each section extrapolated identified as the surface shape of the boundary, and to obtain the specimen surface shape.
また、請求項2記載の発明にかかる試験体の表面形状同定プログラムは、表面形状が変化した形状変化部を有する試験体の表面に、前記試験体の表面形状に沿って形態を変化させうる媒質を介して配置されたフェーズドアレイの各振動子毎に超音波を試験体に向けて射出させて表面エコーを受信するステップと、各振動子毎に取得された前記試験体の表面からの反射波を検出して各振動子から前記試験体の表面までのビーム路程を求めるステップと、各振動子を中心とし各振動子毎に求まるビーム路程を半径とする円を想定し、隣り合う振動子を中心とする前記円の共通外接線を求めるステップと、前記共通外接線が求まる区間ではそれら円の接点を二次補間し試験体表面として特定しかつ前記前記共通外接線を試験体表面と同定するステップと、前記共通外接線が求まらない区間ではそれら振動子間を形状変化の境界と判断し、各区間で得られた共通外接線上の点を二次補間したものを外挿して作成した曲線を前記境界における表面形状として同定するステップとを、コンピュータに実行させて試験体表面形状を求めるようにしている。 According to a second aspect of the present invention, there is provided a program for identifying a surface shape of a test specimen, wherein the medium can change a shape along the surface shape of the test specimen on the surface of the test specimen having a shape changing portion whose surface shape has changed. A step of receiving a surface echo by emitting an ultrasonic wave toward the test body for each transducer of the phased array disposed via the antenna, and a reflected wave from the surface of the test body acquired for each transducer Detecting a beam path from each transducer to the surface of the specimen, and assuming a circle having a radius of the beam path centered on each transducer and having a radius determined for each transducer, A step of obtaining a common tangent of the circle as a center, and a section where the common tangent is obtained, quadratic interpolation is performed on the contact points of the circles to specify the surface of the specimen, and the common tangent is identified as the surface of the specimen. Step And a curve created by extrapolating a quadratic interpolation of the points on the common tangent line obtained in each section in the section where the common tangent line is not obtained is determined as a shape change boundary between the vibrators. The step of identifying the surface shape at the boundary is executed by a computer so as to obtain the surface shape of the specimen.
また、請求項3記載の発明にかかる開口合成処理プログラムは、表面形状が変化した形状変化部を有する試験体の表面に、前記試験体の表面形状に沿って形態を変化させうる媒質を介して配置されたフェーズドアレイの各振動子毎に超音波を試験体に向けて射出させて表面エコーを受信するステップと、各振動子毎に得られた前記試験体の表面からの反射波を検出して各振動子から前記試験体の表面までのビーム路程を求めるステップと、各振動子を中心とし各振動子毎に求まるビーム路程を半径とする円を想定し、隣り合う振動子を中心とする前記円の共通外接線を求めるステップと、前記共通外接線が求まる区間ではそれら円の接点を二次補間し、試験体表面として特定しかつ前記前記共通外接線を試験体表面と同定するステップと、前記共通外接線が求まらない区間ではそれら振動子間を形状変化の境界と判断し、各区間で得られた共通外接線上の点を二次補間したものを外挿して作成した曲線を前記境界における表面形状として同定するステップと、同定された前記試験体表面形状を用いて試験体内部の探傷範囲の任意の区画から振動子までの超音波の伝播距離を受信する振動子毎に演算するステップと、各振動子毎の超音波の伝播経路に基づいて各受信素子で受信されるAスコープ波形信号の遅れを修正するように波形の位相をシフトし、波の位相を揃えた状態で重ね合わせる開口合成処理と、位相操作された後の探傷画像をディスプレイに描写させるステップとをコンピュータに実行させるようにしている。 According to a third aspect of the present invention, there is provided an aperture composition processing program, on a surface of a test body having a shape changing portion whose surface shape is changed, via a medium whose form can be changed along the surface shape of the test body. A step of receiving a surface echo by emitting an ultrasonic wave toward the test body for each transducer of the arranged phased array, and detecting a reflected wave from the surface of the test body obtained for each transducer. Assuming a step of obtaining a beam path from each transducer to the surface of the specimen, and a circle centered on each transducer and having a radius of the beam path obtained for each transducer, and centering on adjacent transducers Obtaining a common outer tangent of the circle, and interpolating the contact points of the circles in a section in which the common outer tangent is obtained, specifying the surface as a test specimen, and identifying the common outer tangent as a specimen surface; ,in front In a section where a common tangent line is not found, the boundary between these transducers is determined as a shape change boundary, and a curve created by extrapolating the points on the common tangent line obtained in each section is extrapolated to the boundary. And a step of calculating for each transducer that receives the propagation distance of the ultrasonic wave from any section of the flaw detection range inside the specimen to the transducer using the identified specimen surface shape. Then, the phase of the waveform is shifted so as to correct the delay of the A scope waveform signal received by each receiving element based on the propagation path of the ultrasonic wave for each transducer, and the phase of the wave is aligned and superimposed. The aperture synthesis process and the step of causing the display to draw the flaw detection image after the phase operation are executed by a computer.
さらに、請求項4記載の発明にかかるフェーズドアレイ探傷プログラムは、表面形状が変化した形状変化部を有する試験体の表面に、前記試験体の表面形状に沿って形態を変化させうる媒質を介して配置されたフェーズドアレイの各振動子毎に超音波を試験体に向けて射出させて表面エコーを受信するステップと、各振動子毎に得られた前記試験体の表面からの反射波を検出して各振動子から前記試験体の表面までのビーム路程を求めるステップと、各振動子を中心とし各振動子毎に求まるビーム路程を半径とする円を想定し、隣り合う振動子を中心とする前記円の共通外接線を求めるステップと、前記共通外接線が求まる区間ではそれら円の接点を二次補間し、試験体表面として特定しかつ前記前記共通外接線を試験体表面と同定するステップと、前記共通外接線が求まらない区間ではそれら振動子間を形状変化の境界と判断し、各区間で得られた共通外接線上の点を二次補間したものを外挿して作成した曲線を前記境界における表面形状として同定するステップと、同定された前記試験体表面形状を用いて試験体内部の探傷範囲の任意の区画から全ての振動子までの超音波の伝播距離を演算するステップと、各振動子毎の超音波の伝播経路に基づいて各振動子の遅延時間を算出するステップと、前記遅延時間に基づいて前記振動子を制御してフェーズアレイ探傷を実施するステップと、探傷画像をディスプレイに描写させるステップとをコンピュータに実行させるようにしている。 Furthermore, the phased array flaw detection program according to the invention of claim 4 is provided on a surface of a test body having a shape changing portion whose surface shape is changed via a medium whose form can be changed along the surface shape of the test body. A step of receiving a surface echo by emitting an ultrasonic wave toward the test body for each transducer of the arranged phased array, and detecting a reflected wave from the surface of the test body obtained for each transducer. Assuming a step of obtaining a beam path from each transducer to the surface of the specimen, and a circle centered on each transducer and having a radius of the beam path obtained for each transducer, and centering on adjacent transducers A step of obtaining a common outer tangent of the circle, and a step of interpolating the contact points of the circles in a section in which the common outer tangent is obtained, specifying the surface as a specimen, and identifying the common tangent as a specimen surface. In the section where the common tangent is not found, it was determined that the boundary between these transducers was the shape change boundary, and the points on the common tangent obtained in each section were extrapolated and extrapolated. A step of identifying a curve as a surface shape at the boundary, and a step of calculating a propagation distance of ultrasonic waves from any section of a flaw detection range inside the test body to all transducers using the identified test body surface shape Calculating a delay time of each transducer based on an ultrasonic wave propagation path for each transducer, performing a phased array flaw detection by controlling the transducer based on the delay time, and flaw detection And causing the computer to execute the step of rendering the image on the display.
本発明の超音波探傷試験体の表面形状の同定方法並びに同定プログラムによれば、探傷器の振動子毎に送受信する超音波ビームを利用して、中央演算処理装置による演算で表面形状を算出することができるので、検査に要する時間はほとんど変わらない上に、フェーズドアレイを利用して測定できるので、別の測定装置や器具などを必要とせず、設備費用もほとんどかからない。 According to the surface shape identification method and identification program for an ultrasonic flaw detector of the present invention, the surface shape is calculated by calculation by a central processing unit using an ultrasonic beam transmitted and received for each transducer of the flaw detector. Therefore, since the time required for the inspection hardly changes and the measurement can be performed using the phased array, no separate measuring device or instrument is required, and the equipment cost is hardly required.
また、本発明の開口合成処理プログラムによると、探傷器の振動子毎に送受信する超音波ビームを利用して、中央演算処理装置による演算で表面形状を算出すると共に、該表面形状データを用いて受信する振動子毎の超音波の伝播経路に基づいて各受信素子で受信されるAスコープ波形信号の遅れを修正するように波形の位相をシフトし、波の位相を揃えた状態で重ね合わせる開口合成処理を実行できるので、試験体の内部の探傷領域の全域において微弱な信号強度の増幅や方位分解能、SN比の向上が行われて高い方位分解能を維持しつつ微弱なエコーが検出できる。依って、溶接余盛のような形状変化部表層域の探傷を可能とする。しかも、集束させない拡がりの大きい超音波ビームを入射させるため、高クロム鋼が使用されている高温高圧配管の溶接継手における熱影響部細粒域に発生する図15に示すような溶接止端部下側の表層域のタイプIV損傷即ち超音波の伝播方向とタイプIV損傷が平行である場合においても、さらには、タイプIV き裂発生前のクリープボイドが密集し始めた段階の欠陥を検出することが期待できる。 Further, according to the aperture synthesis processing program of the present invention, the surface shape is calculated by the calculation by the central processing unit using the ultrasonic beam transmitted and received for each transducer of the flaw detector, and the surface shape data is used. An aperture that shifts the phase of the waveform so as to correct the delay of the A scope waveform signal received by each receiving element based on the propagation path of the ultrasonic wave for each transducer to be received, and superimposes the wave phases in an aligned state. Since the synthesizing process can be executed, a weak echo can be detected and a weak echo can be detected while maintaining a high azimuth resolution by performing weak signal intensity amplification, azimuth resolution and SN ratio improvement over the entire flaw detection area inside the specimen. Therefore, it is possible to detect flaws in the surface area of the shape change portion such as welding surplus. In addition, an ultrasonic beam having a large spread that is not focused is made incident, so that the lower side of the weld toe as shown in FIG. 15 is generated in the heat-affected zone fine grain region in the weld joint of the high-temperature high-pressure pipe in which high-chromium steel is used. Even when the type IV damage in the surface layer of the surface layer, that is, the propagation direction of ultrasonic waves and the type IV damage are parallel to each other, it is possible to detect defects at the stage where creep voids before the occurrence of type IV cracks begin to condense. I can expect.
また、本発明のフェーズドアレイ探傷プログラムによると、探傷器の振動子毎に送受信する超音波ビームを利用して、中央演算処理装置による演算で表面形状を算出すると共に、該表面形状データを用いて試験体内部の探傷範囲の任意の区画から全ての振動子までの超音波の伝播距離を演算して、各振動子の遅延時間を算出することができるので、遅延時間に基づいて振動子の発信を制御してフェーズアレイ探傷を実施することができる。したがって、探傷領域の全領域で予め求められた表面形状に応じて順次超音波ビームが集束するように送受信が繰り返されるので、高精度に探傷することができる。このフェーズドアレイ探傷においても、上述の開口合成処理と同等の探傷を可能とする。 Further, according to the phased array flaw detection program of the present invention, the surface shape is calculated by the calculation by the central processing unit using the ultrasonic beam transmitted and received for each transducer of the flaw detector, and the surface shape data is used. The delay time of each transducer can be calculated by calculating the propagation distance of the ultrasonic waves from any section of the flaw detection range inside the specimen to all transducers. Can be controlled to perform phased array flaw detection. Therefore, since the transmission and reception are repeated so that the ultrasonic beam is successively focused in accordance with the surface shape obtained in advance in the entire flaw detection area, flaw detection can be performed with high accuracy. This phased array flaw detection also enables flaw detection equivalent to the above-described aperture synthesis process.
以下、本発明の構成を実施形態に基づいて詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail based on embodiments.
探触子1から送信された超音波ビーム4は、一部が試験体2の内部に伝播し、一部が試験体2の表面で反射する。通常、超音波探触子は試験体表面からのエコーがウェッジ内で吸収されて探触子で検出しないように配慮されており、試験体内部からのエコーのみを検出するように設けられている。本発明の形状変化部を有する試験体の表面形状同定方法は、試験体表面からのエコーを積極的に利用することにより、表面形状を同定するものである。 A part of the ultrasonic beam 4 transmitted from the probe 1 propagates inside the test body 2, and a part is reflected by the surface of the test body 2. Usually, the ultrasonic probe is designed so that echoes from the surface of the specimen are absorbed in the wedge and not detected by the probe, and only echoes from inside the specimen are detected. . The method for identifying the surface shape of a specimen having a shape changing portion according to the present invention identifies the surface shape by actively using echoes from the surface of the specimen.
ここで、超音波ビーム4は、試験体2の表面に対して垂直な反射波が探触子1に検出される。したがって、広がりのある超音波の場合、図1に示すように、試験体2の表面と振動子1の面とが平行なときには試験体表面と振動子面との双方に垂直な振動子直下の試験体表面からのエコーが検出され、試験体表面と振動子面とが非平行なときには試験体表面と垂直なエコーが検出される。しかしながら、検出信号だけでは超音波が振動子直下の試験体表面で反射されたものか、振動子直下から離れた地点で反射されたものかは判断できない。このため、斜面で反射したものは、図1のA’点で反射したものと推定され、実際の振動子直下の試験体2の表面上の点Aとの間に誤差が生ずる。このため、試験体の表面エコーから導き出されるビーム路程を単純に繋ぐことで形状を特定しても、表面形状に誤差が生ずることとなる。 Here, the ultrasonic beam 4 is detected by the probe 1 as a reflected wave perpendicular to the surface of the specimen 2. Therefore, in the case of a spreading ultrasonic wave, as shown in FIG. 1, when the surface of the test body 2 and the surface of the vibrator 1 are parallel to each other, it is directly below the vibrator perpendicular to both the test body surface and the vibrator surface. An echo from the surface of the test body is detected, and an echo perpendicular to the surface of the test body is detected when the surface of the test body and the transducer surface are not parallel. However, it cannot be determined from the detection signal alone whether the ultrasonic wave is reflected on the surface of the test body immediately below the transducer or is reflected at a point away from directly below the transducer. For this reason, it is presumed that what is reflected by the inclined surface is reflected by the point A 'in FIG. 1, and an error occurs between the point A and the point A on the surface of the test body 2 directly under the vibrator. For this reason, even if the shape is specified by simply connecting the beam path derived from the surface echo of the specimen, an error occurs in the surface shape.
即ち、図3(a)に示すように超音波ビームの伝播方向と試験体表面の法線方向が平行な場合は、ビーム路程を実距離として計算すれば、表面反射波の受信エコーまでのビーム路程が振動子面から試験体表面までの距離である。しかし、図3(b)のようにビームの伝播方向と試験体表面の法線方向が傾いている場合は、表面に垂直に入射する波(図中に実線矢印で示す)による反射波が受信され、これを用いて振動子面と試験体表面の距離を算出すると、図中のΔyだけ誤差が生ずる。試験体表面が平坦な場合は、入射角度が一様なためΔyの補正が容易であるが、表面形状が途中で変化する試験体では補正は困難である。そこで、ビームの拡がりにより表面反射が起きる座標を特定することにより、試験体表面を再構成することを考えた。 That is, as shown in FIG. 3A, when the propagation direction of the ultrasonic beam and the normal direction of the specimen surface are parallel, the beam up to the reception echo of the surface reflected wave can be calculated by calculating the beam path as the actual distance. The path length is the distance from the transducer surface to the specimen surface. However, when the beam propagation direction and the normal direction of the specimen surface are tilted as shown in Fig. 3 (b), the reflected wave is received by the wave incident perpendicularly to the surface (indicated by the solid arrow in the figure). If the distance between the transducer surface and the specimen surface is calculated using this, an error is generated by Δy in the figure. When the surface of the test specimen is flat, it is easy to correct Δy because the incident angle is uniform, but it is difficult to correct the test specimen whose surface shape changes midway. Therefore, it was considered to reconstruct the surface of the specimen by specifying the coordinates at which surface reflection occurs due to beam expansion.
図4に示すように、反射波が得られる試験体表面が隣接する振動子間で直線であると仮定すれば、振動子を中心とし、表面からのエコーが現れるビーム路程rを半径として円を考え、隣接する振動子が描写する円との接線が試験体表面となる。本発明では、接線と円の接点を試験体表面の座標と考えることとした。この方法では、拡がりが大きいビームを用いた方が傾斜の大きい試験体表面からも反射波が得られるが、図5に示す隣接する振動子A、Bにおいて、振動子の中心間距離Δxより表面エコーが現れるビーム路程差Δrが大きい場合は、共通接線が作成できなくなる。これは振動子間で測定する表面の形状変化が著しい場合に起き、例えば突合せ溶接における余盛のように母材から溶金が盛り上がって形状変化が起き始める点などで起こる。そこで、本発明では、このような共通接線が作成できない点を境界として、形状変化の傾きが不連続になると考えた。そして、突合せ溶接の余盛形状は二次関数で近似できると仮定し、その境界で区切り、各区間での表面座標を二次補間することとした。 As shown in FIG. 4, if it is assumed that the surface of the test specimen from which the reflected wave is obtained is a straight line between adjacent transducers, a circle is formed with the radius of the beam path r where the echo from the surface appears, centering on the transducer. Considering, the tangent to the circle drawn by the adjacent vibrator is the surface of the specimen. In the present invention, the contact point between the tangent line and the circle is considered as the coordinate of the surface of the specimen. In this method, a reflected wave can be obtained from the surface of the specimen having a large inclination by using a beam having a large spread. However, in the adjacent transducers A and B shown in FIG. If the beam path difference Δr where the echo appears is large, a common tangent cannot be created. This occurs when there is a significant change in the shape of the surface to be measured between the vibrators. For example, it occurs when the shape of the molten metal rises from the base metal, such as a surplus in butt welding. Therefore, in the present invention, it is considered that the gradient of the shape change becomes discontinuous at the point where such a common tangent cannot be created. And it assumed that the surplus shape of butt-welding can be approximated by a quadratic function, was divided at the boundary, and the surface coordinates in each section were subjected to quadratic interpolation.
以下に、表面形状同定方法の手順を図16及び図17に基づいてさらに具体的に示す。
まず、表面形状が変化した形状変化部を有する試験体2の表面に、試験体の表面形状に沿って形態を変化させうる媒質3を介してフェーズドアレイ1を配置する。このとき、アレイ探触子1は治具5などで固定され、試験体の表面との間の間隔が保たれる。ここで、探傷器のフェーズドアレイ1と試験体2との間に介在される媒質3は、例えば水などの液体あるいはジェルなどの半固形体の使用が好ましい。水を媒質として用いる場合、一般に局部水浸法と呼ばれる探傷法においてフェーズドアレイを用いたものとなる。
Hereinafter, the procedure of the surface shape identification method will be described more specifically based on FIG. 16 and FIG.
First, the phased array 1 is arranged on the surface of the test body 2 having the shape changing portion whose surface shape has changed via the medium 3 whose form can be changed along the surface shape of the test body. At this time, the array probe 1 is fixed by the jig 5 or the like, and the distance from the surface of the specimen is maintained. Here, the medium 3 interposed between the phased array 1 of the flaw detector and the test body 2 is preferably a liquid such as water or a semi-solid body such as gel. When water is used as a medium, a phased array is used in a flaw detection method generally called a local water immersion method.
次に、超音波探傷器で、1素子を用いたリニア電子走査により、各探触子位置において試験体の表面反射に起因する振幅を検出する(S1)。つまり、フェーズドアレイの各振動子毎に超音波を試験体に向けて射出させて表面エコーを取得する。例えば、64素子のフェーズドアレイを用いる場合、1素子の送受信を順番に1素子から64素子まで繰り返して、各振動子毎の表面エコーを取得する。 Next, the ultrasonic flaw detector detects the amplitude resulting from the surface reflection of the specimen at each probe position by linear electronic scanning using one element (S1). That is, surface echoes are acquired by emitting ultrasonic waves toward the test body for each transducer of the phased array. For example, when a 64-element phased array is used, transmission / reception of one element is repeated in order from 1 element to 64 elements, and a surface echo for each transducer is acquired.
次に、各振動子毎に取得された表面反射に起因する振幅が現れるまでのビーム路程、即ち各振動子から反射が起きた試験体の表面までのビーム路程を求める(S3−1)。 Next, the beam path length until the amplitude due to the surface reflection acquired for each transducer appears, that is, the beam path length from each transducer to the surface of the test body where the reflection occurs is obtained ( S3-1 ).
そして、各振動子を中心とし各振動子毎に求まるビーム路程を半径とする円を想定し、隣り合う振動子を中心とする円の共通外接線を計算によって求める(S3−2)。尚、2つの円の共通接線は、2つの円の半径(ビーム路程)と、2つの円の中心距離(振動子間隔)とが定まれば計算できるものであり、既にその共通接線を計算する方程式は導出され公知であるあることから説明を省略する。 Then, assuming a circle whose radius is the beam path obtained for each transducer centering on each transducer, a common outer tangent of the circles centering on adjacent transducers is obtained by calculation (S 3-2 ). The common tangent of two circles can be calculated if the radius (beam path) of the two circles and the center distance (transducer spacing) of the two circles are determined, and the common tangent is already calculated. Since the equation is derived and known, the description is omitted.
次に、2つの振動子の間の区間で共通外接線が求まったか否かを判断し(S3−3)、共通外接線が求まったときにはさらに全振動子について共通外接線を求める処理を行ったか否かを判断する(S3−5)。即ち、共通外接線を順次作成しながら、共通接線が作成できない境界を探索する。そして、共通外接線が求まらないときには、その振動子区間を境界と判断してフラグjを立てあるいはフラッグjに1を加算してその振動子区間を境界と特定し(S3−4)、ステップS3−5にジャンプする。そして、全振動子について共通外接線を求める処理が加算されていないときには、振動子のフラグiに1を加算して(S3−6)、ステップS3−2の前にジャンプし、次の振動子についてステップS3−2〜S3−5を繰り返す。そして、全振動子について共通外接線を求める処理が完了したときに、ステップS3−7に移る。 Next, it is determined whether or not a common tangent line is obtained in the section between the two vibrators ( S3-3 ). When the common tangent line is obtained, a process for obtaining a common tangent line for all vibrators is further performed. It is determined whether or not (S 3-5 ). That is, a boundary where a common tangent cannot be created is searched while sequentially creating a common outer tangent. When the common circumscribing line cannot be obtained, it is determined that the transducer section is a boundary and a flag j is set or 1 is added to the flag j to identify the transducer section as a boundary ( S3-4 ). Jump to step S3-5 . When the process for obtaining the common tangent line is not added for all the vibrators, 1 is added to the vibrator flag i (S 3-6 ), the process jumps to step S 3-2 , and the next Steps S 3-2 to S 3-5 are repeated for the vibrator. And when the process which calculates | requires a common circumscribed line about all the vibrators is completed, it moves to step S3-7 .
次いで、ステップS3−7において、初期値をk=1とし,境界と判断される区間kとk+1内の共通外接線上の点のグループを二次補間し、これら二次補間したものを試験体表面として同定する。次いで、境界と判断される区間を全てについて二次補間したか否かを判断し(S3−8)、終了していない場合にはステップS3−9でフラグkに1を加算し、ステップS3−7にジャンプし、該当区間内の共通外接線上の点のグループを二次補間する。 Next, in step S3-7 , the initial value is k = 1, the group of points on the common tangent line in the sections k and k + 1 determined to be the boundary is subjected to quadratic interpolation, and these quadratic interpolated ones are tested. Identify as surface. Then, for all the sections it is determined as a boundary to determine whether the secondary interpolation (S3 -8), adds 1 to the flag k in step S3 -9 If not completed, step S3 - Jump to 7 , and quadratic interpolation is performed on the group of points on the common tangent line in the corresponding section.
次いで、それぞれグループの二次曲線を互いの交点まで外挿して繋げたものを表面形状として同定する。この各交点の間に対応する二次曲線がその交点(x座標)間の表面座標となる(S3−10)。試験体の表面形状データは、例えば、1番目の振動子の位置を原点としたx−y平面を考え、振動子の並んだ方向をx軸方向、ビーム路程方向をy軸方向とし、二次曲線をy=ax2+bx+cとしてメモリに格納される(S3−11)。具体的には、境界を境とする2つの共通外接線が得られる区間のグループの2つの二次曲線の係数a,b,cがメモリに保存される。そして、必要に応じて、PCのディスプレイに画像表示されたり、開口合成処理やフェーズドアレイ探傷に用いられる。勿論、試験体の表面形状データは、作業メモリなどに一時的にストアし、次工程の開口合成処理あるいはフェーズドアレイ探傷に向けた演算処理に用いられるようにしても良い。 Next, a surface shape is identified by extrapolating the quadratic curves of each group to the intersection of each other. Corresponding quadratic curves between the intersections become surface coordinates between the intersections (x coordinates) ( S3-10 ). As for the surface shape data of the test body, for example, considering the xy plane with the position of the first transducer as the origin, the direction in which the transducers are arranged is the x-axis direction, the beam path direction is the y-axis direction, and secondary the curve is stored in memory as y = ax 2 + bx + c (S3 -11). Specifically, the coefficients a, b, and c of two quadratic curves in a group of sections in which two common circumscribed lines with the boundary as a boundary are obtained are stored in the memory. If necessary, an image is displayed on the display of the PC, or used for aperture synthesis processing or phased array flaw detection. Of course, the surface shape data of the specimen may be temporarily stored in a work memory or the like and used for the aperture synthesis processing in the next process or the arithmetic processing for the phased array flaw detection.
以上の計算と表面形状等の同定とは、パーソナルコンピュータ(PC)のROMなどの記憶媒体に格納されているプログラムによって、パーソナルコンピュータに実行させるものである。ここで、超音波探傷器とPCとは、探傷器で取得した表面エコーデータをPCに取り込んだ後はオフラインとしてPC内で処理し、PCのディスプレイに画像表示するようにしているが、これに特に限られるものではない。 The above calculation and identification of the surface shape and the like are executed by a personal computer by a program stored in a storage medium such as a ROM of a personal computer (PC). Here, the ultrasonic flaw detector and the PC process the surface echo data acquired by the flaw detector into the PC and then process it offline in the PC and display the image on the PC display. It is not particularly limited.
以上の手順により試験体表面形状を同定すれば、その表面形状データを用いて振動子から放射された超音波ビームが試験体内の点に達するまでの経路を計算することができる。
例えば、波は2点間を伝播するのに要する時間が最小となる経路を進むというフェルマーの原理に従って伝播経路を計算することができる。いま、図6に示すように直交座標系x−yが定義され、y=ax2+bx+cで記述される境界線で媒質1と2が区分されている。このとき、媒質1の点P(xt,0)と、媒質2の点Q(xt+x1+x2,y1+y2)の2点間の伝播経路を考えると、幾何学的に次式が成り立つ。
y1tanθ1+(y−y1)tanθ2=x−xt (3-1)
C2sin(θ1+θ0)=C1sin(θ2+θ0) (3-2)
tanθ0=2a(xt+x1)+b (3-3)
y1=a(xt+xi)2+b(xt+x1)+c (3-4)
ここで、C1とC2は媒質1と2の音速である。上式は非線形であるため、逐次近似などで角度を決定する必要がある。式を微分し整理すると次の式が得られる。
(3-5)
δx=0になるように上式に逐次近似を適用することで、θ0,θ1,θ2,y1を計算できる。本手法では試験体表面を複数の二次曲線で近似しており、経路が複数あるため、逐次計算を行う際には初期値を与える曲線を決定する必要がある。
If the surface shape of the specimen is identified by the above procedure, the path until the ultrasonic beam radiated from the vibrator reaches the point in the specimen can be calculated using the surface shape data.
For example, a propagation path can be calculated according to Fermat's principle that a wave travels a path that takes the minimum time to propagate between two points. Now, as shown in FIG. 6, an orthogonal coordinate system xy is defined, and the media 1 and 2 are divided by a boundary line described by y = ax 2 + bx + c. At this time, considering the propagation path between the point P (x t , 0) of the medium 1 and the point Q (x t + x 1 + x 2 , y 1 + y 2 ) of the medium 2, the following geometrically: The formula holds.
y 1 tan θ 1 + (y−y 1 ) tan θ 2 = x−x t (3-1)
C 2 sin (θ 1 + θ 0 ) = C 1 sin (θ 2 + θ 0 ) (3-2)
tanθ 0 = 2a (x t + x 1 ) + b (3-3)
y 1 = a (x t + x i ) 2 + b (x t + x 1 ) + c (3-4)
Here, C 1 and C 2 are sound speeds of the media 1 and 2. Since the above equation is non-linear, it is necessary to determine the angle by successive approximation or the like. Differentiating and organizing the formula gives the following formula.
(3-5)
By applying successive approximation to the above equation so that δx = 0, θ 0 , θ 1 , θ 2 , y 1 can be calculated. In this method, the surface of the specimen is approximated by a plurality of quadratic curves, and there are a plurality of paths. Therefore, it is necessary to determine a curve that gives an initial value when performing sequential calculation.
以下において、初期値の与え方も含めた超音波ビーム伝播経路の決定方法を説明する。図7に示すx−y直交座標系を定義する。
1)試験体表面をn個に分割し、分割点をSi(i=1,n)とする。
2)試験体内の任意点Qを起点として、フェルマーの原理に従って試験体表面上の各点
Siを透過し探傷面に達する点をXi(i=1,n)とする。
3)振動子Pを間に挟む点Xi,Xi+1を探索し、Pと点XiおよびXi+1とのx軸方向の
距離をそれぞれΔxiおよびΔxi+1とおく。
4)試験体表面上の点Rを考え、Rと点SiおよびSi+1とのx軸方向距離をそれぞれΔ
siおよびΔsi+1とおくとき、Δsi:Δsi+1=Δxi:Δxi+1を満たすx座標を
点Rのx座標とする。
5)点Rを初期値として、式(3-5)の逐次計算よりフェルマーの原理を満たす座標を決
定する。
6)線分PRおよびQRがRが存在する表面以外の表面近似曲線と交差していないかを
確認し、伝播経路を決定する。
In the following, a method for determining an ultrasonic beam propagation path including how to assign an initial value will be described. The xy orthogonal coordinate system shown in FIG. 7 is defined.
1) Divide the surface of the test body into n pieces, and let the division point be S i (i = 1, n).
2) starting from the arbitrary point Q of the test body to the point reaching through the points S i on the specimen surface according to Fermat's principle flaw detection surface and X i (i = 1, n ).
3) The points X i and X i + 1 sandwiching the transducer P are searched, and the distances in the x-axis direction between P and the points X i and X i + 1 are set to Δx i and Δx i + 1 , respectively.
4) Considering the point R on the surface of the specimen, the distances in the x-axis direction between R and the points S i and S i + 1 are respectively Δ
When s i and Δs i + 1 are set, an x coordinate satisfying Δs i : Δs i + 1 = Δx i : Δx i + 1 is set as an x coordinate of the point R.
5) Using the point R as the initial value, determine the coordinates that satisfy Fermat's principle from the sequential calculation of Equation (3-5).
6) Check if the line segments PR and QR intersect the surface approximation curve other than the surface where R exists, and determine the propagation path.
そして、上述の手順をコンピュータで実行し形状変化部に入射した超音波の伝播経路を決定すれば、以下の方法で任意点の振幅を計算することができる。即ち、表面形状が変化した形状変化部を有する試験体に対して開口合成処理が実行できる。
図8に示すように、Bスコープ画像内の着目する画素Q(xi,yi)の振幅値E (xi,yi)は、振動子位置P(xk,0)で得られたAスコープ波形S(xk,t)を用いて次式で計算される。
(3-6)
ここで、
c1およびc2:媒質1および2の音速
N:素子の総数
r1(xi,yi,xk):振動子位置P(xk,0)から超音波が画素Q(xi,yi)にフェル マーの原理を満たすように到達するまでの経路上で、P(xk, 0)から媒質1と媒質2の境界上の点までの距離
r2(xi,yi,xk):上記経路のうち境界上の点から画素Q(xi,yi)までの距離
である。
Then, if the above procedure is executed by a computer and the propagation path of the ultrasonic wave incident on the shape changing portion is determined, the amplitude of an arbitrary point can be calculated by the following method. That is, the aperture synthesis process can be performed on a test body having a shape changing portion whose surface shape has changed.
As shown in FIG. 8, the amplitude value E (x i , y i ) of the pixel Q (x i , y i ) of interest in the B scope image was obtained at the transducer position P (x k , 0). Using the A scope waveform S (x k , t), the following equation is used.
(3-6)
here,
c 1 and c 2 : sound speeds of the media 1 and 2 N: total number of elements r 1 (x i , y i , x k ): ultrasonic waves from the transducer position P (x k , 0) to the pixel Q (x i , The distance r 2 (x i , y i ,) from P (x k , 0) to a point on the boundary between the medium 1 and the medium 2 on the path to reach y i ) so as to satisfy Fermat's principle x k ): a distance from a point on the boundary to the pixel Q (x i , y i ) in the path.
具体的には、開口合成処理プログラムは図16に示す以下の手順を超音波送信器並びにそれに接続されたPCの各々の中央演算処理部において実行させる。
1)送受信に1素子を用いたリニアスキャンを超音波探傷器で実行して、各振動子毎の表面反射データを取得する(S1)。
2)受信した表面反射波から試験体表面形状の座標をコンピュータの演算処理で決定する(S3)。具体的には、上述の1),2)のステップ(S1,S3)は、図17に示すように、超音波探傷器から取り込んだ試験体の表面エコーのデータ(S1)を基に表面形状同定処理(S3−1〜S3−12)をコンピュータで実行することにより、y=ax2+bx+cの二次曲線で表される試験体の表面形状データを算出する。
3)また、超音波探傷器で試験体内部を探傷し、受信波形を取得する(S2)。例えば、複数振動素子を同時送信させるリニアスキャンを行って試験体内部の探傷のための探傷領域の内部エコーのデータを取得する。
4)そして、上記2)のステップ(S3)で決定した表面形状座標から、素子Pから表面Rを通過して試験体内の点Qに達する超音波の伝播経路を決定する(S4)。即ち、試験体内部の探傷範囲をメッシュ状に区画し、同定された試験体表面形状に基づいて受信する振動子毎の各メッシュから振動子までの超音波の伝播距離を演算する。
5)上記4)で決定した経路に対応する受信波形の振幅をQ点の振幅に加算する(S5−1)。
6)試験体内のQ点を移動させながら上記4および5を繰り返す(S5−2)。つまり、探傷範囲の全区画に対して各振動子毎の超音波の伝播経路に基づいて各受信素子で受信されるAスコープ波形信号の遅れを修正するように波形の位相をシフトし、波の位相を揃えた状態で重ね合わせる開口合成処理を行う(S5)。
本実施例においては、表面エコーのデータと内部エコーのデータとは連続してPCに取り込まれ、その後、オフライン状態のPC(パーソナルコンピュータ)で振動子毎の表面エコーを利用して表面形状を演算して同定し、さらにこの同定された表面形状データを利用して内部エコーを受信する振動子毎の試験体内部の任意の点までの超音波の伝播経路を求めて、その伝播経路に応じて各振動子毎に受信したAスコープ波形信号の遅れを修正するように波形の位相をシフトし、波の位相を揃えた状態で重ね合わせる開口合成処理を行うようにしている。そして、開口合成処理により生成された探傷画像をPCのディスプレイに表示させるようにしている(S6)。
Specifically, the aperture synthesis processing program causes the following procedure shown in FIG. 16 to be executed in the central processing unit of each of the ultrasonic transmitter and the PC connected thereto.
1) A linear scan using one element for transmission / reception is executed by an ultrasonic flaw detector to acquire surface reflection data for each transducer (S1).
2) The coordinates of the surface shape of the specimen are determined from the received surface reflected wave by computer processing (S3). Specifically, the steps (S1, S3) of the above 1) and 2) are performed based on the surface echo data (S1) of the specimen taken from the ultrasonic flaw detector as shown in FIG. by executing the identification processing (S3 -1 ~S3 -12) computer to calculate the surface shape data of the specimen represented by quadratic curve of y = ax 2 + bx + c .
3) Further, the inside of the test body is detected with an ultrasonic flaw detector, and a received waveform is acquired (S2). For example, a linear scan in which a plurality of vibration elements are simultaneously transmitted is performed to acquire internal echo data of a flaw detection area for flaw detection inside the specimen.
4) Then, from the surface shape coordinates determined in step (S3) of the above 2), a propagation path of the ultrasonic wave passing through the surface R from the element P and reaching the point Q in the test body is determined (S4). That is, the flaw detection range inside the specimen is divided into meshes, and the propagation distance of ultrasonic waves from each mesh to each vibrator to be received is calculated based on the identified specimen surface shape.
5) The amplitude of the received waveform corresponding to the path determined in 4) above is added to the amplitude of the Q point (S5 -1 ).
6) Move the Q point of the test body while repeating the above 4 and 5 (S5 -2). In other words, the phase of the waveform is shifted so as to correct the delay of the A scope waveform signal received by each receiving element based on the ultrasonic wave propagation path for each transducer for all sections of the flaw detection range. Aperture synthesis processing is performed in which the phases are aligned (S5).
In this embodiment, the surface echo data and the internal echo data are continuously taken into the PC, and then the surface shape is calculated using the surface echo for each transducer in the off-line PC (personal computer). Then, using this identified surface shape data, find the propagation path of the ultrasonic wave to any point inside the specimen for each transducer that receives the internal echo, and according to the propagation path The phase of the waveform is shifted so as to correct the delay of the A scope waveform signal received for each transducer, and aperture synthesis processing is performed in which the phases of the waves are aligned. Then, the flaw detection image generated by the aperture synthesis process is displayed on the display of the PC (S6).
尚、本実施形態の場合、ステップ1及び2では、ともに表面エコーと内部エコーを取得しているが、ステップ1では表面エコーを利用し、ステップ2では試験体内部のエコーを利用している。したがって、ステップ1の1素子による送信で試験体内部のエコーに内在き裂からのエコーが受信できる場合には、1回のスキャンで取得されるエコーデータで試験体の表面形状の同定と、内部の探傷とが実施できるので、ステップ2のデータ取得は必要なくなる。即ち、本実施形態では、試験体の表面形状の同定ための1振動素子を用いたリニアスキャンと、試験体内部の探傷のための複数振動素子を同時送信させるリニアスキャンとは、別々のステップで実行するようにしているが、これに特に限定されるものではなく、必要に応じて1つのステップで処理するようにしても良い。例えば、大きな振動子を用いる場合には、単一の振動子から送信することで、試験体表面からのエコーと試験体内部からの探傷に十分な大きさのエコーとを受信可能となるので、1振動素子を用いたリニアスキャンだけで双方のエコーを同時に取得することが可能である。しかし、振動子寸法の小さな1素子だけの超音波ではエネルギが弱く、探傷に十分な大きさのエコーを受信できないことがあるので、試験体内部のエコーを収集するには同時送信する素子数を増やして超音波のエネルギーを大きくすることが好ましい。また、場合によっては、試験体内部の探傷のための複数振動素子を同時送信させるリニアスキャンの後に、試験体の表面形状の同定ための1振動素子を用いたリニアスキャンを実行するようにしても良い。いずれにしても、超音波探傷器で取得された表面エコー並びに試験体内部のエコーのデータは、一旦PCのメモリに格納された後、オフライン状態PCの中央演算処理部で処理される場合には、データ取得の前後関係は関係ないものである。 In the present embodiment, both the surface echo and the internal echo are acquired in steps 1 and 2, but the surface echo is used in step 1 and the echo inside the specimen is used in step 2. Therefore, if the echo from the internal crack can be received in the echo inside the specimen by transmission by one element in step 1, the surface shape of the specimen is identified by the echo data acquired in one scan, Therefore, the data acquisition in step 2 is not necessary. That is, in this embodiment, the linear scan using one vibration element for identifying the surface shape of the test specimen and the linear scan for simultaneously transmitting a plurality of vibration elements for flaw detection inside the test specimen are separate steps. However, the present invention is not particularly limited to this, and may be processed in one step as necessary. For example, when using a large vibrator, by transmitting from a single vibrator, it is possible to receive an echo from the surface of the specimen and an echo large enough for flaw detection from within the specimen, Both echoes can be acquired simultaneously by only a linear scan using one vibration element. However, since ultrasonic waves with only one element with a small transducer size are weak in energy and may not receive echoes large enough for flaw detection, the number of simultaneously transmitted elements must be set to collect echoes inside the specimen. It is preferable to increase the energy of ultrasonic waves. In some cases, a linear scan using one vibration element for identifying the surface shape of the test object may be executed after the linear scan for simultaneously transmitting a plurality of vibration elements for flaw detection inside the test object. good. In any case, when the surface echo acquired by the ultrasonic flaw detector and the echo data inside the specimen are once stored in the memory of the PC and then processed by the central processing unit of the offline PC. The data acquisition context is irrelevant.
本発明の超音波探傷試験体の表面形状の同定方法並びに同定プログラムの有効性を検証した。
図9に示す突合せ溶接と形状不連続部溶接部の形状を模擬した試験体を作製し、溶接熱影響部細粒域を想定した位置にタイプIV損傷を想定した直径1mmの横穴を複数個導入した。ここで、試験体の材質はSUS304である。そして、周波数5MHz、素子数64個、各素子の開口面積0.6mm×10mm、ピッチ0.7mmのフェーズドアレイ探触子を使って水浸探傷を行った。このとき、探傷面が平行であれば屈折角45度で横波が入射する角度を保持できる冶具を探触子に装着した。冶具はアレイ探触子の1chで高さ8mmである。データ取得には三次元開口合成アレイ検査装置(東芝電力システム社製Matrixeye EX(登録商標))を用い、電子走査は送受信に1素子を用いたリニアスキャンとした。Matrixeyeは各素子で受信されたAスコープ波形からBスコープ画像内の画素の振幅値を内蔵された並列演算回路と4つのA/D変換器により高速に開口合成処理し、リアルタイムでBスコープ画像を表示できる。
The effectiveness of the identification method and identification program of the surface shape of the ultrasonic testing specimen of the present invention was verified.
A test specimen simulating the shape of the butt weld and the discontinuous part weld shown in Fig. 9 was produced, and a number of 1 mm diameter horizontal holes that assumed type IV damage were introduced at positions that assumed a fine grain region of the weld heat affected zone. did. Here, the material of the test body is SUS304. Then, water immersion testing was performed using a phased array probe having a frequency of 5 MHz, 64 elements, an opening area of each element of 0.6 mm × 10 mm, and a pitch of 0.7 mm. At this time, if the flaw detection surface is parallel, a jig capable of maintaining an angle at which a transverse wave is incident at a refraction angle of 45 degrees is attached to the probe. The jig is one channel of the array probe and has a height of 8 mm. For data acquisition, a three-dimensional aperture synthetic array inspection device (Matrixeye EX (registered trademark) manufactured by Toshiba Electric Power Systems Co., Ltd.) was used, and electronic scanning was linear scanning using one element for transmission and reception. Matrixeye performs aperture synthesis processing at high speed by using a parallel arithmetic circuit and four A / D converters that incorporate the amplitude values of the pixels in the B scope image from the A scope waveform received by each element, and generates the B scope image in real time. Can be displayed.
まず、本発明にかかる試験体の表面形状の同定方法によって試験体表面形状を測定した。表面形状測定に関しては、図10に示すように探傷面と高さ20mmを保持できる冶具を用いた垂直探傷も行った。図11において、表面からの反射エコーのビーム路程を基準に試験体表面座標を計算したものを方法1(Method 1)、本発明方法により再構成した表面座標を方法2(Method 2)、および実際の表面座標を参考(Reference)として併せて示している。図11(a)と(b)において、点線で囲っている部分では参考と方法2とで誤差がある。この部分では、超音波の主ビームに関しては屈折角が臨界角を越え試験体に入射しないため、開口合成法後の結果にあまり寄与しないと考えられる。また、図11の点線で囲っている部分以外に関しては実際の表面形状とよく一致しており、本発明手法により、表面形状を再現できていることが判った。 First, the specimen surface shape was measured by the method for identifying the surface shape of the specimen according to the present invention. Regarding the surface shape measurement, as shown in FIG. 10, vertical flaw detection was also performed using a jig capable of holding the flaw detection surface and a height of 20 mm. In FIG. 11, Method 1 (Method 1) is used to calculate the surface coordinates of the test specimen based on the beam path of the reflected echo from the surface, and Method 2 (Method 2) is used as the surface coordinates reconstructed by the method of the present invention. The surface coordinates of are also shown as a reference. 11 (a) and 11 (b), there is an error between the reference and method 2 in the portion surrounded by the dotted line. In this part, since the refraction angle of the ultrasonic main beam exceeds the critical angle and does not enter the specimen, it is considered that it does not contribute much to the result after the aperture synthesis method. Further, the portions other than the portion surrounded by the dotted line in FIG. 11 are in good agreement with the actual surface shape, and it has been found that the surface shape can be reproduced by the method of the present invention.
次に、探傷結果を示す。電子走査は、同時送信に7素子を用い、受信は送信素子群と中心を同じとする15個の素子群を設定した。比較として超音波フェーズドアレイ探傷装置(Omniscan)を用いて、表面の形状変化による超音波伝播経路の変化を考慮しない横波斜角水浸探傷を実施した。電子走査はリニアスキャンとし、同時送受信素子数を16素子とし、平板を仮定した場合に横穴近傍でビームが集束するように遅延制御設定した。突き合せ溶接模擬試験体と形状不連続部溶接部模擬試験体を探傷して得られたBスコープ画像をそれぞれ図12、図13に示す。図12(a)及び図13(a)は形状変化を考慮しないフェーズドアレイ法により得られた結果、図12(b)は本発明にかかる開口合成法を適用した探傷結果である。また縦軸はビーム路程を示すが、ここでは水の音速を基準にビーム路程を計算している。図12において、Tは横波による横穴からのエコーを示す。また、図12(b)の結果では、解析が容易になるように後処理により試験体内は実際の座標表示になるように補正している。開口合成法によるエコーの集束は、16素子を用いて集束させたフェーズドアレイ法の探傷結果と同程度であるが、開口合成法による結果の方がエコーの位置関係が明確である。 Next, flaw detection results are shown. In electronic scanning, seven elements were used for simultaneous transmission, and 15 element groups having the same center as the transmitting element group were set for reception. As a comparison, an ultrasonic phased array flaw detector (Omniscan) was used to perform a transverse wave oblique water immersion flaw detection that does not take into account changes in the ultrasonic propagation path due to surface shape changes. Electronic scanning was linear scanning, the number of simultaneous transmitting and receiving elements was 16, and delay control was set so that the beam converged near the side hole when a flat plate was assumed. B scope images obtained by flaw detection of the butt welding simulated test specimen and the shape discontinuity weld simulated specimen are shown in FIGS. 12 and 13, respectively. FIGS. 12A and 13A are the results obtained by the phased array method without considering the shape change, and FIG. 12B is the flaw detection result to which the aperture synthesis method according to the present invention is applied. The vertical axis indicates the beam path length. Here, the beam path length is calculated based on the sound speed of water. In FIG. 12, T indicates an echo from a lateral hole caused by a transverse wave. Further, in the result of FIG. 12B, correction is performed by post-processing so that the actual coordinates are displayed in the test body so as to facilitate the analysis. The focusing of the echo by the aperture synthesis method is similar to the flaw detection result of the phased array method focused by using 16 elements, but the echo positional relationship is clearer in the result of the aperture synthesis method.
図13において、Lは縦波成分による横穴からのエコーを示す。図14に示すように、振動子から放射された超音波ビームは、試験体表面Aに入射後にモード変換された横波が横穴に達し、表面Bに入射後は縦波が横穴に達する。フェーズドアレイ法の探傷結果を示す図13(a)では、TとLが混在して表示されているが、横波を基準に開口合成法処理を行った図13(b)では、破線で囲ったLが薄くなり、Tだけが集束している。また、縦波を基準に開口合成法処理を行った図13(c)ではTは消え、Lだけが集束している。また、Lに関しては3個の横穴からの指示が得られているのに対し、Tに関しては2個しか得られていない。これは、図14に示すように表面近傍の横穴に達する横波は、他の横穴に達する横波と比較すると、その振幅が小さいため、得られるエコーも他の横穴と比較すると小さく、ほとんど見えないと考えられる。このように、形状変化による超音波ビームの伝播経路を考慮した開口合成法を適用することで、エコーの縦波成分と横波成分の混在を除去し、探傷を容易にすることが可能となる。 In FIG. 13, L indicates an echo from a horizontal hole due to a longitudinal wave component. As shown in FIG. 14, in the ultrasonic beam radiated from the vibrator, the transverse wave that has undergone mode conversion after being incident on the specimen surface A reaches the horizontal hole, and after incident on the surface B, the longitudinal wave reaches the horizontal hole. In FIG. 13A showing the flaw detection result of the phased array method, T and L are displayed together. In FIG. 13B in which the aperture synthesis method processing is performed based on the transverse wave, it is surrounded by a broken line. L becomes thinner and only T is focused. Further, in FIG. 13C in which the aperture synthesis method processing is performed on the basis of the longitudinal wave, T disappears and only L is focused. In addition, for L, instructions from three horizontal holes are obtained, whereas for T, only two are obtained. This is because, as shown in FIG. 14, the transverse wave reaching the lateral hole near the surface has a smaller amplitude than the transverse wave reaching the other lateral hole, so that the obtained echo is also smaller than the other lateral holes and is hardly visible. Conceivable. As described above, by applying the aperture synthesis method in consideration of the propagation path of the ultrasonic beam due to the shape change, it is possible to remove the mixture of the longitudinal wave component and the transverse wave component of the echo and facilitate the flaw detection.
以上の結果、試験体の表面形状を表面反射波による受信波形だけを用いて同定可能であることが検証された。また、従来のフェーズドアレイ法では、形状変化部による影響で縦波と横波の両モードによるエコーが混在して探傷後の解析が困難であったが、同定した試験体表面形状をもとに、超音波ビームの伝播経路を計算し、試験体内全点に集束するように受信波形を位相制御する本発明の開口合成法によれば、信号強度の増幅や方位分解能,SN比の向上が可能となると共に、縦波と横波の個々のモードを選択的に表示させることができるため、反射源位置の同定精度が向上する。 As a result, it was verified that the surface shape of the test specimen can be identified using only the received waveform of the surface reflected wave. In addition, in the conventional phased array method, echoes due to both longitudinal and transverse modes were mixed due to the influence of the shape change part and analysis after flaw detection was difficult, but based on the identified specimen surface shape, According to the aperture synthesis method of the present invention that calculates the propagation path of the ultrasonic beam and controls the phase of the received waveform so as to be focused on all points in the test body, it is possible to amplify the signal intensity, improve the azimuth resolution, and the SN ratio. In addition, the longitudinal wave mode and the transverse wave mode can be selectively displayed, so that the identification accuracy of the reflection source position is improved.
なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本発明は、フェーズドアレイを用いる開口合成処理について主に説明したが、これに特に限られるものではなく、試験体の表面形状の同定並びに同表面形状を考慮した超音波の伝播経路の決定までのステップはフェーズドアレイ探傷における各振動子毎の遅延時間の設定において共通しているので、フェーズドアレイ探傷に応用することも容易である。 The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, the present invention has mainly been described with respect to aperture synthesis processing using a phased array. However, the present invention is not particularly limited to this. Identification of the surface shape of a specimen and determination of the propagation path of ultrasonic waves taking the surface shape into consideration. The steps up to here are common in setting the delay time for each transducer in the phased array flaw detection, and therefore can be easily applied to the phased array flaw detection.
即ち、上述の試験体の表面形状同定方法により、溶接余盛のような形状変化部を有する試験体の表面形状が特定されると、同試験体表面形状から試験体内部の探傷範囲をメッシュ状に区画して各メッシュ毎に全ての振動子までの超音波の伝播距離を算出することができるので、各振動子毎の超音波の伝播経路に基づいて各振動子の遅延時間を求めることができる。そこで、コンピュータで算出されたこの振動子毎の遅延時間を探傷器に入力して、各振動子の発信を制御してフェーズアレイ探傷を実施することができる。これにより、全ての振動子毎に独自の遅延時間を以て超音波が送信されることにより、試験体の内部の探傷領域の任意の位置に超音波が集束される。集束点では全ての振動子から送信される超音波が集まるので探傷精度が高くなる。同様にして、探傷領域の全領域で予め求められた表面形状に応じて順次超音波ビームが集束するように送受信が繰り返されるので、高精度に探傷することができる。そして、その探傷領域の全域の探傷画像がディスプレイに描写される。 That is, when the surface shape of the test body having a shape change portion such as a weld surplus is specified by the above-described surface shape identification method of the test body, the flaw detection range inside the test body is meshed from the surface shape of the test body. Since the ultrasonic propagation distance to all transducers can be calculated for each mesh, the delay time of each transducer can be obtained based on the ultrasonic propagation path for each transducer. it can. Therefore, phase array flaw detection can be performed by inputting the delay time for each vibrator calculated by the computer to the flaw detector and controlling the transmission of each vibrator. As a result, the ultrasonic waves are focused at an arbitrary position in the flaw detection area inside the specimen by transmitting the ultrasonic waves with a unique delay time for every transducer. Since the ultrasonic waves transmitted from all the transducers gather at the focal point, the flaw detection accuracy increases. Similarly, since the transmission and reception are repeated so that the ultrasonic beam is sequentially focused in accordance with the surface shape obtained in advance in the entire flaw detection area, flaw detection can be performed with high accuracy. Then, a flaw detection image of the entire flaw detection area is depicted on the display.
具体的には、フェーズドアレイ探傷プログラムは以下の手順を超音波送信器並びにそれにオンライン接続されたPCの各々の中央演算処理部において実行させる。
1)送受信に1素子を用いたリニアスキャンを超音波探傷器で実行して、各振動子毎の表面反射データを取得する(S1)。
2)また、超音波探傷器で1または数素子を用いたリニア電子走査により、試験体内部を探傷し、受信波形を取得する(S2)。ステップ1と2で取得した表面エコーと内部エコーのデータはPCにそれぞれ取り込まれる。
3)取得された表面エコーのデータに基づいて、試験体表面形状の座標をPCでの演算処理で決定する(S3)。
4)そして、ステップ(S3)で決定した表面形状座標から、素子Pから表面Rを通過して試験体内の点Qに達する超音波の伝播経路を決定する(S4)。
5)次いで、ステップ4で算出された超音波の伝播経路に基づいて、試験体の内部の探傷領域の任意の位置に全ての振動子の超音波が集束される遅延時間を計算する(S5’)。ここで、形状変化部に合わせてフェーズドアレイの遅延制御(delay law)を計算する機能を実装したPC用ソフトウェアとしては、例えば米国Zetec社製 UltraVision 3(登録商標)などが知られている。したがって、試験体の表面形状が同定できれば、フェーズドアレイの遅延制御(delay law)は既存のソフトウェアでも容易に計算される。
6)PCの中央演算処理部で算出された各振動子毎の遅延時間を超音波探傷器に入力して、フェーズドアレイ探傷を実施する(S6’)。
7)探傷画像はPCのディスプレイに表示される(S7’)。
Specifically, the phased array flaw detection program causes the following procedure to be executed in the central processing unit of each of the ultrasonic transmitter and the PC connected online thereto.
1) A linear scan using one element for transmission / reception is executed by an ultrasonic flaw detector to acquire surface reflection data for each transducer (S1).
2) Further, the inside of the specimen is detected by linear electronic scanning using one or several elements with an ultrasonic flaw detector, and a received waveform is acquired (S2). The surface echo data and the internal echo data acquired in steps 1 and 2 are taken into the PC, respectively.
3) Based on the acquired surface echo data, the coordinates of the surface shape of the specimen are determined by calculation processing on the PC (S3).
4) Then, from the surface shape coordinates determined in step (S3), the propagation path of the ultrasonic wave passing through the surface R from the element P and reaching the point Q in the test body is determined (S4).
5) Next, based on the propagation path of the ultrasonic wave calculated in step 4, the delay time during which the ultrasonic waves of all the transducers are focused at an arbitrary position in the flaw detection area inside the test body is calculated (S5 ′). ). Here, for example, UltraVision 3 (registered trademark) manufactured by Zetec Corporation in the United States is known as PC software that implements a function of calculating delay control of a phased array in accordance with the shape change portion. Therefore, if the surface shape of the specimen can be identified, the delay control of the phased array can be easily calculated with existing software.
6) The delay time for each transducer calculated by the central processing unit of the PC is input to the ultrasonic flaw detector to perform phased array flaw detection (S6 ′).
7) The flaw detection image is displayed on the display of the PC (S7 ′).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118832A JP5565904B2 (en) | 2010-05-24 | 2010-05-24 | Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010118832A JP5565904B2 (en) | 2010-05-24 | 2010-05-24 | Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011247649A true JP2011247649A (en) | 2011-12-08 |
JP5565904B2 JP5565904B2 (en) | 2014-08-06 |
Family
ID=45413101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010118832A Expired - Fee Related JP5565904B2 (en) | 2010-05-24 | 2010-05-24 | Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5565904B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014089064A (en) * | 2012-10-29 | 2014-05-15 | Ihi Corp | Method and apparatus for ultrasonic flaw detection |
JP2014089065A (en) * | 2012-10-29 | 2014-05-15 | Ihi Corp | Method and apparatus for ultrasonic flaw detection |
CN105911554A (en) * | 2016-06-06 | 2016-08-31 | 清华大学 | Target identification method based on ultrasonic sensor array |
JP2020038218A (en) * | 2019-11-21 | 2020-03-12 | 株式会社東芝 | Control method, inspection system, program and storage medium |
US11041831B2 (en) | 2017-09-01 | 2021-06-22 | Hitachi-Ge Nuclear Energy, Ltd. | Ultrasonic probe, ultrasonic flaw detection apparatus and method |
WO2022270133A1 (en) * | 2021-06-23 | 2022-12-29 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection device |
WO2023017070A1 (en) * | 2021-08-12 | 2023-02-16 | Vallourec Tubes France | Method for reconstructing a thickness profile of a part to be tested |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6896489B2 (en) | 2017-04-03 | 2021-06-30 | 株式会社東芝 | Ultrasonic flaw detector, ultrasonic flaw detection method and product manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61160053A (en) * | 1985-01-09 | 1986-07-19 | Mitsubishi Heavy Ind Ltd | Ultrasonic flaw detection test |
JPH0245708A (en) * | 1988-08-08 | 1990-02-15 | Nuclear Fuel Ind Ltd | Channel box shape measuring instrument |
JP2001137245A (en) * | 1999-11-10 | 2001-05-22 | Toshiba Corp | Ultrasonograph |
JP2006017741A (en) * | 2000-11-17 | 2006-01-19 | Amikku:Kk | Acoustic diagnosing using pulse electromagnetic force and measuring apparatus and its diagnosing and measuring method |
-
2010
- 2010-05-24 JP JP2010118832A patent/JP5565904B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61160053A (en) * | 1985-01-09 | 1986-07-19 | Mitsubishi Heavy Ind Ltd | Ultrasonic flaw detection test |
JPH0245708A (en) * | 1988-08-08 | 1990-02-15 | Nuclear Fuel Ind Ltd | Channel box shape measuring instrument |
JP2001137245A (en) * | 1999-11-10 | 2001-05-22 | Toshiba Corp | Ultrasonograph |
JP2006017741A (en) * | 2000-11-17 | 2006-01-19 | Amikku:Kk | Acoustic diagnosing using pulse electromagnetic force and measuring apparatus and its diagnosing and measuring method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014089064A (en) * | 2012-10-29 | 2014-05-15 | Ihi Corp | Method and apparatus for ultrasonic flaw detection |
JP2014089065A (en) * | 2012-10-29 | 2014-05-15 | Ihi Corp | Method and apparatus for ultrasonic flaw detection |
CN105911554A (en) * | 2016-06-06 | 2016-08-31 | 清华大学 | Target identification method based on ultrasonic sensor array |
US11041831B2 (en) | 2017-09-01 | 2021-06-22 | Hitachi-Ge Nuclear Energy, Ltd. | Ultrasonic probe, ultrasonic flaw detection apparatus and method |
JP2020038218A (en) * | 2019-11-21 | 2020-03-12 | 株式会社東芝 | Control method, inspection system, program and storage medium |
JP7199338B2 (en) | 2019-11-21 | 2023-01-05 | 株式会社東芝 | Processing device, inspection system, processing method, program, and storage medium |
WO2022270133A1 (en) * | 2021-06-23 | 2022-12-29 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection device |
JP7569280B2 (en) | 2021-06-23 | 2024-10-17 | 日立Geニュークリア・エナジー株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection device |
WO2023017070A1 (en) * | 2021-08-12 | 2023-02-16 | Vallourec Tubes France | Method for reconstructing a thickness profile of a part to be tested |
FR3126156A1 (en) * | 2021-08-12 | 2023-02-17 | Vallourec Tubes France | Method for reconstructing a thickness profile of the part to be inspected |
Also Published As
Publication number | Publication date |
---|---|
JP5565904B2 (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5565904B2 (en) | Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program | |
KR101134431B1 (en) | Ultrasonic scanning device and method | |
JP5800667B2 (en) | Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus | |
JP5402046B2 (en) | Ultrasonic measuring device and ultrasonic measuring method | |
JP5731765B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method | |
JP2008122209A (en) | Ultrasonic flaw inspection device and method | |
JP5306919B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP2009540311A (en) | Ultrasonic testing equipment with array probe | |
CN103969335A (en) | Automatic ultrasonic imaging and visualization method for welding-seam sidewall incomplete fusion | |
Casula et al. | Control of complex components with smart flexible phased arrays | |
JP2010266416A (en) | Method of processing phased array aperture synthesis and method of evaluating application effect thereof | |
JP5910641B2 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus | |
JP5738684B2 (en) | Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen | |
JP2014106130A (en) | Ultrasonic inspection method and ultrasonic inspection device | |
KR101698746B1 (en) | Phased Array Ultrasonic Testing Device And Testing Method Using Thereof | |
JP2013019715A (en) | Ultrasonic inspection method and ultrasonic inspection device | |
JP2007278854A (en) | Ultrasonic inspection method and device | |
JP2004150875A (en) | Method and system for imaging internal flaw using ultrasonic waves | |
JP2018100852A (en) | Ultrasonic inspection device, ultrasonic inspection method and joint block material manufacturing method | |
JP2006138672A (en) | Method of and device for ultrasonic inspection | |
Jin et al. | Defect detection of spherical heads by time-of-flight diffraction | |
JP5959677B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method | |
Tang et al. | An applicable time reversal analysis of guided waves in Al-plate with ultrasonic immersion testing | |
JP3754669B2 (en) | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method | |
Bin et al. | Ultrasonic multi-view total focusing method for weld defect detection on small-diameter austenitic stainless steel tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5565904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |