[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011245756A - Resin-impregnated carbon fiber strand and method for manufacturing pellet - Google Patents

Resin-impregnated carbon fiber strand and method for manufacturing pellet Download PDF

Info

Publication number
JP2011245756A
JP2011245756A JP2010121611A JP2010121611A JP2011245756A JP 2011245756 A JP2011245756 A JP 2011245756A JP 2010121611 A JP2010121611 A JP 2010121611A JP 2010121611 A JP2010121611 A JP 2010121611A JP 2011245756 A JP2011245756 A JP 2011245756A
Authority
JP
Japan
Prior art keywords
pin
carbon fiber
thermoplastic resin
pins
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010121611A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuda
猛 松田
Takashi Ito
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010121611A priority Critical patent/JP2011245756A/en
Publication of JP2011245756A publication Critical patent/JP2011245756A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin-impregnated strand of carbon fiber with excellent resin impregnation properties, and a long fiber pellet of carbon fiber.SOLUTION: A method for manufacturing a thermoplastic resin-impregnated strand includes introducing a carbon fiber bundle into an impregnation bath in which a molten thermoplastic resin is packed and an arc-shaped pin is arranged, and opening a carbon fiber bundle as allowed to pass in contact with the pin. Further, the method includes impregnating the carbon fiber bundle with the thermoplastic resin. The arc-shaped pin is constituted of a converging pin and an opening pin, both having a differing arc radius, arranged alternately. The total number of the pins is at least 3 and when the radius of the inscribed circle of the converging pin is given as R1 and the radius of the circumscribed circle of the opening pin is given as R2, R1>R2 can be met. Besides, the method for manufacturing the long fiber pellet of carbon fiber using the thermoplastic resin-impregnated strand is provided.

Description

本発明は、炭素繊維の熱可塑性樹脂含浸ストランド、および長繊維ペレットの製造方法に関するものである。   The present invention relates to a carbon fiber thermoplastic resin-impregnated strand and a method for producing long fiber pellets.

繊維強化ペレット構造物、繊維強化複合材料の製造方法に関しては特許文献1および2がある。特許文献1では30Ns/mより小さい溶融粘度を有する熱可塑性ポリマーと強化用フィラメントとから構造物を得ることが記載されているが、とくに含浸条件については規定が無い。 Patent Documents 1 and 2 are related to a method for producing a fiber-reinforced pellet structure and a fiber-reinforced composite material. Patent Document 1 describes that a structure is obtained from a thermoplastic polymer having a melt viscosity of less than 30 Ns / m 2 and a reinforcing filament, but there is no particular restriction on impregnation conditions.

特許文献2ではとくにガラス繊維複合材料の製造方法において、溶融物の粘度や第1スプレダー表面に進入する際の張力について記載があり、中程度またはかなり高い粘度(特許文献1に比べ高い)の熱可塑性樹脂を用いて繊維強化複合材料を製造する方法について、溶融物の粘度が増大するのに伴って、要求されるフィラメントの予備張力を増大させなければならないことが記載されている。   Patent Document 2 describes the viscosity of the melt and the tension when entering the surface of the first spreader, particularly in the method for producing a glass fiber composite material, and has a medium or considerably higher viscosity (higher than that of Patent Document 1). A method for producing fiber reinforced composites using plastic resins describes that the required filament pretension must be increased as the viscosity of the melt increases.

また特許文献3は、強化繊維束を複数の治具にジグザグ状に巻き掛けて通過させてこれを開繊させる繊維強化樹脂成形材料の製造方法であって、治具の前後で強化繊維が為す角度、および最後に強化繊維と接する前記治具から強化繊維を収束させる部分までの距離を特徴とする。   Patent Document 3 is a method for manufacturing a fiber-reinforced resin molding material in which a reinforcing fiber bundle is wound around a plurality of jigs in a zigzag manner and opened to open the fiber-reinforced resin molding material. It is characterized by an angle and a distance from the jig that finally comes into contact with the reinforcing fiber to a portion where the reinforcing fiber converges.

また特許文献4は、強化繊維束を、表面が凸曲面に形成され長手方向中央部程大径の曲面バー、すなわち凹曲面表面のつづみ形状の曲面バーを接触通過させる強化繊維束の拡開方法である。   Patent Document 4 discloses the expansion of a reinforcing fiber bundle in which the surface of the reinforcing fiber bundle is formed in a convex curved surface, and the curved bar having a larger diameter at the center in the longitudinal direction, that is, a curved curved bar having a concave curved surface is passed through. Is the method.

また特許文献5は、表面がアール形状をなす少なくとも1個の拡張スプレッダーと、リング状スプレッダーからなるスプレッダー部を内蔵するダイボックスに溶融樹脂を供給しながらロービングする長繊維強化熱可塑性樹脂組成物の製造方法である。拡張スプレッダー9はその形状はそろばん玉型であってもあるいは串ダンゴ型のごとく球状のものであっても良いとある。   Further, Patent Document 5 discloses a long fiber reinforced thermoplastic resin composition in which roving is performed while supplying molten resin to a die box having a spreader portion formed of a ring-shaped spreader and at least one expansion spreader having a rounded surface. It is a manufacturing method. The expansion spreader 9 may have an abacus ball shape or a spherical shape like a skewered dango shape.

特開昭57−181852号公報Japanese Patent Laid-Open No. 57-181852 特開平6−155593号公報JP-A-6-155593 特開2005−28712号公報JP 2005-28712 A 特開平3−146736号公報Japanese Patent Laid-Open No. 3-146636 特開平7−62246号公報JP-A-7-62246

本発明の目的は樹脂含浸性に優れた炭素繊維の熱可塑性樹脂含浸ストランドの製造法、および炭素繊維の長繊維ペレットを提供することである。   The objective of this invention is providing the manufacturing method of the thermoplastic resin impregnation strand of the carbon fiber excellent in resin impregnation property, and the long fiber pellet of carbon fiber.

本発明は溶融状態の熱可塑性樹脂が充填されかつ円弧形状のピンが配置された含浸浴中に、炭素繊維束を導入し、ピンに炭素繊維束を接触通過させ開繊させつつ、炭素繊維束に熱可塑性樹脂を含浸させ熱可塑性樹脂含浸ストランドを製造する方法であって、
円弧形状のピンは円弧半径の異なる収束ピンと開繊ピンが交互に配列され、ピン数の合計は少なくとも3個であり、収束ピンの内接円の半径をR1,開繊ピンの外接円の半径をR2としたとき、
R1>R2
を満たすことを特徴とする熱可塑性樹脂含浸ストランドの製造方法である。
The present invention introduces a carbon fiber bundle into an impregnation bath filled with a molten thermoplastic resin and has an arc-shaped pin disposed therein, and the carbon fiber bundle is opened while allowing the carbon fiber bundle to contact and pass through the pin. A method for producing a thermoplastic resin-impregnated strand by impregnating with a thermoplastic resin,
In the arc-shaped pin, converging pins and opening pins having different arc radii are alternately arranged, and the total number of pins is at least 3. The radius of the inscribed circle of the converging pin is R1, the radius of the circumscribed circle of the opening pin Is R2,
R1> R2
It is the manufacturing method of the thermoplastic resin impregnated strand characterized by satisfy | filling.

本発明により樹脂含浸性に優れた炭素繊維の熱可塑性樹脂含浸ストランドおよび炭素繊維の長繊維ペレットが得られる。本発明の長繊維ペレットにより引張強度、引張伸び、曲げ強度、曲げ弾性率といった機械物性に優れた成形体が提供できる。   According to the present invention, carbon fiber thermoplastic resin-impregnated strands and carbon fiber long fiber pellets having excellent resin impregnation properties are obtained. The long fiber pellet of the present invention can provide a molded article having excellent mechanical properties such as tensile strength, tensile elongation, bending strength, and flexural modulus.

含浸ストランド製造装置の模式図Schematic diagram of impregnated strand production equipment ピンの配置および繊維束搬送の模式図Schematic diagram of pin arrangement and fiber bundle conveyance

溶融状態の熱可塑性樹脂が充填されかつ円弧形状のピンが配置された含浸浴中に、炭素繊維束を導入し、ピンに炭素繊維束を接触通過させ開繊させつつ、炭素繊維束に熱可塑性樹脂を含浸させ熱可塑性樹脂含浸ストランドを製造する方法である。本発明方法の含浸ストランド製造装置を例示する模式図を図1に、ピンの配置および繊維束搬送を例示する模式図を図2に示す。以下詳細に述べる。   A carbon fiber bundle is introduced into an impregnation bath filled with a molten thermoplastic resin and arc-shaped pins are arranged, and the carbon fiber bundle is brought into contact with the pin to open, while the carbon fiber bundle is thermoplastic. This is a method for producing a thermoplastic resin-impregnated strand by impregnating a resin. A schematic diagram illustrating an impregnated strand production apparatus of the method of the present invention is shown in FIG. 1, and a schematic diagram illustrating pin arrangement and fiber bundle conveyance is shown in FIG. Details will be described below.

(ピンの形状)
本発明の円弧形状のピンは細長い円柱を円弧形状としたものである。ピンの円弧の形状は半円形状でも、馬蹄形状でも構わない。円弧の半径は図1に図示したとおり、収束ピンの場合は内接円の半径で定義し、開繊ピンの場合は外接円の半径で定義する。
開繊ピンにおいては円弧の外周にストランドを接触通過させることにより開繊作用をもつ。また収束ピンにおいては、ピン内周にストランドを接触通過させることにより収束作用をもたせる。
含浸浴中におけるピンの配置は、収束ピンは繊維束の糸道の両端、すなわちストランドの送り出し部と含浸ストランドの引き取り部にそれぞれ配置されることが好ましい。
(Pin shape)
The arc-shaped pin of the present invention is an elongated cylinder having an arc shape. The arc shape of the pin may be a semicircular shape or a horseshoe shape. As shown in FIG. 1, the radius of the arc is defined by the radius of the inscribed circle in the case of the convergence pin, and is defined by the radius of the circumscribed circle in the case of the opening pin.
The opening pin has an opening action by allowing the strand to pass through the outer periphery of the arc. Further, the converging pin has a converging action by allowing the strand to contact and pass through the inner periphery of the pin.
As for the arrangement of the pins in the impregnation bath, it is preferable that the converging pins are arranged at both ends of the yarn path of the fiber bundle, that is, at the feeding part of the strand and the taking-up part of the impregnating strand, respectively.

ピンを複数本用いるにあたり、開繊ピンで開繊された繊維束を、収束ピンに導くことで糸道から外れるのを防止することができるように配置することが好ましく、収束ピン、開繊ピンを交互に用いること、あるいは収束ピン、開繊ピン、および収束ピンの3要素の組み合わせの繰り返しで用いることが好ましい。なかでも収束ピン、開繊ピン、および収束ピンの3要素の組み合わせの繰り返しが好ましい。
また各ピンは互いに平行に配置しても、互いのピンをずらせて配置しても構わない。ピンの扇端の位置は一直線上であっても、ジグザグ状に配置されていても良い。ピンは互いの高さをずらせて配置しても構わないが、各ピンが互いに平行に配置していることが好ましい。
When using a plurality of pins, it is preferable to arrange the fiber bundles opened by the opening pins so that they can be prevented from coming off the yarn path by guiding them to the converging pins. Are preferably used alternately or in combination of three elements of a converging pin, an opening pin, and a converging pin. In particular, it is preferable to repeat a combination of three elements of a convergence pin, a spread pin, and a convergence pin.
Further, the pins may be arranged in parallel to each other or may be arranged by shifting the pins. The fan ends of the pins may be arranged on a straight line or zigzag. The pins may be arranged with their heights shifted, but it is preferable that the pins are arranged in parallel to each other.

(ピンの円弧の半径)
収束ピンの内接円の半径をR1,開繊ピンの外接円の半径をR2としたとき、
R1>R2
を満たすことが本発明方法の特徴である。図2に具体的に例示したとおり、繊維束は収束ピンの円弧下側を通って開繊ピンに導かれ、開繊ピンの円弧上側を通り、収束ピンへ搬送される。円弧の半径が大きい方がピンの円弧が緩いカーブを描いているわけだが、このようにピンの円弧のカーブを変化させることで適切に炭素繊維束を開繊することができる。
(Pin arc radius)
When the radius of the inscribed circle of the converging pin is R1, and the radius of the circumscribed circle of the opening pin is R2,
R1> R2
It is a feature of the method of the present invention that the above is satisfied. As specifically illustrated in FIG. 2, the fiber bundle is guided to the opening pin through the lower arc side of the converging pin, and is conveyed to the converging pin through the upper arc side of the opening pin. When the radius of the arc is larger, the pin arc has a gentle curve. By changing the curve of the pin arc in this way, the carbon fiber bundle can be appropriately opened.

R1がR2よりも小さい、または同一であると収束効果が開繊効果よりも大きくなり、炭素繊維束が十分に開繊せず、樹脂含浸性に優れた熱可塑性樹脂含浸ストランドが得られない。R1とR2とが同一であると炭素繊維束が十分に開繊せず、樹脂含浸性に優れた熱可塑性樹脂含浸ストランドが得られない。
収束ピンの内接円の半径R1と開繊ピンの外接円の半径R2の比である(R1/R2)は1.1〜1.6であることが好ましい。より好ましくは(R1/R2)は1.2〜1.5であることが好ましい。(R1/R2)が1.6を超える場合、開繊効果が強すぎて糸道から外れる場合がある。
When R1 is smaller than or equal to R2, the convergence effect is larger than the opening effect, the carbon fiber bundle is not sufficiently opened, and a thermoplastic resin-impregnated strand excellent in resin impregnation property cannot be obtained. If R1 and R2 are the same, the carbon fiber bundle cannot be sufficiently opened, and a thermoplastic resin-impregnated strand excellent in resin impregnation property cannot be obtained.
The ratio (R1 / R2) of the radius R1 of the inscribed circle of the converging pin and the radius R2 of the circumscribed circle of the opening pin is preferably 1.1 to 1.6. More preferably, (R1 / R2) is preferably 1.2 to 1.5. When (R1 / R2) exceeds 1.6, the fiber opening effect may be too strong and may deviate from the yarn path.

複数の開繊ピン、収束ピンを配置するとき、開繊ピンと収束ピンのそれぞれの円弧の半径は等しくても、異なっていても構わないが、それぞれ独立に上記条件を満たすことが好ましい。各ピンの円弧の半径が異なる場合、進行方向で順次大きくしていっても、小さくしていっても、また大小交互に配置しても構わないが、ピンに架かる角度(抱き角)をある範囲とするためにはピンに架かる角度は30°〜120°になるように配置することが好ましい。   When arranging a plurality of opening pins and converging pins, the radius of each arc of the opening pin and the converging pin may be the same or different, but it is preferable that the above conditions are satisfied independently. When the radius of the arc of each pin is different, it may be gradually increased, decreased or alternately arranged in the direction of travel, but there is an angle (holding angle) around the pin. In order to make it into a range, it is preferable to arrange | position so that the angle over a pin may be set to 30 degrees-120 degrees.

(ピン間の距離)
ピン間の距離はとくに限定はないが、上述のようにピンに繊維束が架かる角度が30°〜120°になるように配置することが好ましい。
(Distance between pins)
The distance between the pins is not particularly limited, but it is preferable to arrange the fibers so that the angle at which the fiber bundle is placed on the pins is 30 ° to 120 ° as described above.

(ピン)
上記の条件とすることにより、ピンの曲面に沿って炭素繊維束はしごくように搬送されるので、十分に繊維束が開繊され樹脂含浸性に優れた炭素繊維の熱可塑性樹脂含浸ストランドを得ることができる。
熱可塑性樹脂中に繊維束を導入して樹脂含浸ストランドを得ることができ、従来は得られなかった樹脂含有率の高い炭素繊維の樹脂含浸ストランドを安定して得ることが可能となる。
また本発明方法において、含浸浴中の炭素繊維束を接触通過させ開繊させる機構において、円弧形状を有するブロックに加え、本発明の目的を損なわない範囲で開繊や収束を司る他の構造、例えばロール、ピン、バー、ブロック、治具等を設けても良い。
(pin)
By setting the above conditions, the carbon fiber bundle is conveyed along the curved surface of the pin so that the fiber bundle is sufficiently opened and a carbon fiber thermoplastic resin-impregnated strand excellent in resin impregnation property is obtained. be able to.
A resin-impregnated strand can be obtained by introducing a fiber bundle into a thermoplastic resin, and a resin-impregnated strand of carbon fiber having a high resin content, which has not been obtained conventionally, can be stably obtained.
Further, in the method of the present invention, in the mechanism for opening the carbon fiber bundle in the impregnation bath through contact, in addition to the block having an arc shape, other structures that govern the opening and convergence in a range not impairing the object of the present invention, For example, rolls, pins, bars, blocks, jigs, etc. may be provided.

[炭素繊維]
本発明における炭素繊維は好ましくは平均直径5〜10μmの炭素繊維のモノフィラメント1000〜48000本から構成される。炭素繊維の平均直径は6〜8μmがさらに好ましい。炭素繊維の引張強度は3000〜6000MPaのものを用いることが好ましい。なお炭素繊維の強度(MPa)=(単繊維強度(gf)/1000)/単繊維断面積(mm2)という関係となる。
[Carbon fiber]
The carbon fiber in the present invention is preferably composed of 1000 to 48000 monofilaments of carbon fiber having an average diameter of 5 to 10 μm. The average diameter of the carbon fiber is more preferably 6 to 8 μm. The tensile strength of the carbon fiber is preferably 3000 to 6000 MPa. The strength of the carbon fiber (MPa) = (single fiber strength (gf) / 1000) / single fiber cross-sectional area (mm 2 ).

[熱可塑性樹脂]
熱可塑性樹脂は熱可塑性樹脂浴容器内に必要な加温条件下に適切な粘度となるように保持することが可能なものであれば、本発明方法に用いることができる。熱可塑性樹脂の具体的な種類としては例えばポリエチレン樹脂やポリプロピレン樹脂、およびその共重合体やブレンド物であるポリオレフィン系樹脂、ポリアミド66、ポリアミド6、ポリアミド12等の脂肪族ポリアミド系樹脂、酸成分として芳香族成分を有する半芳香族ポリアミド系樹脂、ポリエチレンテレフタレート樹脂(PET)やポリブチレンテレフタレート樹脂(PBT)等の芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂(ポリスチレン樹脂、AS樹脂、ABS樹脂等)、あるいは、ポリ乳酸系などの脂肪族ポリエステル系樹脂などを挙げることができる。なかでも好ましくはポリカーボネート系樹脂や脂肪族ポリアミド系樹脂、ポリオレフィン系樹脂が好ましく挙げられる。
[Thermoplastic resin]
Any thermoplastic resin can be used in the method of the present invention as long as it can be held in the thermoplastic resin bath container so as to have an appropriate viscosity under the necessary heating conditions. Specific types of thermoplastic resins include, for example, polyethylene resins and polypropylene resins, and polyolefin resins that are copolymers and blends thereof, aliphatic polyamide resins such as polyamide 66, polyamide 6, and polyamide 12, and acid components. Semi-aromatic polyamide resin having aromatic component, aromatic polyester resin such as polyethylene terephthalate resin (PET) and polybutylene terephthalate resin (PBT), polycarbonate resin, polystyrene resin (polystyrene resin, AS resin, ABS resin) Etc.), or aliphatic polyester resins such as polylactic acid. Of these, polycarbonate resins, aliphatic polyamide resins, and polyolefin resins are preferable.

[含浸ストランドの製造装置]
本発明の熱可塑性樹脂含浸ストランド製造の装置例の概略図を図1に示す。炭素繊維束1は送り出しローラーより、糸道ガイド2を通って、含浸浴4中に導入される。熱可塑性樹脂は押出機5から含浸浴4中に導入され、含浸浴は溶融状態の熱可塑性樹脂で満たされている。含浸浴には複数の円弧形状のピン3、すなわち収束ピンまたは開繊ピンが設置される。引取方向に熱可塑性樹脂が含浸された炭素繊維のストランドを搬送し、冷却槽6を経て引取機7にて引き取る。さらにペレタイザー8を設置し、含浸ストランドを切断して炭素繊維強化熱可塑性樹脂ペレットを得ることができる。
[Production equipment for impregnated strands]
A schematic diagram of an example of an apparatus for producing the thermoplastic resin-impregnated strand of the present invention is shown in FIG. The carbon fiber bundle 1 is introduced from the feed roller into the impregnation bath 4 through the yarn path guide 2. The thermoplastic resin is introduced into the impregnation bath 4 from the extruder 5, and the impregnation bath is filled with a molten thermoplastic resin. In the impregnation bath, a plurality of arc-shaped pins 3, that is, converging pins or opening pins are installed. A strand of carbon fiber impregnated with a thermoplastic resin in the take-up direction is conveyed and taken up by a take-up machine 7 through a cooling tank 6. Further, a pelletizer 8 is installed, and the impregnated strand can be cut to obtain carbon fiber reinforced thermoplastic resin pellets.

[引き取りテンション]
引き取り機手前の地点で測定した含浸ストランドの引き取りテンションは単一フィラメント24000本当たり50〜400Nであることが好ましい。単一フィラメント24000本当たりの引き取りテンションが400Nを超えると、毛羽が立ったり、破断してしまうことがある。引き取りテンションが50N未満であると十分な含浸性が実現できないことがある。さらに好ましくは引き取りテンションが24000本当たり100〜300Nである。
引き取りテンションは予備テンションの設定条件や、搬送速度により適宜調整可能である。搬送速度を上げることで引き取りテンションを高くすることができる。また引き取りテンションはローラーの形状やローラーの配置によって適宜調整可能である。
[Take-up tension]
The take-up tension of the impregnated strand measured at a point before the take-up machine is preferably 50 to 400 N per 24,000 single filaments. When the take-up tension per 24,000 single filaments exceeds 400 N, the fluff may stand up or break. If the take-up tension is less than 50 N, sufficient impregnation may not be realized. More preferably, the take-up tension is 100 to 300 N per 24000 pieces.
The take-up tension can be appropriately adjusted according to the setting condition of the preliminary tension and the conveyance speed. The take-up tension can be increased by increasing the conveying speed. The take-up tension can be appropriately adjusted depending on the shape of the roller and the arrangement of the rollers.

[搬送速度]
引き取り成形時の含浸ストランドの搬送速度は1m/min以上50m/min以下であることが好ましい。搬送速度が1m/min未満だと含浸ストランドの生産性から好ましくない。50m/minを超えると十分な樹脂含浸を達成できない場合があり、また炭素繊維の毛羽が発生することがある。含浸ストランドのより好ましい搬送速度は2m/min以上40m/min以下、3m/min以上30m/min以下である。
[Conveying speed]
It is preferable that the conveying speed of the impregnated strand at the time of pultrusion molding is 1 m / min or more and 50 m / min or less. If the conveying speed is less than 1 m / min, it is not preferable from the productivity of the impregnated strand. If it exceeds 50 m / min, sufficient resin impregnation may not be achieved, and carbon fiber fluff may occur. A more preferable conveying speed of the impregnated strand is 2 m / min or more and 40 m / min or less, 3 m / min or more and 30 m / min or less.

[予備テンション]
熱可塑性樹脂溶融物中に引き入れる際の炭素繊維の単一フィラメント24000本当たりの張力は1〜20Nであることが好ましい。さらには5〜10Nであることが好ましい。張力が1N未満だと樹脂の含浸性が不十分となることがあり、20Nを超えると炭素の毛羽が立つことがある。予備テンションは回転体に接触式もしくは非接触式のブレーキを働かせることにより調整可能である。
熱可塑性樹脂含浸ストランドを得ようとした際に、予備テンションを低く設定した場合であっても、本発明の方法にて搬送することにより十分な樹脂含浸を可能とすることが、本発明の大きな特徴である。(炭素繊維の予備テンション/熱可塑性樹脂の粘度η)が0.02以下であることが好ましい。
[Preliminary tension]
The tension per 24,000 single filaments of carbon fiber when drawn into the thermoplastic resin melt is preferably 1 to 20N. Furthermore, it is preferable that it is 5-10N. If the tension is less than 1N, the impregnation of the resin may be insufficient, and if it exceeds 20N, carbon fluff may be generated. The preliminary tension can be adjusted by applying a contact type or non-contact type brake to the rotating body.
Even when the preliminary tension is set low when trying to obtain the thermoplastic resin-impregnated strand, it is possible to sufficiently impregnate the resin by carrying it by the method of the present invention. It is a feature. (Preliminary tension of carbon fiber / viscosity η of thermoplastic resin) is preferably 0.02 or less.

[熱可塑性樹脂の粘度]
樹脂浴中の熱可塑性樹脂の粘度は10〜3000Pa・s(Ns/m)とすることが好ましい。粘度が3000Pa・sを超えると十分な含浸性が得られないことがあり、粘度の上限は好ましくは1000Pa・s(Ns/m)である。この範囲の粘度とするには樹脂の種類にもよるが、例えばポリアミドの場合、樹脂浴の温度を、融点プラス10℃〜融点プラス30℃とすることが好ましい。
[Viscosity of thermoplastic resin]
The viscosity of the thermoplastic resin in the resin bath is preferably 10 to 3000 Pa · s (Ns / m 2 ). When the viscosity exceeds 3000 Pa · s, sufficient impregnation may not be obtained, and the upper limit of the viscosity is preferably 1000 Pa · s (Ns / m 2 ). For example, in the case of polyamide, the temperature of the resin bath is preferably a melting point plus 10 ° C. to a melting point plus 30 ° C.

[長繊維ペレット]
本発明の製造方法で得られた熱可塑性樹脂含浸ストランドを切断することにより炭素繊維の長繊維ペレットを得ることができる。本発明の製造方法により樹脂含有率の高い(炭素繊維含有率の低い)含浸ストランドを得ることが可能であるので、これより樹脂含有率の高い(炭素繊維含有率の低い)長繊維ペレットを得ることができる。炭素繊維含有率は好ましくは10〜50重量%、より好ましくは20〜40%である。
[Long fiber pellet]
A long fiber pellet of carbon fiber can be obtained by cutting the thermoplastic resin-impregnated strand obtained by the production method of the present invention. Since it is possible to obtain an impregnated strand having a high resin content (low carbon fiber content) by the production method of the present invention, a long fiber pellet having a higher resin content (low carbon fiber content) is obtained. be able to. The carbon fiber content is preferably 10 to 50% by weight, more preferably 20 to 40%.

以下に実施例を示すが、本発明はこれらに制限されるものではない。ペレットの物性は以下のようにして求めた。
(1)繊維重量含有率:ペレットを硫酸に溶解させ樹脂成分を除きその重量変化から求めた。
(2)含浸率:得られたペレットを割り、樹脂が含浸されていない炭素繊維をより分けてドライファイバーの重量を求め、下記式により求めた。
含浸率(重量%) = 100−Wdf/(Wp×Wf)
この式においてWdfは長繊維ペレット中のドライファイバー重量であり、Wpは長繊維ペレット重量であり、Wfは繊維の重量含有率である。
(3)引張強度、引張伸び
得られたペレットよりダンベル試験片を射出成型機により作成し、JIS K 7161に準拠し引張強度、引張伸びの測定を行った。
(4)曲げ強度、曲げ弾性率
得られたペレットよりダンベル試験片を射出成型機により作成し、JIS K 7161に準拠し曲げ強度、曲げ弾性率の測定を行った。
Examples are shown below, but the present invention is not limited thereto. The physical properties of the pellets were determined as follows.
(1) Fiber weight content: The pellet was dissolved in sulfuric acid, and the resin component was removed to determine the change in weight.
(2) Impregnation rate: The obtained pellets were divided, and the carbon fibers not impregnated with the resin were further divided to determine the weight of the dry fibers, and the following formula was used.
Impregnation rate (% by weight) = 100-Wdf / (Wp × Wf)
In this formula, Wdf is the dry fiber weight in the long fiber pellet, Wp is the long fiber pellet weight, and Wf is the fiber weight content.
(3) Tensile strength and tensile elongation Dumbbell test pieces were prepared from the obtained pellets using an injection molding machine, and tensile strength and tensile elongation were measured according to JIS K 7161.
(4) Bending strength and bending elastic modulus Dumbbell test pieces were prepared from the obtained pellets with an injection molding machine, and bending strength and bending elastic modulus were measured in accordance with JIS K 7161.

[実施例1]
炭素繊維フィラメント(東邦テナックス社製STS40 平均直径7μm フィラメント本数 24000本、引張強度4000MPa、 繊維束の幅は9mm。ここで平均直径、フィラメント本数、引張強度はカタログ値である。繊維束の幅は実測値である。)を概略図4に示す装置(収束ピンと開繊ピン計3本それぞれ交互に配置 ピン円柱の半径は全て3mm、収束ピン2本は円弧半径45mm、開繊ピン1本は円弧半径30mm、ピンの間隔は3本全て20mm均等間隔とし40mm幅の含浸浴に配置)表1に記載の条件で、ポリカーボネート樹脂(帝人化成株式会社製 登録商標 パンライトL1225Y)のせん断速度100(1/s)におけるせん断粘度を300Pa・sに調整し、炭素繊維フィラメントとポリカーボネート樹脂を一緒に引抜き成形し、含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表1に示す。張力は含浸浴手前時点での張力を予備テンションとし、引き取り機手前時点の張力を引き取りテンションとした。
実施例1で得られたペレットの含浸率は91%であった。得られたペレットの物性値を表2に示す。
[Example 1]
Carbon fiber filaments (STS40 manufactured by Toho Tenax Co., Ltd., average diameter 7 μm, number of filaments 24,000, tensile strength 4000 MPa, width of fiber bundle 9 mm. Average diameter, number of filaments, and tensile strength are catalog values. 4 are arranged alternately in each of the three converging pins and the three opening pins. The radius of each of the pin cylinders is 3 mm, two converging pins have an arc radius of 45 mm, and one opening pin has an arc radius. 30 mm, and all three pins are spaced 20 mm equally and placed in a 40 mm wide impregnation bath) Under the conditions shown in Table 1, the shear rate of polycarbonate resin (registered trademark Panlite L1225Y manufactured by Teijin Chemicals Ltd.) is 100 (1 / The shear viscosity in s) is adjusted to 300 Pa · s, and the carbon fiber filament and polycarbonate resin are used together. And pultrusion, with the impregnated strand was then cut it into pellets. Table 1 shows the physical property values of the obtained pellets. The tension before the impregnation bath was taken as the preliminary tension, and the tension before the take-up machine was taken as the take-up tension.
The impregnation rate of the pellets obtained in Example 1 was 91%. Table 2 shows the physical property values of the obtained pellets.

[実施例2]
樹脂として ナイロン66(宇部興産 登録商標UBE NYLON 66 2015B)を用いてせん断速度100(1/s)におけるせん断粘度を100Pa・sに調整した以外は実施例1と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Example 2]
As in Example 1, except that nylon 66 (Ube Industries, registered trademark UBE NYLON 66 2015B) was used as the resin and the shear viscosity at a shear rate of 100 (1 / s) was adjusted to 100 Pa · s. An impregnated strand was obtained and cut into pellets. Table 2 shows the physical property values of the obtained pellets.

[実施例3]
収束ピン2本は円弧半径37mm、開繊ピン1本は円弧半径35mmとした以外は実施例2と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Example 3]
An impregnated strand was obtained under the conditions shown in Table 1 in the same manner as in Example 2 except that two converging pins had an arc radius of 37 mm and one opening pin had an arc radius of 35 mm, and the pellet was obtained by cutting it. . Table 2 shows the physical property values of the obtained pellets.

[実施例4]
樹脂として ナイロン6(宇部興産 登録商標UBE NYLON 6 1015B)を用いてせん断速度100(1/s)におけるせん断粘度を100Pa・sに調整した以外は実施例1と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Example 4]
The conditions described in Table 1 are the same as in Example 1 except that nylon 6 (Ube Industries, registered trademark UBE NYLON 6 1015B) is used as the resin and the shear viscosity at a shear rate of 100 (1 / s) is adjusted to 100 Pa · s. An impregnated strand was obtained and cut into pellets. Table 2 shows the physical property values of the obtained pellets.

[実施例5]
収束ピン2本は円弧半径37mm、開繊ピン1本は円弧半径35mmとした以外は実施例4と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Example 5]
An impregnated strand was obtained under the conditions described in Table 1 in the same manner as in Example 4 except that two converging pins had an arc radius of 37 mm and one opening pin had an arc radius of 35 mm, and was cut to obtain a pellet. . Table 2 shows the physical property values of the obtained pellets.

[実施例6]
樹脂として ポリプロピレン(プライムポリマー社製、プライムポリプロ(登録商標)J108M)を用いてせん断速度100(1/s)におけるせん断粘度を100Pa・sに調整した以外は実施例1と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Example 6]
As described in Table 1, except that the shear viscosity at a shear rate of 100 (1 / s) was adjusted to 100 Pa · s by using polypropylene (manufactured by Prime Polymer Co., Ltd., Prime Polypro (registered trademark) J108M) as the resin. The impregnated strand was obtained under the conditions described above, and was cut to obtain pellets. Table 2 shows the physical property values of the obtained pellets.

[比較例1]
収束ピン2本は円弧半径17mm、開繊ピン1本は円弧半径20mmとした以外は実施例2と同様に表1に記載の条件で含浸ストランドを得て、それを切断してペレットを得た。得られたペレットの物性値を表2に示す。
[Comparative Example 1]
An impregnated strand was obtained under the conditions described in Table 1 in the same manner as in Example 2 except that two converging pins had an arc radius of 17 mm and one opening pin had an arc radius of 20 mm, and was cut to obtain a pellet. . Table 2 shows the physical property values of the obtained pellets.

Figure 2011245756
Figure 2011245756

Figure 2011245756
Figure 2011245756

1 炭素繊維束
2 糸道ガイド
3 開繊ピンまたは収束ピン
4 含浸浴
5 押出機
6 冷却層
7 引取機
8 ペレタイザー
9 収束ピン
10 開繊ピン
11 開繊ピンの円弧の半径R2
12 収束ピンの円弧の半径R1
DESCRIPTION OF SYMBOLS 1 Carbon fiber bundle 2 Yarn guide 3 Opening pin or convergence pin 4 Impregnation bath 5 Extruder 6 Cooling layer 7 Take-out machine 8 Pelletizer 9 Convergence pin 10 Opening pin 11 Radius R2 of the arc of the opening pin
12 Arc radius R1 of converging pin

Claims (5)

溶融状態の熱可塑性樹脂が充填されかつ円弧形状のピンが配置された含浸浴中に、炭素繊維束を導入し、ピンに炭素繊維束を接触通過させ開繊させつつ、炭素繊維束に熱可塑性樹脂を含浸させ熱可塑性樹脂含浸ストランドを製造する方法であって、
円弧形状のピンは円弧半径の異なる収束ピンと開繊ピンが交互に配列され、ピン数の合計は少なくとも3個であり、収束ピンの内接円の半径をR1,開繊ピンの外接円の半径をR2としたとき、
R1>R2
を満たすことを特徴とする熱可塑性樹脂含浸ストランドの製造方法。
A carbon fiber bundle is introduced into an impregnation bath filled with a molten thermoplastic resin and arc-shaped pins are arranged, and the carbon fiber bundle is brought into contact with the pin to open, while the carbon fiber bundle is thermoplastic. A method for producing a thermoplastic resin-impregnated strand by impregnating a resin,
In the arc-shaped pin, converging pins and opening pins having different arc radii are alternately arranged, and the total number of pins is at least 3. The radius of the inscribed circle of the converging pin is R1, the radius of the circumscribed circle of the opening pin Is R2,
R1> R2
The manufacturing method of the thermoplastic resin impregnated strand characterized by satisfy | filling.
収束ピンの円弧の半径R1,開繊ピンの円弧の半径R2が以下の関係を満たす請求項1に記載の含浸ストランド製造方法。
R1/R2=比1.1〜1.6
The impregnated strand manufacturing method according to claim 1, wherein the radius R1 of the arc of the converging pin and the radius R2 of the arc of the opening pin satisfy the following relationship.
R1 / R2 = ratio 1.1-1.6
収束ピンが開繊ピンを挟み込む状態で配置される請求項1または2に記載の含浸ストランドの製造方法。   The method for producing an impregnated strand according to claim 1 or 2, wherein the converging pins are arranged in a state of sandwiching the opening pins. 溶融時におけるせん断粘度がせん断速度10(1/s)〜10000(1/s)において10(Pa・s)〜3000(Pa・s)の熱可塑性樹脂を含浸することにより得られる請求項1〜3のいずれかに記載の含浸ストランドの製造方法。   The shear viscosity at the time of melting is obtained by impregnating a thermoplastic resin of 10 (Pa · s) to 3000 (Pa · s) at a shear rate of 10 (1 / s) to 10000 (1 / s). 4. A method for producing an impregnated strand according to any one of 3 above. 請求項1〜4のいずれかに記載の方法で得られた含浸ストランドを切断することにより得られる炭素繊維強化熱可塑性樹脂ペレット。   Carbon fiber reinforced thermoplastic resin pellets obtained by cutting impregnated strands obtained by the method according to claim 1.
JP2010121611A 2010-05-27 2010-05-27 Resin-impregnated carbon fiber strand and method for manufacturing pellet Pending JP2011245756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121611A JP2011245756A (en) 2010-05-27 2010-05-27 Resin-impregnated carbon fiber strand and method for manufacturing pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121611A JP2011245756A (en) 2010-05-27 2010-05-27 Resin-impregnated carbon fiber strand and method for manufacturing pellet

Publications (1)

Publication Number Publication Date
JP2011245756A true JP2011245756A (en) 2011-12-08

Family

ID=45411622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121611A Pending JP2011245756A (en) 2010-05-27 2010-05-27 Resin-impregnated carbon fiber strand and method for manufacturing pellet

Country Status (1)

Country Link
JP (1) JP2011245756A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354435B1 (en) 2013-01-18 2014-01-24 주식회사 효성 Apparatus and method for arranging a thread guider of carbon fiber
JP2017533994A (en) * 2014-11-04 2017-11-16 プロテック ポリマー プロセシング ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing unidirectional fiber reinforced plastic material and apparatus for carrying out the method
WO2018061597A1 (en) * 2016-09-29 2018-04-05 東レ株式会社 Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354435B1 (en) 2013-01-18 2014-01-24 주식회사 효성 Apparatus and method for arranging a thread guider of carbon fiber
JP2017533994A (en) * 2014-11-04 2017-11-16 プロテック ポリマー プロセシング ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing unidirectional fiber reinforced plastic material and apparatus for carrying out the method
WO2018061597A1 (en) * 2016-09-29 2018-04-05 東レ株式会社 Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
CN109642036A (en) * 2016-09-29 2019-04-16 东丽株式会社 Fiber-reinforced thermoplastic resin substrate and the molded product for using it
KR20190055797A (en) * 2016-09-29 2019-05-23 도레이 카부시키가이샤 Fiber-reinforced thermoplastic resin substrate and molded article using the same
JPWO2018061597A1 (en) * 2016-09-29 2019-07-11 東レ株式会社 Fiber-reinforced thermoplastic resin base material and molded article using the same
US10723088B2 (en) 2016-09-29 2020-07-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
JP7033271B2 (en) 2016-09-29 2022-03-10 東レ株式会社 Fiber reinforced thermoplastic resin base material and molded products using it
KR102412262B1 (en) 2016-09-29 2022-06-24 도레이 카부시키가이샤 Fiber-reinforced thermoplastic resin substrate and molded articles using the same

Similar Documents

Publication Publication Date Title
US11235513B2 (en) Method for manufacturing three-dimensional structure
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
JP3584065B2 (en) Manufacturing apparatus and manufacturing method for long fiber reinforced resin structure
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
WO1997019805A1 (en) Method of manufacturing long-fiber-reinforced resin structure, and method and apparatus for manufacturing columnar-shaped bodies
KR20140105477A (en) Method for manufacturing reinforcing fiber strands
JP2008246782A (en) Method and apparatus for manufacturing fiber-reinforced thermoplastic resin tape
JP2021123026A (en) Strand and modeling
JPH0732495A (en) Manufacture of long fiber-reinforced thermoplastic resin composition
JP5467828B2 (en) Manufacturing method of long fiber reinforced thermoplastic resin pellets
JP2011245756A (en) Resin-impregnated carbon fiber strand and method for manufacturing pellet
JP6083239B2 (en) Fiber-reinforced plastic and method for producing the same
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
JP2011246621A (en) Method of producing resin-impregnated strand and pellet of carbon fiber
JPH08336879A (en) Resin-coated reinforcing fiber yarn, molding material and manufacture thereof
JP2011245754A (en) Resin-impregnated carbon fiber strand and method for manufacturing long fiber pellet
JPH0768544A (en) Impregnation of fiber bundle with resin
JP4891576B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JP2011245755A (en) Method for producing resin-impregnated carbon fiber strand and carbon fiber pellet
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
CN114174050A (en) Method for producing molded article and composite material
JP2005305933A (en) Device for manufacturing structure of continuous length fiber-reinforced resin, multi-stage crosshead die and method for manufacturing this structure
US6183864B1 (en) Thermoplastic resin-combined glass fiber base material and process for its production
JP2662853B2 (en) Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
KR102483485B1 (en) Long fiber reinforced thermoplastics and molded article fabricated by the same