[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011243596A - Manufacturing method of package component and package component - Google Patents

Manufacturing method of package component and package component Download PDF

Info

Publication number
JP2011243596A
JP2011243596A JP2010111582A JP2010111582A JP2011243596A JP 2011243596 A JP2011243596 A JP 2011243596A JP 2010111582 A JP2010111582 A JP 2010111582A JP 2010111582 A JP2010111582 A JP 2010111582A JP 2011243596 A JP2011243596 A JP 2011243596A
Authority
JP
Japan
Prior art keywords
substrate
sealing resin
manufacturing
package
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111582A
Other languages
Japanese (ja)
Inventor
Kazuji Azuma
和司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010111582A priority Critical patent/JP2011243596A/en
Publication of JP2011243596A publication Critical patent/JP2011243596A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a package component, which can improve package quality.SOLUTION: Semiconductor chips 2, which are functional components, are mounted on a mounting surface of a substrate 1a. Next, each semiconductor chip 2 is sealed by an encapsulation resin 3. Subsequently, polishing is performed from a surface of the encapsulation resin 3 opposite to a surface facing to the mounting surface of the substrate 1a, to polish the encapsulation resin 3 and each semiconductor chip.

Description

本発明は、パッケージ部品の製造方法およびパッケージ部品に関し、特に基板上に半導体チップが実装された構造を持つ半導体パッケージに関する。   The present invention relates to a package component manufacturing method and a package component, and more particularly to a semiconductor package having a structure in which a semiconductor chip is mounted on a substrate.

従来の半導体パッケージの製造方法として、特許文献1に、材料がシリコンの基板上に半導体チップを実装する方法が記載されている。図12は、特許文献1に記載された従来の半導体パッケージを示す図である。   As a conventional method for manufacturing a semiconductor package, Patent Document 1 describes a method of mounting a semiconductor chip on a substrate made of silicon. FIG. 12 is a diagram showing a conventional semiconductor package described in Patent Document 1. In FIG.

図12に示すように、従来の半導体パッケージは、配線が形成されているシリコン製の基板101と、基板101の実装面上に実装された半導体チップ102と、基板101を貫通する貫通電極103と、基板101の実装面とは反対側の裏面に形成された再配線層104と、基板101と半導体チップ102とを電気的かつ機械的に接続する第1の突起電極105と、再配線層104上に設けられた第2の突起電極106と、を備える。   As shown in FIG. 12, a conventional semiconductor package includes a silicon substrate 101 on which wiring is formed, a semiconductor chip 102 mounted on a mounting surface of the substrate 101, and a through electrode 103 penetrating the substrate 101. The rewiring layer 104 formed on the back surface opposite to the mounting surface of the substrate 101, the first protruding electrode 105 that electrically and mechanically connects the substrate 101 and the semiconductor chip 102, and the rewiring layer 104 And a second protruding electrode 106 provided thereon.

この半導体パッケージの製造方法は、基板101をウエハ状態で研磨により厚み制御した後に、基板101の裏面側から貫通電極103を形成し、基板101の裏面に再配線層104を形成し、基板101上の半導体チップ102を実装する箇所に第1の突起電極105を形成し、ダイシング方法などで基板101を個片化し、個片化された基板101上に半導体チップ102を位置を合わせして実装し、再配線層104上に第2の突起電極106を形成する、というものである。   In this semiconductor package manufacturing method, after the thickness of the substrate 101 is controlled by polishing in a wafer state, the through electrode 103 is formed from the back surface side of the substrate 101, the rewiring layer 104 is formed on the back surface of the substrate 101, and The first protruding electrode 105 is formed at a location where the semiconductor chip 102 is mounted, the substrate 101 is separated into pieces by a dicing method or the like, and the semiconductor chip 102 is aligned and mounted on the separated substrate 101. The second protruding electrode 106 is formed on the rewiring layer 104.

国際公開第2004/047167号International Publication No. 2004/047167

しかしながら、前記した従来の半導体パッケージの製造方法では、シリコンウエハに薄型化のための研磨処理を施した後、その研磨処理されたシリコンウエハを個片に分割し、その個片化されたシリコン基板上に半導体チップを実装するというプロセスを用いるため、研磨処理時に発生する加工歪みに起因したシリコン基板の反りや、薄型化され且つ個片化された脆弱なシリコン基板をハンドリングすることに起因した表面汚染や傷などの影響により、シリコン基板の電極と半導体チップの電極との間に接続不良が発生して、パッケージ品質がばらつくおそれがある。   However, in the conventional semiconductor package manufacturing method described above, after the silicon wafer is subjected to a polishing process for thinning, the polished silicon wafer is divided into individual pieces, and the separated silicon substrate is obtained. Since the process of mounting a semiconductor chip on top is used, warpage of the silicon substrate due to processing distortion generated during polishing processing, and the surface resulting from handling a thin and fragile silicon substrate Due to the influence of contamination, scratches, etc., a connection failure may occur between the electrode of the silicon substrate and the electrode of the semiconductor chip, and the package quality may vary.

加工歪みが発生する原因としては、以下のことが考えられる。   The following can be considered as causes of processing distortion.

まず、研磨処理によりシリコンウエハの加工面に発生する表面粗さの凹凸が原因の一つとして考えられる。即ち、研磨処理によりシリコンウエハの加工面に表面粗さの凹凸が発生すると、その凹凸に沿って圧力が付加されながら研磨が継続されるため、強く研磨される部分と弱く研磨される部分が発生し、加工面に研磨条件のばらつきが発生する。そのため、強く研磨した部分と弱く研磨した部分との間に残留応力の差(加工歪み)が生じる。   First, it is considered that one of the causes is unevenness of the surface roughness generated on the processed surface of the silicon wafer by the polishing process. That is, when unevenness of the surface roughness occurs on the processed surface of the silicon wafer due to the polishing process, polishing is continued while pressure is applied along the unevenness, so that a portion that is polished strongly and a portion that is polished weakly are generated. In addition, the polishing conditions vary on the processed surface. Therefore, a difference in residual stress (processing distortion) occurs between the strongly polished portion and the weakly polished portion.

また他の原因として、研磨処理によりシリコンウエハの加工面に発生する研磨傷が考えられる。即ち、研磨処理によりシリコンウエハの加工面に研磨傷が生じると、その研磨傷に沿って圧力が付加されながら研磨が継続されるため、強く研磨される部分と弱く研磨される部分が発生し、加工面に研磨条件のばらつきが発生する。そのため、強く研磨した部分と弱く研磨した部分との間に残留応力の差(加工歪み)が生じる。   Another possible cause is a polishing flaw generated on the processed surface of the silicon wafer due to the polishing process. That is, when a polishing flaw occurs on the processed surface of the silicon wafer due to the polishing process, the polishing is continued while pressure is applied along the polishing flaw, so that a strongly polished part and a weakly polished part are generated, Variations in polishing conditions occur on the processed surface. Therefore, a difference in residual stress (processing distortion) occurs between the strongly polished portion and the weakly polished portion.

また他の原因として、シリコンウエハの厚みのばらつきが考えられる。即ち、シリコンウエハに厚みのばらつきが存在する場合、強く研磨される部分と弱く研磨される部分が発生し、加工面に研磨条件のばらつきが発生する。そのため、強く研磨した部分と弱く研磨した部分との間に残留応力の差(加工歪み)が生じる。   Another possible cause is a variation in the thickness of the silicon wafer. That is, when there is a thickness variation in the silicon wafer, a strongly polished portion and a weakly polished portion are generated, and polishing conditions are varied on the processed surface. Therefore, a difference in residual stress (processing distortion) occurs between the strongly polished portion and the weakly polished portion.

また、加工歪みに起因してシリコン基板に反りが発生するのは、次の理由による。即ち、シリコンウエハの残留応力は、個片化されたシリコン基板に半導体チップを接合する際や、接合された半導体チップとシリコン基板との間の隙間を封止する封止樹脂を硬化する際の熱によって解放されるが、従来の半導体パッケージの製造方法では、個片化されたシリコン基板に加工歪み(残留応力のばらつき)が発生しているため、残留応力が均一に解放されず、予測できない大きな反りが発生する。   Further, the warp of the silicon substrate due to the processing distortion is caused by the following reason. That is, the residual stress of a silicon wafer is determined when a semiconductor chip is bonded to an individual silicon substrate or when a sealing resin that seals a gap between the bonded semiconductor chip and the silicon substrate is cured. Although it is released by heat, in the conventional semiconductor package manufacturing method, processing stress (variation of residual stress) is generated in the separated silicon substrate, so the residual stress is not released uniformly and cannot be predicted. A large warp occurs.

本発明は、前記従来の問題に鑑み、パッケージ品質の向上を図ることができるパッケージ部品の製造方法およびパッケージ部品を提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a method for manufacturing a package component and a package component capable of improving package quality.

上記目的を達成するために、本発明にかかるパッケージ部品の製造方法は、基板の実装面に複数の機能部品を実装し、前記基板の実装面上の前記各機能部品を封止樹脂で封止し、前記封止樹脂の前記基板の実装面に対向する面とは反対側の面から研磨を行い、前記封止樹脂と前記各機能部品を研磨することを特徴とする。   In order to achieve the above object, a method for manufacturing a package component according to the present invention includes mounting a plurality of functional components on a mounting surface of a substrate, and sealing each functional component on the mounting surface of the substrate with a sealing resin. Then, polishing is performed from the surface of the sealing resin opposite to the surface facing the mounting surface of the substrate, and the sealing resin and each functional component are polished.

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記封止樹脂が第1の封止樹脂と第2の封止樹脂からなり、前記封止樹脂で封止する際に、前記各機能部品と前記基板の実装面との間の隙間、および前記各機能部品の周囲を前記第1の封止樹脂で封止した後、前記各機能部品の前記第1の封止樹脂から露出している部分、および前記第1の封止樹脂を前記第2の封止樹脂で封止することを特徴とする。   Further, according to another aspect of the method for manufacturing a package component according to the present invention, the sealing resin includes a first sealing resin and a second sealing resin, and when the sealing resin is sealed with the sealing resin, After sealing the gap between each functional component and the mounting surface of the substrate and the periphery of each functional component with the first sealing resin, the functional component is exposed from the first sealing resin. And the first sealing resin is sealed with the second sealing resin.

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記封止樹脂と前記各機能部品を研磨した後、前記基板の実装面とは反対側の裏面を研磨することを特徴とする。   In another aspect of the package component manufacturing method according to the present invention, the sealing resin and each functional component are polished, and then the back surface opposite to the mounting surface of the substrate is polished. .

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記封止樹脂と前記各機能部品を研磨する際、前記基板の裏面を基準面として研磨を行い、前記基板の裏面を研磨する際、前記基板の裏面とは反対側の既に研磨された面を基準面として研磨を行うことを特徴とする。   In another aspect of the package component manufacturing method according to the present invention, when the sealing resin and each functional component are polished, the back surface of the substrate is polished as a reference surface, and the back surface of the substrate is polished. At this time, the polishing is performed using the already polished surface opposite to the back surface of the substrate as a reference surface.

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記基板の裏面を研磨した後、前記基板の裏面側から前記基板に貫通電極を形成し、前記基板の研磨された裏面上に再配線層を形成して、複数の実装構造体からなる集合体を形成し、前記集合体を切断して複数の個片化された実装構造体を生成することを特徴とする。   In another aspect of the package component manufacturing method according to the present invention, after the back surface of the substrate is polished, a through electrode is formed on the substrate from the back surface side of the substrate, and the polished back surface of the substrate is formed. A rewiring layer is formed to form an assembly including a plurality of mounting structures, and the assembly is cut to generate a plurality of individual mounting structures.

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記個片化された実装構造体を生成した後、前記個片化された実装構造体を他の基板と接続することを特徴とする。   In another aspect of the method for manufacturing a package component according to the present invention, after the separated mounting structure is generated, the separated mounting structure is connected to another substrate. And

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記基板が、シリコン製、GaAsやGaNなどの化合物半導体製、セラミックス製または樹脂製であることを特徴とする。   In another aspect of the method for manufacturing a package component according to the present invention, the substrate is made of silicon, a compound semiconductor such as GaAs or GaN, a ceramic, or a resin.

また、本発明にかかるパッケージ部品の製造方法の他の側面は、前記機能部品が、シリコン製の半導体素子、シリコンカーバイトやGaAs、GaNなどの化合物半導体素子、または抵抗やコンデンサなどの能動部品であることを特徴とする。   In another aspect of the method of manufacturing a package component according to the present invention, the functional component is a silicon semiconductor device, a compound semiconductor device such as silicon carbide, GaAs, or GaN, or an active component such as a resistor or a capacitor. It is characterized by being.

また、本発明にかかるパッケージ部品は、基板と、前記基板の実装面上に実装された機能部品と、前記基板の実装面上の前記機能部品を封止する封止樹脂と、を備え、前記封止樹脂が、樹脂物性が互いに異なる複数種類の絶縁材料からなることを特徴とする。   The package component according to the present invention includes a substrate, a functional component mounted on the mounting surface of the substrate, and a sealing resin for sealing the functional component on the mounting surface of the substrate, The sealing resin is made of a plurality of types of insulating materials having different resin properties.

本発明の好ましい形態によれば、封止樹脂により厚みと強度を確保してから研磨処理を行うので、研磨処理により発生する加工歪み(残留応力のばらつき)を封止樹脂の剛性で保持することができ、基板反りを防ぐことができる。さらに、半導体チップ等の機能部品を基板に実装する際に、薄型化され且つ個片化された脆弱な基板をハンドリングせずに済む。また、封止樹脂により厚みと強度が確保された実装構造体をハンドリングすることになるので、ハンドリングによる表面汚染や傷などの影響を回避することができる。また、初期プロセスで樹脂封止するので、基板と半導体チップ等の機能部品とを接合する接合部の保護を初期プロセスで確保でき、後工程での品質低下を防ぐことができる。したがって、これらのことから、基板と半導体チップ等の機能部品との間の接続不良を防ぎ、パッケージ品質の向上を図ることができる。   According to the preferred embodiment of the present invention, since the polishing process is performed after securing the thickness and strength by the sealing resin, the processing strain (variation in residual stress) generated by the polishing process is held by the rigidity of the sealing resin. And substrate warpage can be prevented. Further, when a functional component such as a semiconductor chip is mounted on a substrate, it is not necessary to handle a fragile substrate that is thin and singulated. In addition, since the mounting structure whose thickness and strength are secured by the sealing resin is handled, it is possible to avoid the influence of surface contamination and scratches due to the handling. In addition, since the resin sealing is performed in the initial process, it is possible to ensure the protection of the joint portion that joins the substrate and the functional component such as the semiconductor chip in the initial process, and to prevent deterioration in quality in the subsequent process. Therefore, it is possible to prevent poor connection between the substrate and a functional component such as a semiconductor chip and improve the package quality.

本発明の実施の形態における半導体パッケージのプロセスフローを示す図The figure which shows the process flow of the semiconductor package in embodiment of this invention 本発明の実施の形態における半導体パッケージを示す図The figure which shows the semiconductor package in embodiment of this invention 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 本発明の実施形態における半導体パッケージの製造方法の過程を説明するための図The figure for demonstrating the process of the manufacturing method of the semiconductor package in embodiment of this invention. 従来の半導体パッケージの断面図Sectional view of a conventional semiconductor package

以下、本発明に係るパッケージ部品の製造方法およびパッケージ部品の実装の一形態について、半導体パッケージの製造方法および半導体パッケージを例に、図面を交えて説明する。なお、この実施の形態では、基板に2個の半導体チップが実装された構造を有する半導体パッケージについて説明するが、無論、半導体チップの個数は2個に限定されるものではない。   Hereinafter, a package component manufacturing method and a package component mounting form according to the present invention will be described with reference to the drawings, taking a semiconductor package manufacturing method and a semiconductor package as examples. In this embodiment, a semiconductor package having a structure in which two semiconductor chips are mounted on a substrate will be described. Of course, the number of semiconductor chips is not limited to two.

図1に本発明の実施の形態における半導体パッケージのプロセスフローを示す。詳しくは、図1(a)〜図1(e)は本発明の実施の形態における半導体パッケージのプロセスの一部の概要をそれぞれ示している。   FIG. 1 shows a process flow of a semiconductor package in an embodiment of the present invention. Specifically, FIG. 1A to FIG. 1E respectively show an outline of part of the process of the semiconductor package in the embodiment of the present invention.

まず、図1(a)に示すように、ウエハ状態の基板1aの実装面に複数の半導体チップ2を位置合わせして実装する。次に、図1(b)に示すように、基板1aの実装面上の各半導体チップ2を封止樹脂3で封止する。封止樹脂3には、例えばエポキシ系、アクリル系、フェノール系、シリコン系などの絶縁材料を用いることができる。   First, as shown in FIG. 1A, a plurality of semiconductor chips 2 are aligned and mounted on a mounting surface of a substrate 1a in a wafer state. Next, as shown in FIG. 1B, each semiconductor chip 2 on the mounting surface of the substrate 1 a is sealed with a sealing resin 3. For the sealing resin 3, for example, an insulating material such as epoxy, acrylic, phenol, or silicon can be used.

次に、基板1aの実装面とは反対側の裏面を基準面として、封止樹脂3の基板1aの実装面に対向する面とは反対側の面から研磨を行い、封止樹脂3と半導体チップ2を研磨した後、基板1aの裏面とは反対側の既に研磨された面を基準面として、基板1aの裏面を研磨する。このようにして、ウエハ状態で基板1aを薄型化するとともに、ウエハ状態の基板1aに実装された半導体チップ2を薄型化する。   Next, with the back surface opposite to the mounting surface of the substrate 1a as a reference surface, polishing is performed from the surface opposite to the surface facing the mounting surface of the substrate 1a of the sealing resin 3, and the sealing resin 3 and the semiconductor After the chip 2 is polished, the back surface of the substrate 1a is polished using the already polished surface opposite to the back surface of the substrate 1a as a reference surface. In this way, the substrate 1a is thinned in the wafer state, and the semiconductor chip 2 mounted on the substrate 1a in the wafer state is thinned.

その後、基板1aの裏面側から基板1aに貫通電極を形成し、基板1aの研磨された裏面上に再配線層を形成し、その再配線層上に突起電極を設けて、複数の実装構造体からなる集合体を形成してから、図1(c)に示すように、例えばダイシングブレード4により、前記集合体を切断して複数の個片化された実装構造体を生成する。なお、再配線層上の突起電極は、前記集合体を切断した後に、各実装構造体の再配線層上に形成してもよい。   Thereafter, a through electrode is formed on the substrate 1a from the back surface side of the substrate 1a, a rewiring layer is formed on the polished back surface of the substrate 1a, and a protruding electrode is provided on the rewiring layer. Then, as shown in FIG. 1C, the assembly is cut by a dicing blade 4, for example, to generate a plurality of separated mounting structures. The protruding electrode on the rewiring layer may be formed on the rewiring layer of each mounting structure after cutting the assembly.

次に、図1(d)に示すように、個片化された実装構造体を他の基板5に接合する。なお、実装構造体と他の基板5とを接続する突起電極は、再配線層上ではなく他の基板5上に形成してもよい。その後、実装構造体と他の基板5との間の隙間を樹脂封止して、図1(e)に示すような半導体パッケージを得る。なお、図1(d)において、符号1bは個片化された基板を示す。   Next, as shown in FIG. 1D, the separated mounting structure is bonded to another substrate 5. Note that the protruding electrode that connects the mounting structure and the other substrate 5 may be formed on the other substrate 5 instead of on the rewiring layer. Thereafter, the gap between the mounting structure and the other substrate 5 is sealed with resin to obtain a semiconductor package as shown in FIG. In FIG. 1 (d), reference numeral 1b indicates a substrate that is separated.

以上のような製造方法によれば、封止樹脂により厚みと強度を確保してから研磨処理を行うので、研磨処理により発生する加工歪み(残留応力のばらつき)を封止樹脂の剛性で保持することができ、基板反りを防ぐことができる。さらに、ウエハ状態の基板に半導体チップを実装するので、半導体チップを実装する際に、薄型化され且つ個片化された脆弱な基板をハンドリングせずに済む。また、封止樹脂により厚みと強度が確保された実装構造体をハンドリングすることになるので、ハンドリングによる表面汚染や傷などの影響を回避することができる。また、初期プロセスで樹脂封止するので、基板の電極と半導体チップの電極との接合部の保護を初期プロセスで確保でき、後工程での品質低下を防ぐことができる。したがって、これらのことから、基板の電極と半導体チップの電極との間の接続不良を防ぎ、パッケージ品質の向上を図ることができる。   According to the manufacturing method as described above, since the polishing process is performed after securing the thickness and strength with the sealing resin, the processing strain (variation in residual stress) generated by the polishing process is held by the rigidity of the sealing resin. And substrate warpage can be prevented. Further, since the semiconductor chip is mounted on the substrate in the wafer state, when mounting the semiconductor chip, it is not necessary to handle a thin and fragile fragile substrate. In addition, since the mounting structure whose thickness and strength are secured by the sealing resin is handled, it is possible to avoid the influence of surface contamination and scratches due to the handling. In addition, since the resin sealing is performed in the initial process, it is possible to ensure the protection of the joint portion between the electrode of the substrate and the electrode of the semiconductor chip in the initial process, and it is possible to prevent quality degradation in the subsequent process. Therefore, from these, it is possible to prevent poor connection between the electrode of the substrate and the electrode of the semiconductor chip and improve the package quality.

以下、この実施の形態における半導体パッケージとその製造方法について詳細に説明する。図2は、本発明の実施の形態における半導体パッケージを示す図であり、詳しくは、図2(a)は本発明の実施の形態における半導体パッケージの平面図、図2(b)は本発明の実施の形態における半導体パッケージの断面図である。   Hereinafter, the semiconductor package and the manufacturing method thereof in this embodiment will be described in detail. 2A and 2B are diagrams showing a semiconductor package according to the embodiment of the present invention. Specifically, FIG. 2A is a plan view of the semiconductor package according to the embodiment of the present invention, and FIG. It is sectional drawing of the semiconductor package in embodiment.

図2に示すように、この半導体パッケージは、実装面に配線12が形成されているシリコン製の基板(以下、シリコン基板と称す。)11aと、シリコン基板11aの実装面上に実装された2個の半導体チップ13、14と、各半導体チップ13、14とシリコン基板11aの実装面との間の隙間および各半導体チップ13、14の周囲を封止する第1の封止樹脂15と、第1の封止樹脂15を封止する第2の封止樹脂16と、シリコン基板11aを貫通する貫通電極17と、半導体チップ13、14とシリコン基板11aとを電気的に接続する第1の突起電極18と、シリコン基板11aの実装面とは反対側の裏面に設けられた第2の突起電極19と、からなる実装構造体を備え、この実装構造体が樹脂製の基板(以下、樹脂基板と称す。)20に接合されている。   As shown in FIG. 2, this semiconductor package includes a silicon substrate (hereinafter referred to as a silicon substrate) 11a having wirings 12 formed on the mounting surface, and 2 mounted on the mounting surface of the silicon substrate 11a. A first sealing resin 15 for sealing the semiconductor chips 13, 14, the gaps between the semiconductor chips 13, 14 and the mounting surface of the silicon substrate 11 a and the periphery of the semiconductor chips 13, 14, Second sealing resin 16 that seals one sealing resin 15, through electrode 17 that penetrates silicon substrate 11a, and first protrusion that electrically connects semiconductor chips 13 and 14 and silicon substrate 11a A mounting structure including an electrode 18 and a second protruding electrode 19 provided on the back surface opposite to the mounting surface of the silicon substrate 11a is provided. The mounting structure is a resin substrate (hereinafter referred to as a resin substrate). Called. It is bonded to 20.

樹脂基板20は、シリコン基板11aに対向する面に電極21を有し、この電極21とシリコン基板11aの裏面に設けられた第2の突起電極19とが電気的に接続している。また、シリコン基板11aと樹脂基板20との間の隙間およびシリコン基板11aの周囲が第3の封止樹脂22で封止されている。さらに、樹脂基板20のシリコン基板11aに対向する面とは反対側の面に第3の突起電極23が設けられている。   The resin substrate 20 has an electrode 21 on the surface facing the silicon substrate 11a, and the electrode 21 and the second protruding electrode 19 provided on the back surface of the silicon substrate 11a are electrically connected. Further, the gap between the silicon substrate 11 a and the resin substrate 20 and the periphery of the silicon substrate 11 a are sealed with the third sealing resin 22. Further, a third protruding electrode 23 is provided on the surface of the resin substrate 20 opposite to the surface facing the silicon substrate 11a.

図2に示すように、各半導体チップ13、14のシリコン基板11aに対向する面とは反対側の面は露出している。また、シリコン基板11aの実装面に形成されている配線12は第1の突起電極18と接続している。また図示していないが、シリコン基板11aの裏面には再配線層が形成されており、その再配線層に第2の突起電極19が接続している。   As shown in FIG. 2, the surface of each semiconductor chip 13, 14 opposite to the surface facing the silicon substrate 11a is exposed. Further, the wiring 12 formed on the mounting surface of the silicon substrate 11 a is connected to the first protruding electrode 18. Although not shown, a rewiring layer is formed on the back surface of the silicon substrate 11a, and the second protruding electrode 19 is connected to the rewiring layer.

続いて、前記した構成の半導体パッケージの製造方法について、図3〜図11を交えて説明する。図3〜図11は、本発明の実施の形態における半導体パッケージの製造方法を説明するための図であり、詳しくは、図3(a)〜図11(a)は本発明の実施の形態における半導体パッケージの製造工程の一部を説明するための平面図、図3(b)〜図11(b)は本発明の実施の形態における半導体パッケージの製造工程の一部を説明するための工程断面図である。なお、図3〜図10において、符号11bはウエハ状態のシリコン基板(以下、シリコンウエハと称す。)を示す。図3〜図10は、シリコンウエハの一部、具体的には1個の実装構造体を構成する部分を示している。ここでは、説明を簡潔にするために、シリコンウエハを用いて1個の実装構造体を生成する場合について説明する。   Next, a method for manufacturing the semiconductor package having the above-described configuration will be described with reference to FIGS. 3 to 11 are diagrams for explaining a method of manufacturing a semiconductor package according to the embodiment of the present invention. Specifically, FIGS. 3A to 11A illustrate the method according to the embodiment of the present invention. FIGS. 3B to 11B are plan views for explaining a part of the manufacturing process of the semiconductor package, and FIG. 3B to FIG. 11B are process cross sections for explaining a part of the manufacturing process of the semiconductor package in the embodiment of the present invention. FIG. 3 to 10, reference numeral 11b indicates a silicon substrate in a wafer state (hereinafter referred to as a silicon wafer). 3 to 10 show a part of a silicon wafer, specifically, a part constituting one mounting structure. Here, in order to simplify the description, a case where one mounting structure is generated using a silicon wafer will be described.

まず、図3に示すように、シリコンウエハ11b上に第1の半導体チップ13を実装する。具体的には、まず、実装面側の表層に配線12が形成されたシリコンウエハ11bを用意する。配線12の材料には、例えばAuやCuなどを用いることができる。次に、配線12に設けられた電極24上に、接合用の第1の突起電極18を形成する。第1の突起電極18の高さは5〜30μm程度に設定する。第1の突起電極18の材料には、例えばAuや半田などを用いることができる。第1の突起電極18を形成した後、シリコンウエハ11bの実装面と第1の半導体チップ13の配線面との接続位置合わせをし、熱や荷重などの条件を適宜設定した上で、シリコンウエハ11bに第1の半導体チップ13を実装する。これにより、シリコンウエハ11bと第1の半導体チップ13が第1の突起電極18を介して電気的に接続される。なお、接合用の第1の突起電極は、半導体チップ13の配線面上に形成してもよい。   First, as shown in FIG. 3, the first semiconductor chip 13 is mounted on the silicon wafer 11b. Specifically, first, a silicon wafer 11b having wiring 12 formed on the surface layer on the mounting surface side is prepared. For example, Au or Cu can be used as the material of the wiring 12. Next, a first protruding electrode 18 for bonding is formed on the electrode 24 provided on the wiring 12. The height of the first protruding electrode 18 is set to about 5 to 30 μm. For example, Au or solder can be used as the material of the first protruding electrode 18. After forming the first protruding electrode 18, the mounting position of the mounting surface of the silicon wafer 11b and the wiring surface of the first semiconductor chip 13 are aligned, and conditions such as heat and load are appropriately set, and then the silicon wafer The first semiconductor chip 13 is mounted on 11b. Thereby, the silicon wafer 11 b and the first semiconductor chip 13 are electrically connected via the first protruding electrode 18. Note that the first protruding electrode for bonding may be formed on the wiring surface of the semiconductor chip 13.

次に、図4に示すように、シリコンウエハ11b上に第2の半導体チップ14を実装する。この工程は、前記した第1の半導体チップ13を実装する工程と同様の工程であるので、詳しい説明は省略する。   Next, as shown in FIG. 4, the second semiconductor chip 14 is mounted on the silicon wafer 11b. Since this step is the same as the step of mounting the first semiconductor chip 13 described above, detailed description thereof is omitted.

次に、図5に示すように、各半導体チップ13、14とシリコンウエハ11bとの間に存在する5〜20μm程度の隙間、および各半導体チップ13、14の周囲(シリコンウエハ11bの実装面から各半導体チップ13、14の側面にわたる領域)を、第1の封止樹脂15で封止する。したがって、各半導体チップ13、14の上部が第1の封止樹脂15から露出する。第1の封止樹脂15には、例えばエポキシ系、アクリル系、フェノール系、シリコン系などの絶縁材料を用いることができる。第1の封止樹脂15は、例えば150°Cで1時間程度加熱することにより硬化させる。   Next, as shown in FIG. 5, a gap of about 5 to 20 μm existing between the semiconductor chips 13 and 14 and the silicon wafer 11b and the periphery of the semiconductor chips 13 and 14 (from the mounting surface of the silicon wafer 11b). A region extending over the side surfaces of the semiconductor chips 13 and 14 is sealed with a first sealing resin 15. Accordingly, the upper portions of the semiconductor chips 13 and 14 are exposed from the first sealing resin 15. For the first sealing resin 15, for example, an insulating material such as epoxy, acrylic, phenol, or silicon can be used. The first sealing resin 15 is cured by heating at 150 ° C. for about 1 hour, for example.

次に、図6に示すように、各半導体チップ13、14の第1の封止樹脂15から露出する部分、および第1の封止樹脂15を第2の封止樹脂16で封止する。第2の封止樹脂16には、第1の封止樹脂15と同様に、例えばエポキシ系、アクリル系、フェノール系、シリコン系などの絶縁材料を用いることができる。第2の封止樹脂16は、例えば150°Cで1時間程度加熱することにより硬化させる。   Next, as shown in FIG. 6, the portions of the semiconductor chips 13 and 14 exposed from the first sealing resin 15 and the first sealing resin 15 are sealed with the second sealing resin 16. As the first sealing resin 15, for example, an insulating material such as epoxy, acrylic, phenol, or silicon can be used for the second sealing resin 16. The second sealing resin 16 is cured by heating at 150 ° C. for about 1 hour, for example.

次に、図7に示すように、シリコンウエハ11bの実装面とは反対側の裏面を基準面として、第2の封止樹脂16のシリコンウエハ11bの実装面に対向する面とは反対側の面から研磨を行い、第2の封止樹脂16と各半導体チップ13、14を研磨して、各半導体チップ13、14のシリコンウエハ11bの実装面に対向する面(配線面)とは反対側の面を露出させる。なお、第1の封止樹脂15が露出するまで研磨してもよい。この研磨処理では、研磨面を基準面と平行にし、かつその表面粗さRaが1μm以下となる程度に平坦化する。また、この研磨処理では、各半導体チップ13、14の厚みを50μm以下にする。   Next, as shown in FIG. 7, the back surface opposite to the mounting surface of the silicon wafer 11b is used as a reference surface, and the second sealing resin 16 is opposite to the surface facing the mounting surface of the silicon wafer 11b. Polishing is performed from the surface, the second sealing resin 16 and each of the semiconductor chips 13 and 14 are polished, and the side opposite to the surface (wiring surface) facing the mounting surface of the silicon wafer 11b of each semiconductor chip 13 and 14 Expose the surface of The polishing may be performed until the first sealing resin 15 is exposed. In this polishing treatment, the polished surface is made parallel to the reference surface and flattened to such an extent that the surface roughness Ra is 1 μm or less. In this polishing process, the thickness of each semiconductor chip 13 and 14 is set to 50 μm or less.

次に、図8に示すように、シリコンウエハ11bの裏面とは反対側の既に研磨された面を基準面として、シリコンウエハ11bの裏面を研磨する。この研磨処理では、研磨面を基準面と平行にし、かつその表面粗さRaが1μm以下となる程度に平坦化する。また、この研磨処理では、シリコンウエハ11bの厚みを50μm以下にする。   Next, as shown in FIG. 8, the back surface of the silicon wafer 11b is polished using the already polished surface opposite to the back surface of the silicon wafer 11b as a reference surface. In this polishing treatment, the polished surface is made parallel to the reference surface and flattened to such an extent that the surface roughness Ra is 1 μm or less. In this polishing process, the thickness of the silicon wafer 11b is set to 50 μm or less.

次に、図9に示すように、シリコンウエハ11bの裏面側から、フォトリソ、ドライエッチ、CVD、スパッタ、メッキなどのプロセスを用いてシリコンウエハ11bを貫通する導通経路となる貫通電極17を形成する。   Next, as shown in FIG. 9, a through electrode 17 serving as a conduction path that penetrates the silicon wafer 11b is formed from the back side of the silicon wafer 11b by using processes such as photolithography, dry etching, CVD, sputtering, and plating. .

次に、シリコンウエハ11bの研磨された裏面上に、スパッタ、フォトリソ、めっき、エッチングなどのプロセスを用いて再配線層を形成し、その再配線層上に、後工程で第2の突起電極を設ける箇所を除いてソルダーレジストを形成した後、図10に示すように、再配線層上に第2の突起電極19を設けて、実装構造体を生成する。再配線層の配線の材料には、例えばTi、Cu、Auなどを用いることができる。第2の突起電極19の材料には、例えばAu、Cu、半田などを用いることができる。   Next, a rewiring layer is formed on the polished back surface of the silicon wafer 11b using a process such as sputtering, photolithography, plating, etching, and the second protruding electrode is formed on the rewiring layer in a later step. After the solder resist is formed except for the place to be provided, as shown in FIG. 10, a second protruding electrode 19 is provided on the rewiring layer to generate a mounting structure. For example, Ti, Cu, Au, or the like can be used as the wiring material of the rewiring layer. For example, Au, Cu, solder, or the like can be used as the material of the second protruding electrode 19.

次に、ダイシング法などにより実装構造体を切り出した後、その個片化された実装構造体の第2の突起電極19を、他の基板である樹脂基板20上の電極21に位置合わせし、熱や荷重などの条件を適宜設定した上で、図11に示すように、実装構造体を樹脂基板20に実装する。なお、第2の突起電極19は、実装構造体を切り出した後に形成してもよいし、実装構造体上ではなく樹脂基板20上に形成してもよい。また、第3の突起電極23は、実装構造体を樹脂基板20に実装した後に設けてもよいし、実装構造体を樹脂基板20に実装する前に設けてもよい。   Next, after cutting out the mounting structure by a dicing method or the like, the second projecting electrode 19 of the separated mounting structure is aligned with the electrode 21 on the resin substrate 20 which is another substrate, After appropriately setting conditions such as heat and load, the mounting structure is mounted on the resin substrate 20 as shown in FIG. Note that the second protruding electrode 19 may be formed after the mounting structure is cut out, or may be formed on the resin substrate 20 instead of on the mounting structure. The third protruding electrode 23 may be provided after the mounting structure is mounted on the resin substrate 20 or may be provided before the mounting structure is mounted on the resin substrate 20.

次に、シリコン基板11aと樹脂基板20との間の隙間およびシリコン基板11aの周囲を第3の封止樹脂22で封止して、図2に示す半導体パッケージを得る。第3の封止樹脂22には、例えばエポキシ系、アクリル系、フェノール系、シリコン系などの絶縁材料を用いることができる。第3の封止樹脂22は、例えば150°Cで1時間程度加熱することにより硬化させる。なお、第3の突起電極23は、第3の封止樹脂22による樹脂封止後に設けてもよい。   Next, the gap between the silicon substrate 11a and the resin substrate 20 and the periphery of the silicon substrate 11a are sealed with the third sealing resin 22 to obtain the semiconductor package shown in FIG. For the third sealing resin 22, for example, an insulating material such as epoxy, acrylic, phenol, or silicon can be used. The third sealing resin 22 is cured by heating at 150 ° C. for about 1 hour, for example. The third protruding electrode 23 may be provided after resin sealing with the third sealing resin 22.

以上のように、シリコンウエハ11bの実装面上を封止する封止樹脂として、2種類の封止樹脂15、16を用いることにより、第1の封止樹脂15と第2の封止樹脂16のヤング率や熱膨張係数などの樹脂物性を工夫して、熱プロセスによる残留応力の解放に起因する基板反りの発生を抑えることができる。   As described above, by using the two types of sealing resins 15 and 16 as the sealing resin for sealing the mounting surface of the silicon wafer 11b, the first sealing resin 15 and the second sealing resin 16 are used. By devising the physical properties of the resin such as the Young's modulus and thermal expansion coefficient, it is possible to suppress the occurrence of substrate warpage due to the release of residual stress by the thermal process.

例えば、シリコン基板11aの実装面が凸形状に反る場合、第1の封止樹脂15のヤング率を、第1の封止樹脂15を覆う第2の封止樹脂16のヤング率よりも高くし、第1の封止樹脂15の熱膨張係数をシリコンの熱膨張係数に近付け、第2の封止樹脂の熱膨張係数をシリコンの熱膨張係数よりも大きくする。これにより、シリコン基板11aの実装面を凹形状に反らせる応力が発生し、パッケージ全体の反りが緩和する。   For example, when the mounting surface of the silicon substrate 11a warps in a convex shape, the Young's modulus of the first sealing resin 15 is higher than the Young's modulus of the second sealing resin 16 that covers the first sealing resin 15. Then, the thermal expansion coefficient of the first sealing resin 15 is brought close to the thermal expansion coefficient of silicon, and the thermal expansion coefficient of the second sealing resin is made larger than the thermal expansion coefficient of silicon. Thereby, the stress which warps the mounting surface of the silicon substrate 11a to a concave shape is generated, and the warpage of the entire package is alleviated.

逆に、シリコン基板11aの実装面が凹形状に反る場合、第1の封止樹脂15のヤング率を第2の封止樹脂16のヤング率よりも低くし、第1の封止樹脂15と第2の封止樹脂16の熱膨張係数を共にシリコンの熱膨張係数に近付ける。これにより、シリコン基板11aの実装面を凸形状に反らせる応力が発生し、パッケージ全体の反りが緩和する。   Conversely, when the mounting surface of the silicon substrate 11a warps in a concave shape, the Young's modulus of the first sealing resin 15 is made lower than the Young's modulus of the second sealing resin 16, and the first sealing resin 15 And the thermal expansion coefficient of the second sealing resin 16 are both brought close to the thermal expansion coefficient of silicon. As a result, a stress that warps the mounting surface of the silicon substrate 11a to a convex shape is generated, and the warpage of the entire package is alleviated.

第3の封止樹脂には、シリコン基板11aと樹脂基板20とを接合している突起電極部に発生する応力が小さくなるように、シリコン基板11aと樹脂基板20のヤング率、熱膨張率の中間の物性値の持つ樹脂を用いる。   In the third sealing resin, the Young's modulus and thermal expansion coefficient of the silicon substrate 11a and the resin substrate 20 are reduced so that the stress generated in the protruding electrode part joining the silicon substrate 11a and the resin substrate 20 is reduced. A resin having an intermediate physical property value is used.

以上のように第1の封止樹脂15と第2の封止樹脂のそれぞれの物性値を選択することで、加工組立て時のプロセス温度による形状変化を制御し、パッケージの反りを防ぐことができる。なお、この実施の形態では、樹脂物性が互いに異なる2種類の封止樹脂を用いる場合について説明したが、樹脂物性が互いに異なる3種類以上の封止樹脂を用いてもよい。   As described above, by selecting the physical property values of the first sealing resin 15 and the second sealing resin, it is possible to control the shape change due to the process temperature during processing and assembly and to prevent the warpage of the package. . In this embodiment, the case where two types of sealing resins having different resin properties are used has been described. However, three or more types of sealing resins having different resin properties may be used.

以上説明した実施の形態によれば、シリコンウエハを研磨する際に生じる仕上げ表面粗さや研磨傷、およびシリコンウエハの厚みのばらつきなどが原因となって加工時の圧力、熱により発生するシリコン基板の反りを抑えることができる。   According to the embodiment described above, the finished surface roughness and polishing scratches generated when polishing a silicon wafer, and variations in the thickness of the silicon wafer, etc., cause the pressure of the silicon substrate generated by the processing pressure and heat. Warpage can be suppressed.

さらに、基板に実装する2個の半導体チップの厚みが互いに異なっていても、基板に各半導体チップを実装した後に各半導体チップの表面を同時に研磨することにより、2個の半導体チップの厚みを揃えることができる。したがって、この半導体パッケージの同一表面内に2個の半導体チップの表面が同じ高さの面として現れるので、2個の半導体チップのそれぞれの放熱性が同様になり、半導体パッケージの反りを防止することができる。   Further, even if the thicknesses of the two semiconductor chips mounted on the substrate are different from each other, the thicknesses of the two semiconductor chips are made uniform by simultaneously polishing the surface of each semiconductor chip after mounting each semiconductor chip on the substrate. be able to. Therefore, since the surfaces of the two semiconductor chips appear as the same height on the same surface of the semiconductor package, the heat dissipation of each of the two semiconductor chips becomes the same, and the warpage of the semiconductor package is prevented. Can do.

なお、この実施の形態では、シリコン製の基板を例に説明したが、基板材料はシリコンに限定されるものではなく、GaAsやGaNなどの化合物半導体製の基板、セラミックス製の基板または樹脂製の基板などを用いてもよい。   In this embodiment, a silicon substrate has been described as an example. However, the substrate material is not limited to silicon, a compound semiconductor substrate such as GaAs or GaN, a ceramic substrate, or a resin substrate. A substrate or the like may be used.

また、基板に実装する半導体チップの材料は特に限定されるものではなく、例えばシリコン、またはシリコンカーバイトやGaAs、GaN等の化合物半導体などを用いることができる。   The material of the semiconductor chip mounted on the substrate is not particularly limited, and for example, silicon or a compound semiconductor such as silicon carbide, GaAs, or GaN can be used.

また、この実施の形態では半導体パッケージを例に説明したが、本発明は、基板に半導体チップ以外の機能部品が実装された構造を持つパッケージ部品にも適用可能であり、機能部品を実装する基板もウエハ状態の基板に限定されるものではなく、複数の基板が連結して集合している集合基板であればよい。機能部品には、例えば抵抗やコンデンサなどの能動部品を用いることができる。   In this embodiment, the semiconductor package has been described as an example. However, the present invention can also be applied to a package component having a structure in which a functional component other than a semiconductor chip is mounted on a substrate. The substrate is not limited to a substrate in a wafer state, and may be an aggregate substrate in which a plurality of substrates are connected and assembled. As the functional component, for example, an active component such as a resistor or a capacitor can be used.

本発明にかかるパッケージ部品の製造方法およびパッケージ部品は、パッケージ品質の向上を図ることができ、半導体パッケージ等の、基板上に機能部品が実装された構造を持つパッケージ部品に有用である。   The method for manufacturing a package component and the package component according to the present invention can improve the package quality, and are useful for a package component having a structure in which a functional component is mounted on a substrate, such as a semiconductor package.

1a ウエハ状態の基板
1b 個片化された基板
2 半導体チップ
3 封止樹脂
4 ダイシングブレード
5 他の基板
11a 個片化されたシリコン基板
11b シリコンウエハ
12 配線
13 第1の半導体チップ
14 第2の半導体チップ
15 第1の封止樹脂
16 第2の封止樹脂
17 貫通電極
18 第1の突起電極
19 第2の突起電極
20 樹脂基板
21 電極
22 第3の封止樹脂
23 第3の突起電極
24 電極
101 基板
102 半導体チップ
103 貫通電極
104 再配線層
105 第1の突起電極
106 第2の突起電極
DESCRIPTION OF SYMBOLS 1a Wafer substrate 1b Divided substrate 2 Semiconductor chip 3 Sealing resin 4 Dicing blade 5 Other substrate 11a Divided silicon substrate 11b Silicon wafer 12 Wiring 13 First semiconductor chip 14 Second semiconductor Chip 15 First sealing resin 16 Second sealing resin 17 Through electrode 18 First protruding electrode 19 Second protruding electrode 20 Resin substrate 21 Electrode 22 Third sealing resin 23 Third protruding electrode 24 Electrode DESCRIPTION OF SYMBOLS 101 Substrate 102 Semiconductor chip 103 Through electrode 104 Redistribution layer 105 First protruding electrode 106 Second protruding electrode

Claims (9)

基板の実装面に複数の機能部品を実装し、
前記基板の実装面上の前記各機能部品を封止樹脂で封止し、
前記封止樹脂の前記基板の実装面に対向する面とは反対側の面から研磨を行い、前記封止樹脂と前記各機能部品を研磨する
ことを特徴とするパッケージ部品の製造方法。
Mount multiple functional components on the mounting surface of the board,
Sealing each functional component on the mounting surface of the substrate with a sealing resin,
A method for manufacturing a package component, comprising polishing the sealing resin from a surface opposite to a surface facing the mounting surface of the substrate, and polishing the sealing resin and the functional components.
前記封止樹脂が第1の封止樹脂と第2の封止樹脂からなり、前記封止樹脂で封止する際に、前記各機能部品と前記基板の実装面との間の隙間、および前記各機能部品の周囲を前記第1の封止樹脂で封止した後、前記各機能部品の前記第1の封止樹脂から露出している部分、および前記第1の封止樹脂を前記第2の封止樹脂で封止することを特徴とする請求項1記載のパッケージ部品の製造方法。   The sealing resin is composed of a first sealing resin and a second sealing resin, and when sealing with the sealing resin, a gap between each functional component and the mounting surface of the substrate, and After the periphery of each functional component is sealed with the first sealing resin, the portion of each functional component exposed from the first sealing resin and the first sealing resin are the second sealing resin. The package part manufacturing method according to claim 1, wherein sealing is performed with a sealing resin. 前記封止樹脂と前記各機能部品を研磨した後、前記基板の実装面とは反対側の裏面を研磨することを特徴とする請求項1もしくは2のいずれかに記載のパッケージ部品の製造方法。   3. The method of manufacturing a package component according to claim 1, wherein after the sealing resin and each functional component are polished, the back surface opposite to the mounting surface of the substrate is polished. 前記封止樹脂と前記各機能部品を研磨する際、前記基板の裏面を基準面として研磨を行い、前記基板の裏面を研磨する際、前記基板の裏面とは反対側の既に研磨された面を基準面として研磨を行うことを特徴とする請求項3記載のパッケージ部品の製造方法。   When polishing the sealing resin and each functional component, the back surface of the substrate is polished as a reference surface, and when the back surface of the substrate is polished, the already polished surface opposite to the back surface of the substrate is 4. The method of manufacturing a package component according to claim 3, wherein polishing is performed as a reference surface. 前記基板の裏面を研磨した後、前記基板の裏面側から前記基板に貫通電極を形成し、前記基板の研磨された裏面上に再配線層を形成して、複数の実装構造体からなる集合体を形成し、前記集合体を切断して複数の個片化された実装構造体を生成することを特徴とする請求項4記載のパッケージ部品の製造方法。   After the back surface of the substrate is polished, a through electrode is formed on the substrate from the back surface side of the substrate, a rewiring layer is formed on the polished back surface of the substrate, and an assembly composed of a plurality of mounting structures The package part manufacturing method according to claim 4, wherein the assembly is cut to generate a plurality of singulated mounting structures. 前記個片化された実装構造体を生成した後、前記個片化された実装構造体を他の基板と接続することを特徴とする請求項5記載のパッケージ部品の製造方法。   6. The method of manufacturing a package component according to claim 5, wherein after the individual mounting structure is generated, the individual mounting structure is connected to another substrate. 前記基板が、シリコン製、GaAsやGaNなどの化合物半導体製、セラミックス製または樹脂製であることを特徴とする請求項1ないし6のいずれかに記載のパッケージ部品の製造方法。   7. The method of manufacturing a package component according to claim 1, wherein the substrate is made of silicon, a compound semiconductor such as GaAs or GaN, a ceramic, or a resin. 前記機能部品が、シリコン製の半導体素子、シリコンカーバイトやGaAs、GaNなどの化合物半導体素子、または抵抗やコンデンサなどの能動部品であることを特徴とする請求項1ないし7のいずれかに記載のパッケージ部品の製造方法。   8. The functional component according to claim 1, wherein the functional component is a silicon semiconductor device, a compound semiconductor device such as silicon carbide, GaAs, or GaN, or an active component such as a resistor or a capacitor. Manufacturing method of package parts. 基板と、
前記基板の実装面上に実装された機能部品と、
前記基板の実装面上の前記機能部品を封止する封止樹脂と、を備え、
前記封止樹脂が、樹脂物性が互いに異なる複数種類の絶縁材料からなる
ことを特徴とするパッケージ部品。
A substrate,
Functional components mounted on the mounting surface of the substrate;
Sealing resin for sealing the functional component on the mounting surface of the substrate,
The package component, wherein the sealing resin is made of a plurality of types of insulating materials having different resin properties.
JP2010111582A 2010-05-14 2010-05-14 Manufacturing method of package component and package component Pending JP2011243596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111582A JP2011243596A (en) 2010-05-14 2010-05-14 Manufacturing method of package component and package component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111582A JP2011243596A (en) 2010-05-14 2010-05-14 Manufacturing method of package component and package component

Publications (1)

Publication Number Publication Date
JP2011243596A true JP2011243596A (en) 2011-12-01

Family

ID=45410011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111582A Pending JP2011243596A (en) 2010-05-14 2010-05-14 Manufacturing method of package component and package component

Country Status (1)

Country Link
JP (1) JP2011243596A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160707A (en) * 2011-01-28 2012-08-23 Samsung Electronics Co Ltd Multilayer semiconductor chip, semiconductor device, and manufacturing method for these
JP2013149805A (en) * 2012-01-19 2013-08-01 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device
WO2013179765A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Imaging device manufacturing method and semiconductor device manufacturing method
WO2013179764A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Method for manufacturing imaging device and method for manufacturing semiconductor device
WO2013179766A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Imaging device, semiconductor device, and imaging unit
WO2013179767A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Method of manufacturing image pickup device and method of manufacturing semiconductor device
JP2014015490A (en) * 2012-07-05 2014-01-30 Nitto Denko Corp Encapsulation resin sheet, manufacturing method of electronic component package, and electronic component package
WO2015060106A1 (en) * 2013-10-23 2015-04-30 日東電工株式会社 Semiconductor package manufacturing method
KR20180040607A (en) * 2015-08-07 2018-04-20 코르보 유에스, 인크. Flip Chip Module with Enhanced Attributes
CN108597998A (en) * 2017-09-30 2018-09-28 中芯集成电路(宁波)有限公司 Wafer scale system encapsulating method and structure
WO2019138737A1 (en) * 2018-01-09 2019-07-18 オリンパス株式会社 Endoscopic imaging device, endoscope, and method for manufacturing endoscopic imaging device
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
US10755992B2 (en) 2017-07-06 2020-08-25 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10784233B2 (en) 2017-09-05 2020-09-22 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
US10790216B2 (en) 2016-12-09 2020-09-29 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10804179B2 (en) 2016-08-12 2020-10-13 Qorvo Us, Inc. Wafer-level package with enhanced performance
JP2020202298A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Semiconductor power module
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US10985033B2 (en) 2016-09-12 2021-04-20 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
CN113749295A (en) * 2020-06-02 2021-12-07 Itm半导体有限公司 Control circuit module packaging part of electronic cigarette
US20220108938A1 (en) 2019-01-23 2022-04-07 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11309279B2 (en) 2018-05-03 2022-04-19 Ningbo Semiconductor International Corporation Package structure of wafer-level system-in-package
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
US12046483B2 (en) 2019-01-23 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12046505B2 (en) 2018-04-20 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation
US12046535B2 (en) 2018-07-02 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12062700B2 (en) 2018-04-04 2024-08-13 Qorvo Us, Inc. Gallium-nitride-based module with enhanced electrical performance and process for making the same
US12062571B2 (en) 2021-03-05 2024-08-13 Qorvo Us, Inc. Selective etching process for SiGe and doped epitaxial silicon
US12074086B2 (en) 2019-11-01 2024-08-27 Qorvo Us, Inc. RF devices with nanotube particles for enhanced performance and methods of forming the same
US12125825B2 (en) 2019-01-23 2024-10-22 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12129168B2 (en) 2019-12-23 2024-10-29 Qorvo Us, Inc. Microelectronics package with vertically stacked MEMS device and controller device

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160707A (en) * 2011-01-28 2012-08-23 Samsung Electronics Co Ltd Multilayer semiconductor chip, semiconductor device, and manufacturing method for these
JP2013149805A (en) * 2012-01-19 2013-08-01 Fuji Electric Co Ltd Semiconductor device and method of manufacturing semiconductor device
US10249672B2 (en) 2012-05-30 2019-04-02 Olympus Corporation Image pickup apparatus, semiconductor apparatus, and image pickup unit
US9230939B2 (en) 2012-05-30 2016-01-05 Olympus Corporation Method for producing image pickup apparatus, method for producing semiconductor apparatus, and joined wafer
EP2858112A4 (en) * 2012-05-30 2016-04-13 Olympus Corp Method for manufacturing imaging device and method for manufacturing semiconductor device
WO2013179767A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Method of manufacturing image pickup device and method of manufacturing semiconductor device
US9698195B2 (en) 2012-05-30 2017-07-04 Olympus Corporation Method for producing image pickup apparatus and method for producing semiconductor apparatus
WO2013179765A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Imaging device manufacturing method and semiconductor device manufacturing method
US9123618B2 (en) 2012-05-30 2015-09-01 Olympus Corporation Method for producing image pickup apparatus, and method for producing semiconductor apparatus
WO2013179764A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Method for manufacturing imaging device and method for manufacturing semiconductor device
JPWO2013179765A1 (en) * 2012-05-30 2016-01-18 オリンパス株式会社 Imaging device manufacturing method and semiconductor device manufacturing method
JPWO2013179766A1 (en) * 2012-05-30 2016-01-18 オリンパス株式会社 Imaging device, semiconductor device, and imaging unit
JPWO2013179767A1 (en) * 2012-05-30 2016-01-18 オリンパス株式会社 Imaging device manufacturing method and semiconductor device manufacturing method
US9240398B2 (en) 2012-05-30 2016-01-19 Olympus Corporation Method for producing image pickup apparatus and method for producing semiconductor apparatus
US9282261B2 (en) 2012-05-30 2016-03-08 Olympus Corporation Method for producing image pickup apparatus and method for producing semiconductor apparatus
EP2858111A4 (en) * 2012-05-30 2016-04-13 Olympus Corp Imaging device manufacturing method and semiconductor device manufacturing method
WO2013179766A1 (en) 2012-05-30 2013-12-05 オリンパス株式会社 Imaging device, semiconductor device, and imaging unit
JP2014015490A (en) * 2012-07-05 2014-01-30 Nitto Denko Corp Encapsulation resin sheet, manufacturing method of electronic component package, and electronic component package
WO2015060106A1 (en) * 2013-10-23 2015-04-30 日東電工株式会社 Semiconductor package manufacturing method
JP2018523317A (en) * 2015-08-07 2018-08-16 コーボ ユーエス,インコーポレイティド Flip chip module with enhanced properties
KR102532081B1 (en) 2015-08-07 2023-05-11 코르보 유에스, 인크. Flip chip module with enhanced properties
KR20180040607A (en) * 2015-08-07 2018-04-20 코르보 유에스, 인크. Flip Chip Module with Enhanced Attributes
US10882740B2 (en) 2016-05-20 2021-01-05 Qorvo Us, Inc. Wafer-level package with enhanced performance and manufacturing method thereof
US10784149B2 (en) 2016-05-20 2020-09-22 Qorvo Us, Inc. Air-cavity module with enhanced device isolation
US10773952B2 (en) 2016-05-20 2020-09-15 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10804179B2 (en) 2016-08-12 2020-10-13 Qorvo Us, Inc. Wafer-level package with enhanced performance
US10985033B2 (en) 2016-09-12 2021-04-20 Qorvo Us, Inc. Semiconductor package with reduced parasitic coupling effects and process for making the same
US10749518B2 (en) 2016-11-18 2020-08-18 Qorvo Us, Inc. Stacked field-effect transistor switch
US10790216B2 (en) 2016-12-09 2020-09-29 Qorvo Us, Inc. Thermally enhanced semiconductor package and process for making the same
US10755992B2 (en) 2017-07-06 2020-08-25 Qorvo Us, Inc. Wafer-level packaging for enhanced performance
US10784233B2 (en) 2017-09-05 2020-09-22 Qorvo Us, Inc. Microelectronics package with self-aligned stacked-die assembly
JP2021512506A (en) * 2017-09-30 2021-05-13 中芯集成電路(寧波)有限公司 Wafer level system in-package method and package structure
CN108597998A (en) * 2017-09-30 2018-09-28 中芯集成电路(宁波)有限公司 Wafer scale system encapsulating method and structure
KR102400264B1 (en) 2017-09-30 2022-05-23 닝보 세미컨덕터 인터내셔널 코포레이션 Wafer level system packaging method and package structure
KR20200106055A (en) * 2017-09-30 2020-09-10 닝보 세미컨덕터 인터내셔널 코포레이션 Wafer Level System Package Method and Package Structure
JP7027577B2 (en) 2017-09-30 2022-03-01 中芯集成電路(寧波)有限公司 Wafer level system in-package method and package structure
WO2019138737A1 (en) * 2018-01-09 2019-07-18 オリンパス株式会社 Endoscopic imaging device, endoscope, and method for manufacturing endoscopic imaging device
US11627240B2 (en) 2018-01-09 2023-04-11 Olympus Corporation Image pickup apparatus for endoscope, endoscope, and method of producing image pickup apparatus for endoscope
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US12062700B2 (en) 2018-04-04 2024-08-13 Qorvo Us, Inc. Gallium-nitride-based module with enhanced electrical performance and process for making the same
US12062701B2 (en) 2018-04-04 2024-08-13 Qorvo Us, Inc. Gallium-nitride-based module with enhanced electrical performance and process for making the same
US12125739B2 (en) 2018-04-20 2024-10-22 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation
US12046505B2 (en) 2018-04-20 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same utilizing localized SOI formation
US11309279B2 (en) 2018-05-03 2022-04-19 Ningbo Semiconductor International Corporation Package structure of wafer-level system-in-package
US11063021B2 (en) 2018-06-11 2021-07-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US10804246B2 (en) 2018-06-11 2020-10-13 Qorvo Us, Inc. Microelectronics package with vertically stacked dies
US12046535B2 (en) 2018-07-02 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US10964554B2 (en) 2018-10-10 2021-03-30 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US11069590B2 (en) 2018-10-10 2021-07-20 Qorvo Us, Inc. Wafer-level fan-out package with enhanced performance
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11942389B2 (en) 2018-11-29 2024-03-26 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US12057374B2 (en) 2019-01-23 2024-08-06 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12046570B2 (en) 2019-01-23 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12125825B2 (en) 2019-01-23 2024-10-22 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923313B2 (en) 2019-01-23 2024-03-05 Qorvo Us, Inc. RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same
US12112999B2 (en) 2019-01-23 2024-10-08 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11961813B2 (en) 2019-01-23 2024-04-16 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US12046483B2 (en) 2019-01-23 2024-07-23 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11710680B2 (en) 2019-01-23 2023-07-25 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US20220108938A1 (en) 2019-01-23 2022-04-07 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US12062623B2 (en) 2019-01-23 2024-08-13 Qorvo Us, Inc. RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
JP2020202298A (en) * 2019-06-11 2020-12-17 三菱電機株式会社 Semiconductor power module
US12074086B2 (en) 2019-11-01 2024-08-27 Qorvo Us, Inc. RF devices with nanotube particles for enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
US12129168B2 (en) 2019-12-23 2024-10-29 Qorvo Us, Inc. Microelectronics package with vertically stacked MEMS device and controller device
CN113749295A (en) * 2020-06-02 2021-12-07 Itm半导体有限公司 Control circuit module packaging part of electronic cigarette
US12062571B2 (en) 2021-03-05 2024-08-13 Qorvo Us, Inc. Selective etching process for SiGe and doped epitaxial silicon

Similar Documents

Publication Publication Date Title
JP2011243596A (en) Manufacturing method of package component and package component
TWI795677B (en) Semiconductor device and method of manufacturing the same
JP3929966B2 (en) Semiconductor device and manufacturing method thereof
JP5161732B2 (en) Manufacturing method of semiconductor device
JP4856328B2 (en) Manufacturing method of semiconductor device
US8241961B2 (en) Method for manufacturing hetero-bonded wafer
US9355881B2 (en) Semiconductor device including a dielectric material
KR20180027679A (en) Semiconductor package and method of fabricating the same
JP2005064499A (en) Method of manufacturing semiconductor device
JP2001320013A (en) Semiconductor device and its manufacturing method
US20160351462A1 (en) Fan-out wafer level package and fabrication method thereof
JP4553765B2 (en) Manufacturing method of semiconductor device
US9799626B2 (en) Semiconductor packages and other circuit modules with porous and non-porous stabilizing layers
JP2002270720A (en) Semiconductor device and its manufacturing method
US7906833B2 (en) Semiconductor device and manufacturing method thereof
US20200152545A1 (en) Semiconductor device and method for manufacturing semiconductor device
TW201816993A (en) Direct bond method providing thermal expansion matched devices
KR100883807B1 (en) Semiconductor Device Package and Method of Fabricating the Same
JP2001085453A (en) Method of manufacturing semiconductor device
US20100068853A1 (en) Method of manufacturing semiconductor device
JP2014107508A (en) Prevention of warpage in handling chip-on-wafer
JP6149476B2 (en) Manufacturing method of semiconductor device
JP6004343B2 (en) Manufacturing method of semiconductor device
KR102655387B1 (en) Wafer level semiconductor chip packaging method and wafer level semiconductor chip packaging structure using the same
JP4107896B2 (en) Semiconductor device and manufacturing method thereof