JP2011241448A - Aluminum alloy clad material excellent in alkali resistance - Google Patents
Aluminum alloy clad material excellent in alkali resistance Download PDFInfo
- Publication number
- JP2011241448A JP2011241448A JP2010114730A JP2010114730A JP2011241448A JP 2011241448 A JP2011241448 A JP 2011241448A JP 2010114730 A JP2010114730 A JP 2010114730A JP 2010114730 A JP2010114730 A JP 2010114730A JP 2011241448 A JP2011241448 A JP 2011241448A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- aluminum alloy
- brazing
- sacrificial
- sacrificial material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、自動車用ラジエターのチューブ内部等の高温、高アルカリ性環境において優れた耐食性を示すアルミニウム合金クラッド材に関する。 The present invention relates to an aluminum alloy clad material exhibiting excellent corrosion resistance in a high temperature and highly alkaline environment such as the inside of a tube of an automobile radiator.
従来の自動車用アルミニウム製熱交換器の一つであるラジエターを図3(a)、(b)に示す。図3の自動車用熱交換器は、冷却水を通すチューブ(8)にフィン(9)を配置し、チューブ(8)の両端にヘッダープレート(10)を取り付けて、コア(11)を組み立てる。該コアにろう付け処理を施した後、ヘッダープレート(10)にバッキング(13)を介して樹脂タンク(12A)、(12B)を取り付けてラジエターとする。ラジエターの冷却水としては不凍液を含有する弱アルカリ性の水溶液、所謂ロングライフクーラント(LLC)等が利用されている。 A radiator which is one of the conventional aluminum heat exchangers for automobiles is shown in FIGS. The automobile heat exchanger of FIG. 3 assembles the core (11) by disposing the fins (9) on the tube (8) through which the cooling water passes and attaching the header plates (10) to both ends of the tube (8). After brazing the core, the resin tanks (12A) and (12B) are attached to the header plate (10) via the backing (13) to form a radiator. As the cooling water for the radiator, a weak alkaline aqueous solution containing an antifreeze, so-called long life coolant (LLC) or the like is used.
その材料としてフィン(9)にはJIS3003合金にZnを1.50mass%添加した厚さ0.1mm前後の板材が用いられる。また、チューブ(8)には冷却水からの貫通孔食の発生を防止するために、JIS3003合金を芯材とし、冷却水側にJIS7072合金を犠牲陽極材としてクラッドし、外気側にJIS4343合金をろう材としてクラッドした厚さ0.2〜0.4mm程度のアルミニウム合金クラッド材が用いられる。また、ヘッダープレート(10)には、1.0〜1.3mm程度の厚さで、チューブ(8)と同様の構成のアルミニウム合金クラッド材が用いられる。 As the material for the fin (9), a plate material having a thickness of around 0.1 mm obtained by adding 1.50 mass% of Zn to JIS3003 alloy is used. In order to prevent the occurrence of through-pitting corrosion from the cooling water, the tube (8) is clad with JIS3003 alloy as a core material, JIS7072 alloy as a sacrificial anode material on the cooling water side, and JIS4343 alloy on the outside air side. An aluminum alloy clad material having a thickness of about 0.2 to 0.4 mm clad is used as the brazing material. The header plate (10) is made of an aluminum alloy clad material having a thickness of about 1.0 to 1.3 mm and the same configuration as the tube (8).
チューブ(8)、ヘッダープレート(10)に用いられているアルミニウム合金クラッド材は、ろう付け加熱時に600℃程度の雰囲気に曝される。このため、犠牲陽極材に添加されているZnが、芯材中にZnの拡散層を形成する。このZn拡散層が存在することで、犠牲陽極材に発生した腐食は芯材に達した後も横広がりに進行するため、長期に渡って貫通孔を生じないことが知られている。 The aluminum alloy clad material used for the tube (8) and the header plate (10) is exposed to an atmosphere of about 600 ° C. during brazing heating. For this reason, Zn added to the sacrificial anode material forms a Zn diffusion layer in the core material. It is known that the presence of this Zn diffusion layer causes the corrosion generated in the sacrificial anode material to spread laterally even after reaching the core material, so that no through-hole is formed over a long period of time.
このような犠牲陽極材にはJIS7072合金の他に、Al−Zn−Mg系合金、Al−Zn−In系合金が知られている。これらの合金もJIS7072合金と同様、アルミニウム合金クラッド複合材に用いた場合、犠牲陽極材の腐食は横広がりになることが知られている。 As such sacrificial anode materials, Al—Zn—Mg alloys and Al—Zn—In alloys are known in addition to JIS7072 alloys. It is known that the corrosion of the sacrificial anode material spreads laterally when these alloys are used for the aluminum alloy clad composite material as well as the JIS7072 alloy.
ところで、熱交換器のラジエターの冷却水としては、前述のように不凍液を含有する弱アルカリ性の水溶液、所謂LLCが利用されている。アルミニウム合金クラッド材を用いたチューブでは、このような環境では十分な防食効果が得られず、早期に貫通孔食が発生してしまう問題があった。 By the way, as the cooling water for the radiator of the heat exchanger, a weak alkaline aqueous solution containing an antifreeze solution, so-called LLC, is used as described above. In a tube using an aluminum alloy clad material, there is a problem that a sufficient anticorrosion effect cannot be obtained in such an environment, and through-hole corrosion occurs early.
これに対し、特許文献1及び2には、芯材の一方の面にろう材、他方の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材において、犠牲陽極材が、Alと結合して犠牲陽極材のマトリックスより貴な化合物を形成する元素を含有し、残部Al及び不純物からなるアルミニウム合金から構成されていることを特徴とするアルミニウム合金クラッド材が提案されている。
On the other hand, in
これらアルミニウム合金クラッド材は、犠牲陽極材表面の前記化合物が存在する個所で、皮膜成分である水酸化アルミニウムの沈着が妨げられて皮膜の生成が抑制され、小さな皮膜欠陥が多くなり孔食発生が分散するとしている。そのため、皮膜欠陥が少ない場合のように局在化した孔食の深さ方向への進行が抑制され、アルカリ腐食環境においても貫通孔食の発生が防止できるとしている。
しかし、これらは本質的に腐食を防ぐものではないという問題があった。
In these aluminum alloy clad materials, the deposition of aluminum hydroxide, which is a film component, is prevented where the compound exists on the surface of the sacrificial anode material, and the formation of the film is suppressed, and small film defects increase and pitting corrosion occurs. It is supposed to be distributed. Therefore, the progress of localized pitting corrosion in the depth direction is suppressed as in the case where there are few film defects, and the occurrence of through pitting corrosion can be prevented even in an alkaline corrosion environment.
However, there is a problem that these do not essentially prevent corrosion.
本発明は以上の従来技術における問題に鑑み、LLCのような弱アルカリ性腐食環境であっても十分な防食効果が得られ、早期に貫通腐食を発生させることがないアルミニウム合金クラッド材を提供することを目的とする。 In view of the above problems in the prior art, the present invention provides an aluminum alloy clad material that can provide a sufficient anticorrosion effect even in a weak alkaline corrosion environment such as LLC and does not cause penetration corrosion at an early stage. With the goal.
本発明者らは、LLC環境におけるアルミニウム合金クラッド材を用いたチューブの腐食発生状況を詳細に調べた結果、より高温において腐食発生が顕著であることを見出した。 As a result of detailed investigation of the corrosion occurrence state of the tube using the aluminum alloy clad material in the LLC environment, the present inventors have found that the occurrence of corrosion is remarkable at higher temperatures.
上記の原因を明らかにすべく、高温のアルカリ腐食液を用いて分極曲線を測定した。その結果、この腐食環境では、犠牲材の自然電位においてろう材のカソード電流が著しく大きくなっていることを見出した。図4に例示するように、ろう材としてJISBA4343P、犠牲材としてJIS7072合金を用い、アルカリ腐食液として、NaCl:0.226g/L,Na2SO4:0.089g/Lを含有し、水酸化ナトリウム水溶液でpHを11に調整した90℃の水溶液を用いて、それぞれ分極曲線を測定した。この場合、犠牲材の自然電位−約1100mV(vs.Ag/AgCl(飽和KCl))におけるろう材のカソード電流密度が約50μA/cm2もの大きな電流密度となった。 In order to clarify the above cause, a polarization curve was measured using a hot alkaline corrosive solution. As a result, it was found that in this corrosive environment, the cathode current of the brazing material was significantly increased at the natural potential of the sacrificial material. As illustrated in FIG. 4, JISBA4343P is used as a brazing material, JIS7072 alloy is used as a sacrificial material, NaCl: 0.226 g / L, Na 2 SO 4 : 0.089 g / L is contained as an alkaline corrosion solution, and hydroxylated. Polarization curves were measured using 90 ° C. aqueous solutions adjusted to pH 11 with an aqueous sodium solution. In this case, the cathode current density of the brazing material at a natural potential of the sacrificial material of about 1100 mV (vs. Ag / AgCl (saturated KCl)) was as high as about 50 μA / cm 2 .
このカソード電流は水の還元反応(2H2O+2e→H2+2OH−)に基づくもので、水酸化物イオンを発生させる。すなわち、高温でかつアルカリ性腐食環境において、犠牲陽極材の溶解により発生した電子は、よりカソード反応が進行しやすいろう材に集中し易く、ろう材の周囲の高pH化、すなわち強アルカリ化を招く。アルミニウムは両性金属であるから、アルカリにより溶解し極端な腐食が進行する。したがって、犠牲材の自然電位におけるろう材のカソード電流密度を小さくして、上記水の還元反応をろう材と犠牲材とに分散することにより、高温のアルカリ性腐食環境下におけるろう材周囲の極端な腐食を抑制できることになる。 This cathode current is based on a reduction reaction of water (2H 2 O + 2e → H 2 + 2OH − ), and generates hydroxide ions. That is, in a high temperature and alkaline corrosive environment, electrons generated by dissolution of the sacrificial anode material tend to concentrate on the brazing material where the cathode reaction is more likely to proceed, leading to a high pH around the brazing material, ie, strong alkalinity. . Since aluminum is an amphoteric metal, it is dissolved by alkali and extreme corrosion proceeds. Therefore, by reducing the cathode current density of the brazing material at the natural potential of the sacrificial material and dispersing the water reduction reaction between the brazing material and the sacrificial material, the extreme environment around the brazing material in a high temperature alkaline corrosion environment is reduced. Corrosion can be suppressed.
本発明者は上記知見に基づき、高温のアルカリ腐食液中で良好な耐食性を示すアルミニウム合金クラッド材たる要件を明確にすべく検討を進めた。その結果、犠牲材に特定の元素を所定量添加することにより、犠牲材とろう材のカソード分極曲線の差を小さくすることで、つまり同じ電極電位における犠牲材とろう材との電流密度の差を小さくすることでろう材のカソード電流密度を小さくし、クラッド材の腐食環境の強アルカリ化を防ぎ、これにより、高温のアルカリ腐食液中で貫通腐食のような極端な腐食を抑制できることを見出した。 Based on the above findings, the present inventor has proceeded with a study to clarify the requirements for an aluminum alloy clad material exhibiting good corrosion resistance in a high-temperature alkaline corrosion solution. As a result, by adding a certain amount of a specific element to the sacrificial material, the difference between the cathode polarization curves of the sacrificial material and the brazing material is reduced, that is, the difference in current density between the sacrificial material and the brazing material at the same electrode potential. By reducing the cathode current density of the brazing material by reducing the thickness of the clad material, and preventing the corrosion of the clad material from being strongly alkalinized. It was.
本発明のアルミニウム合金クラッド材は係る知見に基づきなされたものである。すなわち、本発明は請求項1において、芯材の一方の面にろう材を、もう一方の面に犠牲材をクラッドしたアルミニウム合金クラッド材であって、前記犠牲材がZn:1.0〜8.0mass%を含有し、Fe:0.85〜1.5mass%、Ni:0.85〜1.5mass%、Si:0.85〜2.0mass%、Cu:0.2〜0.5mass%及びTi:0.01〜0.05mass%の1種又は2種以上を更に含み、残部がAl及び不可避的不純物からなるアルミニウム合金であり、pH9〜11で温度80〜100℃の腐食液中で示す犠牲材の自然電位におけるろう材のカソード電流密度が20μA/cm2以下であることを特徴とするアルミニウム合金クラッド材とした。
The aluminum alloy clad material of the present invention has been made based on such knowledge. That is, the present invention is the aluminum alloy clad material according to
本発明は請求項2において、前記芯材をJIS3003合金とし、前記ろう材をJISBA4343P、BA4045P及びBA4047Pのいずれかとした。 According to a second aspect of the present invention, the core material is JIS3003 alloy and the brazing material is any one of JISBA4343P, BA4045P and BA4047P.
本発明によれば、例えば自動車用熱交換器のアルミニウム合金チューブ材として、内部の優れた高温アルカリ耐食性を有するアルミニウム合金クラッド材が提供される。 According to the present invention, for example, an aluminum alloy clad material having excellent internal high temperature alkali corrosion resistance is provided as an aluminum alloy tube material of an automotive heat exchanger.
本発明に係るアルミニウム合金クラッド材は、アルミニウム合金からなる芯材の一方の面にろう材をクラッドし、他方の面に犠牲材をクラッドした構成を成す。以下に、本発明を構成する材料成分の限定理由について説明する。なお、このような3層クラッド材の厚さは、0.2〜0.4mmとするのが好ましい。 The aluminum alloy clad material according to the present invention has a configuration in which a brazing material is clad on one surface of a core material made of an aluminum alloy and a sacrificial material is clad on the other surface. Below, the reason for limitation of the material component which comprises this invention is demonstrated. Note that the thickness of such a three-layer clad material is preferably 0.2 to 0.4 mm.
A.犠牲材
Zn:Znはアルミニウム合金に固溶し、pHが7前後の中性腐食環境においては、犠牲材の自然電位を卑にして芯材を防食し、チューブの耐食性を向上させる。Znは犠牲材の必須成分である。1.0mass%(以下、単に「%」と記す)未満では自然電位を卑化する効果が不十分である。8.0%を超えると過剰に溶解し、チューブの貫通寿命を短くする。従ってZnの添加量を1.0〜8.0%と規定した。更に好ましくは、2.0〜6.0%である。
A. Sacrificial material Zn: Zn is dissolved in an aluminum alloy, and in a neutral corrosion environment having a pH of around 7, the natural potential of the sacrificial material is reduced to prevent the core material and improve the corrosion resistance of the tube. Zn is an essential component of the sacrificial material. If it is less than 1.0 mass% (hereinafter simply referred to as “%”), the effect of lowering the natural potential is insufficient. If it exceeds 8.0%, it will dissolve excessively and shorten the penetration life of the tube. Therefore, the addition amount of Zn is defined as 1.0 to 8.0%. More preferably, it is 2.0 to 6.0%.
Fe:Feはアルミニウム合金中において固溶又はAl−Fe系の化合物を形成する。アルカリ腐食環境においては、この化合物の表面上でカソード反応(2H2O+2e→H2+2OH−)の進行が促進され、合金のカソード電流を増大させる。0.85%未満ではカソード電流が十分でなく、1.5%を超えると製造時の圧延加工で材料が割れてしまう。従ってFeの添加量を0.85〜1.5%と規定した。更に好ましくは、1.0〜1.3%である。 Fe: Fe forms a solid solution or an Al—Fe compound in an aluminum alloy. In an alkaline corrosive environment, the progress of the cathode reaction (2H 2 O + 2e → H 2 + 2OH − ) is promoted on the surface of this compound, increasing the cathode current of the alloy. If it is less than 0.85%, the cathode current is not sufficient, and if it exceeds 1.5%, the material is cracked by rolling during production. Therefore, the addition amount of Fe is defined as 0.85 to 1.5%. More preferably, it is 1.0 to 1.3%.
Ni:Niはアルミニウム合金中において固溶又はAl−Ni系の化合物を形成する。アルカリ腐食環境においては、Feの場合と同様に、この化合物の表面上でカソード反応の進行が促進され、合金のカソード電流を増大させる。0.85%未満ではカソード電流が十分でなく、1.5%を超えると製造時の圧延加工で材料が割れてしまう。従ってNiの添加量を0.85〜1.5%と規定した。更に好ましくは、1.0〜1.3%である。 Ni: Ni forms a solid solution or an Al—Ni compound in an aluminum alloy. In an alkaline corrosion environment, as with Fe, the cathodic reaction progresses on the surface of the compound, increasing the cathode current of the alloy. If it is less than 0.85%, the cathode current is not sufficient, and if it exceeds 1.5%, the material is cracked by rolling during production. Therefore, the addition amount of Ni is defined as 0.85 to 1.5%. More preferably, it is 1.0 to 1.3%.
Si:Siはアルミニウム合金中において固溶又はAl−Si−Fe系の化合物を形成する。アルカリ腐食環境においては、FeやNiと同様に、この化合物の表面上でカソード反応の進行が促進され、合金のカソード電流を増大させる。0.85%未満ではカソード電流が十分でなく、2.0%を超えるとろう付け加熱時に材料が溶融してしまう。従ってSiの添加量を0.85〜2.0%と規定した。更に好ましくは、1.0〜1.5%である。 Si: Si forms a solid solution or an Al—Si—Fe based compound in an aluminum alloy. In an alkaline corrosion environment, as with Fe and Ni, the progress of the cathode reaction on the surface of this compound is promoted, increasing the cathode current of the alloy. If it is less than 0.85%, the cathode current is not sufficient, and if it exceeds 2.0%, the material melts during brazing heating. Therefore, the addition amount of Si is defined as 0.85 to 2.0%. More preferably, it is 1.0 to 1.5%.
Cu:Cuはアルミニウム合金中において固溶又はAl−Cu系の化合物を形成する。アルカリ腐食環境においては、Fe、Ni、Siと同様に、この化合物の表面上でカソード反応の進行が促進され、合金のカソード電流を増大させる。0.2%未満ではカソード電流が十分でなく、0.5%を超えるとろう付け加熱時に材料が溶融してしまう。従ってCuの添加量を0.2〜0.5%と規定した。更に好ましくは、0.3〜0.4%である。 Cu: Cu forms a solid solution or an Al—Cu compound in the aluminum alloy. In an alkaline corrosion environment, as with Fe, Ni and Si, the progress of the cathode reaction is promoted on the surface of this compound, increasing the cathode current of the alloy. If it is less than 0.2%, the cathode current is not sufficient, and if it exceeds 0.5%, the material melts during brazing heating. Therefore, the addition amount of Cu is defined as 0.2 to 0.5%. More preferably, it is 0.3 to 0.4%.
Ti:Tiはアルミニウム合金中において固溶又はAl−Ti系の化合物を形成する。アルカリ腐食環境においては、Fe、Ni、Si、Cuと同様に、この化合物の表面上でカソード反応の進行が促進され、合金のカソード電流を増大させる。0.01%未満ではカソード電流が十分でなく、0.05%を越えると自己腐食を促す。従ってTiの添加量を0.01〜0.05%と規定した。更に好ましくは、0.02〜0.03%である。 Ti: Ti forms a solid solution or an Al—Ti compound in the aluminum alloy. In an alkaline corrosion environment, as with Fe, Ni, Si, and Cu, the progress of the cathode reaction is promoted on the surface of this compound, increasing the cathode current of the alloy. If it is less than 0.01%, the cathode current is not sufficient, and if it exceeds 0.05%, self-corrosion is promoted. Therefore, the addition amount of Ti is defined as 0.01 to 0.05%. More preferably, it is 0.02 to 0.03%.
Fe、Ni、Si、Cu及びTiは、1種又は2種以上添加される。1種添加する場合には、その成分について規定された前記範囲内で添加する必要がある。2種以上添加する場合には、複数の成分について規定された前記範囲内であってもよく、結果として犠牲材の自然電位におけるろう材のカソード電流密度が20μA/cm2以下となればよい。 Fe, Ni, Si, Cu and Ti are added singly or in combination of two or more. When adding 1 type, it is necessary to add in the said range prescribed | regulated about the component. When two or more kinds are added, they may be within the range defined for a plurality of components. As a result, the cathode current density of the brazing material at the natural potential of the sacrificial material may be 20 μA / cm 2 or less.
また、犠牲材を構成するアルミニウム合金には、不可避的不純物として、Mn、Mg
、Cr等が個々の成分含有量として0.05%以下含まれていてもよい。なお、犠牲材のクラッド率は、5〜15%の範囲が好ましい。
In addition, in the aluminum alloy constituting the sacrificial material, as an inevitable impurity, Mn, Mg
, Cr or the like may be contained as an individual component content of 0.05% or less. The clad rate of the sacrificial material is preferably in the range of 5 to 15%.
B.心材
本発明においてクラッド材を形成する場合に、芯材としてはJIS3003合金が好適に用いられるが、特に限定されるものではなく、熱交換器の形状及び熱交換器を作製する際の加熱条件によって種々選択が可能である。
B. Core Material When forming the clad material in the present invention, JIS3003 alloy is preferably used as the core material, but is not particularly limited, depending on the shape of the heat exchanger and the heating conditions when producing the heat exchanger. Various selections are possible.
C.ろう材
本発明においてクラッド材を形成する場合に、ろう材として使用される合金はJISに規定されているBA4343P、BA4045P、BA4047Pが好適に用いられるが、特に限定されるものではなく、熱交換器の形状及び熱交換器を作製する際の加熱条件によって種々選択が可能である。なお、ろう材のクラッド率は、2〜12%の範囲が好ましい。
C. Brazing material When forming the clad material in the present invention, BA 4343P, BA 4045P, and BA 4047P defined in JIS are suitably used as the brazing alloy, but the alloy is not particularly limited, and is a heat exchanger. Various selections are possible depending on the shape and the heating conditions in producing the heat exchanger. The clad rate of the brazing material is preferably in the range of 2 to 12%.
芯材やろう材にも、Cr、Ti等の不可避的不純物が、個々の成分含有量として0.05%以下含まれていてもよい。 The core material and the brazing material may also contain unavoidable impurities such as Cr and Ti as individual component contents of 0.05% or less.
以下に、本発明例、比較例及び参考例により本発明の実施の形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to examples of the present invention, comparative examples, and reference examples.
本発明例1〜35、比較例36〜61及び参考例62〜65
表1、2に記載の組成を有するAl合金を鋳造してインゴットを製造し、560℃×3時間の均質化処理を施した後、熱間圧延を行い、厚さ20mmの熱延板からなる犠牲材を作製した。同様に、厚さ170mmのJIS3003合金からなる芯材と、厚さ10mmのBA4343P合金からなるろう材の熱延板を用意した。
芯材の一方の面に犠牲材を他方の面にろう材を合わせて熱間圧延にてクラッドし、その後冷間圧延を施した。冷間圧延の途中において400℃で1時間の中間焼鈍を行い、最終冷間圧延率30%とし、0.20mmの3層のアルミニウム合金クラッド材を作製した。犠牲材のクラッド率は10%、ろう材のクラッド率は5%とした。
Invention Examples 1 to 35, Comparative Examples 36 to 61, and Reference Examples 62 to 65
An Al alloy having the composition shown in Tables 1 and 2 is cast to produce an ingot, subjected to homogenization at 560 ° C. for 3 hours, and then hot-rolled to form a hot-rolled sheet having a thickness of 20 mm. A sacrificial material was produced. Similarly, a hot-rolled sheet of a core material made of a JIS3003 alloy having a thickness of 170 mm and a brazing material made of a BA4343P alloy having a thickness of 10 mm was prepared.
A sacrificial material was placed on one surface of the core material, and a brazing material was placed on the other surface and clad by hot rolling, and then cold rolled. In the middle of cold rolling, intermediate annealing was performed at 400 ° C. for 1 hour to obtain a final cold rolling rate of 30%, and a 0.20 mm three-layer aluminum alloy clad material was produced. The clad rate of the sacrificial material was 10%, and the clad rate of the brazing material was 5%.
(1)分極曲線の測定
上記のようにして作製した犠牲材、ならびに、ろう材(BA4343P合金)について、カソード分極曲線をそれぞれ測定した。犠牲材及びろう材を15×40mm2に切り出し、測定面10×10mm2を残して裏面と端部をマスキングして測定に供した。0.226gのNaClと0.089gのNa2SO4を蒸留水1Lに溶解して、Cl−=195ppm、SO4 2−=60ppmとした水溶液にNaOH水溶液を加えてpHを8、9、11及び12に調整した溶液をアルカリ腐食液に用いた。測定温度は70、80、90及び100℃とした。得られたカソード分極曲線より、犠牲材の自然電位におけるろう材のカソード電流密度を求めた。測定結果の一例として本発明例4における測定結果を、図1に示す。図1では、犠牲材とろう材の自然電位近傍のカソード分極曲線が重なって両自然電位が等しくなっており、ろう材のカソード電流密度は0とした。
(1) Measurement of polarization curve Cathode polarization curves were measured for the sacrificial material and the brazing material (BA4343P alloy) produced as described above. The sacrificial material and the brazing material were cut into 15 × 40 mm 2 , and the measurement was performed by masking the back surface and the edge part leaving the
(2)アルカリ腐食試験
上記のようにして作製した3層のアルミニウム合金クラッド材を、幅30mm、長さ50mmに切り出したものを2枚用意した。図2に示すように、アルミニウム合金クラッド材1の各々は、芯材2の一方の面に犠牲材3が、他方の面にろう材4がクラッドされている。一方のアルミニウム合金クラッド材1のろう材4面と他方のアルミニウム合金クラッド材1の犠牲材3面を、約10mmずらして長さ方向に重ねた。これを窒素雰囲気下で加熱し、600℃で3分間ろう付けを行った。次いで、両方のアルミニウム合金クラッド材1の犠牲材3面と、一方のアルミニウム合金クラッド材1のろう付け側の側部のみ露出するよう、露出部分を樹脂テープ5でマスキングして試験片とした。
(2) Alkaline Corrosion Test Two pieces of the three-layer aluminum alloy clad material produced as described above were prepared by cutting them into a width of 30 mm and a length of 50 mm. As shown in FIG. 2, each of the aluminum alloy clad
このようにして調製した試験片を、上記カソード分極曲線を測定したのと同じアルカリ腐食液(Cl−=195ppm、SO4 2−=60ppm、pH11、温度90℃)に、マスキングしていない露出面に対して比液量が6mL/cm2となるように浸漬した。1回の浸漬時間を8時間とし、次いで大気中で16時間放置するサイクル試験を3ヶ月間実施した。試験後、試験片のろう付け部6の近傍の断面を観察し、腐食部7における最大腐食深さを測定した。
The test piece prepared in this manner was exposed to the same alkaline corrosion solution (Cl − = 195 ppm, SO 4 2− = 60 ppm, pH 11, temperature 90 ° C.) as the above-mentioned cathodic polarization curve, which was not masked. Was immersed so that the specific liquid amount was 6 mL / cm 2 . A cycle test was performed for 3 months in which the immersion time for one time was 8 hours, and then left in the atmosphere for 16 hours. After the test, the cross section of the test piece in the vicinity of the brazed
分極曲線の測定によって得られたろう材のカソード電流密度と、アルカリ腐食試験によって得られた最大腐食深さを表3、4に示す。なお、最大腐食深さについては、10μm未満を合格とし、それ以上を不合格とした。 Tables 3 and 4 show the cathode current density of the brazing material obtained by measuring the polarization curve and the maximum corrosion depth obtained by the alkaline corrosion test. In addition, about the maximum corrosion depth, less than 10 micrometers was set as the pass, and more than it was set as the failure.
(3)圧延加工性
圧延板の割れの有無を目視で観察し、割れが発生していた場合は圧延加工性不良と判断した。
(3) Rolling workability The presence or absence of cracks in the rolled sheet was visually observed, and when cracks occurred, it was determined that rolling workability was poor.
(4)ろう付け性
ろう付け加熱時の材料の溶融状態を目視で観察し、溶融が発生していた場合はろう付け性不良と判断した。
(4) Brazing property The molten state of the material at the time of brazing heating was visually observed, and when melting occurred, it was determined that the brazing property was poor.
(5)自己腐食性
試片断面に残存する犠牲材の有無を光学顕微鏡で観察し、残存が認められない程に自己腐蝕が過大な場合は自己腐食性不良と判断した。一方、Zn添加量が少な過ぎて自然電位の卑化が不十分であり、犠牲材としての機能を果たしえないほど自己腐食が過小な場合も、自己腐食性不良と判断した。
圧延加工性、ろう付け性及び自己腐食性が不良な比較例についても、表4に示した。
(5) Self-corrosion The presence or absence of a sacrificial material remaining on the cross-section of the specimen was observed with an optical microscope. If the self-corrosion was so large that no residual material was observed, it was determined that self-corrosion was poor. On the other hand, if the amount of Zn added is too small and the natural potential is not sufficiently reduced, and the self-corrosion is too small to function as a sacrificial material, the self-corrosion failure was determined.
Table 4 also shows comparative examples having poor rolling processability, brazing property and self-corrosion property.
本発明例1〜32においては、犠牲材においてNi、Cu、Ti、Fe及びSiを規定量含有しているので、pHが11、温度が90℃のアルカリ腐食液中で、犠牲材の自然電位におけるろう材の電流密度が20μA/cm2以下の範囲内にあった。その結果、腐食深さが最大でも8μmであり良好な高温のアルカリ耐食性を示し、圧延加工性、ろう付け性及び自己腐食性も良好であった。 In Examples 1-32 of the present invention, the sacrificial material contains specified amounts of Ni, Cu, Ti, Fe, and Si, so that the natural potential of the sacrificial material in an alkaline corrosion liquid having a pH of 11 and a temperature of 90 ° C. The current density of the brazing filler metal was in the range of 20 μA / cm 2 or less. As a result, the corrosion depth was 8 μm at the maximum, showing good high-temperature alkaline corrosion resistance, and good rolling workability, brazing property and self-corrosion property.
本発明例33〜35においては、犠牲材においてNi、Cu、Ti、Fe及びSiを規定量含有し、本発明の規定する範囲内でアルカリ腐食液のpHと温度とを変化させた例である。いずれも、犠牲材の自然電位におけるろう材の電流密度が20μA/cm2以下の範囲内にあった。その結果、腐食深さがいずれも0μmであり良好な高温アルカリ耐食性を示し、圧延加工性、ろう付け性及び自己腐食性も良好であった。 Examples 33 to 35 of the present invention are examples in which the sacrificial material contains Ni, Cu, Ti, Fe, and Si in specified amounts, and the pH and temperature of the alkaline corrosion liquid are changed within the range specified by the present invention. . In all cases, the current density of the brazing material at the natural potential of the sacrificial material was in the range of 20 μA / cm 2 or less. As a result, the corrosion depths were all 0 μm, good high-temperature alkaline corrosion resistance was exhibited, and rolling workability, brazing properties and self-corrosion properties were also good.
比較例36、37では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例39、40では、犠牲材において、Cu、Tiを含有せず、FeとNiとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例42、43では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例45、46では、犠牲材において、Ni、Tiを含有せず、FeとSiとCuとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例48では、犠牲材において、Cu、Tiを含有せず、FeとNiとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例52、53では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例54、55では、犠牲材において、Cu、Tiを含有せず、FeとNiとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
比較例56では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎたため、ろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。
In Comparative Examples 36 and 37, the sacrificial material did not contain Ni, Cu, or Ti, and any of the materials containing Fe and Si had too little content, so the current density of the brazing material was 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Examples 39 and 40, the sacrificial material did not contain Cu or Ti, and the content of all of the materials containing Fe, Ni, and Si was too small, so that the current density of the brazing material was 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Examples 42 and 43, the sacrificial material did not contain Ni, Cu, or Ti, and the content of both Fe and Si was too small, so that the current density of the brazing material was 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Examples 45 and 46, the sacrificial material does not contain Ni or Ti, and any of the materials containing Fe, Si, and Cu has too little content, so that the current density of the brazing material is 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Example 48, the sacrificial material did not contain Cu, Ti, and any of the materials containing Fe, Ni, and Si had too little content, so the current density of the brazing material became 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Examples 52 and 53, the sacrificial material does not contain Ni, Cu, or Ti, and any of the materials containing Fe and Si has too little content, so the current density of the brazing material is 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Examples 54 and 55, the sacrificial material did not contain Cu or Ti, and the content of all of the materials containing Fe, Ni, and Si was too small, so the current density of the brazing material was 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
In Comparative Example 56, the sacrificial material does not contain Ni, Cu, or Ti, and any of the materials containing Fe and Si has too little content, so that the current density of the brazing material is 20 μA / cm 2 or more. The maximum corrosion depth was rejected.
比較例38では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するものの、Fe含有量が多過ぎたため、最大腐食深さは合格であったが圧延加工性に劣っていた。
比較例41では、犠牲材において、Cu、Tiを含有せず、FeとNiとSiとを含有するものの、Ni含有量が多過ぎたため、最大腐食深さは合格であったが圧延加工性に劣っていた。
比較例44では、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののSi含有量が多過ぎたため、最大腐食深さは合格であったがろう付け性に劣っていた。
比較例47では、犠牲材において、Ni、Tiを含有せず、FeとSiとCuとを含有するものの、Cu含有量が多過ぎたため、最大腐食深さは合格であったがろう付け性に劣っていた。
比較例49では、犠牲材において、Cuを含有せず、FeとNiとSiとTiとを含有するものの、Ti含有量が多過ぎたため、見かけ上は局所腐食が認められないほど自己腐食が過大であった。
比較例50では、犠牲材の必須成分であるZn含有量が少な過ぎたため、自然電位が十分卑化せず犠牲材としての機能が不十分であった。
比較例51では、犠牲材の必須成分であるZn含有量が多過ぎたため、見かけ上は局所腐食が認められないほど自己腐食が過大であった。
In Comparative Example 38, the sacrificial material did not contain Ni, Cu, or Ti, but contained Fe and Si. However, since the Fe content was too large, the maximum corrosion depth was acceptable but the rolling processability was improved. It was inferior.
In Comparative Example 41, the sacrificial material did not contain Cu or Ti, but contained Fe, Ni, and Si, but because the Ni content was too large, the maximum corrosion depth was acceptable but the rolling processability was improved. It was inferior.
In Comparative Example 44, the sacrificial material did not contain Ni, Cu, Ti, and contained Fe and Si, but the Si content was too high, so the maximum corrosion depth was acceptable but the brazing property was inferior. It was.
In Comparative Example 47, the sacrificial material did not contain Ni and Ti, but contained Fe, Si, and Cu. However, since the Cu content was excessive, the maximum corrosion depth was acceptable, but the brazing property was improved. It was inferior.
In Comparative Example 49, the sacrificial material does not contain Cu, but contains Fe, Ni, Si, and Ti. However, since the Ti content is excessive, self-corrosion is excessively large so that local corrosion is not apparent. Met.
In Comparative Example 50, since the Zn content, which is an essential component of the sacrificial material, was too small, the natural potential was not sufficiently reduced and the function as the sacrificial material was insufficient.
In Comparative Example 51, since the Zn content, which is an essential component of the sacrificial material, was too much, self-corrosion was excessive so that local corrosion was not apparent.
比較例57〜59は、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎる合金(比較例36)において、本発明の規定する範囲内でアルカリ腐食液のpHと温度とを変化させた例である。いずれも、犠牲材の自然電位におけるろう材の電流密度が20μA/cm2以上になって最大腐食深さが不合格であった。 Comparative Examples 57-59 are sacrificial materials that do not contain Ni, Cu, Ti, and alloys containing Fe and Si that are too low in content (Comparative Example 36). This is an example in which the pH and temperature of the alkaline corrosion liquid are changed. In either case, the current density of the brazing material at the natural potential of the sacrificial material was 20 μA / cm 2 or more, and the maximum corrosion depth was unacceptable.
比較例60は、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎる合金(比較例36)において、本発明の規定する範囲外までアルカリ腐食液のpHを上げた例である。見かけ上は局所腐食が認められないほど自己腐食が過大であった。 Comparative Example 60 is a sacrificial material that does not contain Ni, Cu, or Ti, and an alloy that contains Fe and Si and has too little content (Comparative Example 36). This is an example in which the pH of the alkaline corrosion liquid is increased. Apparently, self-corrosion was excessive so that local corrosion was not observed.
比較例61は、犠牲材において、Ni、Cu、Ti、Fe及びSiを規定量含有する合金(本発明例2)において、本発明の規定する範囲外までアルカリ腐食液のpHを上げた例である。見かけ上は局所腐食が認められないほど自己腐食が過大であった。 Comparative Example 61 is an example in which the pH of the alkaline corrosive liquid was increased to a value outside the range defined by the present invention in an alloy containing a specified amount of Ni, Cu, Ti, Fe, and Si in the sacrificial material (Example 2 of the present invention). is there. Apparently, self-corrosion was excessive so that local corrosion was not observed.
なお、比較例38、41、44、47、49、51以外の比較例においては、圧延加工性、ろう付け性及び自己腐食性は良好であった。 In Comparative Examples other than Comparative Examples 38, 41, 44, 47, 49, and 51, the rolling processability, brazing property, and self-corrosion property were good.
参考例62、63は、犠牲材において、Ni、Cu、Tiを含有せず、FeとSiとを含有するもののいずれも含有量が少な過ぎる合金(比較例36)において、本発明の規定する範囲外までアルカリ腐食液のpHあるいは温度を低下させた例である。いずれも、腐食環境がよりマイルドとなり、犠牲材の自然電位におけるろう材の電流密度が20μA/cm2以下の範囲内になった。その結果、腐食深さが0μmであり良好な高温のアルカリ耐食性を示した。 Reference examples 62 and 63 are sacrificial materials that do not contain Ni, Cu, or Ti, and those containing Fe and Si that are too low in content (Comparative Example 36). This is an example in which the pH or temperature of the alkaline corrosion liquid is lowered to the outside. In either case, the corrosive environment became milder, and the current density of the brazing material at the natural potential of the sacrificial material was within a range of 20 μA / cm 2 or less. As a result, the corrosion depth was 0 μm and good high-temperature alkaline corrosion resistance was exhibited.
参考例64、65は、犠牲材において、Ni、Cu、Ti、Fe及びSiを規定量含有する合金(本発明例2)において、本発明の規定する範囲外までアルカリ腐食液のpHあるいは温度を低下させた例である。いずれも、腐食環境がよりマイルドとなり、犠牲材の自然電位におけるろう材の電流密度が20μA/cm2以下の範囲内になった。その結果、腐食深さが0μmとなり良好な高温のアルカリ耐食性を示した。 In Reference Examples 64 and 65, the pH or temperature of the alkaline corrosive solution is outside the range defined by the present invention in an alloy containing a specified amount of Ni, Cu, Ti, Fe and Si (Invention Example 2) in the sacrificial material. This is a reduced example. In either case, the corrosive environment became milder, and the current density of the brazing material at the natural potential of the sacrificial material was within a range of 20 μA / cm 2 or less. As a result, the corrosion depth was 0 μm, and good high-temperature alkaline corrosion resistance was exhibited.
本発明によれば、例えば自動車用熱交換器のアルミニウム合金配管材として、内部における優れたアルカリ耐食性を有するアルミニウム合金クラッド材が得られ、熱交換器の耐久性を著しく向上させるものであり、工業上顕著な効果を奏する。 According to the present invention, for example, as an aluminum alloy piping material of an automotive heat exchanger, an aluminum alloy clad material having excellent alkali corrosion resistance inside is obtained, and the durability of the heat exchanger is remarkably improved. There is an outstanding effect.
1・・・アルミニウム合金クラッド材
2・・・芯材
3・・・犠牲材
4・・・ろう材
5・・・樹脂テープ
6・・・ろう付け部
7・・・腐食部
8・・・チューブ
9・・・フィン
10・・・ヘッダープレート
11・・・コア
12A、12B・・・樹脂タンク
13・・・バッキング
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010114730A JP2011241448A (en) | 2010-05-18 | 2010-05-18 | Aluminum alloy clad material excellent in alkali resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010114730A JP2011241448A (en) | 2010-05-18 | 2010-05-18 | Aluminum alloy clad material excellent in alkali resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011241448A true JP2011241448A (en) | 2011-12-01 |
Family
ID=45408414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010114730A Pending JP2011241448A (en) | 2010-05-18 | 2010-05-18 | Aluminum alloy clad material excellent in alkali resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011241448A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013095953A (en) * | 2011-10-31 | 2013-05-20 | Furukawa-Sky Aluminum Corp | Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072634A (en) * | 1996-08-30 | 1998-03-17 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger, excellent in alkaline corrosion resistance |
JPH1161306A (en) * | 1997-08-06 | 1999-03-05 | Furukawa Electric Co Ltd:The | Aluminum alloy clad material for heat exchanger |
JPH11241134A (en) * | 1998-02-25 | 1999-09-07 | Furukawa Electric Co Ltd:The | Sacrificial corrosion aluminum alloy and clad material thereof |
JPH11302760A (en) * | 1998-04-17 | 1999-11-02 | Furukawa Electric Co Ltd:The | Aluminum alloy sacrificial anode material for heat exchanger and high corrosion-resistant aluminum alloy composite material for heat exchanger |
JP2000034532A (en) * | 1998-07-15 | 2000-02-02 | Calsonic Corp | Composite material for heat exchanger made of aluminum alloy |
JP2000087171A (en) * | 1998-09-14 | 2000-03-28 | Furukawa Electric Co Ltd:The | Aluminum alloy composite material excellent in bending fatigue characteristic and corrosion resistance |
JP2000087169A (en) * | 1998-09-08 | 2000-03-28 | Calsonic Corp | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance |
JP2000087170A (en) * | 1998-09-08 | 2000-03-28 | Calsonic Corp | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance |
JP2003293061A (en) * | 2002-04-04 | 2003-10-15 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad plate with three-layered structure |
JP2006265696A (en) * | 2005-03-25 | 2006-10-05 | Shinko Alcoa Yuso Kizai Kk | Aluminum alloy sheet and heat exchanger |
JP2007327093A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Light Metal Ind Ltd | Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger |
JP2007327094A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Light Metal Ind Ltd | Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger |
JP2008261025A (en) * | 2007-04-13 | 2008-10-30 | Sumitomo Light Metal Ind Ltd | Aluminum alloy-clad material for heat exchanger having high strength, high melting point and superior durability, manufacturing method thereof, and heat exchanger made from aluminum alloy |
JP2008261026A (en) * | 2007-04-13 | 2008-10-30 | Denso Corp | High-strength and high-melting point aluminum alloy clad plate for heat exchanger having excellent durability, method for producing the same, and heat exchanger made of aluminum alloy |
JP2009030123A (en) * | 2007-07-27 | 2009-02-12 | Mitsubishi Alum Co Ltd | Aluminum alloy-clad material for heat exchanger, excellent in strength and pitting resistance |
JP2010018872A (en) * | 2008-07-14 | 2010-01-28 | Furukawa-Sky Aluminum Corp | Aluminum alloy brazing sheet having excellent brazability |
-
2010
- 2010-05-18 JP JP2010114730A patent/JP2011241448A/en active Pending
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1072634A (en) * | 1996-08-30 | 1998-03-17 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger, excellent in alkaline corrosion resistance |
JPH1161306A (en) * | 1997-08-06 | 1999-03-05 | Furukawa Electric Co Ltd:The | Aluminum alloy clad material for heat exchanger |
JPH11241134A (en) * | 1998-02-25 | 1999-09-07 | Furukawa Electric Co Ltd:The | Sacrificial corrosion aluminum alloy and clad material thereof |
JPH11302760A (en) * | 1998-04-17 | 1999-11-02 | Furukawa Electric Co Ltd:The | Aluminum alloy sacrificial anode material for heat exchanger and high corrosion-resistant aluminum alloy composite material for heat exchanger |
JP2000034532A (en) * | 1998-07-15 | 2000-02-02 | Calsonic Corp | Composite material for heat exchanger made of aluminum alloy |
JP2000087169A (en) * | 1998-09-08 | 2000-03-28 | Calsonic Corp | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance |
JP2000087170A (en) * | 1998-09-08 | 2000-03-28 | Calsonic Corp | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance |
JP2000087171A (en) * | 1998-09-14 | 2000-03-28 | Furukawa Electric Co Ltd:The | Aluminum alloy composite material excellent in bending fatigue characteristic and corrosion resistance |
JP2003293061A (en) * | 2002-04-04 | 2003-10-15 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad plate with three-layered structure |
JP2006265696A (en) * | 2005-03-25 | 2006-10-05 | Shinko Alcoa Yuso Kizai Kk | Aluminum alloy sheet and heat exchanger |
JP2007327093A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Light Metal Ind Ltd | Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger |
JP2007327094A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Light Metal Ind Ltd | Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger |
JP2008261025A (en) * | 2007-04-13 | 2008-10-30 | Sumitomo Light Metal Ind Ltd | Aluminum alloy-clad material for heat exchanger having high strength, high melting point and superior durability, manufacturing method thereof, and heat exchanger made from aluminum alloy |
JP2008261026A (en) * | 2007-04-13 | 2008-10-30 | Denso Corp | High-strength and high-melting point aluminum alloy clad plate for heat exchanger having excellent durability, method for producing the same, and heat exchanger made of aluminum alloy |
JP2009030123A (en) * | 2007-07-27 | 2009-02-12 | Mitsubishi Alum Co Ltd | Aluminum alloy-clad material for heat exchanger, excellent in strength and pitting resistance |
JP2010018872A (en) * | 2008-07-14 | 2010-01-28 | Furukawa-Sky Aluminum Corp | Aluminum alloy brazing sheet having excellent brazability |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013095953A (en) * | 2011-10-31 | 2013-05-20 | Furukawa-Sky Aluminum Corp | Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5576666B2 (en) | Aluminum alloy clad material used for heat exchanger and core material for aluminum alloy clad material used therefor | |
JP5336967B2 (en) | Aluminum alloy clad material | |
JP6452626B2 (en) | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same | |
JP5873343B2 (en) | High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same | |
JP5339560B1 (en) | Aluminum alloy brazing sheet and method for producing the same | |
JP5276476B2 (en) | Aluminum alloy clad material | |
JP2017145463A (en) | Aluminum alloy brazing sheet and manufacturing method, automotive heat exchanger using the brazing sheet | |
WO2018110320A1 (en) | Aluminum alloy brazing sheet and method for manufacturing same | |
JP6407253B2 (en) | Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same | |
US10625379B2 (en) | Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material | |
JP2008280544A (en) | Fin material excellent in strength, sacrificial anode effect and corrosion resistance, and heat exchanger | |
JP4874074B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP4019775B2 (en) | Aluminum alloy brazing sheet for heat exchangers with excellent corrosion resistance | |
JP2011241448A (en) | Aluminum alloy clad material excellent in alkali resistance | |
JP2009155679A (en) | Aluminum alloy cladding material | |
JP5019797B2 (en) | Sacrificial anode material and aluminum alloy composite | |
JPH1161306A (en) | Aluminum alloy clad material for heat exchanger | |
JP4596618B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger | |
JP5901229B2 (en) | Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger | |
JP2009249699A (en) | Method for producing sacrificial material for aluminum alloy cladding material for heat exchanger, and method for producing aluminum alloy cladding material for heat exchanger | |
JP3977978B2 (en) | Aluminum alloy for heat exchangers with excellent corrosion resistance | |
JP7517811B2 (en) | Aluminum alloy brazing sheet and method for manufacturing heat exchanger | |
JP5552181B2 (en) | Aluminum alloy clad material | |
JPH1161305A (en) | Aluminum alloy clad material for heat exchanger | |
JP3858253B2 (en) | Aluminum alloy clad material for automotive heat exchangers with excellent corrosion resistance in alkaline environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140411 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140805 |