[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011138790A - Fuel cell system, and mobile vehicle - Google Patents

Fuel cell system, and mobile vehicle Download PDF

Info

Publication number
JP2011138790A
JP2011138790A JP2011060509A JP2011060509A JP2011138790A JP 2011138790 A JP2011138790 A JP 2011138790A JP 2011060509 A JP2011060509 A JP 2011060509A JP 2011060509 A JP2011060509 A JP 2011060509A JP 2011138790 A JP2011138790 A JP 2011138790A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
injector
gas
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011060509A
Other languages
Japanese (ja)
Other versions
JP4780427B2 (en
Inventor
Munemasa Ishikawa
統將 石河
Yoshiaki Naganuma
良明 長沼
Yoshinobu Hasuka
芳信 蓮香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011060509A priority Critical patent/JP4780427B2/en
Publication of JP2011138790A publication Critical patent/JP2011138790A/en
Application granted granted Critical
Publication of JP4780427B2 publication Critical patent/JP4780427B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of uncomfortable noises in a fuel cell system with an injector. <P>SOLUTION: The fuel cell system 1 includes: a fuel cell 10; a fuel supply system 3 for supplying fuel gas to the fuel cell 10; the injector 35 for supplying a lower stream by adjusting a state of the gas in an upper stream of the fuel supply system 3; and a control means 4 for drive control of the injector 35 at a predetermined driving cycle. The control means 4 sets the driving cycle of the injector 35 according to an operating state of the fuel cell 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池システム及び移動体に関する。   The present invention relates to a fuel cell system and a moving body.

現在、反応ガス(燃料ガス及び酸化ガス)の供給を受けて発電を行う燃料電池を備えた燃料電池システムが提案され、実用化されている。かかる燃料電池システムには、水素タンク等の燃料供給源から供給される燃料ガスを燃料電池へと流すための燃料供給流路が設けられている。   Currently, a fuel cell system including a fuel cell that receives a supply of reaction gas (fuel gas and oxidizing gas) and generates electric power has been proposed and put into practical use. Such a fuel cell system is provided with a fuel supply channel for flowing fuel gas supplied from a fuel supply source such as a hydrogen tank to the fuel cell.

ところで、燃料供給源からの燃料ガスの供給圧力がきわめて高い場合には、この供給圧力を一定の値まで低減させる調圧弁(レギュレータ)が燃料供給流路に設けられるのが一般的である。現在においては、燃料ガスの供給圧力を例えば2段階に変化させる機械式の可変調圧弁(可変レギュレータ)を燃料供給流路に設けることにより、システムの運転状態に応じて燃料ガスの供給圧力を変化させる技術が提案されている(例えば、特許文献1参照。)。   By the way, when the supply pressure of the fuel gas from the fuel supply source is extremely high, a pressure regulating valve (regulator) for reducing the supply pressure to a constant value is generally provided in the fuel supply passage. At present, the fuel gas supply pressure is changed according to the operating state of the system by providing the fuel supply flow path with a mechanically adjustable pressure valve (variable regulator) that changes the fuel gas supply pressure in two stages, for example. The technique to make is proposed (for example, refer patent document 1).

また、近年においては、燃料電池システムの燃料供給流路にインジェクタを配置し、このインジェクタの作動状態を制御することにより燃料供給流路内の燃料ガスの供給圧力を調整する技術が提案されつつある。インジェクタは、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス状態(ガス流量やガス圧力)を調整することが可能な電磁駆動式の開閉弁である。制御装置がインジェクタの弁体を駆動して燃料ガスの噴射時期や噴射時間を制御することにより、燃料ガスの流量や圧力を制御することが可能となる。   In recent years, a technique has been proposed in which an injector is disposed in a fuel supply channel of a fuel cell system, and the fuel gas supply pressure in the fuel supply channel is adjusted by controlling the operating state of the injector. . The injector is an electromagnetically driven on-off valve that can adjust the gas state (gas flow rate and gas pressure) by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat It is. By controlling the fuel gas injection timing and injection time by driving the valve body of the injector, the control device can control the flow rate and pressure of the fuel gas.

このようなインジェクタを用いた燃料電池システムにおいては、制御装置が所定の駆動周期でインジェクタを駆動するが、駆動周期が長すぎると燃料ガスの供給圧力に脈動が生じるおそれがある。このため、従来は、図8(a)に示すような比較的短い一定の駆動周期Tでインジェクタを駆動することにより、燃料ガスの供給圧力の脈動を抑制するようにしていた。   In a fuel cell system using such an injector, the control device drives the injector at a predetermined driving cycle. However, if the driving cycle is too long, there is a possibility that the supply pressure of the fuel gas may pulsate. For this reason, conventionally, the pulsation of the supply pressure of the fuel gas is suppressed by driving the injector at a relatively short constant driving cycle T as shown in FIG.

特開2004−139984号公報JP 2004-139984 A

しかし、比較的短い一定の駆動周期でインジェクタを駆動すると、以下のような問題が発生する。すなわち、制御装置は、燃料電池の運転状態に応じて燃料ガスの圧力を調整するため、燃料電池の発電電流が小さい場合には燃料ガスの供給圧力を低減させるべくインジェクタの噴射流量を少なくするように制御を行う。かかる制御の際にインジェクタの駆動周期が短くかつ一定であると、図8(b)に示すように非噴射時間T0が不定期に生じ、インジェクタが不定期に動作することとなる。このようにインジェクタが不定期に動作すると、不快な動作音が発生してしまう。 However, when the injector is driven with a relatively short constant driving cycle, the following problems occur. That is, since the control device adjusts the pressure of the fuel gas according to the operating state of the fuel cell, the injection flow rate of the injector is reduced to reduce the supply pressure of the fuel gas when the power generation current of the fuel cell is small. To control. If the drive period of the injector is short and constant during such control, the non-injection time T 0 occurs irregularly as shown in FIG. 8B, and the injector operates irregularly. When the injector operates irregularly in this way, an unpleasant operation sound is generated.

本発明は、かかる事情に鑑みてなされたものであり、インジェクタを備えた燃料電池システムにおいて、不快な動作音の発生を抑制することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to suppress the generation of unpleasant operation noise in a fuel cell system including an injector.

前記目的を達成するため、本発明に係る燃料電池システムは、燃料電池と、この燃料電池に燃料ガスを供給するための燃料供給系と、この燃料供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、このインジェクタを所定の駆動周期で駆動制御する制御手段と、を備える燃料電池システムであって、制御手段は、所定の演算周期で演算を行うとともに、駆動周期を演算周期の倍数に設定するものである。 In order to achieve the above object, a fuel cell system according to the present invention includes a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, and a gas state upstream of the fuel supply system. A fuel cell system comprising an injector to be supplied to a downstream side and a control unit that controls driving of the injector at a predetermined drive cycle, wherein the control unit calculates at a predetermined calculation cycle and calculates a drive cycle. This is set to a multiple of the period .

かかる構成によれば、制御手段の演算周期にインジェクタの駆動周期を同期させ易くなるため、インジェクタの制御精度を向上させることができる。この結果、不快な動作音の発生を抑制することが可能となる。なお、「ガス状態」とは、流量、圧力、温度、モル濃度等で表されるガスの状態を意味し、特にガス流量及びガス圧力の少なくとも一方を含むものとする。 According to such a configuration, since it becomes easy to synchronize the drive cycle of the injector with the calculation cycle of the control means, the control accuracy of the injector can be improved. As a result, it is possible to suppress the generation of unpleasant operation sounds. The “gas state” means a gas state represented by a flow rate, pressure, temperature, molar concentration, etc., and particularly includes at least one of a gas flow rate and a gas pressure.

また、本発明に係る移動体は、前記燃料電池システムを備えるものである。   Moreover, the moving body which concerns on this invention is provided with the said fuel cell system.

かかる構成によれば、インジェクタの不定期な動作を抑制して不快な動作音の発生を抑制することが可能な燃料電池システムを備えているため、移動体の搭乗者に不快感を与えることが少ない。また、動作音の安定化により、搭乗者に安心感を与えることが可能となる。   According to such a configuration, since the fuel cell system capable of suppressing the irregular operation of the injector and suppressing the generation of an unpleasant operation sound is provided, it is possible to give discomfort to the passenger of the moving body. Few. In addition, it is possible to give the passenger a sense of security by stabilizing the operation sound.

本発明によれば、インジェクタを備えた燃料電池システムにおいて、不快な動作音の発生を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of an unpleasant operation sound can be suppressed in the fuel cell system provided with the injector.

本発明の実施形態に係る燃料電池システムの構成図である。1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention. 図1に示した燃料電池システムの制御装置の制御態様を説明するための制御ブロック図である。It is a control block diagram for demonstrating the control aspect of the control apparatus of the fuel cell system shown in FIG. 図1に示した燃料電池システムの発電電流値と駆動周波数との関係を表すものであって、(a)は通常時(パージ動作非実行時)のマップ、(b)はパージ動作実行時のマップである。1A and 1B show a relationship between a generated current value and a driving frequency of the fuel cell system shown in FIG. 1, wherein FIG. 1A is a map at the normal time (when the purge operation is not executed), and FIG. It is a map. 図1に示した燃料電池システムのインジェクタの駆動周期の波形を表すものであって、(a)は発電電流値が大きい場合の波形図、(b)は発電電流値が小さい場合の波形図である。1A and 1B show the waveform of the injector driving cycle of the fuel cell system shown in FIG. 1, wherein FIG. 1A is a waveform diagram when the generated current value is large, and FIG. 1B is a waveform diagram when the generated current value is small. is there. 燃料電池システムの全開制御時における水素ガス供給圧力の時間履歴を示すタイムチャートである。It is a time chart which shows the time history of the hydrogen gas supply pressure at the time of full open control of a fuel cell system. 図1に示した燃料電池システムの運転方法を説明するためのフローチャートである。2 is a flowchart for explaining an operation method of the fuel cell system shown in FIG. 1. 図1に示した燃料電池システムの変形例を示す構成図である。It is a block diagram which shows the modification of the fuel cell system shown in FIG. 従来の燃料電池システムのインジェクタの駆動周期の波形を表すものであって、(a)は発電電流値が大きい場合の波形図、(b)は発電電流値が小さい場合の波形図である。The waveform of the drive cycle of the injector of the conventional fuel cell system is represented, Comprising: (a) is a wave form diagram in case a generated electric current value is large, (b) is a wave form diagram in case the generated electric current value is small.

以下、図面を参照して、本発明の実施形態に係る燃料電池システム1について説明する。本実施形態においては、本発明を燃料電池車両(移動体)の車載発電システムに適用した例について説明することとする。   Hereinafter, a fuel cell system 1 according to an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, an example in which the present invention is applied to an on-vehicle power generation system of a fuel cell vehicle (moving body) will be described.

まず、図1〜図5を用いて、本発明の実施形態に係る燃料電池システム1の構成について説明する。本実施形態に係る燃料電池システム1は、図1に示すように、反応ガス(酸化ガス及び燃料ガス)の供給を受けて電力を発生する燃料電池10を備えるとともに、燃料電池10に酸化ガスとしての空気を供給する酸化ガス配管系2、燃料電池10に燃料ガスとしての水素ガスを供給する水素ガス配管系3、システム全体を統合制御する制御装置4等を備えている。   First, the structure of the fuel cell system 1 according to the embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the fuel cell system 1 according to the present embodiment includes a fuel cell 10 that generates electric power upon receiving a supply of reaction gas (oxidation gas and fuel gas), and the fuel cell 10 has an oxidant gas. An oxidizing gas piping system 2 for supplying the air, a hydrogen gas piping system 3 for supplying hydrogen gas as a fuel gas to the fuel cell 10, a control device 4 for integrated control of the entire system, and the like.

燃料電池10は、反応ガスの供給を受けて発電する単電池を所要数積層して構成したスタック構造を有している。燃料電池10により発生した電力は、PCU(Power Control Unit)11に供給される。PCU11は、燃料電池10とトラクションモータ12との間に配置されるインバータやDC‐DCコンバータ等を備えている。また、燃料電池10には、発電中の電流を検出する電流センサ13が取り付けられている。   The fuel cell 10 has a stack structure in which a required number of unit cells that generate power upon receiving a reaction gas are stacked. The electric power generated by the fuel cell 10 is supplied to a PCU (Power Control Unit) 11. The PCU 11 includes an inverter, a DC-DC converter, and the like that are disposed between the fuel cell 10 and the traction motor 12. Further, the fuel cell 10 is provided with a current sensor 13 for detecting a current during power generation.

酸化ガス配管系2は、加湿器20により加湿された酸化ガス(空気)を燃料電池10に供給する空気供給流路21と、燃料電池10から排出された酸化オフガスを加湿器20に導く空気排出流路22と、加湿器21から外部に酸化オフガスを導くための排気流路23と、を備えている。空気供給流路21には、大気中の酸化ガスを取り込んで加湿器20に圧送するコンプレッサ24が設けられている。   The oxidant gas piping system 2 includes an air supply passage 21 that supplies the oxidant gas (air) humidified by the humidifier 20 to the fuel cell 10, and an air exhaust that guides the oxidant off-gas discharged from the fuel cell 10 to the humidifier 20. A flow path 22 and an exhaust flow path 23 for guiding the oxidizing off gas from the humidifier 21 to the outside are provided. The air supply passage 21 is provided with a compressor 24 that takes in the oxidizing gas in the atmosphere and pumps it to the humidifier 20.

水素ガス配管系3は、高圧の水素ガスを貯留した燃料供給源としての水素タンク30と、水素タンク30の水素ガスを燃料電池10に供給するための燃料供給流路としての水素供給流路31と、燃料電池10から排出された水素オフガスを水素供給流路31に戻すための循環流路32と、を備えている。水素ガス配管系3は、本発明における燃料供給系の一実施形態である。なお、水素タンク30に代えて、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクと、を燃料供給源として採用することもできる。また、水素吸蔵合金を有するタンクを燃料供給源として採用してもよい。   The hydrogen gas piping system 3 includes a hydrogen tank 30 as a fuel supply source storing high-pressure hydrogen gas, and a hydrogen supply flow path 31 as a fuel supply flow path for supplying the hydrogen gas in the hydrogen tank 30 to the fuel cell 10. And a circulation flow path 32 for returning the hydrogen off-gas discharged from the fuel cell 10 to the hydrogen supply flow path 31. The hydrogen gas piping system 3 is an embodiment of the fuel supply system in the present invention. Instead of the hydrogen tank 30, a reformer that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel, a high-pressure gas tank that stores the reformed gas generated by the reformer in a high-pressure state, and Can also be employed as a fuel supply source. A tank having a hydrogen storage alloy may be employed as a fuel supply source.

水素供給流路31には、水素タンク30からの水素ガスの供給を遮断又は許容する遮断弁33と、水素ガスの圧力を調整するレギュレータ34と、インジェクタ35と、が設けられている。また、インジェクタ35の上流側には、水素供給流路31内の水素ガスの圧力及び温度を検出する一次側圧力センサ41及び温度センサ42が設けられている。また、インジェクタ35の下流側であって水素供給流路31と循環流路32との合流部の上流側には、水素供給流路31内の水素ガスの圧力を検出する二次側圧力センサ43が設けられている。   The hydrogen supply flow path 31 is provided with a shutoff valve 33 that shuts off or allows the supply of hydrogen gas from the hydrogen tank 30, a regulator 34 that adjusts the pressure of the hydrogen gas, and an injector 35. A primary pressure sensor 41 and a temperature sensor 42 that detect the pressure and temperature of the hydrogen gas in the hydrogen supply flow path 31 are provided on the upstream side of the injector 35. Further, on the downstream side of the injector 35 and upstream of the junction between the hydrogen supply flow path 31 and the circulation flow path 32, a secondary side pressure sensor 43 that detects the pressure of the hydrogen gas in the hydrogen supply flow path 31. Is provided.

レギュレータ34は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置である。本実施形態においては、一次圧を減圧する機械式の減圧弁をレギュレータ34として採用している。機械式の減圧弁の構成としては、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする公知の構成を採用することができる。本実施形態においては、図1に示すように、インジェクタ35の上流側にレギュレータ34を2個配置することにより、インジェクタ35の上流側圧力を効果的に低減させることができる。このため、インジェクタ35の機械的構造(弁体、筺体、流路、駆動装置等)の設計自由度を高めることができる。また、インジェクタ35の上流側圧力を低減させることができるので、インジェクタ35の上流側圧力と下流側圧力との差圧の増大に起因してインジェクタ35の弁体が移動し難くなることを抑制することができる。従って、インジェクタ35の下流側圧力の可変調圧幅を広げることができるとともに、インジェクタ35の応答性の低下を抑制することができる。   The regulator 34 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure. In the present embodiment, a mechanical pressure reducing valve that reduces the primary pressure is employed as the regulator 34. The mechanical pressure reducing valve has a structure in which a back pressure chamber and a pressure adjusting chamber are formed with a diaphragm therebetween, and the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the back pressure chamber. Thus, a publicly known configuration for the secondary pressure can be employed. In the present embodiment, as shown in FIG. 1, the upstream pressure of the injector 35 can be effectively reduced by arranging two regulators 34 on the upstream side of the injector 35. For this reason, the design freedom of the mechanical structure (a valve body, a housing, a flow path, a drive device, etc.) of the injector 35 can be increased. In addition, since the upstream pressure of the injector 35 can be reduced, it is possible to prevent the valve body of the injector 35 from becoming difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 35. be able to. Accordingly, it is possible to widen the adjustable pressure width of the downstream pressure of the injector 35 and to suppress a decrease in responsiveness of the injector 35.

インジェクタ35は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ35は、水素ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体と、を備えている。本実施形態においては、インジェクタ35の弁体は電磁駆動装置であるソレノイドにより駆動され、このソレノイドに給電されるパルス状励磁電流のオン・オフにより、噴射孔の開口面積を2段階又は多段階に切り替えることができるようになっている。制御装置4から出力される制御信号によってインジェクタ35のガス噴射時間及びガス噴射時期が制御されることにより、水素ガスの流量及び圧力が高精度に制御される。インジェクタ35は、弁(弁体及び弁座)を電磁駆動力で直接開閉駆動するものであり、その駆動周期が高応答の領域まで制御可能であるため、高い応答性を有する。   The injector 35 is an electromagnetically driven on-off valve capable of adjusting the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with an electromagnetic driving force and separating it from the valve seat. The injector 35 includes a valve seat having an injection hole for injecting gaseous fuel such as hydrogen gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas flow direction) with respect to the nozzle body. And a valve body that is movably accommodated and opens and closes the injection hole. In this embodiment, the valve body of the injector 35 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is made two or more stages by turning on and off the pulsed excitation current supplied to the solenoid. It can be switched. The gas injection time and gas injection timing of the injector 35 are controlled by a control signal output from the control device 4, whereby the flow rate and pressure of hydrogen gas are controlled with high accuracy. The injector 35 directly opens and closes the valve (valve body and valve seat) with an electromagnetic driving force, and has a high responsiveness because its driving cycle can be controlled to a highly responsive region.

インジェクタ35は、その下流に要求されるガス流量を供給するために、インジェクタ35のガス流路に設けられた弁体の開口面積(開度)及び開放時間の少なくとも一方を変更することにより、下流側(燃料電池10側)に供給されるガス流量(又は水素モル濃度)を調整する。なお、インジェクタ35の弁体の開閉によりガス流量が調整されるとともに、インジェクタ35下流に供給されるガス圧力がインジェクタ35上流のガス圧力より減圧されるため、インジェクタ35を調圧弁(減圧弁、レギュレータ)と解釈することもできる。また、本実施形態では、ガス要求に応じて所定の圧力範囲の中で要求圧力に一致するようにインジェクタ35の上流ガス圧の調圧量(減圧量)を変化させることが可能な可変調圧弁と解釈することもできる。   Injector 35 changes the opening area (opening) and the opening time of the valve body provided in the gas flow path of injector 35 in order to supply the required gas flow rate downstream thereof, thereby reducing the downstream flow rate. The gas flow rate (or hydrogen molar concentration) supplied to the side (fuel cell 10 side) is adjusted. Since the gas flow rate is adjusted by opening and closing the valve body of the injector 35 and the gas pressure supplied downstream of the injector 35 is reduced from the gas pressure upstream of the injector 35, the injector 35 is controlled by a pressure regulating valve (pressure reducing valve, regulator). ). Further, in the present embodiment, a variable pressure control valve capable of changing the pressure adjustment amount (pressure reduction amount) of the upstream gas pressure of the injector 35 so as to match the required pressure within a predetermined pressure range in accordance with the gas requirement. Can also be interpreted.

なお、本実施形態においては、図1に示すように、水素供給流路31と循環流路32との合流部A1より上流側にインジェクタ35を配置している。また、図1に破線で示すように、燃料供給源として複数の水素タンク30を採用する場合には、各水素タンク30から供給される水素ガスが合流する部分(水素ガス合流部A2)よりも下流側にインジェクタ35を配置するようにする。   In the present embodiment, as shown in FIG. 1, the injector 35 is disposed on the upstream side of the junction A <b> 1 between the hydrogen supply flow path 31 and the circulation flow path 32. Further, as shown by a broken line in FIG. 1, when a plurality of hydrogen tanks 30 are employed as the fuel supply source, the hydrogen gas supplied from each hydrogen tank 30 joins more than the part (hydrogen gas joining part A2). The injector 35 is arranged on the downstream side.

循環流路32には、本気液分離器36及び排気排水弁37を介して、排出流路38が接続されている。気液分離器36は、水素オフガスから水分を回収するものである。排気排水弁37は、制御装置4からの指令によって作動することにより、気液分離器36で回収した水分と、循環流路32内の不純物を含む水素オフガス(燃料オフガス)と、を外部に排出(パージ)するものである。また、循環流路32には、循環流路32内の水素オフガスを加圧して水素供給流路31側へ送り出す水素ポンプ39が設けられている。なお、排気排水弁37及び排出流路38を介して排出される水素オフガスは、希釈器40によって希釈されて排気流路23内の酸化オフガスと合流するようになっている。循環流路32は本発明における燃料排出流路の一実施形態であり、排気排水弁37は本発明における排出弁の一実施形態である。   A discharge channel 38 is connected to the circulation channel 32 via a gas / liquid separator 36 and an exhaust / drain valve 37. The gas-liquid separator 36 collects moisture from the hydrogen off gas. The exhaust / drain valve 37 is operated according to a command from the control device 4 to discharge moisture collected by the gas-liquid separator 36 and hydrogen off-gas (fuel off-gas) containing impurities in the circulation channel 32 to the outside. (Purge). In addition, the circulation channel 32 is provided with a hydrogen pump 39 that pressurizes the hydrogen off gas in the circulation channel 32 and sends it to the hydrogen supply channel 31 side. The hydrogen off-gas discharged through the exhaust / drain valve 37 and the discharge passage 38 is diluted by the diluter 40 and merges with the oxidizing off-gas in the exhaust passage 23. The circulation passage 32 is an embodiment of the fuel discharge passage in the present invention, and the exhaust / drain valve 37 is an embodiment of the discharge valve in the present invention.

制御装置4は、車両に設けられた加速用の操作部材(アクセル等)の操作量を検出し、加速要求値(例えばトラクションモータ12等の負荷装置からの要求発電量)等の制御情報を受けて、システム内の各種機器の動作を制御する。なお、負荷装置とは、トラクションモータ12のほかに、燃料電池10を作動させるために必要な補機装置(例えばコンプレッサ24、水素ポンプ39、冷却ポンプのモータ等)、車両の走行に関与する各種装置(変速機、車輪制御装置、操舵装置、懸架装置等)で使用されるアクチュエータ、乗員空間の空調装置(エアコン)、照明、オーディオ等を含む電力消費装置を総称したものである。   The control device 4 detects an operation amount of an acceleration operation member (accelerator or the like) provided in the vehicle, and receives control information such as an acceleration request value (for example, a required power generation amount from a load device such as the traction motor 12). To control the operation of various devices in the system. In addition to the traction motor 12, the load device is an auxiliary device (for example, a compressor 24, a hydrogen pump 39, a cooling pump motor, or the like) necessary for operating the fuel cell 10, and various types of vehicles involved in traveling of the vehicle. It is a collective term for power consumption devices including actuators used in devices (transmissions, wheel control devices, steering devices, suspension devices, etc.), occupant space air conditioners (air conditioners), lighting, audio, and the like.

制御装置4は、図示していないコンピュータシステムによって構成されている。かかるコンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイ等を備えるものであり、ROMに記録された各種制御プログラムをCPUが読み込んで実行することにより、各種制御動作が実現されるようになっている。   The control device 4 is configured by a computer system (not shown). Such a computer system includes a CPU, ROM, RAM, HDD, input / output interface, display, and the like, and various control operations are realized by the CPU reading and executing various control programs recorded in the ROM. It is like that.

具体的には、制御装置4は、図2に示すように、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の電流値)に基づいて、燃料電池10で消費される水素ガスの流量(以下「水素消費量」という)を算出する(燃料消費量算出機能:B1)。本実施形態においては、燃料電池10の発電電流値と水素消費量との関係を表す特定の演算式を用いて、制御装置4の演算周期毎に水素消費量を算出して更新することとしている。   Specifically, as shown in FIG. 2, the control device 4 is consumed by the fuel cell 10 based on the operating state of the fuel cell 10 (current value during power generation of the fuel cell 10 detected by the current sensor 13). The flow rate of hydrogen gas (hereinafter referred to as “hydrogen consumption”) is calculated (fuel consumption calculation function: B1). In the present embodiment, the hydrogen consumption is calculated and updated for each calculation cycle of the control device 4 using a specific calculation expression representing the relationship between the generated current value of the fuel cell 10 and the hydrogen consumption. .

また、制御装置4は、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の発電電流値)に基づいて、燃料電池10に供給される水素ガスのインジェクタ35下流位置における目標圧力値を算出する(目標圧力値算出機能:B2)。本実施形態においては、燃料電池10の発電電流値と目標圧力値との関係を表す特定のマップを用いて、制御装置4の演算周期毎に目標圧力値を算出して更新することとしている。   Further, the control device 4 determines the hydrogen gas supplied to the fuel cell 10 at a position downstream of the injector 35 based on the operation state of the fuel cell 10 (the generated current value detected by the current sensor 13 during power generation). A target pressure value is calculated (target pressure value calculation function: B2). In the present embodiment, the target pressure value is calculated and updated every calculation cycle of the control device 4 using a specific map representing the relationship between the generated current value of the fuel cell 10 and the target pressure value.

また、制御装置4は、算出した目標圧力値と、二次側圧力センサ43で検出したインジェクタ35下流位置の圧力値(検出圧力値)と、の偏差を算出し、この偏差の絶対値が所定の閾値以下であるか否かを判定する(偏差判定機能:B3)。そして、制御装置4は、偏差の絶対値が所定の閾値以下である場合に、この偏差を低減させるためのフィードバック補正流量を算出する(フィードバック補正流量算出機能:B4)。フィードバック補正流量は、目標圧力値と検出圧力値との偏差の絶対値を低減させるために水素消費量に加算される水素ガス流量である。本実施形態においては、PI制御等の目標追従型制御則を用いてフィードバック補正流量を算出している。   The control device 4 calculates a deviation between the calculated target pressure value and the pressure value (detected pressure value) at the downstream position of the injector 35 detected by the secondary pressure sensor 43, and the absolute value of this deviation is predetermined. It is determined whether it is below the threshold value (deviation determination function: B3). And the control apparatus 4 calculates the feedback correction | amendment flow volume for reducing this deviation, when the absolute value of deviation is below a predetermined threshold value (feedback correction flow volume calculation function: B4). The feedback correction flow rate is a hydrogen gas flow rate that is added to the hydrogen consumption to reduce the absolute value of the deviation between the target pressure value and the detected pressure value. In the present embodiment, the feedback correction flow rate is calculated using a target tracking control law such as PI control.

また、制御装置4は、インジェクタ35の上流のガス状態(一次側圧力センサ41で検出した水素ガスの圧力及び温度センサ42で検出した水素ガスの温度)に基づいてインジェクタ35の上流の静的流量を算出する(静的流量算出機能:B5)。本実施形態においては、インジェクタ35の上流側の水素ガスの圧力及び温度と静的流量との関係を表す特定の演算式を用いて、制御装置4の演算周期毎に静的流量を算出して更新することとしている。   Further, the control device 4 determines the static flow rate upstream of the injector 35 based on the gas state upstream of the injector 35 (hydrogen gas pressure detected by the primary pressure sensor 41 and hydrogen gas temperature detected by the temperature sensor 42). (Static flow rate calculation function: B5). In the present embodiment, the static flow rate is calculated for each calculation cycle of the control device 4 using a specific calculation formula representing the relationship between the pressure and temperature of the hydrogen gas upstream of the injector 35 and the static flow rate. We are going to update.

また、制御装置4は、インジェクタ35の上流のガス状態(水素ガスの圧力及び温度)及び印加電圧に基づいてインジェクタ35の無効噴射時間を算出する(無効噴射時間算出機能:B6)。ここで無効噴射時間とは、インジェクタ35が制御装置4から制御信号を受けてから実際に噴射を開始するまでに要する時間を意味する。本実施形態においては、インジェクタ35の上流側の水素ガスの圧力及び温度と印加電圧と無効噴射時間との関係を表す特定のマップを用いて、制御装置4の演算周期毎に無効噴射時間を算出して更新することとしている。   Further, the control device 4 calculates the invalid injection time of the injector 35 based on the gas state upstream of the injector 35 (pressure and temperature of hydrogen gas) and the applied voltage (invalid injection time calculation function: B6). Here, the invalid injection time means the time required from when the injector 35 receives a control signal from the control device 4 until the actual injection is started. In the present embodiment, the invalid injection time is calculated for each calculation cycle of the control device 4 using a specific map representing the relationship between the pressure and temperature of the hydrogen gas upstream of the injector 35, the applied voltage, and the invalid injection time. I am going to update it.

また、制御装置4は、燃料電池10の運転状態(電流センサ13で検出した燃料電池10の発電時の電流値)に応じて、インジェクタ35の駆動周期及び駆動周波数を算出する(駆動周期算出機能:B7)。ここで、駆動周期とは、インジェクタ35の開閉駆動の周期、すなわち噴射孔の開閉状態を表す段状(オン・オフ)波形の周期を意味する。また、駆動周波数は駆動周期の逆数である。   Further, the control device 4 calculates the drive cycle and drive frequency of the injector 35 according to the operation state of the fuel cell 10 (current value during power generation of the fuel cell 10 detected by the current sensor 13) (drive cycle calculation function). : B7). Here, the driving cycle means a cycle of opening / closing driving of the injector 35, that is, a cycle of a stepped (on / off) waveform representing the opening / closing state of the injection hole. The drive frequency is the reciprocal of the drive cycle.

本実施形態における制御装置4は、燃料電池10の発電電流値と駆動周波数との関係を表す図3(a)に示したマップを用いて、燃料電池10の発電電流値が小さくなるほど駆動周波数が低くなる(駆動周期が長くなる)ように駆動周波数を算出し、この駆動周波数に対応する駆動周期を算出している。例えば、燃料電池10の発電電流値が大きい場合には、図4(a)に示すような高い駆動周波数(短い駆動周期T1)が設定される一方、燃料電池10の発電電流値が小さい場合には、図4(b)に示すような低い駆動周波数(長い駆動周期T2)が設定される。 The control device 4 in the present embodiment uses the map shown in FIG. 3A showing the relationship between the generated current value of the fuel cell 10 and the drive frequency, and the drive frequency becomes smaller as the generated current value of the fuel cell 10 becomes smaller. The drive frequency is calculated so as to be lower (the drive cycle becomes longer), and the drive cycle corresponding to this drive frequency is calculated. For example, when the generated current value of the fuel cell 10 is large, a high drive frequency (short drive cycle T 1 ) as shown in FIG. 4A is set, while the generated current value of the fuel cell 10 is small. Is set to a low drive frequency (long drive cycle T 2 ) as shown in FIG.

また、本実施形態における制御装置4は、排気排水弁37の開閉動作を制御してパージ動作(循環流路32内の水素オフガスを排気排水弁37から外部に排出する動作)を実行させる。そして、制御装置4は、かかるパージ動作実行時において、図3(b)に示したマップを用いてインジェクタ35の駆動周波数をパージ動作非実行時よりも高く(駆動周期を短く)設定する。具体的には、制御装置4は、図3(b)に示したように、パージ動作実行時における最小駆動周波数F2を、通常時(パージ動作非実行時)における最小駆動周波数F1よりも格段に高く設定している。また、制御装置4は、駆動周期を演算周期の倍数に設定する。 Further, the control device 4 in the present embodiment controls the opening / closing operation of the exhaust / drain valve 37 to execute a purge operation (operation for discharging the hydrogen off-gas in the circulation flow path 32 from the exhaust / drain valve 37 to the outside). Then, the control device 4 sets the drive frequency of the injector 35 higher (shorter drive cycle) than when the purge operation is not performed using the map shown in FIG. 3B when the purge operation is performed. Specifically, as shown in FIG. 3B, the control device 4 sets the minimum drive frequency F 2 at the time of the purge operation to be lower than the minimum drive frequency F 1 at the normal time (when the purge operation is not executed). It is set extremely high. Further, the control device 4 sets the drive cycle to a multiple of the calculation cycle.

また、制御装置4は、水素消費量と、フィードバック補正流量と、を加算することにより、インジェクタ35の噴射流量を算出する(噴射流量算出機能:B8)。そして、制御装置4は、インジェクタ35の噴射流量を静的流量で除した値に駆動周期を乗じることにより、インジェクタ35の基本噴射時間を算出するとともに、この基本噴射時間と無効噴射時間とを加算してインジェクタ35の総噴射時間を算出する(総噴射時間算出機能:B9)。   Further, the control device 4 calculates the injection flow rate of the injector 35 by adding the hydrogen consumption amount and the feedback correction flow rate (injection flow rate calculation function: B8). Then, the control device 4 calculates the basic injection time of the injector 35 by multiplying the value obtained by dividing the injection flow rate of the injector 35 by the static flow rate, and adds the basic injection time and the invalid injection time. Thus, the total injection time of the injector 35 is calculated (total injection time calculation function: B9).

そして、制御装置4は、以上の手順を経て算出したインジェクタ35の総噴射時間を実現させるための制御信号を出力することにより、インジェクタ35のガス噴射時間及びガス噴射時期を制御して、燃料電池10に供給される水素ガスの流量及び圧力を調整する。すなわち、制御装置4は、偏差の絶対値が所定の閾値以下である場合に、この偏差を低減させるためのフィードバック制御を実現させる。   And the control apparatus 4 controls the gas injection time and gas injection timing of the injector 35 by outputting the control signal for implement | achieving the total injection time of the injector 35 computed through the above procedure, and fuel cell The flow rate and pressure of the hydrogen gas supplied to 10 are adjusted. That is, when the absolute value of the deviation is equal to or less than a predetermined threshold, the control device 4 realizes feedback control for reducing the deviation.

また、制御装置4は、目標圧力値と検出圧力値との偏差の絶対値が所定の閾値を超える場合に、インジェクタ35の全開制御又は全閉制御を実現させる。ここで、全開・全閉制御とは、いわゆるオープンループ制御であり、目標圧力値と検出圧力値との偏差の絶対値が所定の閾値以下となるまでインジェクタ35の開度を全開・全閉に維持するものである。   Further, the control device 4 realizes full open control or full close control of the injector 35 when the absolute value of the deviation between the target pressure value and the detected pressure value exceeds a predetermined threshold value. Here, the fully open / closed control is so-called open loop control, in which the opening degree of the injector 35 is fully opened / closed until the absolute value of the deviation between the target pressure value and the detected pressure value falls below a predetermined threshold value. To maintain.

具体的には、制御装置4は、偏差の絶対値が所定の閾値を超えた場合であって、目標圧力値よりも検出圧力値が小さい場合に、インジェクタ35を全開させる(すなわち連続噴射させる)ための制御信号を出力して、燃料電池10に供給される水素ガスの流量及び圧力が最大になるように調整する(全開制御機能:B10)。一方、制御装置4は、偏差の絶対値が所定の閾値を超えた場合であって、目標圧力値よりも検出圧力値が大きい場合に、インジェクタ35を全閉させる(すなわち噴射停止させる)ための制御信号を出力して、燃料電池10に供給される水素ガスの流量及び圧力が最小になるように調整する(全閉制御機能:B11)。   Specifically, the control device 4 fully opens the injector 35 (that is, continuously injects) when the absolute value of the deviation exceeds a predetermined threshold value and the detected pressure value is smaller than the target pressure value. Is adjusted so that the flow rate and pressure of the hydrogen gas supplied to the fuel cell 10 are maximized (fully opened control function: B10). On the other hand, when the absolute value of the deviation exceeds a predetermined threshold value and the detected pressure value is larger than the target pressure value, the control device 4 fully closes the injector 35 (that is, stops injection). A control signal is output to adjust the flow rate and pressure of hydrogen gas supplied to the fuel cell 10 to a minimum (fully closed control function: B11).

また、制御装置4は、インジェクタ35の全開制御又は全閉制御の際に、駆動周波数を高く(駆動周期を短く)設定する。本実施形態においては、全開制御又は全閉制御を行う際の駆動周波数を、フィードバック制御を行う際の駆動周波数の2倍に設定する。すなわち、フィードバック制御を行う際の最短駆動周期を図5に示したT1とすると、全開制御又は全閉制御を行う際の最短駆動周期を図5に示したT3(=0.5T1)に設定する。このようにインジェクタ35の全開制御又は全閉制御の際に駆動周波数を高くする(駆動周期を短くする)ことにより、全開制御時におけるオーバーシュート(制御量としての検出圧力値が目標圧力値を上回る状態)や、全閉制御時におけるアンダーシュート(検出圧力値が目標圧力値を下回る状態)を抑制することが可能となる。 Further, the control device 4 sets the drive frequency high (short drive cycle) when the injector 35 is fully open or fully closed. In the present embodiment, the drive frequency when performing full-open control or full-close control is set to twice the drive frequency when performing feedback control. That is, when T 1 shown in FIG. 5 is the shortest drive cycle when performing feedback control, the shortest drive cycle when performing full-open control or full-close control is T 3 (= 0.5T 1 ) shown in FIG. Set to. In this way, by increasing the drive frequency (shortening the drive cycle) during full open control or full close control of the injector 35, overshoot (the detected pressure value as the controlled variable exceeds the target pressure value) during full open control. State) and undershoot (state in which the detected pressure value is lower than the target pressure value) during full-closed control can be suppressed.

続いて、図6のフローチャートを用いて、本実施形態に係る燃料電池システム1の運転方法について説明する。   Next, an operation method of the fuel cell system 1 according to the present embodiment will be described using the flowchart of FIG.

燃料電池システム1の通常運転時においては、水素タンク30から水素ガスが水素供給流路31を介して燃料電池10の燃料極に供給されるとともに、加湿調整された空気が空気供給流路21を介して燃料電池10の酸化極に供給されることにより、発電が行われる。この際、燃料電池10から引き出すべき電力(要求電力)が制御装置4で演算され、その発電量に応じた量の水素ガス及び空気が燃料電池10内に供給されるようになっている。本実施形態においては、このような通常運転時から運転状態が変化した場合(例えば発電量が低下した場合)に不定期な動作音が発生することを抑制する。   During normal operation of the fuel cell system 1, hydrogen gas is supplied from the hydrogen tank 30 to the fuel electrode of the fuel cell 10 through the hydrogen supply channel 31, and the air that has been subjected to humidification adjustment passes through the air supply channel 21. Then, power is generated by being supplied to the oxidation electrode of the fuel cell 10. At this time, the power (required power) to be drawn from the fuel cell 10 is calculated by the control device 4, and hydrogen gas and air in an amount corresponding to the amount of power generation are supplied into the fuel cell 10. In the present embodiment, the occurrence of irregular operation noise is suppressed when the operation state changes from the normal operation (for example, when the power generation amount decreases).

すなわち、まず、燃料電池システム1の制御装置4は、電流センサ13を用いて燃料電池10の発電時における電流値を検出する(電流検出工程:S1)。また、制御装置4は、電流センサ13で検出した電流値に基づいて、燃料電池10に供給される水素ガスの目標圧力値を算出する(目標圧力値算出工程:S2)。次いで、制御装置4は、二次側圧力センサ43を用いてインジェクタ35の下流側の圧力値を検出する(圧力値検出工程:S3)。そして、制御装置4は、目標圧力値算出工程S2で算出した目標圧力値と、圧力値検出工程S3で検出した圧力値(検出圧力値)と、の偏差ΔPを算出する(偏差算出工程:S4)。   That is, first, the control device 4 of the fuel cell system 1 uses the current sensor 13 to detect a current value during power generation of the fuel cell 10 (current detection step: S1). Further, the control device 4 calculates the target pressure value of the hydrogen gas supplied to the fuel cell 10 based on the current value detected by the current sensor 13 (target pressure value calculating step: S2). Next, the control device 4 detects the pressure value on the downstream side of the injector 35 using the secondary pressure sensor 43 (pressure value detection step: S3). Then, the control device 4 calculates a deviation ΔP between the target pressure value calculated in the target pressure value calculation step S2 and the pressure value (detected pressure value) detected in the pressure value detection step S3 (deviation calculation step: S4). ).

次いで、制御装置4は、偏差算出工程S4で算出した偏差ΔPの絶対値が第1の閾値ΔP1以下であるか否かを判定する(第1偏差判定工程:S5)。第1の閾値ΔP1は、目標圧力値より検出圧力値が小さい場合においてフィードバック制御と全開制御との切換えを行うための閾値である。制御装置4は、目標圧力値と検出圧力値との偏差ΔPの絶対値が第1の閾値ΔP1以下であると判定した場合に、後述する第2偏差判定工程S7に移行する。一方、制御装置4は、目標圧力値と検出圧力値との偏差ΔPの絶対値が第1の閾値ΔP1を超えるものと判定した場合に、インジェクタ35を全開させる(連続噴射させる)ための制御信号を出力して、燃料電池10に供給される水素ガスの流量及び圧力が最大になるように調整する(全開制御工程:S6)。かかる全開制御工程S6において、制御装置4は、駆動周波数を高く(駆動周期を短く)設定する。 Next, the control device 4 determines whether or not the absolute value of the deviation ΔP calculated in the deviation calculation step S4 is equal to or less than the first threshold value ΔP 1 (first deviation determination step: S5). The first threshold ΔP 1 is a threshold for switching between feedback control and full open control when the detected pressure value is smaller than the target pressure value. When determining that the absolute value of the deviation ΔP between the target pressure value and the detected pressure value is equal to or less than the first threshold value ΔP 1 , the control device 4 proceeds to a second deviation determination step S7 described later. On the other hand, when it is determined that the absolute value of the deviation ΔP between the target pressure value and the detected pressure value exceeds the first threshold value ΔP 1 , the control device 4 performs control for fully opening the injector 35 (continuous injection). A signal is output and adjustment is performed so that the flow rate and pressure of hydrogen gas supplied to the fuel cell 10 are maximized (fully open control step: S6). In the fully open control step S6, the control device 4 sets the drive frequency to be high (the drive cycle is short).

制御装置4は、第1偏差判定工程S5で目標圧力値と検出圧力値との偏差ΔPの絶対値が第2の閾値ΔP2以下であると判定した場合に、偏差算出工程S4で算出した偏差ΔPの絶対値が、第2の閾値ΔP2以下であるか否かを判定する(第2偏差判定工程:S7)。第2の閾値ΔP2は、目標圧力値より検出圧力値が大きい場合においてフィードバック制御と全閉制御との切換えを行うための閾値である。制御装置4は、目標圧力値と検出圧力値との偏差ΔPの絶対値が第2の閾値ΔP2以下であると判定した場合に、後述するパージ判定工程S9に移行する。一方、制御装置4は、目標圧力値と検出圧力値との偏差ΔPの絶対値が第2の閾値ΔP2を超えるものと判定した場合に、インジェクタ35を全閉させる(噴射停止させる)ための制御信号を出力して、燃料電池10に供給される水素ガスの流量及び圧力が最小になるように調整する(全閉制御工程:S8)。かかる全閉制御工程S8において、制御装置4は、駆動周波数を高く(駆動周期を短く)設定する。 The control device 4, and when the absolute value of the deviation [Delta] P between the detected pressure value and the target pressure value in the first deviation determination step S5 is determined to be the second threshold value [Delta] P 2 below, calculated in the deviation calculation step S4 deviation It is determined whether or not the absolute value of ΔP is equal to or smaller than a second threshold value ΔP 2 (second deviation determination step: S7). The second threshold ΔP 2 is a threshold for switching between feedback control and fully closed control when the detected pressure value is larger than the target pressure value. When it is determined that the absolute value of the deviation ΔP between the target pressure value and the detected pressure value is equal to or less than the second threshold value ΔP 2 , the control device 4 proceeds to a purge determination step S9 described later. On the other hand, when it is determined that the absolute value of the deviation ΔP between the target pressure value and the detected pressure value exceeds the second threshold value ΔP 2 , the control device 4 fully closes the injector 35 (stops injection). A control signal is output to adjust the flow rate and pressure of the hydrogen gas supplied to the fuel cell 10 to a minimum (fully closed control step: S8). In the fully closed control step S8, the control device 4 sets the drive frequency to be high (the drive cycle is short).

制御装置4は、第2偏差判定工程S7で目標圧力値と検出圧力値との偏差ΔPの絶対値が第2の閾値ΔP2以下であると判定した場合に、パージ動作実行中であるか否かを判定する(パージ判定工程:S9)。そして、制御装置4は、パージ動作実行中であると判定した場合に、図3(b)に示したパージ動作実行時用のマップと、電流検出工程S1で検出した燃料電池10の発電電流値と、に基づいてインジェクタ35の駆動周波数及び駆動周期を算出する(パージ時駆動周期算出工程:S10)。一方、制御装置4は、パージ動作実行中でないと判定した場合に、図3(a)に示した通常時用のマップと、電流検出工程S1で検出した燃料電池10の発電電流値と、に基づいてインジェクタ35の駆動周波数及び駆動周期を算出する(通常時駆動周期算出工程:S11)。その後、制御装置4は、算出した駆動周期を用いてフィードバック制御を実現させる(フィードバック制御工程:S12)。 The control device 4, when the absolute value of the deviation [Delta] P between the target pressure value and the detected pressure value in the second deviation determination step S7 is determined to be the second threshold value [Delta] P 2 or less, or is in purge operation performed not (Purge determination step: S9). When the control device 4 determines that the purge operation is being executed, the purge operation execution map shown in FIG. 3B and the generated current value of the fuel cell 10 detected in the current detection step S1 are shown. Based on the above, the drive frequency and drive cycle of the injector 35 are calculated (purge drive cycle calculation step: S10). On the other hand, when the control device 4 determines that the purge operation is not being performed, the normal time map shown in FIG. 3A and the generated current value of the fuel cell 10 detected in the current detection step S1 are displayed. Based on this, the drive frequency and drive cycle of the injector 35 are calculated (normal drive cycle calculation step: S11). Thereafter, the control device 4 realizes feedback control using the calculated drive cycle (feedback control step: S12).

フィードバック制御工程S12について具体的に説明する。まず、制御装置4は、電流センサ13で検出した電流値に基づいて、燃料電池10で消費される水素ガスの流量(水素消費量)を算出する。また、制御装置4は、目標圧力値算出工程S2で算出した目標圧力値と、圧力値検出工程S3で検出したインジェクタ35下流側の検出圧力値と、の偏差ΔPに基づいてフィードバック補正流量を算出する。そして、制御装置4は、算出した水素消費量とフィードバック補正流量とを加算することにより、インジェクタ35の噴射流量を算出する。   The feedback control step S12 will be specifically described. First, the control device 4 calculates the flow rate of hydrogen gas (hydrogen consumption) consumed by the fuel cell 10 based on the current value detected by the current sensor 13. Further, the control device 4 calculates the feedback correction flow rate based on the deviation ΔP between the target pressure value calculated in the target pressure value calculation step S2 and the detected pressure value downstream of the injector 35 detected in the pressure value detection step S3. To do. Then, the control device 4 calculates the injection flow rate of the injector 35 by adding the calculated hydrogen consumption amount and the feedback correction flow rate.

また、制御装置4は、一次側圧力センサ41で検出したインジェクタ35の上流の水素ガスの圧力と、温度センサ42で検出したインジェクタ35の上流の水素ガスの温度と、に基づいてインジェクタ35の上流の静的流量を算出する。そして、制御装置4は、インジェクタ35の噴射流量を静的流量で除した値に駆動周期を乗じることにより、インジェクタ35の基本噴射時間を算出する。   Further, the control device 4 detects the upstream of the injector 35 based on the pressure of the hydrogen gas upstream of the injector 35 detected by the primary pressure sensor 41 and the temperature of the hydrogen gas upstream of the injector 35 detected by the temperature sensor 42. The static flow rate is calculated. The control device 4 calculates the basic injection time of the injector 35 by multiplying the value obtained by dividing the injection flow rate of the injector 35 by the static flow rate by the drive cycle.

また、制御装置4は、一次側圧力センサ41で検出したインジェクタ35の上流の水素ガスの圧力と、温度センサ42で検出したインジェクタ35の上流の水素ガスの温度と、印加電圧と、に基づいてインジェクタ35の無効噴射時間を算出する。そして、この無効噴射時間と、インジェクタ35の基本噴射時間と、を加算することにより、インジェクタ35の総噴射時間を算出する。その後、制御装置4は、算出したインジェクタ35の総噴射時間に係る制御信号を出力することにより、インジェクタ35のガス噴射時間及びガス噴射時期を制御して、燃料電池10に供給される水素ガスの流量及び圧力を調整する。   Further, the control device 4 is based on the pressure of the hydrogen gas upstream of the injector 35 detected by the primary pressure sensor 41, the temperature of the hydrogen gas upstream of the injector 35 detected by the temperature sensor 42, and the applied voltage. The invalid injection time of the injector 35 is calculated. Then, the total injection time of the injector 35 is calculated by adding the invalid injection time and the basic injection time of the injector 35. Thereafter, the control device 4 controls the gas injection time and gas injection timing of the injector 35 by outputting a control signal related to the calculated total injection time of the injector 35, and controls the hydrogen gas supplied to the fuel cell 10. Adjust flow rate and pressure.

以上説明した実施形態に係る燃料電池システム1においては、駆動周期を制御装置4の演算周期の倍数に設定しているため、制御装置4の演算周期にインジェクタ35の駆動周期を同期させ易くなる。この結果、インジェクタ35の制御精度を向上させることができ、インジェクタ35の不定期な動作を抑制して、不快な動作音の発生を抑制することができる。 In the fuel cell system 1 according to the embodiment described above, since the drive cycle is set to a multiple of the calculation cycle of the control device 4, the drive cycle of the injector 35 can be easily synchronized with the calculation cycle of the control device 4. As a result, the control accuracy of the injector 35 can be improved, the irregular operation of the injector 35 can be suppressed, and the generation of unpleasant operation sound can be suppressed.

また、以上説明した実施形態に係る燃料電池車両(移動体)は、インジェクタ35の不定期な動作を抑制して不快な動作音の発生を抑制することが可能な燃料電池システム1を備えているため、搭乗者に不快感を与えることが少ない。また、動作音の安定化により、搭乗者に安心感を与えることが可能となる。   Further, the fuel cell vehicle (moving body) according to the embodiment described above includes the fuel cell system 1 that can suppress the irregular operation of the injector 35 and suppress the generation of unpleasant operation noise. Therefore, there is little discomfort to the passenger. In addition, it is possible to give the passenger a sense of security by stabilizing the operation sound.

なお、以上の実施形態においては、燃料電池システム1の水素ガス配管系3に循環流路32を設けた例を示したが、例えば、図7に示すように、燃料電池10に排出流路38を直接接続して循環流路32を廃止することもできる。かかる構成(デッドエンド方式)を採用した場合においても、制御装置4で前記実施形態と同様にインジェクタ35の駆動周波数(駆動周期)を運転状態に応じて適切に設定することにより、前記実施形態と同様の作用効果を得ることができる。   In the above embodiment, the example in which the circulation channel 32 is provided in the hydrogen gas piping system 3 of the fuel cell system 1 has been shown. For example, as shown in FIG. Can be directly connected to eliminate the circulation flow path 32. Even when such a configuration (dead end method) is adopted, the control device 4 appropriately sets the drive frequency (drive cycle) of the injector 35 according to the operation state in the same manner as in the above-described embodiment. Similar effects can be obtained.

また、以上の実施形態においては、循環流路32に水素ポンプ39を設けた例を示したが、水素ポンプ39に代えてエジェクタを採用してもよい。また、以上の実施形態においては、排気と排水との双方を実現させる排気排水弁37を循環流路32に設けた例を示したが、気液分離器36で回収した水分を外部に排出する排水弁と、循環流路32内のガスを外部に排出するための排気弁と、を別々に設け、制御装置4で排気弁を制御することもできる。   Moreover, in the above embodiment, although the example which provided the hydrogen pump 39 in the circulation flow path 32 was shown, it replaces with the hydrogen pump 39 and an ejector may be employ | adopted. Moreover, in the above embodiment, although the example which provided the exhaust_flow_drain valve 37 which implement | achieves both exhaust_gas | exhaustion and waste_water | drain in the circulation flow path 32 was shown, the water | moisture content collect | recovered with the gas-liquid separator 36 is discharged | emitted outside. A drain valve and an exhaust valve for discharging the gas in the circulation flow path 32 to the outside can be provided separately, and the exhaust valve can be controlled by the control device 4.

また、以上の実施形態においては、水素ガス配管系3の水素供給流路31のインジェクタ35の下流位置に二次側圧力センサ43を配置し、この位置における圧力を調整する(所定の目標圧力値に近付ける)ようにインジェクタ35の作動状態(噴射時間)を設定した例を示したが、二次側圧力センサの位置はこれに限られるものではない。   Further, in the above embodiment, the secondary pressure sensor 43 is arranged at the downstream position of the injector 35 of the hydrogen supply flow path 31 of the hydrogen gas piping system 3, and the pressure at this position is adjusted (predetermined target pressure value). Although the example in which the operating state (injection time) of the injector 35 is set so as to be close to (2) is shown, the position of the secondary pressure sensor is not limited to this.

例えば、燃料電池10の水素ガス入口近傍位置(水素供給流路31上)や、燃料電池10の水素ガス出口近傍位置(循環流路32上)や、水素ポンプ39の出口近傍位置(循環流路32上)に二次側圧力センサを配置することもできる。かかる場合には、二次側圧力センサの各位置における目標圧力値を記録したマップを予め作成しておき、このマップに記録した目標圧力値と、二次側圧力センサで検出した圧力値(検出圧力値)と、に基づいてフィードバック補正流量を算出するようにする。   For example, the position near the hydrogen gas inlet of the fuel cell 10 (on the hydrogen supply channel 31), the position near the hydrogen gas outlet of the fuel cell 10 (on the circulation channel 32), or the position near the outlet of the hydrogen pump 39 (circulation channel) 32)) can also be arranged with a secondary pressure sensor. In such a case, a map in which the target pressure value at each position of the secondary pressure sensor is recorded in advance is created, and the target pressure value recorded in this map and the pressure value (detection detected by the secondary pressure sensor) are detected. The feedback correction flow rate is calculated based on the pressure value).

また、以上の実施形態においては、水素供給流路31に遮断弁33及びレギュレータ34を設けた例を示したが、インジェクタ35は、可変調圧弁としての機能を果たすとともに、水素ガスの供給を遮断する遮断弁としての機能をも果たすため、必ずしも遮断弁33やレギュレータ34を設けなくてもよい。従って、インジェクタ35を採用すると遮断弁33やレギュレータ34を省くことができるため、システムの小型化及び低廉化が可能となる。   In the above embodiment, the example in which the shutoff valve 33 and the regulator 34 are provided in the hydrogen supply flow path 31 has been described. However, the injector 35 functions as a variable pressure control valve and shuts off the supply of hydrogen gas. Therefore, it is not always necessary to provide the shut-off valve 33 and the regulator 34. Therefore, when the injector 35 is employed, the shut-off valve 33 and the regulator 34 can be omitted, so that the system can be reduced in size and cost.

また、以上の実施形態においては、燃料電池10の発電時の電流値に基づいてインジェクタ35の駆動周波数(駆動周期)を設定した例を示したが、水素ガスの目標圧力値や検出圧力値に基づいてインジェクタ35の駆動周波数(駆動周期)を設定することもできる。この際には、目標圧力値(又は検出圧力値)と駆動周波数との関係を表すマップを用いて、目標圧力値(又は検出圧力値)が小さくなるほど駆動周波数が低くなる(駆動周期が長くなる)ように駆動周波数を算出し、この駆動周波数に対応する駆動周期を算出することができる。このようにすることにより、水素ガスの供給圧力低下時におけるインジェクタの不定期な動作を抑制して、不快な動作音の発生を抑制することができる。   Moreover, in the above embodiment, although the example which set the drive frequency (drive period) of the injector 35 based on the electric current value at the time of the electric power generation of the fuel cell 10 was shown, it is set as the target pressure value and detection pressure value of hydrogen gas. Based on this, the drive frequency (drive cycle) of the injector 35 can be set. At this time, using a map representing the relationship between the target pressure value (or detected pressure value) and the drive frequency, the drive frequency decreases (the drive cycle becomes longer) as the target pressure value (or detected pressure value) decreases. ) And the drive cycle corresponding to this drive frequency can be calculated. By doing in this way, the irregular operation | movement of the injector at the time of the supply pressure drop of hydrogen gas can be suppressed, and generation | occurrence | production of an unpleasant operation sound can be suppressed.

また、以上の実施形態においては、燃料電池10の発電時の電流値を検出し、この電流値に基づいてインジェクタ35の駆動周波数(駆動周期)を設定した例を示したが、燃料電池10の運転状態を示す他の物理量(燃料電池10の発電時の電圧値や電力値、燃料電池10の温度等)を検出し、この検出した物理量に応じてインジェクタ35の駆動周波数(駆動周期)を設定してもよい。また、燃料電池10が停止状態にあるか、起動時の運転状態にあるか、間欠運転に入る直前の運転状態にあるか、間欠運転から回復した直後の運転状態あるか、通常運転状態にあるか等の運転状態を制御装置が判定し、これら運転状態に応じてインジェクタ35の駆動周波数(駆動周期)を設定することもできる。   Further, in the above embodiment, an example is shown in which the current value during power generation of the fuel cell 10 is detected and the drive frequency (drive cycle) of the injector 35 is set based on this current value. Other physical quantities indicating the operating state (voltage value and power value at the time of power generation of the fuel cell 10, temperature of the fuel cell 10, etc.) are detected, and the drive frequency (drive cycle) of the injector 35 is set according to the detected physical quantity May be. Further, the fuel cell 10 is in a stopped state, in an operating state at the time of starting, in an operating state immediately before entering intermittent operation, in an operating state immediately after recovering from intermittent operation, or in a normal operating state. It is also possible for the control device to determine such an operation state and set the drive frequency (drive cycle) of the injector 35 according to these operation states.

また、以上の各実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した例を示したが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)に本発明に係る燃料電池システムを搭載することもできる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用してもよい。   In each of the above embodiments, the fuel cell system according to the present invention is mounted on the fuel cell vehicle. However, the present invention is applied to various mobile bodies (robots, ships, airplanes, etc.) other than the fuel cell vehicle. Such a fuel cell system can also be mounted. Further, the fuel cell system according to the present invention may be applied to a stationary power generation system used as a power generation facility for a building (house, building, etc.).

1…燃料電池システム、3…水素ガス配管系(燃料供給系)、4…制御装置(制御手段)、10…燃料電池、31…水素供給流路(燃料供給流路)、32…循環流路(燃料排出流路)、35…インジェクタ、37…排気排水弁(排出弁)。   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 3 ... Hydrogen gas piping system (fuel supply system), 4 ... Control apparatus (control means), 10 ... Fuel cell, 31 ... Hydrogen supply flow path (fuel supply flow path), 32 ... Circulation flow path (Fuel discharge flow path), 35... Injector, 37... Exhaust drain valve (discharge valve).

Claims (7)

燃料電池と、この燃料電池に燃料ガスを供給するための燃料供給系と、この燃料供給系の上流側のガス状態を調整して下流側に供給するインジェクタと、このインジェクタを所定の駆動周期で駆動制御する制御手段と、を備える燃料電池システムであって、
前記制御手段は、前記燃料電池の運転状態に応じて前記駆動周期を設定する燃料電池システム。
A fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, an injector for adjusting the gas state on the upstream side of the fuel supply system and supplying the fuel to the downstream side, and the injector at a predetermined drive cycle A fuel cell system comprising: control means for driving control,
The said control means is a fuel cell system which sets the said drive period according to the driving | running state of the said fuel cell.
前記制御手段は、
前記燃料電池の発電量が小さいほど前記駆動周期を長く設定する請求項1に記載の燃料電池システム。
The control means includes
The fuel cell system according to claim 1, wherein the drive cycle is set longer as the power generation amount of the fuel cell is smaller.
前記制御手段は、
前記燃料電池への燃料ガスの供給圧力が低いほど前記駆動周期を長く設定する請求項1に記載の燃料電池システム。
The control means includes
The fuel cell system according to claim 1, wherein the drive cycle is set longer as the supply pressure of fuel gas to the fuel cell is lower.
前記燃料供給系は、燃料供給源から供給される燃料ガスを前記燃料電池へと流すための燃料供給流路と、前記燃料電池から排出される燃料オフガスを流すための燃料排出流路と、この燃料排出流路内のガスを外部に排出するための排出弁と、を有し、
前記制御手段は、
前記排出弁の開閉動作を制御して燃料オフガスのパージ動作を実行させるとともに、パージ動作実行時の前記駆動周期をパージ動作非実行時の前記駆動周期よりも短く設定する請求項1から3の何れか一項に記載の燃料電池システム。
The fuel supply system includes a fuel supply channel for flowing fuel gas supplied from a fuel supply source to the fuel cell, a fuel discharge channel for flowing fuel off-gas discharged from the fuel cell, and A discharge valve for discharging the gas in the fuel discharge passage to the outside,
The control means includes
4. A fuel off-gas purge operation is performed by controlling the opening / closing operation of the discharge valve, and the drive cycle when the purge operation is performed is set shorter than the drive cycle when the purge operation is not performed. A fuel cell system according to claim 1.
前記制御手段は、所定の演算周期で演算を行うとともに、前記駆動周期を前記演算周期の倍数に設定する請求項1から4の何れか一項に記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 4, wherein the control unit performs a calculation at a predetermined calculation cycle and sets the drive cycle to a multiple of the calculation cycle. 前記制御手段は、前記インジェクタの全開制御又は全閉制御の際の前記駆動周期を非全開制御又は非全閉制御の際の前記駆動周期よりも短く設定する請求項1から5の何れか一項に記載の燃料電池システム。   6. The control unit according to claim 1, wherein the control unit sets the drive cycle during full open control or full close control of the injector to be shorter than the drive cycle during non-full open control or non-fully closed control. The fuel cell system described in 1. 請求項1から6の何れか一項に記載の燃料電池システムを備えた移動体。   A moving body comprising the fuel cell system according to any one of claims 1 to 6.
JP2011060509A 2011-03-18 2011-03-18 Fuel cell system and moving body Expired - Fee Related JP4780427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060509A JP4780427B2 (en) 2011-03-18 2011-03-18 Fuel cell system and moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060509A JP4780427B2 (en) 2011-03-18 2011-03-18 Fuel cell system and moving body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005362043A Division JP4780390B2 (en) 2005-12-15 2005-12-15 Fuel cell system and moving body

Publications (2)

Publication Number Publication Date
JP2011138790A true JP2011138790A (en) 2011-07-14
JP4780427B2 JP4780427B2 (en) 2011-09-28

Family

ID=44349968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060509A Expired - Fee Related JP4780427B2 (en) 2011-03-18 2011-03-18 Fuel cell system and moving body

Country Status (1)

Country Link
JP (1) JP4780427B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059969A (en) * 2012-09-14 2014-04-03 Honda Motor Co Ltd Fuel cell system and control method thereof
JP2016031878A (en) * 2014-07-30 2016-03-07 本田技研工業株式会社 Fuel cell system and control method of fuel cell system
DE102015119010A1 (en) 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for a fuel cell system
US9793562B2 (en) 2014-11-14 2017-10-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell-mounted vehicle and method of controlling fuel system
US10038208B2 (en) 2014-11-12 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2019214951A (en) * 2018-06-12 2019-12-19 株式会社デンソー Ejector system
CN113540517A (en) * 2021-07-26 2021-10-22 成都亿华通动力科技有限公司 Preheating method of fuel cell system
CN116995277A (en) * 2023-09-14 2023-11-03 大连擎研科技有限公司 Anode system control method, device, equipment, system, automobile and medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312167A (en) * 1996-05-23 1997-12-02 Aqueous Res:Kk Fuel cell power generator and operation method thereof
JP2002289237A (en) * 2001-01-18 2002-10-04 Toyota Motor Corp On-board fuel cell system and hydrogen off-gas exhausting method
JP2004139984A (en) * 2002-09-27 2004-05-13 Equos Research Co Ltd Fuel cell system
JP2005216626A (en) * 2004-01-28 2005-08-11 Aisin Seiki Co Ltd Fuel cell power generation system, and scavenging valve device for fuel cell power generation device
JP2005302571A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Control unit of fuel cell
JP2007165186A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell system and movable body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312167A (en) * 1996-05-23 1997-12-02 Aqueous Res:Kk Fuel cell power generator and operation method thereof
JP2002289237A (en) * 2001-01-18 2002-10-04 Toyota Motor Corp On-board fuel cell system and hydrogen off-gas exhausting method
JP2004139984A (en) * 2002-09-27 2004-05-13 Equos Research Co Ltd Fuel cell system
JP2005216626A (en) * 2004-01-28 2005-08-11 Aisin Seiki Co Ltd Fuel cell power generation system, and scavenging valve device for fuel cell power generation device
JP2005302571A (en) * 2004-04-13 2005-10-27 Toyota Motor Corp Control unit of fuel cell
JP2007165186A (en) * 2005-12-15 2007-06-28 Toyota Motor Corp Fuel cell system and movable body

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059969A (en) * 2012-09-14 2014-04-03 Honda Motor Co Ltd Fuel cell system and control method thereof
JP2016031878A (en) * 2014-07-30 2016-03-07 本田技研工業株式会社 Fuel cell system and control method of fuel cell system
DE102015119010A1 (en) 2014-11-12 2016-05-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for a fuel cell system
US10033057B2 (en) 2014-11-12 2018-07-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell system
US10038208B2 (en) 2014-11-12 2018-07-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE102015119010B4 (en) 2014-11-12 2024-05-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method for a fuel cell system
US9793562B2 (en) 2014-11-14 2017-10-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell-mounted vehicle and method of controlling fuel system
JP2019214951A (en) * 2018-06-12 2019-12-19 株式会社デンソー Ejector system
JP7144977B2 (en) 2018-06-12 2022-09-30 株式会社デンソー ejector system
CN113540517A (en) * 2021-07-26 2021-10-22 成都亿华通动力科技有限公司 Preheating method of fuel cell system
CN113540517B (en) * 2021-07-26 2022-05-17 成都亿华通动力科技有限公司 Preheating method of fuel cell system
CN116995277A (en) * 2023-09-14 2023-11-03 大连擎研科技有限公司 Anode system control method, device, equipment, system, automobile and medium

Also Published As

Publication number Publication date
JP4780427B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4780390B2 (en) Fuel cell system and moving body
JP5041272B2 (en) Fuel cell system and moving body
JP4438854B2 (en) Fuel cell system
JP5120590B2 (en) Fuel cell system and injector diagnostic method
JP4780427B2 (en) Fuel cell system and moving body
JP4756476B2 (en) Fuel cell system and fuel cell vehicle
JP4883360B2 (en) Fuel cell system
JP4882972B2 (en) Fuel cell system
JP5158558B2 (en) Fuel cell system
JP4655082B2 (en) Fuel cell system
JP2007317597A (en) Fuel cell system and diagnostic method of closing valve
JP2007280771A (en) Fuel cell system
JP5013307B2 (en) Fuel cell system
JP5224080B2 (en) Fuel cell system and off-gas purge method
JP5057203B2 (en) Fuel cell system and moving body
JP2007323873A (en) Fuel cell system and its control method
JP2008218034A (en) Fuel cell system and method of controlling the same
JP4863052B2 (en) Fuel cell system and moving body
JP5228263B2 (en) Fuel cell system
JP2008171623A (en) Fuel cell system
JP2007305348A (en) Fuel cell system and moving body
JP2007165162A (en) Fuel cell system and mobile body
JP2008053151A (en) Fuel cell system
JP5088609B2 (en) Fuel cell system
JP2008204711A (en) Fuel cell system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4780427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees