JP2011132393A - Insulating film coating and insulated wire - Google Patents
Insulating film coating and insulated wire Download PDFInfo
- Publication number
- JP2011132393A JP2011132393A JP2009293993A JP2009293993A JP2011132393A JP 2011132393 A JP2011132393 A JP 2011132393A JP 2009293993 A JP2009293993 A JP 2009293993A JP 2009293993 A JP2009293993 A JP 2009293993A JP 2011132393 A JP2011132393 A JP 2011132393A
- Authority
- JP
- Japan
- Prior art keywords
- insulating coating
- resin
- insulating
- paint
- insulated wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Abstract
Description
本発明は、金属導体表面に絶縁被膜塗料で形成した絶縁被膜を有する絶縁電線に関し、特にモーターや変圧器などの電気機器のコイル用として好適な絶縁被膜塗料及びそれを用いて製造した絶縁電線に関する。 The present invention relates to an insulated wire having an insulating coating formed on a metal conductor surface with an insulating coating, and more particularly to an insulating coating suitable for a coil of an electric device such as a motor or a transformer, and an insulated wire manufactured using the same. .
絶縁電線(エナメル被覆絶縁電線)は、モーターや変圧器などの電気機器のコイル用電線として広く用いられており、コイルの用途・形状に合致した断面形状(例えば、丸型や平角)に成形された金属導体の外層に単層または複数層の絶縁被膜が形成された構成をしている。該絶縁被膜は、一般的にポリイミド、ポリアミドイミド、ポリエステルイミド等の樹脂を有機溶剤に溶解させた絶縁被膜塗料(単に絶縁塗料と言う場合もある)を金属導体上に塗布・焼付けして作製される。 Insulated wires (enamel-insulated insulated wires) are widely used as coil wires for electrical equipment such as motors and transformers, and are formed into a cross-sectional shape (for example, round or flat) that matches the application and shape of the coil. In addition, a single-layer or multiple-layer insulating film is formed on the outer layer of the metal conductor. The insulating coating is generally prepared by applying and baking an insulating coating (in some cases simply referred to as insulating coating) obtained by dissolving a resin such as polyimide, polyamideimide, or polyesterimide in an organic solvent. The
近年、モーターや変圧器などの電気機器に対する小型化・高出力化・高効率化などの要求から、電気機器のインバータ制御や高電圧化が進展している。その結果、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かるようになった。また、電気機器(特にコイル)の運転温度が従来よりも上昇する傾向にある。 In recent years, inverter control and higher voltage of electric devices are progressing due to demands for miniaturization, higher output, and higher efficiency of electric devices such as motors and transformers. As a result, higher voltages such as inverter surge voltage are applied to coils in electrical equipment. In addition, the operating temperature of electrical equipment (particularly coils) tends to rise more than before.
一方、コイルを構成する絶縁電線間に微小な空隙が残存していると、その部分に電界集中が起こり、隣接する絶縁電線間(被膜−被膜間)あるいは対地間(被膜−コア間)で部分放電が発生しやすい。部分放電が発生すると荷電粒子の衝突により、絶縁被膜の樹脂材料分子鎖の切断、スパッタ、局所温度上昇による熱分解などを誘発して絶縁被膜の劣化(部分放電劣化)を引き起こす。部分放電劣化は上述の高電圧化や運転温度の上昇によって助長され、その結果、コイルの絶縁破壊に至る恐れがある。 On the other hand, if a minute gap remains between the insulated wires constituting the coil, electric field concentration occurs in that portion, and the portion between adjacent insulated wires (between the coating and the coating) or between the ground (between the coating and the core) Discharge is likely to occur. When partial discharge occurs, collision of charged particles induces degradation of the insulating film (partial discharge deterioration) by inducing the resin material molecular chain of the insulating film to be cut, sputtered, thermal decomposition due to local temperature rise, and the like. The partial discharge deterioration is promoted by the above-described high voltage and increase in operating temperature, and as a result, there is a risk of coil breakdown.
温度上昇による絶縁被膜の劣化・熱分解を抑制するためには、絶縁被膜が高い熱伝導性を有していることが望ましい。従来、高い熱伝導性を有する絶縁被膜(絶縁被膜塗料)として、有機溶剤に溶解した樹脂中に、熱伝導率を向上させるための無機絶縁微粒子を分散させた樹脂組成物が提案されている。 In order to suppress deterioration and thermal decomposition of the insulating coating due to temperature rise, it is desirable that the insulating coating has high thermal conductivity. Conventionally, as an insulating coating (insulating coating) having high thermal conductivity, a resin composition in which inorganic insulating fine particles for improving thermal conductivity are dispersed in a resin dissolved in an organic solvent has been proposed.
例えば、特許文献1には、エポキシ樹脂等の有機高分子樹脂中に、表面を予め酸化した窒化アルミニウム(AlN)の焼結体粉末を混合した樹脂組成物が開示されている。特許文献1によると、表面を酸化した窒化アルミニウムを混合した樹脂組成物は、高熱伝導性・耐水和性を有し、高い信頼性を有するとされている。 For example, Patent Document 1 discloses a resin composition obtained by mixing a sintered powder of aluminum nitride (AlN) whose surface is previously oxidized in an organic polymer resin such as an epoxy resin. According to Patent Document 1, a resin composition in which aluminum nitride having an oxidized surface is mixed has high thermal conductivity and hydration resistance, and has high reliability.
特許文献2では、シリコーン樹脂等の有機金属高分子化合物にシリカ、アルミナ、マグネシア等の金属酸化物粉末を混合した絶縁層を厚さ10〜50μmで導体表面に被覆し、さらにその上にポリイミドワニスなどの耐熱絶縁ワニス等の絶縁補強層を厚さ5〜20μmで被覆した二層構造を有する樹脂組成物が開示されている。特許文献2に記載の樹脂組成物を用いた絶縁電線は、10×10-4 cal/(s・cm・℃) 以上の高い熱伝導率が得られるとされている。 In Patent Document 2, an insulating layer obtained by mixing a metal oxide powder such as silica, alumina, or magnesia with an organometallic polymer compound such as a silicone resin is coated on the surface of the conductor with a thickness of 10 to 50 μm, and a polyimide varnish is further formed thereon. A resin composition having a two-layer structure in which an insulating reinforcing layer such as a heat-resistant insulating varnish is coated with a thickness of 5 to 20 μm is disclosed. An insulated wire using the resin composition described in Patent Document 2 is said to have a high thermal conductivity of 10 × 10 −4 cal / (s · cm · ° C.) or more.
特許文献3には、金属酸化物微粒子ゾル及びケイ素酸化物微粒子ゾルから選ばれる少なくとも1種を分散させて成り、金属酸化物微粒子及びケイ素酸化物微粒子から選ばれる少なくとも1種の微粒子が、エナメル線用塗料の樹脂分100重量部に対して3〜100重量部含有されている樹脂組成物が開示されている。特許文献3に記載の樹脂組成物は、金属酸化物微粒子及びケイ素酸化物微粒子を、エナメル線用塗料との相溶性の優れた有機分散媒中に、ゾル状にして添加することで均一に分散することができるとしている。この樹脂組成物を用いると、可撓性、柔軟性、巻き付け性、伸張性に優れた絶縁電線が得られるとされている。 In Patent Document 3, at least one selected from metal oxide fine particle sol and silicon oxide fine particle sol is dispersed, and at least one fine particle selected from metal oxide fine particles and silicon oxide fine particles is enameled wire. A resin composition containing 3 to 100 parts by weight with respect to 100 parts by weight of the resin content of the coating material is disclosed. The resin composition described in Patent Document 3 is uniformly dispersed by adding metal oxide fine particles and silicon oxide fine particles in the form of a sol in an organic dispersion medium excellent in compatibility with enamel wire paints. You can do that. It is said that when this resin composition is used, an insulated wire excellent in flexibility, flexibility, winding property, and extensibility can be obtained.
特許文献4には、フェノール類またはベンジルアルコール類5〜80質量%と炭素数3〜7の1価アルコール1〜40質量%とを含む混合溶媒にシリカを分散させて得たオルガノシリカゾルを、溶剤に耐熱性絶縁樹脂を溶解した樹脂塗料と混合して該オルガノシリカゾルを分散させた絶縁塗料が開示されている。特許文献4に記載の絶縁塗料は、樹脂塗料の溶剤に近い性質を有する溶剤を含む分散媒により分散されたオルガノシリカゾルを用いるため、相溶性が良好となってシリカ同士の凝集が起こらなくなり、樹脂塗料中にオルガノシリカゾルが均一に分散するとされている。また、この絶縁塗料を用いて作製した絶縁電線は、高い耐部分放電性を有するとされている。 Patent Document 4 discloses an organosilica sol obtained by dispersing silica in a mixed solvent containing 5 to 80% by mass of phenols or benzyl alcohols and 1 to 40% by mass of monohydric alcohol having 3 to 7 carbon atoms. Discloses an insulating paint in which the organosilica sol is dispersed by mixing with a resin paint in which a heat-resistant insulating resin is dissolved. Since the insulating paint described in Patent Document 4 uses an organosilica sol dispersed with a dispersion medium containing a solvent having properties close to those of the resin paint, the compatibility is improved and the silica does not agglomerate. It is said that the organosilica sol is uniformly dispersed in the paint. Moreover, the insulated wire produced using this insulating paint is said to have high partial discharge resistance.
高い熱伝導性を有する絶縁被膜(絶縁被膜塗料)を安定して得るためには、樹脂塗料中に添加・混合する無機絶縁粒子を均一に分散させることが極めて重要である。しかしながら、無機絶縁粒子(特に一次粒子径の小さい粒子)は凝集し易い性質を有することから、特許文献1や特許文献2に記載されているような、無機絶縁微粒子を樹脂溶液中に単純に分散させる方法では、無機絶縁微粒子が樹脂溶液中で凝集しやすく、均一な分散状態(すなわち、安定した高い熱伝導性)を得ることが難しいという問題がある。 In order to stably obtain an insulating coating (insulating coating paint) having high thermal conductivity, it is extremely important to uniformly disperse the inorganic insulating particles added and mixed in the resin coating. However, since the inorganic insulating particles (particularly particles having a small primary particle diameter) have the property of being easily aggregated, the inorganic insulating fine particles as described in Patent Document 1 and Patent Document 2 are simply dispersed in the resin solution. However, there is a problem that the inorganic insulating fine particles are easily aggregated in the resin solution and it is difficult to obtain a uniform dispersion state (that is, stable high thermal conductivity).
一方、特許文献3や特許文献4に記載されているような、シリカゾルを樹脂溶液中に分散させる方法は、無機絶縁微粒子を樹脂溶液中に単純に分散させる方法よりも、より均一に分散させることができるが、樹脂溶液中で凝集による無機絶縁微粒子の偏在が起こる可能性があり、更なる改善が望まれていた。 On the other hand, the method of dispersing the silica sol in the resin solution as described in Patent Document 3 and Patent Document 4 is more uniformly dispersed than the method of simply dispersing the inorganic insulating fine particles in the resin solution. However, there is a possibility that the inorganic insulating fine particles are unevenly distributed due to aggregation in the resin solution, and further improvement has been desired.
従って、本発明の目的は、上記課題を解決するため、樹脂塗料中に無機絶縁微粒子をより均一に分散させることにより、熱伝導性を向上させて部分放電劣化に対する高い耐性を有する絶縁被膜塗料およびそれを用いた絶縁電線を提供することにある。 Accordingly, an object of the present invention is to solve the above-described problems, by dispersing the inorganic insulating fine particles more uniformly in the resin paint, thereby improving the thermal conductivity and having a high resistance against partial discharge deterioration and It is to provide an insulated wire using the same.
本発明は、上記目的を達成するため、樹脂塗料と無機絶縁粒子の前躯体とを混合して得られる絶縁被膜塗料であって、前記無機絶縁粒子の前躯体が下記化学式1で示されるシラン化合物と純水とを加水分解重縮合反応させて得られるシロキサン系化合物であることを特徴とする絶縁被膜塗料を提供する。 In order to achieve the above object, the present invention provides an insulating coating paint obtained by mixing a resin paint and a precursor of inorganic insulating particles, wherein the precursor of the inorganic insulating particles is represented by the following chemical formula 1 Provided is an insulating coating composition characterized in that it is a siloxane compound obtained by hydrolytic polycondensation reaction of water and pure water.
また、本発明は、上記目的を達成するため、上記の本発明に係る絶縁被膜塗料において、以下のような改良や変更を加えることができる。
(1)前記シラン化合物は、フェニルトリメトキシシラン(C6H5Si(OCH3)3)、フェニルトリエトキシシラン(C6H5Si(OC2H5)3)、メチルトリメトキシシラン(CH3Si(OCH3)3)、メチルトリエトキシシラン(CH3Si(OC2H5)3)、エチルトリメトキシシラン(C2H5Si(OCH3)3)、エチルトリエトキシシラン(C2H5Si(OC2H5)3)の中から選ばれるいずれか1種である。
(2)前記樹脂塗料は、ポリイミド樹脂からなる。
(3)前記樹脂塗料は、ポリアミドイミド樹脂からなる。
Moreover, in order to achieve the said objective, this invention can add the following improvements and changes in the insulating-film coating material which concerns on said this invention.
(1) the silane compound is phenyltrimethoxysilane (C 6 H 5 Si (OCH 3) 3), phenyltriethoxysilane (C 6 H 5 Si (OC 2 H 5) 3), methyltrimethoxysilane (CH 3 Si (OCH 3 ) 3 ), methyltriethoxysilane (CH 3 Si (OC 2 H 5 ) 3 ), ethyltrimethoxysilane (C 2 H 5 Si (OCH 3 ) 3 ), ethyltriethoxysilane (C 2 Any one selected from H 5 Si (OC 2 H 5 ) 3 ).
(2) The resin paint is made of polyimide resin.
(3) The resin paint is made of polyamideimide resin.
また、本発明は、上記目的を達成するため、上記絶縁被膜塗料を金属導体上に塗布、焼付けして成る絶縁被膜が形成されていることを特徴とする絶縁電線を提供する。 In order to achieve the above object, the present invention provides an insulated wire characterized in that an insulating coating is formed by applying and baking the insulating coating paint on a metal conductor.
また、本発明は、上記目的を達成するため、上記の本発明に係る絶縁電線において、以下のような改良や変更を加えることができる。
(4)前記絶縁被膜の外周に更に潤滑性絶縁被膜が形成されている。
(5)前記金属導体と前記絶縁被膜との間に密着性絶縁被膜が形成されている。
Moreover, in order to achieve the said objective, this invention can add the following improvements and changes in the insulated wire which concerns on said invention.
(4) A lubricating insulating coating is further formed on the outer periphery of the insulating coating.
(5) An adhesive insulating film is formed between the metal conductor and the insulating film.
本発明よれば、樹脂塗料中に無機絶縁微粒子をより均一に分散させることにより、熱伝導性を向上させて部分放電劣化に対する高い耐性を有する絶縁被膜塗料を提供することができる。また、該絶縁被膜塗料を用いることにより、モーターや変圧器などの電気機器のコイル用として好適な絶縁電線を提供することができる。 According to the present invention, it is possible to provide an insulating coating having a high resistance to partial discharge deterioration by improving the thermal conductivity by dispersing the inorganic insulating fine particles more uniformly in the resin coating. Further, by using the insulating coating material, it is possible to provide an insulated wire suitable for a coil of an electric device such as a motor or a transformer.
以下、本発明に係る実施の形態について詳細に説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments according to the present invention will be described in detail. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the scope of the invention.
本発明に係る絶縁被膜塗料は、樹脂塗料と無機絶縁粒子の前躯体とを混合して得られる絶縁被膜塗料であって、前記無機絶縁粒子の前躯体が下記化学式1で示されるシラン化合物と純水とを加水分解重縮合反応させて得られるシロキサン系化合物であることを特徴とする。 The insulating coating material according to the present invention is an insulating coating material obtained by mixing a resin paint and a precursor of inorganic insulating particles, wherein the precursor of the inorganic insulating particles is pure with a silane compound represented by the following chemical formula 1. It is a siloxane compound obtained by hydrolytic polycondensation reaction with water.
ここで、R1はCH3基またはCH3CH2基のいずれか一方の基であり、R2はCH3基、CH3CH2基またはC6H5基のいずれかである。より具体的には、上記シラン化合物は、フェニルトリメトキシシラン(C6H5Si(OCH3)3)、フェニルトリエトキシシラン(C6H5Si(OC2H5)3)、メチルトリメトキシシラン(CH3Si(OCH3)3)、メチルトリエトキシシラン(CH3Si(OC2H5)3)、エチルトリメトキシシラン(C2H5Si(OCH3)3)、エチルトリエトキシシラン(C2H5Si(OC2H5)3)の中から選ばれるいずれか1種である。 Here, R 1 is any one of a CH 3 group or a CH 3 CH 2 group, and R 2 is any one of a CH 3 group, a CH 3 CH 2 group, or a C 6 H 5 group. More specifically, the silane compound includes phenyltrimethoxysilane (C 6 H 5 Si (OCH 3 ) 3 ), phenyltriethoxysilane (C 6 H 5 Si (OC 2 H 5 ) 3 ), methyltrimethoxy. silane (CH 3 Si (OCH 3) 3), methyl triethoxysilane (CH 3 Si (OC 2 H 5) 3), ethyltrimethoxysilane (C 2 H 5 Si (OCH 3) 3), ethyl triethoxysilane Any one selected from (C 2 H 5 Si (OC 2 H 5 ) 3 ).
上記シラン化合物と純水とを加水分解重縮合反応させて得られるシロキサン化合物は、加水分解の反応速度が遅く、加水分解で生成したシラノールの重縮合速度も遅いため、樹脂塗料中で凝集することなく従来よりも均一に分散させることができる。これにより、熱伝導性を向上させて部分放電劣化に対する高い耐性を有する絶縁被膜塗料を得ることができる。 The siloxane compound obtained by hydrolytic polycondensation reaction of the silane compound and pure water has a slow hydrolysis reaction rate, and the polycondensation rate of silanol produced by hydrolysis is also slow. And can be dispersed more uniformly than before. As a result, it is possible to obtain an insulating coating material having improved heat conductivity and high resistance to partial discharge deterioration.
無機絶縁粒子の前躯体としてのシロキサン系化合物は、樹脂塗料の樹脂分100重量部に対して3重量部以上100重量部以下で含有されることが好ましい。シロキサン系化合物が3重量部未満であると含有される無機絶縁粒子の絶対量が少な過ぎて絶縁被膜の熱伝導性の向上が不十分となる。一方、シロキサン系化合物が100重量部を超えると含有される無機絶縁粒子の絶対量が多過ぎて絶縁被膜の可撓性や耐伸張性が悪化する。より好ましくは、樹脂塗料の樹脂分100重量部に対して、シロキサン系化合物を5重量部以上50重量部以下で含有させる。 The siloxane compound as the precursor of the inorganic insulating particles is preferably contained in an amount of 3 to 100 parts by weight with respect to 100 parts by weight of the resin component of the resin coating. When the amount of the siloxane compound is less than 3 parts by weight, the absolute amount of the inorganic insulating particles contained is too small and the thermal conductivity of the insulating coating is not sufficiently improved. On the other hand, when the amount of the siloxane compound exceeds 100 parts by weight, the absolute amount of the inorganic insulating particles contained is too large, and the flexibility and stretch resistance of the insulating coating are deteriorated. More preferably, the siloxane compound is contained in an amount of 5 to 50 parts by weight with respect to 100 parts by weight of the resin content of the resin coating.
樹脂塗料は樹脂と溶剤とから成る。樹脂としては、ポリアミドイミド、ポリイミドであればよい。溶剤としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、スルホラン、アニソール、ジオキソラン、ブチルセルソルブアセテート、ラクトン系等が挙げられ、これらは単独で使用することができるが、2種以上を混合して用いてもよい。また、樹脂塗料として工業用に市販されているものでもよく、例えば、ポリアミドイミドエナメル線用塗料、ポリイミドエナメル線用塗料等を用いることができる。 The resin paint consists of a resin and a solvent. The resin may be polyamideimide or polyimide. Examples of the solvent include N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, sulfolane, anisole, dioxolane, butyl cellosolve acetate, lactone, etc., and these can be used alone, Two or more kinds may be mixed and used. Moreover, what is marketed for industrial use as a resin coating material may be used, for example, the coating material for polyamide imide enamel wires, the coating material for polyimide enamel wires, etc. can be used.
本発明に係る絶縁電線は、コイルの用途・形状に合致した断面形状(例えば、丸形状や矩形状)に整形された金属導体(例えば、銅線、アルミニウム線、銀線、ニッケル線等)の表面に上記絶縁被膜塗料を塗布、焼付けして絶縁被膜を形成することにより得ることができる。必要に応じて該絶縁被膜の外周(最外周)にワニス等の潤滑性絶縁被膜を更に設けても良い。潤滑性絶縁皮膜を設けることによって滑りがよくなり、耐摩耗性を向上することができる。 The insulated wire according to the present invention is a metal conductor (for example, a copper wire, an aluminum wire, a silver wire, a nickel wire, etc.) shaped into a cross-sectional shape (for example, a round shape or a rectangular shape) that matches the application / shape of the coil. It can be obtained by applying and baking the above insulating coating paint on the surface to form an insulating coating. If necessary, a lubricating insulating coating such as varnish may be further provided on the outer periphery (outermost periphery) of the insulating coating. By providing a lubricating insulating film, slipping is improved and wear resistance can be improved.
また、金属導体と絶縁被膜との密着性をさらに向上させるために、必要に応じて金属導体と絶縁被膜との間に密着性絶縁被膜を設けることもできる。密着性絶縁被膜は、金属導体上に直接シランカップリング剤を塗布、焼付けして得ることができる。シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を使用することができる。 Further, in order to further improve the adhesion between the metal conductor and the insulating coating, an adhesive insulating coating can be provided between the metal conductor and the insulating coating as necessary. The adhesive insulating coating can be obtained by applying and baking a silane coupling agent directly on a metal conductor. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane. Ethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like can be used.
以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.
(実施例1の作製)
フェニルトリエトキシシラン5.0 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物3.0 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリアミドイミド塗料100 gとを混合・攪拌して実施例1の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが45μmである実施例1の絶縁電線を作製した。
(Production of Example 1)
Hydrolysis polycondensation reaction of 5.0 g of phenyltriethoxysilane and 1.1 g of pure water produces 3.0 g of siloxane compound, and this siloxane compound and 100 g of polyamideimide paint with a resin concentration of 20 mass% are mixed. The insulating coating paint of Example 1 was obtained by stirring. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 1 having an insulating coating thickness of 45 μm.
(実施例2の作製)
フェニルトリエトキシシラン5.0 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物3.0 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリイミド塗料100 gとを混合・攪拌して実施例2の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが44μmである実施例2の絶縁電線を作製した。
(Production of Example 2)
Hydrolysis polycondensation reaction of 5.0 g of phenyltriethoxysilane and 1.1 g of pure water produces 3.0 g of a siloxane compound, and the siloxane compound and 100 g of polyimide paint having a resin concentration of 20 mass% are mixed and stirred. Thus, the insulating coating material of Example 2 was obtained. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 2 having an insulating coating thickness of 44 μm.
(実施例3の作製)
フェニルトリメトキシシラン5.6 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物4.0 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリアミドイミド塗料100 gとを混合・攪拌して実施例3の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが45μmである実施例3の絶縁電線を作製した。
(Production of Example 3)
Hydrolysis polycondensation reaction of 5.6 g of phenyltrimethoxysilane and 1.1 g of pure water produces 4.0 g of a siloxane compound, and the siloxane compound and 100 g of polyamideimide paint having a resin concentration of 20 mass% are mixed. The insulating coating material of Example 3 was obtained by stirring. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 3 having an insulating coating thickness of 45 μm.
(実施例4の作製)
フェニルトリメトキシシラン5.6 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物4.0 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリイミド塗料100 gとを混合・攪拌して実施例4の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが46μmである実施例4の絶縁電線を作製した。
(Production of Example 4)
Hydrolysis polycondensation reaction of 5.6 g of phenyltrimethoxysilane and 1.1 g of pure water produces 4.0 g of a siloxane compound, and the siloxane compound and 100 g of polyimide paint having a resin concentration of 20 mass% are mixed and stirred. Thus, an insulating coating material of Example 4 was obtained. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 4 having an insulating coating thickness of 46 μm.
(実施例5の作製)
フェニルトリメトキシシラン1.4 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物1.0 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリイミド塗料100 gとを混合・攪拌して実施例4の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが46μmである実施例5の絶縁電線を作製した。
(Production of Example 5)
Hydrochloric polycondensation reaction of 1.4 g of phenyltrimethoxysilane and 1.1 g of pure water produces 1.0 g of a siloxane compound, and the siloxane compound and 100 g of polyimide paint having a resin concentration of 20 mass% are mixed and stirred. Thus, an insulating coating material of Example 4 was obtained. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 5 having an insulating coating thickness of 46 μm.
(実施例6の作製)
フェニルトリメトキシシラン14 gと純水1.1 gとを加水分解重縮合反応させてシロキサン系化合物10 gを生成させ、該シロキサン系化合物と樹脂分濃度20 mass%のポリイミド塗料100 gとを混合・攪拌して実施例4の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが46μmである実施例6の絶縁電線を作製した。
(Production of Example 6)
Hydrochloric polycondensation reaction of 14 g of phenyltrimethoxysilane and 1.1 g of pure water produces 10 g of a siloxane compound, and the siloxane compound and 100 g of polyimide paint having a resin concentration of 20 mass% are mixed and stirred. Thus, an insulating coating material of Example 4 was obtained. The insulating coating was applied around the copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Example 6 having an insulating coating thickness of 46 μm.
(比較例1の作製)
シリカ微粒子(日本アエロジル株式会社製、シリカアエロジルR972)5.0 gと、純水1.1 gと、樹脂分濃度20 mass%のポリアミドイミド塗料100 gとを配合して混合・攪拌し、比較例1の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが44μmである比較例1の絶縁電線を作製した。
(Production of Comparative Example 1)
Insulation of Comparative Example 1 by mixing 5.0 g of silica fine particles (Nippon Aerosil Co., Ltd., Silica Aerosil R972), 1.1 g of pure water, and 100 g of polyamideimide paint with a resin concentration of 20 mass%, mixing and stirring. A coating was obtained. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Comparative Example 1 having an insulating coating thickness of 44 μm.
(比較例2の作製)
シリカ微粒子(日本アエロジル株式会社製、シリカアエロジルR972)5.0 gと、純水1.1 gと、樹脂分濃度20 mass%のポリイミド塗料100 gとを配合して混合・攪拌し、比較例2の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが45μmである比較例2の絶縁電線を作製した。
(Production of Comparative Example 2)
Insulating coating of Comparative Example 2 containing 5.0 g of silica fine particles (Silica Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.), 1.1 g of pure water, and 100 g of polyimide paint having a resin concentration of 20 mass%, mixed and stirred. A paint was obtained. The insulating coating paint was applied around the copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Comparative Example 2 having an insulating coating thickness of 45 μm.
(比較例3の作製)
シリカゾル5.0 gと、純水1.1 gと、樹脂分濃度20 mass%のポリアミドイミド塗料100 gとを配合して混合・攪拌し、比較例3の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが44μmである比較例3の絶縁電線を作製した。
(Production of Comparative Example 3)
A silica sol (5.0 g), pure water (1.1 g), and a polyamideimide coating material (100 g) having a resin concentration of 20 mass% were blended, mixed, and stirred to obtain an insulating coating material of Comparative Example 3. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Comparative Example 3 having an insulating coating thickness of 44 μm.
(比較例4の作製)
シリカゾル5.0 gと、純水1.1 gと、樹脂分濃度20 mass%のポリイミド塗料100 gとを配合して混合・攪拌し、比較例4の絶縁被膜塗料を得た。銅導体(線径0.8 mm)の周りに該絶縁被膜塗料を塗布した後、焼付けを行い、絶縁被膜の厚さが45μmである比較例4の絶縁電線を作製した。
(Production of Comparative Example 4)
A silica sol (5.0 g), pure water (1.1 g), and a resin paint concentration of 20 mass% polyimide paint (100 g) were blended, mixed and stirred to obtain an insulating coating paint of Comparative Example 4. The insulating coating paint was applied around a copper conductor (wire diameter 0.8 mm) and then baked to produce an insulated wire of Comparative Example 4 having an insulating coating thickness of 45 μm.
上記のように作製した実施例1〜6および比較例1〜4(絶縁被覆塗料および絶縁電線)に対して、次のような測定評価および試験を行った。 The following measurement evaluations and tests were performed on Examples 1 to 6 and Comparative Examples 1 to 4 (insulation coating paint and insulated wire) produced as described above.
(1)熱伝導率測定(熱伝導性評価)
各絶縁被膜塗料を用いて40μm(厚さ)×10 mm×10 mmのシート状の評価用絶縁被膜を作製した。図1は、絶縁被膜の熱伝導性の評価方法を示した模式図である。図1に示したように、該評価用絶縁被膜を銅製の加熱軸と冷却軸との間に挟むように接触配置した。加熱軸および冷却軸の温度(温度勾配)が安定した後、評価用絶縁被膜の表裏の温度差Th−Tcと熱流量Qとから熱抵抗Rth(℃/W)を測定した。熱伝導率(W/(m・℃))は下記式1から算出した。なお、測定は温度25℃、相対湿度50%の環境下で行い、熱伝導面積=10 mm×10 mmである。
熱伝導率=(評価用絶縁被膜の厚さ)/(熱抵抗×熱伝導面積) ・・・・・(式1)。
(1) Thermal conductivity measurement (thermal conductivity evaluation)
A sheet-shaped evaluation insulating film of 40 μm (thickness) × 10 mm × 10 mm was prepared using each insulating film paint. FIG. 1 is a schematic diagram showing a method for evaluating the thermal conductivity of an insulating coating. As shown in FIG. 1, the insulating coating for evaluation was placed in contact so as to be sandwiched between a copper heating shaft and a cooling shaft. After the temperature (temperature gradient) of the heating shaft and the cooling shaft was stabilized, the thermal resistance R th (° C./W) was measured from the temperature difference T h −T c between the front and back surfaces of the insulating coating for evaluation and the heat flow rate Q. The thermal conductivity (W / (m · ° C.)) was calculated from the following formula 1. The measurement is performed in an environment at a temperature of 25 ° C. and a relative humidity of 50%, and the heat conduction area is 10 mm × 10 mm.
Thermal conductivity = (thickness of insulating coating for evaluation) / (thermal resistance × thermal conduction area) (Equation 1)
(2)貯蔵弾性率測定
各絶縁被膜塗料を用いて25μm(厚さ)×5 mm×20 mmのシート状の評価用絶縁被膜を作製した。動的粘弾性測定装置(アイティー計測制御株式会社、DVA-200)を用いて室温から400℃までを昇温速度10℃/minで昇温しながら、評価用絶縁被膜の100 Hz振動時の貯蔵弾性率を測定した。
(2) Measurement of storage elastic modulus Each insulating coating paint was used to produce a 25 μm (thickness) × 5 mm × 20 mm sheet-like insulating coating for evaluation. Using a dynamic viscoelasticity measuring device (ITG Measurement and Control Co., Ltd., DVA-200) while raising the temperature from room temperature to 400 ° C at a rate of temperature increase of 10 ° C / min, The storage modulus was measured.
(3)ガラス転移温度(Tg)測定
上記(2)の貯蔵弾性率測定において、貯蔵弾性率が低下する変曲点の温度をガラス転移温度(Tg)とした。
(3) Measurement of glass transition temperature (Tg) In the storage elastic modulus measurement of (2) above, the temperature at the inflection point at which the storage elastic modulus decreases was defined as the glass transition temperature (Tg).
(4)一方向摩耗試験(耐摩耗性評価)
各絶縁電線を120 mmの長さで切り出し、片側末端の絶縁被覆をアビソフィックス装置にて剥離した。テーバー型の摩耗試験機(東洋精機株式会社製)に取り付けた後、端末部に電極を取り付け、絶縁被膜の表面に垂直方向から荷重を掛けながら斜面を滑らせた際に、電気が導通した時の荷重を測定した。
(4) Unidirectional wear test (wear resistance evaluation)
Each insulated wire was cut out to a length of 120 mm, and the insulation coating on one end was peeled off with an abisofix device. After mounting on a Taber type wear tester (manufactured by Toyo Seiki Co., Ltd.), when an electrode is attached to the terminal and the slope is slid while applying a load from the vertical direction to the surface of the insulation coating, electricity is conducted The load of was measured.
(5)捻回試験(密着性評価)
各絶縁電線を250 mm離れた2つのクランプに直線状に固定し、電線長手方向と平行になるように2片の絶縁被膜を全長にわたって除去した。その後、室温環境において、一方のクランプを回転させ(他方は固定)、除去していない絶縁被膜が金属導体から浮いた時点(部分的な剥離が生じた時点)の回転回数を測定した。
(5) Torsion test (adhesion evaluation)
Each insulated wire was fixed in a straight line to two clamps separated by 250 mm, and two pieces of insulating coating were removed over the entire length so as to be parallel to the longitudinal direction of the wire. Thereafter, in a room temperature environment, one clamp was rotated (the other was fixed), and the number of rotations at the time when the unremoved insulating coating floated from the metal conductor (when partial peeling occurred) was measured.
(6)自己径巻き付け(可撓性評価)
導体径と同じ径を有する丸棒(巻き付け棒)に各絶縁電線を巻き付け、光学顕微鏡を用いて絶縁被膜での亀裂の有無を調査した。本明細書では、絶縁電線を5巻き/コイルとして5コイル分巻き付け、50倍の光学顕微鏡を用いて観察した。亀裂が観察されない場合を「合格」とした。
(6) Self-diameter winding (flexibility evaluation)
Each insulated wire was wound around a round bar (winding bar) having the same diameter as the conductor diameter, and the presence or absence of cracks in the insulating coating was examined using an optical microscope. In this specification, the insulated wire was wound as 5 coils / coil for 5 coils and observed using a 50 × optical microscope. The case where no crack was observed was defined as “pass”.
実施例1〜6の諸元と各種測定結果を表1に示し、比較例1〜4の諸元と各種測定結果を表1に示す。 Specifications and various measurement results of Examples 1 to 6 are shown in Table 1, and specifications and various measurement results of Comparative Examples 1 to 4 are shown in Table 1.
表1、表2に示したように、本発明に係る実施例1〜6(絶縁被膜塗料および絶縁電線)は、本発明の規定から外れる比較例1〜4(絶縁被膜塗料および絶縁電線)と比較して高い熱伝導率を有していることが確認された。一方、熱伝導性以外の特性は、実施例1〜6と比較例1〜4とにおいてほとんど差は見られなかった。このことから、本発明に係る絶縁被膜塗料および絶縁電線は、従来技術と比較して、貯蔵弾性率、ガラス転移温度、耐摩耗性、密着性、可撓性の諸特性を維持しながら、熱伝導性を向上することができることが実証された。 As shown in Tables 1 and 2, Examples 1 to 6 (insulating coating paint and insulated wire) according to the present invention are comparative examples 1 to 4 (insulating coating paint and insulated wire) that deviate from the definition of the present invention. It was confirmed that it has a high thermal conductivity. On the other hand, there was almost no difference in characteristics other than thermal conductivity between Examples 1-6 and Comparative Examples 1-4. Therefore, the insulating coating paint and the insulated wire according to the present invention maintain the storage elastic modulus, glass transition temperature, abrasion resistance, adhesion, and flexibility characteristics while maintaining the heat resistance as compared with the prior art. It has been demonstrated that conductivity can be improved.
Claims (7)
前記無機絶縁粒子の前躯体が下記化学式1で示されるシラン化合物と純水とを加水分解重縮合反応させて得られるシロキサン系化合物であることを特徴とする絶縁被膜塗料。
An insulating coating material, wherein the precursor of the inorganic insulating particles is a siloxane compound obtained by hydrolytic polycondensation reaction of a silane compound represented by the following chemical formula 1 and pure water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009293993A JP2011132393A (en) | 2009-12-25 | 2009-12-25 | Insulating film coating and insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009293993A JP2011132393A (en) | 2009-12-25 | 2009-12-25 | Insulating film coating and insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011132393A true JP2011132393A (en) | 2011-07-07 |
Family
ID=44345490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009293993A Pending JP2011132393A (en) | 2009-12-25 | 2009-12-25 | Insulating film coating and insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011132393A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111635A1 (en) * | 2012-01-23 | 2013-08-01 | 日東電工株式会社 | Electrically insulating sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10204292A (en) * | 1996-11-22 | 1998-08-04 | Jsr Corp | Thermosetting resin composition and cured article of the same |
JP2001316620A (en) * | 2000-05-11 | 2001-11-16 | Jsr Corp | Composition for film formation and material for insulation film formation |
JP2005306940A (en) * | 2004-04-19 | 2005-11-04 | Kaneka Corp | Polyimide film |
JP2010040320A (en) * | 2008-08-05 | 2010-02-18 | Hitachi Cable Ltd | Insulation coating for electric wire, and electric insulated wire using the same |
-
2009
- 2009-12-25 JP JP2009293993A patent/JP2011132393A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10204292A (en) * | 1996-11-22 | 1998-08-04 | Jsr Corp | Thermosetting resin composition and cured article of the same |
JP2001316620A (en) * | 2000-05-11 | 2001-11-16 | Jsr Corp | Composition for film formation and material for insulation film formation |
JP2005306940A (en) * | 2004-04-19 | 2005-11-04 | Kaneka Corp | Polyimide film |
JP2010040320A (en) * | 2008-08-05 | 2010-02-18 | Hitachi Cable Ltd | Insulation coating for electric wire, and electric insulated wire using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111635A1 (en) * | 2012-01-23 | 2013-08-01 | 日東電工株式会社 | Electrically insulating sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5320639B2 (en) | Insulated wire | |
JP5447188B2 (en) | Insulating paint and insulated wire using the same | |
JP5243880B2 (en) | Insulated wire | |
JP5351470B2 (en) | Insulated wire | |
US8927865B2 (en) | Insulated wire | |
JP4542463B2 (en) | Partially discharge-resistant insulating paint, insulated wire, and method for producing the same | |
JP5649955B2 (en) | Method for improving the thermal properties of wire enamel | |
JP2009212034A (en) | Varnish for partial discharge resistant enameled wire and partial discharge resistant enameled wire | |
CN102732146B (en) | Insulating varnish composition and use the insulated wire of this insulating varnish composition | |
JP2012195290A (en) | Insulated wire | |
JP3930254B2 (en) | Ceramic insulated wire, self-bonding ceramic insulated wire, coating composition, coil and voice coil for speaker | |
JP5351011B2 (en) | Insulated wire, electric coil and motor | |
JP4131168B2 (en) | Partially discharge resistant insulation paint and insulated wire | |
Kim et al. | Enhanced thermal resistance of nanocomposite enameled wire prepared from surface modified silica nanoparticle | |
JP2009140878A (en) | Insulating electric wire | |
JP2011132393A (en) | Insulating film coating and insulated wire | |
JP2013051030A (en) | Insulated wire and armature coil using the same, motor | |
JP2017039833A (en) | Self-fusion high dielectric silicone rubber composition and self-fusion high dielectric tape | |
JP2009280720A (en) | Hexagonal boron nitride powder and organic resin composition containing hexagonal boron nitride powder | |
JP2010189510A (en) | Insulating coating and insulated wire | |
US8927630B2 (en) | Inorganic nanofiller, partial discharge resistant enameled wire including the same, and preparing method of the enameled wire | |
JP5424234B2 (en) | Insulated wire | |
JP4061981B2 (en) | Inverter surge resistant coil insulation varnish and inverter surge resistant coil | |
JP2013151686A (en) | Coating material for partial discharge resistant enameled wire and partial discharge resistant enameled wire | |
JPH10199337A (en) | Insulation wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130917 |