JP2011132054A - Method for recovering gallium - Google Patents
Method for recovering gallium Download PDFInfo
- Publication number
- JP2011132054A JP2011132054A JP2009291505A JP2009291505A JP2011132054A JP 2011132054 A JP2011132054 A JP 2011132054A JP 2009291505 A JP2009291505 A JP 2009291505A JP 2009291505 A JP2009291505 A JP 2009291505A JP 2011132054 A JP2011132054 A JP 2011132054A
- Authority
- JP
- Japan
- Prior art keywords
- gallium
- liquid
- solution
- concentration
- recovering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052733 gallium Inorganic materials 0.000 title claims abstract description 166
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000007788 liquid Substances 0.000 claims abstract description 190
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229910052802 copper Inorganic materials 0.000 claims abstract description 73
- 239000010949 copper Substances 0.000 claims abstract description 73
- 238000000605 extraction Methods 0.000 claims abstract description 55
- 239000006185 dispersion Substances 0.000 claims abstract description 46
- 239000008346 aqueous phase Substances 0.000 claims abstract description 38
- 239000011148 porous material Substances 0.000 claims abstract description 32
- 239000002253 acid Substances 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000012074 organic phase Substances 0.000 claims abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 36
- 239000012510 hollow fiber Substances 0.000 claims description 34
- 229910052738 indium Inorganic materials 0.000 claims description 25
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 25
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 4
- 239000012528 membrane Substances 0.000 abstract description 39
- 239000012071 phase Substances 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 127
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 99
- 238000011084 recovery Methods 0.000 description 31
- 239000010408 film Substances 0.000 description 26
- 238000012545 processing Methods 0.000 description 23
- -1 respectively Chemical compound 0.000 description 20
- 239000002904 solvent Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 11
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 11
- 238000005191 phase separation Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- CJBFZKZYIPBBTO-UHFFFAOYSA-N isotetradecane Natural products CCCCCCCCCCCC(C)C CJBFZKZYIPBBTO-UHFFFAOYSA-N 0.000 description 2
- HGEMCUOAMCILCP-UHFFFAOYSA-N isotridecane Natural products CCCCCCCCCCC(C)C HGEMCUOAMCILCP-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WWSJZGAPAVMETJ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethoxypyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)OCC WWSJZGAPAVMETJ-UHFFFAOYSA-N 0.000 description 1
- LPZOCVVDSHQFST-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-3-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)CC LPZOCVVDSHQFST-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- CNPVJWYWYZMPDS-UHFFFAOYSA-N 2-methyldecane Chemical compound CCCCCCCCC(C)C CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.000 description 1
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical compound OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- YCOZIPAWZNQLMR-UHFFFAOYSA-N heptane - octane Natural products CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229940094933 n-dodecane Drugs 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、ガリウムの回収方法に関するものであり、特に銅とガリウムを含む溶液から銅とガリウムを分離させて、ガリウムを回収する方法に関するものである。 The present invention relates to a method for recovering gallium, and more particularly to a method for recovering gallium by separating copper and gallium from a solution containing copper and gallium.
薄型CIGS太陽電池は、高い光電変換率を有するため、開発にあたって重要視されている。コストの削減や環境保護のため、薄型CIGS太陽電池の製造方法中、真空スパッタリング法や、気相成長法や、非真空塗布などの工程において、銅、インジウム、ガリウム、セレンを回収して精錬するプロセスを必要とする。このため、廃(材)液からガリウムを分離して回収する技術が求められている。 Thin CIGS solar cells have a high photoelectric conversion rate and are therefore regarded as important in development. In order to reduce costs and protect the environment, copper, indium, gallium, and selenium are recovered and refined in processes such as vacuum sputtering, vapor phase growth, and non-vacuum coating during thin CIGS solar cell manufacturing methods. Requires a process. For this reason, a technique for separating and recovering gallium from waste (material) liquid is required.
Rafaeloff氏(外数名)(Anal. Chem. Vol. 43 No.2 p272-274, 1971)によって、[2Mの塩酸、1Mの塩化アンモニウム、1Mの硫酸、及び1Mの硫酸アンモニウム/メチルエチルケトン]によって抽出を行い、その後、水によって逆抽出を行うガリウムの回収方法が開示されている。これによって他の金属イオン例えば銅(約0.1%の抽出量)やゲルマニウム(0.01%以下の抽出量)から分離して99%ガリウムが回収される。しかし、ヒ素やインジウムに対し、抽出量がそれぞれ36%と93.6%になり、この方法によって完全にガリウムとインジウム及びヒ素を分離させることができない。また、メチルエチルケトンの抽出剤は、沸騰点が低くて爆発し易く、しかも揮発性があるので常時補充する必要があって、コストが高くなる。 Extraction by [2M hydrochloric acid, 1M ammonium chloride, 1M sulfuric acid, and 1M ammonium sulfate / methyl ethyl ketone] by Rafaeloff (a few others) (Anal. Chem. Vol. 43 No.2 p272-274, 1971) A method for recovering gallium is disclosed that is performed and then back-extracted with water. As a result, 99% gallium is recovered by separation from other metal ions such as copper (extracted amount of about 0.1%) and germanium (extracted amount of 0.01% or less). However, the extraction amounts are 36% and 93.6% with respect to arsenic and indium, respectively, and gallium, indium and arsenic cannot be completely separated by this method. In addition, the extractant for methyl ethyl ketone has a low boiling point, easily explodes, and is volatile, so it needs to be replenished at all times, increasing the cost.
Nishihama氏(外数名)によって、混合−分離を連続して逆抽出を行うガリウムの回収方法(Syouhei Nishihama, “Separation and Recovery of Gallium and Indium from Simulated Zinc Refinery by Liquid-Liquid Extraction”Ind. Eng. Chem. Res. 1999, 38, 1032-1039) が開示されている。この方法は、抽出剤(油相のD2EHPA)を直接に処理液(廃液)に混合して、更に6Mの塩酸を逆抽出液として混合して行われる。しかし、この方法は、乳化現象が起こりやすいので、回収率が低く、抽出液の消耗が増えてしまう。 By Nishihama (several names), a method for recovering gallium by continuous back-extraction by mixing-separation (Syouhei Nishihama, “Separation and Recovery of Gallium and Indium from Simulated Zinc Refinery by Liquid-Liquid Extraction” Ind. Eng. Chem. Res. 1999, 38, 1032-1039). In this method, an extractant (oil phase D2EHPA) is directly mixed with a treatment liquid (waste liquid), and 6M hydrochloric acid is further mixed as a back extract. However, since this method tends to cause an emulsification phenomenon, the recovery rate is low and consumption of the extract increases.
前記従来の回収方法において、抽出と逆抽出の工程は、少なくとも二つのステップが必要であるが、液膜を用いた場合、二つのステップを一つにすることができる。一つのステップに整合する液膜よって、標的物を分離して除去、回収能率を最大限にすることができる。(W.S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992)。 In the conventional recovery method, the extraction and back-extraction steps require at least two steps, but when a liquid film is used, the two steps can be combined into one. A liquid membrane that conforms to one step can separate and remove the target, maximizing recovery efficiency. (W.S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992).
また、液膜は(1)支持液膜(supported liquid membranes;SLMs)と、(2)乳化液膜(emulsion liquid membranes;ELMs)の2種類に分けることができる。支持液膜の基本原理として、細孔を有する基材(例えば、細孔を有する中空ポリプロピレン繊維)に有機溶液を入れて、有機溶液と細孔の表面を接触させるときに、基材の孔を濡らして支持液膜が形成される。(W. S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992)。 The liquid membrane can be divided into two types: (1) supported liquid membranes (SLMs) and (2) emulsion liquid membranes (ELMs). As a basic principle of the supporting liquid membrane, when an organic solution is put into a substrate having pores (for example, hollow polypropylene fiber having pores) and the organic solution is brought into contact with the surface of the pores, the pores of the substrate are formed. A supporting liquid film is formed by wetting. (W. S. Winston Ho and Kamalesh K. Sirkar, eds., Membrane Handbook, Chapman & Hall, New York, 1992).
近時、学界や業界において、標的物を含む水溶液中の銅や、亜鉛、カドミウム、パラジウムなどの金属や、物理放射性種や、ランタノイド金属元素を除去するために支持液膜が用いられる。 Recently, supporting liquid membranes are used in academia and industry to remove metals such as copper, zinc, cadmium, and palladium, physical radioactive species, and lanthanoid metal elements in an aqueous solution containing a target.
また、崔春花氏(外数名)によって、中空繊維の支持液膜処理技術により銅を含む廃液を処理する技術が開示されている。(崔春花、任鐘旗、張衛東、楊彦強、▲ホウ▼子蘇、“Treatment of wastewater containing copper(II) Using hollow fiber support liquid membrane technique”(中空繊維の支持液膜処理技術により銅を含む廃液を処理する技術)高校化学工程公報,2008,22(4))。この方法は、中空繊維モジュールを少なくとも48時間[10%のD2EHPA/ケロシン]に浸漬することによって、中空繊維モジュールに細孔を形成させて、硫酸銅溶液(ph4.44)を工業廃液に模擬して処理液とし、6Mの塩酸を逆抽出液とする。 Moreover, a technique for treating a waste liquid containing copper by a support liquid membrane treatment technique for hollow fibers is disclosed by Mr. Haruka Hana (several names). (Hunchun, Zhangqi, Zhang Hedong, Tatsuhiko Tsuyoshi, Hou Kosou, “Treatment of wastewater containing copper (II) Using hollow fiber support liquid membrane technique” Processing technology) High School Chemical Process Bulletin, 2008, 22 (4)). In this method, by immersing the hollow fiber module in [10% D2EHPA / kerosene] for at least 48 hours, pores are formed in the hollow fiber module to simulate a copper sulfate solution (ph 4.44) into industrial waste liquid. And 6M hydrochloric acid as the back extract.
しかし、処理液と分散溶液中には、液膜の組成成分(有機溶液、抽出液、及び修飾液)が含まれないのて、浸透圧に差異が生じるため、前記従来の支持液膜は、液膜の組成や浸透圧の関係で安定性が悪い、という欠点がある。(A. J. B. Kemperman, D. Bargeman, Th. Van Den Boomgaard, H. Strathmann, “Stability of Supported Liquid Membranes: State of the Art”, Sep. Sci. Technol., 31, 2733 (1996); T. M. Dreher and G. W Stevens, “Instability Mechanisms of Supported Liquid Membranes”, Sep. Sci. Technol., 33, 835-853 (1998); J. F. Dozol, J. Casas, and A. Sastre, “Stability of Flat Sheet Supported Liquid Membranes in the Transport of Radionuclides from Reprocessing Concentrate Solutions”, J. Membrane Sci., 82, 237-246 (1993))。 However, since the treatment liquid and the dispersion solution do not contain the composition components of the liquid film (organic solution, extraction liquid, and modification liquid), a difference occurs in the osmotic pressure. There is a drawback that the stability is poor due to the composition of the liquid film and the osmotic pressure. (AJB Kemperman, D. Bargeman, Th. Van Den Boomgaard, H. Strathmann, “Stability of Supported Liquid Membranes: State of the Art”, Sep. Sci. Technol., 31, 2733 (1996); TM Dreher and G. W Stevens, “Instability Mechanisms of Supported Liquid Membranes”, Sep. Sci. Technol., 33, 835-853 (1998); JF Dozol, J. Casas, and A. Sastre, “Stability of Flat Sheet Supported Liquid Membranes in the Transport of Radionuclides from Reprocessing Concentrate Solutions ”, J. Membrane Sci., 82, 237-246 (1993)).
また、何氏(外数名)によって、標的物を含む溶液から、金属や、物理放射性種、ペニシリン、有機酸などを除去して回収する安定性の高い支持液膜が開示されており、例えば、これによって、支持液膜と分散工程が結合されて、クロム(W.S. Winston Ho, “Supported Liquid Membrane Process for Chromium Removal and Recovery”, U. S. Patent 6,171,563 (2001))、金属(W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals”, U. S. Patent 6,328,782 (2001); W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals”, U. S. Patent 6,350,419 (2002))、物理放射性種(W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals”, U. S. Patent 6,328,782 (2001); W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides”, U. S. Patent 6,696,589 (2004))、ペニシリン(penicillin)と有機酸(W.S. Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Penicillin and Organic Acids”, U. S. Patent 6,433,163 (2002))を除去することが開示されている。また、分散プロセスにおける支持液膜に応用されるジアルキルモノチオリン酸(dialkyl monothiophosphoric acid extractants)の抽出剤によって金属を除去する技術が開示されている (W.S. Winston Ho and Bing Wang, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals: Dialkyl Monothiophosphoric Acids and Their Use as Extractants”, U. S. Patent 6,291,705 (2001))。 Also, Mr. (several names) discloses a highly stable support liquid membrane that removes and recovers metals, physical radioactive species, penicillin, organic acids, etc. from a solution containing a target, for example, As a result, the supporting liquid membrane and the dispersion process are combined, and chromium (WS Winston Ho, “Supported Liquid Membrane Process for Chromium Removal and Recovery”, US Patent 6,171,563 (2001)), metal (WS Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals ”, US Patent 6,328,782 (2001); WS Winston Ho,“ Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals ”, US Patent 6,350,419 ( 2002)), Physical Radioactive Species (WS Winston Ho, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides and Metals”, US Patent 6,328,782 (2001); WS Winston Ho, “Comb ined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Radionuclides ”, US Patent 6,696,589 (2004)), penicillin and organic acids (WS Winston Ho,“ Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Penicillin and Organic Acids ", US Patent 6,433,163 (2002)) is disclosed. In addition, a technique for removing metals by using an extractant of dialkyl monothiophosphoric acid extractants applied to a supporting liquid membrane in a dispersion process is disclosed (WS Winston Ho and Bing Wang, “Combined Supported Liquid Membrane / Strip Dispersion Process for the Removal and Recovery of Metals: Dialkyl Monothiophosphoric Acids and Their Use as Extractants ”, US Patent 6,291,705 (2001)).
しかし、前記先行技術においては、支持液膜と分散逆抽出プロセスを結合して、銅とガリウムを含む廃液からガリウムを分離して回収する技術が開示されていない。 However, the prior art does not disclose a technique for separating and recovering gallium from a waste liquid containing copper and gallium by combining a supporting liquid membrane and a dispersion back extraction process.
このため、工業生産工程などに発生する廃液(材)から安定性が高く且つ効率が高いガリウムを除去して回収する方法が求められている。 For this reason, there is a demand for a method for removing and recovering gallium having high stability and high efficiency from waste liquid (material) generated in industrial production processes and the like.
前記課題を解決するために、本発明は、銅とガリウムを含む処理液からガリウムを回収する方法であって、少なくとも細孔支持材に設けられる液膜を提供するステップと、抽出液を含む有機溶液に分散される水相逆抽出液を含む分散逆抽出液を提供するステップと、前記銅とガリウムを含む処理液のPH値を3.5より大きくならないように調節し、または初期濃度が10Nまたはそれより大きい酸を含むように濃縮酸を前記処理液に添加して、調節するステップと、前記銅とガリウムを含む処理液を前記細孔支持材に設けられる液膜の一方で処理し、前記細孔支持材に設けられる液膜の他方で前記分散逆抽出液を用いることによって、選択的に前記銅とガリウムを含む処理液中のガリウムを除去するステップと、一部または全部の前記分散逆抽出液を有機相と前記水相逆抽出液に分離させるステップと、を含み、分離された前記水相逆抽出液に濃縮されたガリウム溶液が含まれるガリウムの回収方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for recovering gallium from a treatment liquid containing copper and gallium, the step of providing a liquid film provided on at least a pore support material, and an organic containing an extraction liquid Providing a dispersed back extract containing an aqueous back extract dispersed in the solution and adjusting the PH value of the treatment solution containing copper and gallium so as not to exceed 3.5, or an initial concentration of 10N Or a step of adding and adjusting a concentrated acid to the treatment liquid so as to contain an acid larger than that, and treating the treatment liquid containing copper and gallium with one of the liquid films provided on the pore support material; Selectively removing gallium in the treatment liquid containing copper and gallium by using the dispersion back-extracted liquid on the other liquid film provided on the pore support material, and part or all of the dispersion Wherein the step of separating the extract into the aqueous phase back extracted liquid with the organic phase, and to provide a method of recovering gallium contained gallium solution concentrated to separated the aqueous phase back-extracted solution.
また、前記細孔支持材は、複数の細孔中空繊維でシェル−チューブの複合構造を形成する中空繊維モジュールであって、前記銅とガリウムを含む処理液は前記中空繊維モジュールのチューブ側に流され、前記分散逆抽出液は前記中空繊維モジュールのシェル側に流されてもよい。 The pore support material is a hollow fiber module that forms a shell-tube composite structure with a plurality of pore hollow fibers, and the treatment liquid containing copper and gallium flows to the tube side of the hollow fiber module. The dispersion back extraction liquid may be flowed to the shell side of the hollow fiber module.
また、前記分散逆抽出液において、前記有機溶液の体積が前記水相逆抽出液の体積より大きくてもよく、前記有機溶液と前記水相逆抽出液の体積の比率が2:1であってもよい。 In the dispersed back extract, the volume of the organic solution may be larger than the volume of the aqueous phase back extract, and the ratio of the volume of the organic solution and the water back extract is 2: 1. Also good.
また、前記初期濃度が10Nまたはそれより大きい酸を含む、銅とガリウムを含む処理液に、更にインジウムを含んでもよい。 In addition, the treatment liquid containing copper and gallium containing an acid having an initial concentration of 10 N or higher may further contain indium.
また、前記銅とインジウムとガリウムを含む処理液において、銅の濃度とインジウムの濃度がガリウムの濃度より高くてもよい。 In the treatment liquid containing copper, indium and gallium, the copper concentration and the indium concentration may be higher than the gallium concentration.
また、前記銅とガリウムを含む処理液の初期PH値が0.5〜1.5の範囲にあってもよい。 The initial pH value of the treatment liquid containing copper and gallium may be in the range of 0.5 to 1.5.
また、前記抽出剤はジ−02−エチルヘキシルリン酸(D2EHPA)を含んでもよい。 The extractant may include di-02-ethylhexyl phosphate (D2EHPA).
また、前記有機溶液におけるジ−02−エチルヘキシルリン酸(D2EHPA)抽出剤の体積濃度が10%〜70%であってもよく、30%〜50%であってもよい。
また、前記水相逆抽出液は少なくとも塩酸を含んでもよい。
The volume concentration of the di-02-ethylhexyl phosphoric acid (D2EHPA) extractant in the organic solution may be 10% to 70%, or 30% to 50%.
Further, the aqueous phase back extract may contain at least hydrochloric acid.
前記塩酸の濃度が1N〜6Nの範囲にあってもよく、3Nであってもよい。 The concentration of the hydrochloric acid may be in the range of 1N to 6N or 3N.
本発明によれば、液膜分離技術によって、抽出と逆抽出を同時かつ連続的に行うことができ、人件費を節約し、ガリウムの回収率を99%以上に高め、また、他の方法に比べ、濃縮するステップを省略することができる。 According to the present invention, extraction and back-extraction can be performed simultaneously and continuously by liquid membrane separation technology, saving labor costs, increasing the recovery rate of gallium to 99% or more, and other methods. In comparison, the concentration step can be omitted.
本発明は、支持液膜を用いて、分散逆抽出プロセスと結合し、銅とガリウムを含む処理液からガリウムを除去して回収する方法を開示している。処理液として、工業生産工程などに発生する廃液(材)であっても良い。 The present invention discloses a method of removing and recovering gallium from a treatment liquid containing copper and gallium by using a supporting liquid film, combined with a dispersion back extraction process. The treatment liquid may be a waste liquid (material) generated in an industrial production process or the like.
好ましい実施形態において、銅とガリウムを含む処理液からガリウムを除去して回収するプロセスが開示される。まず、細孔を有する支持材に設けられる液膜を提供する。次に、有機溶液に分散される水相逆抽出液を含む分散逆抽出液を提供する。前記有機溶液に抽出液が含まれる。次に、銅とガリウムを含む処理液のPH値を3.5より大きくならないように調節し、または初期濃度が10Nまたはそれより大きい酸を含むように濃縮酸を処理液に添加して、調節する。次に、細孔を有する支持液膜の一方において、銅とガリウムを含む処理液を処理し、前記液膜の他方において、前記分散逆抽出液を用いることによって、選択的に銅とガリウムを含む処理液からガリウムを除去して回収する。最後に、一部又は全部の分散逆抽出液を有機相と濃縮ガリウム溶液が含まれる水相逆抽出液に分ける。前記処理液のPH値を調節するステップにおいて、処理液が調節された初期のPH値は、回収が開始して、時間を経つにつれて変化する。同様に、前記処理液に濃縮酸を添加するステップにおいて、処理液に含まれる酸の初期濃度は、回収が開始して、時間を経つにつれて変化する。 In a preferred embodiment, a process for removing and recovering gallium from a processing solution containing copper and gallium is disclosed. First, a liquid film provided on a support material having pores is provided. Next, a dispersed back extract containing an aqueous back extract that is dispersed in an organic solution is provided. The organic solution includes an extract. Next, the pH value of the treatment solution containing copper and gallium is adjusted so as not to exceed 3.5, or the concentrated acid is added to the treatment solution so that the initial concentration contains an acid of 10 N or more, and adjusted. To do. Next, the treatment liquid containing copper and gallium is treated in one of the supporting liquid films having pores, and the dispersion back-extraction liquid is used in the other liquid film, thereby selectively containing copper and gallium. Gallium is removed from the processing solution and recovered. Finally, part or all of the dispersed back extract is divided into an aqueous phase back extract containing the organic phase and the concentrated gallium solution. In the step of adjusting the PH value of the processing liquid, the initial PH value at which the processing liquid is adjusted changes as time passes after recovery starts. Similarly, in the step of adding concentrated acid to the treatment liquid, the initial concentration of the acid contained in the treatment liquid changes as time passes after recovery starts.
また、前記銅とガリウムを含む処理液の初期のPH値を0.5〜1.5の範囲に調節すれば、更にガリウムの回収率を高めることができる。 Moreover, if the initial PH value of the treatment liquid containing copper and gallium is adjusted to a range of 0.5 to 1.5, the recovery rate of gallium can be further increased.
また、前記分散逆抽出液において、有機溶液の体積が水相逆抽出液の体積より大きく、有機溶液と水相逆抽出液の体積比率が2:1であってもよい。 Moreover, in the said dispersion | distribution back extract, the volume of an organic solution may be larger than the volume of a water phase back extract, and the volume ratio of an organic solution and a water phase back extract may be 2: 1.
また、前記ガリウムを除去して回収するプロセスにおいて、前記銅とガリウムを含む処理液の初期のPH値が3.5より大きい場合、ガリウムが処理液に沈殿して、ガリウムを除去して回収することができなくなってしまう。 Further, in the process of removing and collecting the gallium, when the initial pH value of the treatment liquid containing copper and gallium is greater than 3.5, the gallium is precipitated in the treatment liquid, and the gallium is removed and collected. It becomes impossible to do.
本発明は、いかなる支持液膜構造、例えば、中空繊維モジュールを用いても良い。中空繊維モジュールは、細孔を有する中空繊維を含み、シェル−チューブの複合構造を形成する。本発明において、分散逆抽出液102がシェル−チューブの複合構造のシェル側またはチューブ側の一方に流され、処理液104が他方(シェル側またはチューブ側)に流される。図1に示すように、中空繊維を用いる支持液膜によって、分散逆抽出液102に安定な支持が提供される。
The present invention may use any supported liquid membrane structure, for example, a hollow fiber module. The hollow fiber module includes hollow fibers having pores to form a shell-tube composite structure. In the present invention, the dispersion back
また、処理液104が中空繊維モジュールのチューブ側に流され、分散逆抽出液が中空繊維モジュールのシェル側に流されてもよい。また、前記中空繊維を用いる支持液膜に流れる流体が逆方向に流される、つまり、シェル側に流される分散逆抽出液102とチューブ側に流される処理液104の流れる方向が逆になっている。これによって、処理液104と分散逆抽出液102の接触時間が延長され、抽出率を高めることができる。
Further, the
本発明の目的を達成するために、分散逆抽出液は、水相と有機相の混合物として定義される。前記水相は、水相逆抽出液を含み、有機相は、有機溶液に存在する一種類または多種類の抽出剤を含む。図1に示すように、分散逆抽出液は、前記水相と有機相を混合してなり、例えば分散逆抽出タンク110においてミキサー112で混合してなる。このような組成によって、水相逆抽出液が液滴の形態で連続する有機相に存在することができる。抽出工程において、分散逆抽出液が中空繊維モジュールに流され、維持される。分散逆抽出液の有機相は、細孔を有する中空繊維の疎水性の孔を濡らしやすいので、安定な液膜を形成できる。
For the purposes of the present invention, a dispersed back extract is defined as a mixture of an aqueous phase and an organic phase. The aqueous phase includes an aqueous phase back extract, and the organic phase includes one or more types of extractants present in the organic solution. As shown in FIG. 1, the dispersion back-extraction liquid is a mixture of the aqueous phase and the organic phase. For example, the dispersion back-extraction liquid is mixed in a dispersion back-
図2は本発明の実施形態に係る支持液膜と分散逆抽出技術を結合するガリウムの回収装置を示す部分拡大図である。このプロセスの進行中、支持液膜の分散逆抽出液の方の圧力をPoとし、支持液膜の処理液の方に(処理液の流入方向202から流出方向204に向かって)、前記圧力Poより大きい低圧の圧力Pa(2psi程度)をかける。前記二つの圧力の差によって、分散逆抽出液中の有機溶液212が中空繊維の孔208を通過して支持液膜の処理液の方に浸透することが防止される。水相逆抽出液中に分散されている液滴210の大きさは約80〜800ミクロン。このようなサイズは、前記細孔を有する支持構造の孔208のサイズより、3倍ないし4倍以上になるので、支持液膜の分散逆抽出液の方にある液滴210は、細孔を有する支持構造の孔208を通過せず、処理液の方に到達することができない。
FIG. 2 is a partially enlarged view showing a gallium recovery apparatus that combines the supporting liquid film and the dispersion back extraction technique according to the embodiment of the present invention. During the process, the pressure of the dispersion back-extraction liquid of the supporting liquid film is set to Po, and the pressure Po is applied to the processing liquid of the supporting liquid film (from the
本発明に係る支持液膜分散逆抽出システムにおいて、有機溶液、つまり分散逆抽出液の有機相は、持続に支持材の孔に供給される。このように持続的に供給することによって、支持液膜が安定に作用し続けることが確保される。また、有機相と逆抽出相が直接に接触することによって、逆抽出にとって物質の変換の効率がよくなる。また、有機相と逆抽出相を混合(例えば、高剪断混合)することによって、両者の接触面積を増やすことができる。 In the support liquid membrane dispersion back extraction system according to the present invention, the organic solution, that is, the organic phase of the dispersion back extract is continuously supplied to the pores of the support material. By supplying continuously as described above, it is ensured that the supporting liquid film continues to act stably. In addition, since the organic phase and the back extraction phase are in direct contact, the efficiency of substance conversion for back extraction is improved. Moreover, the contact area of both can be increased by mixing an organic phase and a back extraction phase (for example, high shear mixing).
ガリウムの除去が完成した後、分散逆抽出液のミキサー(例えばミキサー112)が停止して、分散逆抽出液が有機溶液と濃縮の逆抽出液の両相に分かれるまで静置する。この濃縮の逆抽出液は、本発明において開示される産物になる。 After the removal of gallium is completed, the dispersed back extractor mixer (eg, mixer 112) is stopped and allowed to stand until the dispersed back extract is separated into both phases of an organic solution and a concentrated back extract. This concentrated back extract is the product disclosed in the present invention.
前記銅とガリウムを含む処理液は、工業生産工程などに発生する廃液(材)が挙げられたが、これに限定されず、酸溶液で処理した銅/ガリウムを含む使用済ターゲットの溶液や、酸溶液で処理した銅/インジウム/ガリウムを含む使用済ターゲットのインジウムを含む溶液や、銅、インジウム、ガリウムを含む処理液に濃縮酸(例えば、濃塩酸)を添加して、初期濃度が10Nまたはそれより大きい酸(例えば、塩酸)を含む処理液であってもよい。 Examples of the treatment liquid containing copper and gallium include waste liquids (materials) generated in industrial production processes and the like, but are not limited thereto, and used target solutions containing copper / gallium treated with an acid solution, Concentrated acid (for example, concentrated hydrochloric acid) is added to a solution containing indium of a used target containing copper / indium / gallium treated with an acid solution or a treatment solution containing copper, indium and gallium, and an initial concentration is 10N or A treatment liquid containing a larger acid (for example, hydrochloric acid) may be used.
本発明に用いられる細孔を有する支持材は、細孔ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、ポリアミド、ポリアラミド、またはこれらの混合物であってもよく、細孔ポリプロピレンとポリテトラフルオロエチレンであるのが好ましい。 The support having a pore used in the present invention is a pore polypropylene, polytetrafluoroethylene (PTFE), polyethylene, polysulfone, polyethersulfone, polyetheretherketone, polyimide, polyamide, polyaramid, or a mixture thereof. It may be fine pore polypropylene and polytetrafluoroethylene.
分散逆抽出液の水相部分は、少なくとも一種類の酸性の水相溶液を含み、前記酸性の水相溶液は、塩酸や、硫酸や、硝酸や、酢酸などが挙げられるがこれらに限定されない。前記酸性の水相溶液の濃度は、0.1M〜18Mの範囲から選択され、1M〜6Mの範囲から選択されるのが好ましい。 The aqueous phase portion of the dispersion back extract includes at least one acidic aqueous phase solution, and examples of the acidic aqueous phase solution include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid. The concentration of the acidic aqueous phase solution is selected from the range of 0.1M to 18M, and preferably selected from the range of 1M to 6M.
水相の逆抽出液は、一種類または多種類の抽出剤を含む有機相に分散される。抽出剤によって処理液中のガリウムが抽出される。 The aqueous phase back extract is dispersed in an organic phase containing one or more types of extractants. Gallium in the treatment liquid is extracted by the extractant.
本発明に用いられる分散逆抽出液は、選択的に炭化水素化合物の溶剤または混合物を含むことができる。前記炭化水素化合物の溶剤または混合物の分子は、炭素原子の数が6〜18であってよく、好ましくは10〜14である。前記炭化水素化合物の溶剤は、n-デカン、n-ウンデカン、n-ドデカン、n-トリデカン、n-テトラデカン、イソデカン、イソウンデカン、イソドデカン、イソトリデカン、イソテトラデカン、イソパラフィン炭化水素溶剤[引火点92℃、沸点254℃、25℃時点の粘度3cp、15.6℃時点の密度0.791g/ml]、またはこれらの混合物を含む。 The dispersion back extract used in the present invention may optionally contain a hydrocarbon compound solvent or mixture. The hydrocarbon compound solvent or mixture molecules may have 6 to 18 carbon atoms, preferably 10 to 14 carbon atoms. Solvents of the hydrocarbon compounds are n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, isodecane, isoundecane, isododecane, isotridecane, isotetradecane, isoparaffin hydrocarbon solvent [flash point 92 ° C., Boiling point 254 ° C, viscosity 3cp at 25 ° C, density 0.791 g / ml at 15.6 ° C], or mixtures thereof.
本発明に開示されているガリウムを回収するための分散逆抽出液において、有機溶液に含まれるジ−02−エチルヘキシルリン酸(D2EHPA)の抽出剤の体積濃度が10%〜70%であってもよく、30%〜70%であってもよく、30%〜50%であってもよい。 In the dispersion back extract for recovering gallium disclosed in the present invention, the volume concentration of the extractant of di-02-ethylhexyl phosphate (D2EHPA) contained in the organic solution is 10% to 70%. It may be 30% to 70%, or 30% to 50%.
従来の支持液膜技術に比べ、本発明に開示されている技術は、処理液からガリウムを除去して回収する応用において、液膜の安定性、コスト、操作の簡易化、流動率とガリウムの回収率の良さに優れている。 Compared to the conventional support liquid membrane technology, the technology disclosed in the present invention is a solution film stability, cost, simplified operation, flow rate and gallium Excellent recovery.
本発明に開示されている技術は、安定に有機溶液を中空繊維支持材の孔に供給し、処理液からガリウムを除去して回収することができる。このように安定に有機溶液を供給することによって、本発明に開示されている支持液膜は従来の液膜より安定で、プロセスを安定して持続的に進行することができる。また、本発明は2セットの液膜モジュールを交替的に操作して、再生する必要がないので、同時に装置と操作のコストを低減することができる。また、本発明に開示されている除去技術は、従来の技術より更に簡単である。 The technique disclosed in the present invention can stably recover an organic solution by supplying the organic solution to the pores of the hollow fiber support and removing gallium from the treatment liquid. By supplying the organic solution stably as described above, the supporting liquid film disclosed in the present invention is more stable than the conventional liquid film, and the process can proceed stably and continuously. Further, the present invention eliminates the need to alternately operate and regenerate two sets of liquid film modules, thereby simultaneously reducing the cost of the apparatus and operation. Moreover, the removal technique disclosed in the present invention is simpler than the conventional technique.
本発明に開示される技術において、有機/抽出相が直接に逆抽出の水相に接触することができ、両相の混合によって、本来中空繊維が提供する物質移行の表面積より大きい物質移行の表面積が利用され、有機相から標的物を逆抽出する効率が高められ、ガリウムが抽出されるときの物質移行流動率が更に高められる。 In the technique disclosed in the present invention, the organic / extracted phase can be directly contacted with the back-extracted aqueous phase, and the mixing of both phases results in a mass transfer surface area that is greater than the mass transfer surface area that hollow fibers originally provide. Is used to increase the efficiency of back-extracting the target from the organic phase and further increase the mass transfer flow rate when gallium is extracted.
ガリウムの濃度が銅の濃度(及びインジウムの濃度)より高い廃液からガリウムを抽出するのに本発明に開示されている技術が適用されたが、銅の濃度(及びインジウムの濃度)がガリウムの濃度より高い廃液にも適用する。 The technique disclosed in the present invention was applied to extract gallium from a waste liquid in which the concentration of gallium is higher than the concentration of copper (and the concentration of indium), but the concentration of copper (and the concentration of indium) is the concentration of gallium. Also applies to higher effluents.
本発明に開示されている技術は、ガリウムの濃度が銅の濃度(及びインジウムの濃度)より低い場合でも、ガリウムを選択的に回収して高濃度に濃縮することができることをを強調するために、下記の実施例において、銅の濃度(及びインジウムの濃度)がガリウムの濃度より高い廃液のみが例として挙げられている。 To emphasize that the technique disclosed in the present invention can selectively recover gallium and concentrate it to a high concentration even when the gallium concentration is lower than the copper concentration (and indium concentration). In the following examples, only the waste liquid in which the concentration of copper (and the concentration of indium) is higher than the concentration of gallium is given as an example.
本発明は、多様の実施例で表現することができ、図面や、以下に挙げられる実施例は単に範例であり、決して本発明を限定するものではない。 The present invention can be expressed in various embodiments, and the drawings and the embodiments listed below are merely examples and do not limit the present invention in any way.
実施例
基本プロセス
以下の実施例において、支持液膜と分散逆抽出液を結合して、水相の処理液から有機溶液にガリウムを抽出する。持続的に抽出されたガリウムを逆抽出するように水相の逆抽出液が分散される。支持液膜システムは、中空繊維モジュール(Liquid-Cel, extra-flow 2.5x8, Membrana-Charlotte, USA)と、処理液タンクと、処理液をポリプロピレンの中空繊維に配送する処理液ポンプ(model 7592-50, Cole-Parmer, USA)と、完全に水相逆抽出液を有機溶液に分散させるためのミキサー(mixer, SS-NZ-1000, Eyela, Japan)を有する分散逆抽出液タンクとを含み、また、水相物質を含む油相物質を液膜モジュールのシェル側に配送するためのもう一つのポンプ(model 7553-70, Cole-Parmer, USA)とを含む。中空繊維モジュールの直径は6.35センチ(2.5インチ)、長さは20.3センチ(8インチ)、薄膜の表面積は1.4平米である。
Example Basic Process In the following example, gallium is extracted from an aqueous phase treatment liquid into an organic solution by combining a supporting liquid membrane and a dispersion back-extraction liquid. The aqueous phase back extract is dispersed so as to back extract the continuously extracted gallium. The supporting liquid membrane system consists of a hollow fiber module (Liquid-Cel, extra-flow 2.5x8, Membrana-Charlotte, USA), a processing liquid tank, and a processing liquid pump (model 7592- 50, Cole-Parmer, USA) and a dispersed back extract tank having a mixer (mixer, SS-NZ-1000, Eyela, Japan) for completely dispersing the aqueous phase back extract into the organic solution, It also includes another pump (model 7553-70, Cole-Parmer, USA) for delivering the oil phase material including the water phase material to the shell side of the liquid membrane module. The diameter of the hollow fiber module is 6.35 cm (2.5 inches), the length is 20.3 cm (8 inches), and the surface area of the thin film is 1.4 square meters.
以下の実施例は、支持液膜に流れる流体が逆方向に流される形態で操作する。処理液は細孔ポリプロピレンの中空繊維モジュールのチューブ側に流され、モジュール及び分散タンク中において抽出されたガリウムが分散逆抽出液に逆抽出される。 In the following examples, the fluid flowing through the supporting liquid film is operated in the reverse direction. The treatment liquid is flowed to the tube side of the hollow fiber module of fine pore polypropylene, and gallium extracted in the module and the dispersion tank is back-extracted into the dispersion back-extraction liquid.
ガリウムを含む水相の処理液が処理液タンクに配送され、磁気振動器によって300rpmの回転速度で振動させる。逆抽出液として、塩酸溶液が用いられ、直径8.5センチの二葉式ミキサーによって300rpmの回転速度で有機溶液に分散される。前記有機溶液は、イソパラフィン溶剤(シェルケミカルズ社製、商品名「TM」溶剤)に添加されるガリウムの抽出剤とするジ−02−エチルヘキシルリン酸(D2EHPA)(メルク社製)を含む。
以下の実施例において、特別に指定する場合を除き、分散逆抽出液中の有機溶液と逆抽出液の体積比率は2:1とする。
The aqueous phase processing liquid containing gallium is delivered to the processing liquid tank and is vibrated at a rotational speed of 300 rpm by a magnetic vibrator. A hydrochloric acid solution is used as the back extract and is dispersed in the organic solution at a rotational speed of 300 rpm by a two-leaf mixer having a diameter of 8.5 cm. The organic solution contains di-02-ethylhexyl phosphoric acid (D2EHPA) (manufactured by Merck) as an extractant for gallium added to an isoparaffin solvent (manufactured by Shell Chemicals, trade name “TM” solvent).
In the following examples, unless otherwise specified, the volume ratio of the organic solution to the back extract in the dispersed back extract is 2: 1.
まず、処理液を中空繊維モジュールのチューブ側に流して、中空繊維モジュールに処理液が充満した後、水相物質を含む油相物質をポンプによって中空繊維モジュールのシェル側に流す。有機相が中空繊維の孔を通過して処理液に浸透するのを防止するために、チューブ側に、例えば、シェル側より4〜5psi程度高い正圧をかける。以下の実施例において、特別に指定する場合を除き、全てこの圧力で操作する。操作中、処理液と分散逆抽出液がそれぞれのタンクからポンプによって液膜モジュールに配送されて、再びタンクに戻される。ポンプで配送される流体の速度は1L/minである。 First, the treatment liquid is allowed to flow to the tube side of the hollow fiber module, and after the hollow fiber module is filled with the treatment liquid, an oil phase substance containing an aqueous phase substance is caused to flow to the shell side of the hollow fiber module by a pump. In order to prevent the organic phase from passing through the pores of the hollow fiber and penetrating into the treatment liquid, a positive pressure higher by about 4 to 5 psi than the shell side is applied to the tube side, for example. In the following examples, all operations are performed at this pressure unless otherwise specified. During operation, the treatment liquid and the dispersed back extract are delivered from each tank to the liquid membrane module by a pump and returned to the tank again. The speed of the fluid delivered by the pump is 1 L / min.
以下の実施例において、所定の時間置きに、処理液と分散逆抽出液をサンプリングして、分散逆抽出液のサンプルを分相して異なる相に分離するまで静置する。次に、分散逆抽出液及び処理液から採った水相サンプルのガリウムの濃度を分析する。以下の実施例において、特別に指定する場合を除き、原子吸光光度計(GBC 906, GBC, Australia)によって分析を行う。また、誘導結合プラズマ発光分析装置を用いて分析してもよい。 In the following examples, the processing liquid and the dispersed back extract are sampled at predetermined intervals, and the sample of the dispersed back extract is phase-separated and allowed to stand until it is separated into different phases. Next, the gallium concentration of the aqueous phase sample taken from the dispersion back-extraction liquid and the treatment liquid is analyzed. In the following examples, analysis is performed with an atomic absorption photometer (GBC 906, GBC, Australia) unless otherwise specified. Further, analysis may be performed using an inductively coupled plasma optical emission analyzer.
以下の実施例によって、異なる処理液の組成と体積で、本発明に開示されている支持液膜のガリウムの回収率と処理後の処理液と逆抽出液の濃度の性能が測定される。 The following examples measure the performance of the gallium recovery rate of the support liquid membrane and the concentration of the treated liquid and the back-extracted liquid after the treatment with different composition and volume of the treatment liquid.
実施例1
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を0.5に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)10のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、1Nの塩酸(HCl)溶液。
分散逆抽出液の製造の詳細は、前記「基本プロセス」に記載されているので、ここで省略する。
Example 1
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial PH value is adjusted to 0.5 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 10 volumetric volume (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 1 N hydrochloric acid (HCl) solution.
Details of the production of the dispersion back extract are described in the above “basic process”, and are omitted here.
まず、ポンプによって4.5wt%の銅と1.5wt%のガリウムを含む処理液がポリプロピレン中空繊維膜のチューブ側に搬送される。次に、分散逆抽出液が中空繊維膜のシェル側に注入される。前記「基本プロセス」に記載されているように、所定の時間置きに、処理液及び分散逆抽出液に対し、サンプリングして原子吸光光度計によって分析を行う。 First, a treatment liquid containing 4.5 wt% copper and 1.5 wt% gallium is transported to the tube side of the polypropylene hollow fiber membrane by a pump. Next, the dispersed back extract is injected into the shell side of the hollow fiber membrane. As described in the “basic process”, the processing solution and the dispersion back-extraction solution are sampled and analyzed by an atomic absorption photometer at predetermined time intervals.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.3%で、銅の除去率が99.7%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.3% and the copper removal rate was 99.7%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例2
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)10のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、1Nの塩酸(HCl)溶液。
本実施例は実施例1の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が0.5ではなく、1に調節されることにある。
Example 2
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial pH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 10 volumetric volume (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 1 N hydrochloric acid (HCl) solution.
This example is the same as the operation in Example 1, except that the initial pH value of the treatment liquid is adjusted to 1 instead of 0.5 by a sodium hydroxide (NaOH) solution.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率は99.3%で、銅の除去率は99.7%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.3% and the copper removal rate was 99.7%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例3
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1.5に調節する
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)10のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、1Nの塩酸(HCl)溶液。
本実施例は実施例1の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が0.5ではなく、1.5に調節されることにある。
Example 3
1 L treatment liquid: Initial concentration of about 4.5 wt% copper and 1.5 wt% gallium, 1 L organic solution that adjusts initial PH value to 1.5 with sodium hydroxide (NaOH) solution: As solvent The commercial TM is used and contains a volume concentration (vol%) of 10 di-02-ethylhexyl phosphate (D2EHPA).
Back extract: 0.5 L, 1 N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 1, but the difference is that the initial pH value of the treatment liquid is adjusted to 1.5 instead of 0.5 by a sodium hydroxide (NaOH) solution. .
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率は99.3%で、銅の除去率は99.7%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.3% and the copper removal rate was 99.7%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例4
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)30のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例1の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が0.5ではなく、1に調節されることと、D2EHPAの体積濃度が10ではなく、30であることと、塩酸溶液が1Nではなく、3Nであることにある。
Example 4
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial pH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 30 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation in Example 1, except that the initial pH value of the treatment liquid is adjusted to 1 instead of 0.5 by the sodium hydroxide (NaOH) solution, and that of D2EHPA The volume concentration is 30 instead of 10, and the hydrochloric acid solution is 3N instead of 1N.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.5%で、銅の除去率が99.2%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.5% and the copper removal rate was 99.2%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例5
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例4の操作と同じであるが、その差異は、D2EHPAの体積濃度が30ではなく、50であることにある。
Example 5
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial pH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 4, but the difference is that the volume concentration of D2EHPA is 50 instead of 30.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.8%で、銅の除去率が98.9%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.8% and the copper removal rate was 98.9%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例6
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)70のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例4の操作と同じであるが、その差異は、D2EHPAの体積濃度が30ではなく、70であることにある。
Example 6
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial pH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent, and contains 70% volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 4, except that the volume concentration of D2EHPA is 70 instead of 30.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.4%で、銅の除去率が99.5%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.4% and the copper removal rate was 99.5%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例7
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を0.5に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例5の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が1ではなく、0.5に調節されることにある。
Example 7
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial PH value is adjusted to 0.5 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation in Example 5, except that the initial pH value of the treatment liquid is adjusted to 0.5 instead of 1 with a sodium hydroxide (NaOH) solution.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.2%で、銅の除去率が99.9%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.2% and the copper removal rate was 99.9%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例8
1Lの処理液:初期濃度が約4.5wt%の銅と1.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1.5に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例5の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が1ではなく、1.5に調節されることにある。
Example 8
1 L of processing solution: The initial concentration contains about 4.5 wt% copper and 1.5 wt% gallium, and the initial PH value is adjusted to 1.5 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 5, except that the initial pH value of the treatment liquid is adjusted to 1.5 instead of 1 with a sodium hydroxide (NaOH) solution.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約3wt%であって、計算によると、回収率が99.1%で、銅の除去率が98%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 3 wt%. According to the calculation, the recovery rate was 99.1% and the copper removal rate was 98%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例9
1Lの処理液:初期濃度が約1.5wt%の銅と0.5wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例7の操作と同じであるが、その差異は、水酸化ナトリウム(NaOH)溶液によって処理液の初期PH値が0.5ではなく、1に調節されることと、銅とガリウムの初期濃度がそれぞれ4.5wt%と1.5wt%ではなく、1.5wt%と0.5wt%であることにある。
Example 9
1 L treatment solution: Initial concentration contains about 1.5 wt% copper and 0.5 wt% gallium, and the initial PH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 7, except that the initial pH value of the treatment liquid is adjusted to 1 instead of 0.5 with a sodium hydroxide (NaOH) solution, The initial concentration of gallium is not 4.5 wt% and 1.5 wt%, but 1.5 wt% and 0.5 wt%, respectively.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約1wt%であって、計算によると、回収率が99.3%で、銅の除去率が96.9%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 1 wt%. According to the calculation, the recovery rate was 99.3% and the copper removal rate was 96.9%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例10
1Lの処理液:初期濃度が約9wt%の銅と3wt%のガリウムを含み、水酸化ナトリウム(NaOH)溶液で初期PH値を1に調節する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は実施例9の操作と同じであるが、その差異は、銅とガリウムの初期濃度がそれぞれ1.5wt%と0.5wt%ではなく、9wt%と3wt%であることにある。
Example 10
1 L of processing solution: The initial concentration contains about 9 wt% copper and 3 wt% gallium, and the initial PH value is adjusted to 1 with a sodium hydroxide (NaOH) solution.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This example is the same as the operation of Example 9, except that the initial concentrations of copper and gallium are 9 wt% and 3 wt%, not 1.5 wt% and 0.5 wt%, respectively.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約6wt%であって、計算によると、回収率が99.9%で、銅の除去率が99.8%である。この溶液を電解して、純度が4N以上の金属ガリウムが得られる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 6 wt%. According to the calculation, the recovery rate was 99.9% and the copper removal rate was 99.8%. The solution is electrolyzed to obtain metallic gallium having a purity of 4N or higher.
実施例11
2Lの処理液:銅とインジウムとガリウムを含む廃材を溶かして、塩酸を含む銅とインジウムとガリウムの溶液(3Mの水酸化ナトリウム溶液による滴定測定の結果により、塩酸の濃度が4Nである)を得て、濃塩酸で前記溶液中の塩酸濃度を10Nまたは10N以上に調節して、初期濃度が約3000ppmの銅と4000ppmのインジウムと1000ppmのガリウムを含む処理液を製造する。
1Lの有機溶液:溶剤として前記商用TMが用いられ、体積濃度(vol%)50のジ−02−エチルヘキシルリン酸(D2EHPA)を含む。
逆抽出液:0.5L、3Nの塩酸(HCl)溶液。
本実施例は前記他の実施例の操作と同じであるが、その最大の差異は、濃塩酸によって処理液の酸の濃度が10Nまたは10N以上に調節されることにある。
Example 11
2 L treatment solution: Dissolving waste material containing copper, indium and gallium, and then adding a solution of copper, indium and gallium containing hydrochloric acid (the concentration of hydrochloric acid is 4N as a result of titration measurement with 3M sodium hydroxide solution) Then, the concentration of hydrochloric acid in the solution is adjusted to 10 N or 10 N or more with concentrated hydrochloric acid to produce a treatment liquid containing about 3000 ppm of copper, 4000 ppm of indium, and 1000 ppm of gallium.
1 L of organic solution: The above-mentioned commercial TM is used as a solvent and contains 50 volume concentration (vol%) of di-02-ethylhexyl phosphoric acid (D2EHPA).
Back extract: 0.5 L, 3N hydrochloric acid (HCl) solution.
This embodiment is the same as the operation of the other embodiments described above, but the biggest difference is that the concentration of the acid in the treatment liquid is adjusted to 10 N or 10 N or more by concentrated hydrochloric acid.
処理液中のガリウムイオンの濃度が30ppmより小さくなるときに、反応を終了させて、分散逆抽出液をチューブから排出し、抽出タンクに集中して静置する。分相後、水相になった部分は回収された濃縮ガリウム溶液になる。ガリウムの濃度を測定した結果、約4000ppmであって、計算によると、回収率が99.1%で、銅とインジウムの除去率がそれぞれ99.9%と99.7%である。処理液中のインジウムと銅がD2EHPAによって抽出されないので、反応を終了した後、銅とインジウムとガリウムを含む溶液が銅とインジウムを含む溶液になって、ガリウムが分散逆抽出液に抽出されてガリウムを含む溶液になる。これによって、インジウムとガリウムを分離させる。 When the concentration of gallium ions in the treatment liquid is less than 30 ppm, the reaction is terminated, the dispersed back extract is discharged from the tube, and is concentrated and left in the extraction tank. After phase separation, the portion that becomes the aqueous phase becomes the collected concentrated gallium solution. As a result of measuring the concentration of gallium, it was about 4000 ppm. According to the calculation, the recovery rate was 99.1%, and the removal rates of copper and indium were 99.9% and 99.7%, respectively. Since indium and copper in the treatment liquid are not extracted by D2EHPA, after the reaction is finished, the solution containing copper, indium and gallium becomes a solution containing copper and indium, and gallium is extracted into the dispersion back-extraction solution and gallium A solution containing This separates indium and gallium.
本発明では好適な実施形態を前述の通り開示したが、これは決して本発明を限定するものではなく、当該分野の技術を熟知しているものであれば、本発明の精神と領域を離脱しない範囲内で、多様の変動や修正を加えることができる。従って本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。 Although the present invention has been disclosed in the preferred embodiments as described above, this does not limit the present invention in any way, and does not depart from the spirit and scope of the present invention as long as the person skilled in the art is familiar. Various changes and modifications can be made within the scope. Therefore, the protection scope of the present invention is based on the contents specified in the claims.
102:分散逆抽出液
104:処理液
106:処理液ポンプ
108:ポンプ
110:分散逆抽出液タンク
112:ミキサー
202:処理液流入方向
204:処理液流出方向
206:中空繊維
208:孔
210:液滴
212:有機溶液
102: Dispersed back extract liquid 104: Process liquid 106: Process liquid pump 108: Pump 110: Dispersed back extract liquid tank 112: Mixer 202: Process liquid inflow direction 204: Process liquid outflow direction 206: Hollow fiber 208: Hole 210: Liquid Drop 212: Organic solution
Claims (13)
細孔支持材に設けられる液膜を提供するステップと、
抽出液を含む有機溶液に分散される水相逆抽出液を含む分散逆抽出液を提供するステップと、
前記銅とガリウムを含む処理液のPH値を3.5より大きくならないように調節し、または初期濃度が10Nまたはそれより大きい酸を含むように濃縮酸を前記処理液に添加して、調節するステップと、
前記銅とガリウムを含む処理液を前記細孔支持材に設けられる液膜の一方で処理し、前記細孔支持材に設けられる液膜の他方で前記分散逆抽出液を用いることによって、選択的に前記銅とガリウムを含む処理液中のガリウムを除去するステップと、
一部または全部の前記分散逆抽出液を有機相と前記水相逆抽出液に分離させるステップと、を含み、分離された前記水相逆抽出液に濃縮されたガリウム溶液が含まれるガリウムの回収方法。 A method of recovering gallium from a treatment liquid containing copper and gallium, the step of providing a liquid film provided on at least a pore support material;
Providing a dispersed back extract comprising an aqueous back extract dispersed in an organic solution comprising the extract;
The pH value of the treatment solution containing copper and gallium is adjusted so as not to exceed 3.5, or the concentrated acid is added to the treatment solution so as to contain an acid having an initial concentration of 10 N or higher. Steps,
By selectively treating the treatment liquid containing copper and gallium with one of the liquid films provided on the pore support material and using the dispersion back-extraction liquid with the other liquid film provided on the pore support material. Removing gallium in the treatment liquid containing copper and gallium,
Separating a part or all of the dispersed back extract into an organic phase and an aqueous back extract, and recovering gallium containing a concentrated gallium solution in the separated aqueous back extract Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009291505A JP5428013B2 (en) | 2009-12-22 | 2009-12-22 | Gallium recovery method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009291505A JP5428013B2 (en) | 2009-12-22 | 2009-12-22 | Gallium recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011132054A true JP2011132054A (en) | 2011-07-07 |
JP5428013B2 JP5428013B2 (en) | 2014-02-26 |
Family
ID=44345229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009291505A Active JP5428013B2 (en) | 2009-12-22 | 2009-12-22 | Gallium recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5428013B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104928503A (en) * | 2015-05-27 | 2015-09-23 | 孙刚 | Method for separating and extracting indium and gallium from indium-gallium solution |
CN106902544A (en) * | 2017-03-23 | 2017-06-30 | 昆明理工大学 | A kind of continuous polyfunctional reactant device of microfluid extraction back extraction and its application process |
JP2018517063A (en) * | 2015-05-29 | 2018-06-28 | ユーティー−バットル,リミティド ライアビリティ カンパニー | Membrane auxiliary solvent extraction for rare earth element recovery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992915A (en) * | 1982-08-26 | 1984-05-29 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | Gallium extraction by substituted hydroxyquinoline and organic phosphorus compound |
JPS63107704A (en) * | 1986-10-24 | 1988-05-12 | Kawasaki Steel Corp | Extraction material and extraction method |
JPS63144114A (en) * | 1986-12-04 | 1988-06-16 | モンサント カンパニー | Solvent extraction of gallium from gallium complex and aqueous solution |
JPH0448038A (en) * | 1990-06-15 | 1992-02-18 | Daihachi Chem Ind Co Ltd | Method for separating indium and method for separating indium and gallium |
JPH05504753A (en) * | 1990-01-19 | 1993-07-22 | オイローペイシェ ヴィルトシャフツゲマインシャフト(エーヴェーゲー) | Method for separating and concentrating gallium from an aqueous solution containing gallium together with aluminum, zinc and/or copper |
JP2005161301A (en) * | 2003-12-03 | 2005-06-23 | Ind Technol Res Inst | Separation system of supporting-type liquid membrane |
-
2009
- 2009-12-22 JP JP2009291505A patent/JP5428013B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992915A (en) * | 1982-08-26 | 1984-05-29 | ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク | Gallium extraction by substituted hydroxyquinoline and organic phosphorus compound |
JPS63107704A (en) * | 1986-10-24 | 1988-05-12 | Kawasaki Steel Corp | Extraction material and extraction method |
JPS63144114A (en) * | 1986-12-04 | 1988-06-16 | モンサント カンパニー | Solvent extraction of gallium from gallium complex and aqueous solution |
JPH05504753A (en) * | 1990-01-19 | 1993-07-22 | オイローペイシェ ヴィルトシャフツゲマインシャフト(エーヴェーゲー) | Method for separating and concentrating gallium from an aqueous solution containing gallium together with aluminum, zinc and/or copper |
JPH0448038A (en) * | 1990-06-15 | 1992-02-18 | Daihachi Chem Ind Co Ltd | Method for separating indium and method for separating indium and gallium |
JP2005161301A (en) * | 2003-12-03 | 2005-06-23 | Ind Technol Res Inst | Separation system of supporting-type liquid membrane |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104928503A (en) * | 2015-05-27 | 2015-09-23 | 孙刚 | Method for separating and extracting indium and gallium from indium-gallium solution |
JP2018517063A (en) * | 2015-05-29 | 2018-06-28 | ユーティー−バットル,リミティド ライアビリティ カンパニー | Membrane auxiliary solvent extraction for rare earth element recovery |
CN106902544A (en) * | 2017-03-23 | 2017-06-30 | 昆明理工大学 | A kind of continuous polyfunctional reactant device of microfluid extraction back extraction and its application process |
Also Published As
Publication number | Publication date |
---|---|
JP5428013B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zante et al. | Lithium extraction from complex aqueous solutions using supported ionic liquid membranes | |
Kocherginsky et al. | Recent advances in supported liquid membrane technology | |
Fouad et al. | Emulsion liquid membrane extraction of zinc by a hollow-fiber contactor | |
Kavitha et al. | Recovery of copper (II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste | |
Cho et al. | A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water | |
Pramanik et al. | Rejection of rare earth elements from a simulated acid mine drainage using forward osmosis: The role of membrane orientation, solution pH, and temperature variation | |
Kamiński et al. | Applicability of liquid membranes in environmental protection | |
CN107530628B (en) | Regenerable draw agents for osmotically driven processes | |
KR20170071502A (en) | Forward osmosis process for concentration of lithium containing solutions | |
Xu et al. | Recovery of rare earths from phosphate ores through supported liquid membrane using N, N, N′, N′-tetraoctyl diglycol amide | |
JP5221608B2 (en) | Copper, indium, gallium, and selenium recovery methods | |
Zhang et al. | Simultaneous removal and recovery of copper (II) from acidic wastewater by hollow fiber renewal liquid membrane with LIX984N as carrier | |
US20100226839A1 (en) | Method For Recovery of Gallium | |
Rathore et al. | Extraction and permeation studies of Cd (II) in acidic and neutral chloride media using Cyanex 923 on supported liquid membrane | |
JP5428013B2 (en) | Gallium recovery method | |
Hou et al. | Solvent extraction performance of Pr (III) from chloride acidic solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by using membrane dispersion micro-extractor | |
Yadollahi et al. | Intensification of zirconium and hafnium separation through the hollow fiber renewal liquid membrane technique using synergistic mixture of TBP and Cyanex-272 as extractant | |
Chen et al. | Efficient extraction and stripping of Nd (III), Eu (III) and Er (III) by membrane dispersion micro-extractors | |
Ren et al. | Extraction separation of Cu (II) and Co (II) from sulfuric solutions by hollow fiber renewal liquid membrane | |
He et al. | Simultaneous removal and recovery of cadmium (II) and CN− from simulated electroplating rinse wastewater by a strip dispersion hybrid liquid membrane (SDHLM) containing double carrier | |
Rzelewska-Piekut et al. | Liquid membranes for separation of metal ions from wastewaters | |
TW201032881A (en) | Indium recovery by supported liquid membrane with strip dispersion | |
Moreira et al. | Mining from wastewater: Perspectives and current practices of non-dispersive solvent extraction for metallic compounds valorization | |
ZHANG et al. | Transport study of Cu (II) through hollow fiber supported liquid membrane | |
Ramakul et al. | Separation of radioactive metal ions by hollow fiber-supported liquid membrane and permeability analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131106 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5428013 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |