[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011130629A - Differential limit control device for electric vehicle - Google Patents

Differential limit control device for electric vehicle Download PDF

Info

Publication number
JP2011130629A
JP2011130629A JP2009288993A JP2009288993A JP2011130629A JP 2011130629 A JP2011130629 A JP 2011130629A JP 2009288993 A JP2009288993 A JP 2009288993A JP 2009288993 A JP2009288993 A JP 2009288993A JP 2011130629 A JP2011130629 A JP 2011130629A
Authority
JP
Japan
Prior art keywords
torque
wheel
rotational speed
target
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288993A
Other languages
Japanese (ja)
Other versions
JP5250541B2 (en
Inventor
Satoshi Kato
智 加藤
Kaoru Sawase
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2009288993A priority Critical patent/JP5250541B2/en
Priority to DE102010055223A priority patent/DE102010055223A1/en
Publication of JP2011130629A publication Critical patent/JP2011130629A/en
Application granted granted Critical
Publication of JP5250541B2 publication Critical patent/JP5250541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential limit control device for an electric vehicle, for suppressing vehicle vibration or a change in drive force, in executing differential limiting between front and rear axles and between right and left wheels. <P>SOLUTION: The control device computes an actual rotation speed difference and a target rotation speed difference between the wheels, computes correction torque for causing the actual rotation speed difference to follow the target rotation speed difference, computes the maximum differential limit torque for limiting the maximum value of the correction torque, computes a limiter output obtained by limiting the upper limit value of the absolute value of the correction torque by the maximum differential limit torque, adds the limiter output to either of the target drive torques distributed from the total drive torque, and subtracts the limiter output from the other. The controller controls an electric motor so that the torque is obtained, and executes differential limiting. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電動車両の前後軸間、左右輪間の差動を制限する差動制限制御装置に関する。   The present invention relates to a differential limiting control device that limits differential between front and rear shafts and left and right wheels of an electric vehicle.

車両の前後軸の駆動力を制御する技術として、例えば、特許文献1に示す技術が知られている。   As a technique for controlling the driving force of the longitudinal axis of the vehicle, for example, a technique disclosed in Patent Document 1 is known.

特許第3826247号公報Japanese Patent No. 3826247

特許文献1では、(特に、段落0076〜0096、図6〜図8等参照)、前輪又は後輪のいずれかがスリップしている場合には、スリップしている方の車輪の要求トルクを減少させる補正を行っている。しかしながら、前後軸間の差動を制限する差動制限自体は行っていない。前後軸を独立して電動モータで駆動する電動車両に、特許文献1に示す技術を適用して、前後軸間の差動制限を行うことを考えると、電子制御LSD(Limited Slip Differential Gear)を用いたイニシャルトルクによる前後軸間の差動制限制御と同等の効果を得るためには、トルク補正ゲインを高くし、制御応答性を高める必要がある。これにより制御応答性は高まるが、トルク補正量が大きくなるため、制御量が振動的になり、車両振動や駆動力変化が発生するという問題がある。   In Patent Document 1 (particularly, refer to paragraphs 0076 to 0096, FIGS. 6 to 8 and the like), when either the front wheel or the rear wheel is slipping, the required torque of the slipping wheel is reduced. Correction to make. However, the differential limitation itself that limits the differential between the front and rear axes is not performed. Considering that the technology shown in Patent Document 1 is applied to an electric vehicle in which the front and rear shafts are independently driven by an electric motor to limit the differential between the front and rear shafts, an electronically controlled LSD (Limited Slip Differential Gear) is used. In order to obtain the same effect as the differential limiting control between the front and rear axes by the used initial torque, it is necessary to increase the torque correction gain and improve the control response. As a result, control responsiveness is enhanced, but the torque correction amount becomes large, so that there is a problem that the control amount becomes oscillating, causing vehicle vibration and driving force change.

このような問題は、左右輪を独立して電動モータで駆動する電動車両でも同様であり、左右輪間の差動を制限する際に、トルク補正ゲインを高くし、制御応答性を高めると、トルク補正量が大きくなるため、制御量が振動的になり、車両振動や駆動力変化が発生してしまう。   Such a problem is similar in an electric vehicle in which the left and right wheels are independently driven by an electric motor.When limiting the differential between the left and right wheels, if the torque correction gain is increased and the control responsiveness is increased, Since the torque correction amount becomes large, the control amount becomes oscillating, causing vehicle vibrations and driving force changes.

本発明は上記課題に鑑みなされたもので、前後軸間、左右輪間の差動制限を行う際、車両振動や駆動力変化を抑制する電動車両の差動制限制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a differential limiting control device for an electric vehicle that suppresses vehicle vibration and changes in driving force when differential limiting is performed between front and rear axes and between left and right wheels. And

上記課題を解決する第1の発明に係る電動車両の差動制限制御装置は、
第1車輪を駆動する動力源として、少なくとも電動モータを有し、
第2車輪を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記第1車輪と前記第2車輪との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記第1車輪への目標第1車輪駆動トルクと前記第2車輪への目標第2車輪駆動トルクに各々配分し、
前記第1車輪の実回転数と前記第2車輪の実回転数から、前記第1車輪と前記第2車輪との間の実回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記第1車輪と前記第2車輪との間の目標回転数差を演算し、
前記実回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標第1車輪駆動トルク及び前記目標第2車輪駆動トルクのうち、一方に前記リミッタ出力を加算すると共に、他方から前記リミッタ出力を減算して、制限第1車輪駆動トルク及び制限第2車輪駆動トルクを演算し、
前記制限第1車輪駆動トルクとなるように、前記電動モータを制御すると共に、前記制限第2車輪駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする。
A differential limiting control device for an electric vehicle according to a first invention for solving the above-described problem is
As a power source for driving the first wheel, it has at least an electric motor,
As a power source for driving the second wheel, it has at least another electric motor,
A differential restriction control device that controls the electric motor and the other electric motor to perform differential restriction between the first wheel and the second wheel;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to the vehicle state and the operation state of the driver, the total drive torque is respectively distributed to the target first wheel drive torque to the first wheel and the target second wheel drive torque to the second wheel,
From the actual rotational speed of the first wheel and the actual rotational speed of the second wheel, the actual rotational speed difference between the first wheel and the second wheel is calculated,
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the first wheel and the second wheel is calculated,
Calculating a correction torque for causing the actual rotational speed difference to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
The limiter output is added to one of the target first wheel drive torque and the target second wheel drive torque, and the limiter output is subtracted from the other to limit the first wheel drive torque and the limit second wheel drive. Calculate the torque,
The electric motor is controlled so as to be the limited first wheel driving torque, and the other electric motor is controlled so as to be the limited second wheel driving torque, thereby performing differential limitation. And

上記課題を解決する第2の発明に係る電動車両の差動制限制御装置は、
前軸を駆動する動力源として、少なくとも電動モータを有し、
後軸を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記前軸と前記後軸との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記前軸への目標前軸駆動トルクと前記後軸への目標後軸駆動トルクに各々配分し、
前記前軸の実回転数と前記後軸の実回転数から、前記前軸と前記後軸との間の実回転数差である実前後軸間回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記前軸と前記後軸との間の目標回転数差を演算し、
前記実前後軸間回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標前軸駆動トルク及び前記目標後軸駆動トルクのうち、回転数の遅い軸の方に前記リミッタ出力を加算すると共に、回転数の速い軸の方から前記リミッタ出力を減算して、制限前軸駆動トルク及び制限後軸駆動トルクを演算し、
前記制限前軸駆動トルクとなるように、前記電動モータを制御すると共に、前記制限後軸駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする。
A differential limiting control device for an electric vehicle according to a second invention that solves the above-described problem,
As a power source for driving the front shaft, it has at least an electric motor,
As a power source for driving the rear shaft, it has at least another electric motor,
A differential limiting control device that controls the electric motor and the other electric motor to perform differential limiting between the front shaft and the rear shaft;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to a vehicle state and a driver's operation state, the total drive torque is distributed to the target front shaft drive torque to the front shaft and the target rear shaft drive torque to the rear shaft, respectively.
From the actual rotational speed of the front shaft and the actual rotational speed of the rear shaft, the actual rotational speed difference between the front and rear axes, which is the actual rotational speed difference between the front shaft and the rear shaft, is calculated.
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the front shaft and the rear shaft is calculated,
Calculate a correction torque for causing the actual front-rear shaft rotational speed difference to follow the target rotational speed difference,
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
Of the target front shaft drive torque and the target rear shaft drive torque, the limiter output is added to the shaft with the lower rotational speed, and the limiter output is subtracted from the shaft with the higher rotational speed, before the limit. Calculate shaft drive torque and post-restricted shaft drive torque,
The electric motor is controlled so as to be the pre-restricted shaft driving torque, and the other electric motor is controlled so as to be the post-restricted shaft driving torque to perform differential limitation. .

上記課題を解決する第3の発明に係る電動車両の差動制限制御装置は、
右輪を駆動する動力源として、少なくとも電動モータを有し、
左輪を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記右輪と前記左輪との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記右輪への目標右輪駆動トルクと前記左輪への目標左輪駆動トルクに各々配分し、
前記右輪の実回転数と前記左輪の実回転数から、前記右輪と前記左輪との間の実回転数差である実左右輪回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記右輪と前記左輪との間の目標回転数差を演算し、
前記実左右輪回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標右輪駆動トルクに前記リミッタ出力を加算して、制限右輪駆動トルクを演算すると共に、前記目標左輪駆動トルクから前記リミッタ出力を減算して、制限左輪駆動トルクを演算し、
前記制限右輪駆動トルクとなるように、前記電動モータを制御すると共に、前記制限左輪駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする。
A differential limiting control device for an electric vehicle according to a third invention for solving the above-described problem is
As a power source for driving the right wheel, it has at least an electric motor,
As a power source for driving the left wheel, it has at least another electric motor,
A differential limiting control device that controls the electric motor and the other electric motor to perform differential limiting between the right wheel and the left wheel;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to the vehicle state and the driver's operation state, the total drive torque is respectively distributed to the target right wheel drive torque to the right wheel and the target left wheel drive torque to the left wheel,
From the actual rotational speed of the right wheel and the actual rotational speed of the left wheel, an actual left-right wheel rotational speed difference that is the actual rotational speed difference between the right wheel and the left wheel is calculated,
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the right wheel and the left wheel is calculated,
Calculating a correction torque that causes the difference between the actual left and right wheel rotational speeds to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
The limiter output is added to the target right wheel drive torque to calculate a limited right wheel drive torque, and the limiter output is subtracted from the target left wheel drive torque to calculate a limit left wheel drive torque.
The electric motor is controlled so as to be the limited right wheel drive torque, and the other electric motor is controlled so as to be the limited left wheel drive torque, thereby performing differential limitation.

上記課題を解決する第4の発明に係る電動車両の差動制限制御装置は、
上記第1から第3の発明のいずれか1つに記載の電動車両の差動制限制御装置において、
前記差動制限制御装置は、
前記最大差動制限トルクを、運転者の加速要求の増加に応じて、当該最大差動制限トルクが増加する第1のマップを用いて演算し、
前記最大差動制限トルクを補正する補正係数を、前記操舵角の絶対値の増加に応じて、当該補正係数が1から0へ減少する第2のマップを用いて演算し、
前記最大差動制限トルクと前記補正係数とを積算して、前記補正トルクを制限するトルク差上限値を演算し、
前記補正トルクの絶対値の上限値を前記トルク差上限値で制限して、前記リミッタ出力を演算する。
A differential limiting control device for an electric vehicle according to a fourth aspect of the present invention for solving the above-described problem is
In the differential limiting control device for an electric vehicle according to any one of the first to third inventions,
The differential limiting control device includes:
The maximum differential limiting torque is calculated using a first map in which the maximum differential limiting torque increases according to an increase in the driver's acceleration request,
A correction coefficient for correcting the maximum differential limiting torque is calculated using a second map in which the correction coefficient decreases from 1 to 0 in accordance with an increase in the absolute value of the steering angle;
The maximum differential limit torque and the correction coefficient are integrated to calculate a torque difference upper limit value for limiting the correction torque,
The upper limit value of the absolute value of the correction torque is limited by the torque difference upper limit value, and the limiter output is calculated.

本発明によれば、ハイゲインの追従制御を行って、目標回転数差に対する補正トルクを算出しても、算出した補正トルクの上限を制限し、制限した補正トルクに基づくモータトルクを用いて、電動モータを制御するので、モータトルクの応答性、目標値への収斂性が向上する。その結果、電子制御LSDを用いたイニシャルトルクによる差動制限制御と同等の効果が得られ、安定性の向上やトラクション性能の向上を図ることができる。又、目標回転数差を0とする場合にも、電子制御LSDと同様の効果が得られるため、直進安定性が向上する。   According to the present invention, even if high gain follow-up control is performed and the correction torque for the target rotational speed difference is calculated, the upper limit of the calculated correction torque is limited, and the motor torque based on the limited correction torque is used. Since the motor is controlled, the response of the motor torque and the convergence to the target value are improved. As a result, an effect equivalent to the differential limiting control by the initial torque using the electronic control LSD can be obtained, and the stability and the traction performance can be improved. Further, when the target rotational speed difference is set to 0, the same effect as the electronic control LSD can be obtained, so that the straight running stability is improved.

又、本発明によれば、車速及び操舵角から演算した目標回転数差を用いるので、目標車体姿勢から実車体姿勢がずれた分だけ差動制限トルク差作用し、スムーズな旋回と優れた安定性を両立することができる。   In addition, according to the present invention, since the target rotational speed difference calculated from the vehicle speed and the steering angle is used, the differential limiting torque difference acts as much as the actual vehicle body posture deviates from the target vehicle body posture, smooth turning and excellent stability. Both sexes can be achieved.

本発明に係る電動車両の差動制限制御装置の実施形態の一例を説明する概略構成図である。1 is a schematic configuration diagram illustrating an example of an embodiment of a differential limiting control device for an electric vehicle according to the present invention. 図1に示した電動車両の差動制限制御装置を説明するブロック図である。It is a block diagram explaining the differential limiting control apparatus of the electric vehicle shown in FIG. 本発明に係る電動車両の差動制限制御装置で用いるマップであり、(a)は駆動トルクに対する最大差動制限トルクを演算するものであり、(b)は操舵角に対する補正係数を演算するものである。It is a map used with the differential limiting control apparatus of the electric vehicle which concerns on this invention, (a) calculates the maximum differential limiting torque with respect to a drive torque, (b) calculates the correction coefficient with respect to a steering angle. It is. 本発明に係る電動車両の差動制限制御装置の実施形態の他の一例を説明する概略構成図である。It is a schematic block diagram explaining another example of embodiment of the differential limiting control apparatus of the electric vehicle which concerns on this invention. 図4に示した電動車両の差動制限制御装置を説明するブロック図である。It is a block diagram explaining the differential limiting control apparatus of the electric vehicle shown in FIG.

以下、図1〜図5を参照して、本発明に係る電動車両の差動制限制御装置の実施形態のいくつかを説明する。   Hereinafter, some of the embodiments of the differential limiting control device for an electric vehicle according to the present invention will be described with reference to FIGS.

なお、本発明に係る電動車両の差動制限制御装置は、複数の動力源を有し、動力源として、少なくとも電動モータを用いる電動車両に適用するものである。「少なくとも」とは、動力源として、電動モータを含んでいれば良いとの意味であり、例えば、電動モータと内燃機関(エンジン)とを組み合わせて、動力源として用いても良いが、あくまでも、差動制限の際の制御対象は電動モータとなる。又、「複数の動力源」とは、後述する実施例1(図1参照)に示すように、複数の動力源(複数の電動モータ)の各々により、前後軸を独立して駆動する構成でも良いし、後述する実施例2(図4参照)に示すように、複数の動力源(複数の電動モータ)の各々により、左右輪を独立して駆動する構成でもよい。   The differential limiting control device for an electric vehicle according to the present invention is applied to an electric vehicle having a plurality of power sources and using at least an electric motor as the power source. “At least” means that an electric motor may be included as a power source. For example, an electric motor and an internal combustion engine (engine) may be combined and used as a power source. The object to be controlled at the time of differential limitation is an electric motor. In addition, “a plurality of power sources” may be configured such that the front and rear shafts are independently driven by each of a plurality of power sources (a plurality of electric motors) as shown in Example 1 (see FIG. 1) described later. Alternatively, as shown in a second embodiment (see FIG. 4) to be described later, the left and right wheels may be independently driven by each of a plurality of power sources (a plurality of electric motors).

(実施例1)
図1は、本実施例の電動車両の差動制限制御装置を説明する概略構成図である。又、図2は、図1に示した差動制限制御装置を説明するブロック図であり、図3は、本発明の差動制限制御装置で用いるマップである。
Example 1
FIG. 1 is a schematic configuration diagram illustrating a differential limiting control device for an electric vehicle according to the present embodiment. FIG. 2 is a block diagram for explaining the differential limiting control device shown in FIG. 1, and FIG. 3 is a map used in the differential limiting control device of the present invention.

図1に示す電動車両10は、前左輪11と前右輪12とを駆動する前軸13と、デファレンシャル・ギア14を介して、前軸13と接続され、前軸13の動力源となる前軸モータ15(電動モータ)と、後左輪16と後右輪17とを駆動する後軸18と、デファレンシャル・ギア19を介して、後軸18と接続され、後軸18の動力源となる後軸モータ20(他の電動モータ)とを有する。なお、本実施例においては、前左輪11及び前右輪12、即ち、前軸13側が第1車輪となり、後左輪16及び後右輪17、即ち、後軸18側が第2車輪となる。   An electric vehicle 10 shown in FIG. 1 is connected to a front shaft 13 via a front shaft 13 that drives a front left wheel 11 and a front right wheel 12 and a differential gear 14, and serves as a power source for the front shaft 13. A rear shaft 18 that drives a shaft motor 15 (electric motor), a rear left wheel 16 and a rear right wheel 17, and a differential gear 19 is connected to the rear shaft 18 and serves as a power source for the rear shaft 18. It has a shaft motor 20 (another electric motor). In the present embodiment, the front left wheel 11 and the front right wheel 12, that is, the front shaft 13 side are the first wheels, and the rear left wheel 16 and the rear right wheel 17, that is, the rear shaft 18 side are the second wheels.

そして、上記の前軸モータ15と後軸モータ20とを、差動制限制御装置21で制御することにより、後述する前後軸間の差動制限を行っている。ここで、デファレンシャル・ギア14は、前軸モータ15からの出力を左輪11及び右輪12に駆動力として伝達すると共に、左輪11と右輪12との回転数差を調整するものであり、デファレンシャル・ギア19は、後軸モータ20からの出力を左輪16及び右輪17に駆動力として伝達すると共に、左輪16と右輪17との回転数差を調整するものである。   Then, the front shaft motor 15 and the rear shaft motor 20 are controlled by the differential restriction control device 21 to perform differential restriction between the front and rear axes, which will be described later. Here, the differential gear 14 transmits the output from the front shaft motor 15 to the left wheel 11 and the right wheel 12 as a driving force, and adjusts the rotational speed difference between the left wheel 11 and the right wheel 12. The gear 19 transmits the output from the rear shaft motor 20 to the left wheel 16 and the right wheel 17 as a driving force, and adjusts the difference in rotational speed between the left wheel 16 and the right wheel 17.

次に、図2、図3も参照して、差動制限制御装置21の機能及び制御を説明する。   Next, the function and control of the differential limiting control device 21 will be described with reference to FIGS.

差動制限制御装置21は、総駆動トルク演算手段B1と、トルク配分演算手段B2と、前軸駆動トルク→前軸モータトルク変換手段B3と、前軸モータ制御手段B4と、目標回転数差演算手段B5と、実前軸回転数演算手段B6と、実後軸回転数演算手段B7と、目標回転数差追従制御手段B8と、トルク差上限値演算手段B9と、リミッタB10と、後軸駆動トルク→後軸モータトルク変換手段B11と、後軸モータ制御手段B12とを有する。   The differential limit control device 21 includes a total drive torque calculation means B1, a torque distribution calculation means B2, a front shaft drive torque → front shaft motor torque conversion means B3, a front shaft motor control means B4, and a target rotational speed difference calculation. Means B5, actual front shaft speed calculating means B6, actual rear shaft speed calculating means B7, target speed difference tracking control means B8, torque difference upper limit value calculating means B9, limiter B10, rear shaft drive Torque → rear shaft motor torque conversion means B11 and rear shaft motor control means B12.

なお、センサ群A1は、例えば、車速を検出する車速センサ、アクセル開度を検出するアクセル開度センサ、ステアリングの操舵角を検出する操舵角センサ、各輪の車輪速から実回転数を検出する車輪速センサ、前後加速度を検出する前後加速度センサ(共に図示省略)等であり、検出されたセンサ値を用いて、後述する演算が行われる。   The sensor group A1 detects, for example, a vehicle speed sensor that detects a vehicle speed, an accelerator opening sensor that detects an accelerator opening, a steering angle sensor that detects a steering angle of a steering wheel, and an actual rotational speed from the wheel speed of each wheel. A wheel speed sensor, a longitudinal acceleration sensor for detecting longitudinal acceleration (both not shown), and the like, and a calculation described later is performed using the detected sensor value.

総駆動トルク演算手段B1では、運転者の加速要求に応じて、総駆動トルクを演算している。具体的には、車速センサ、アクセル開度センサで検出された車速、アクセル開度に基づき、下記式に示すように、車速、アクセル開度を変数とする関数F1により総駆動トルクを求めている。
総駆動トルク=F1(車速、アクセル開度)
The total drive torque calculation means B1 calculates the total drive torque in response to the driver's acceleration request. Specifically, based on the vehicle speed and the accelerator opening detected by the vehicle speed sensor and the accelerator opening sensor, the total driving torque is obtained by a function F1 having the vehicle speed and the accelerator opening as variables as shown in the following formula. .
Total drive torque = F1 (vehicle speed, accelerator opening)

トルク配分演算手段B2では、総駆動トルク演算手段B1で演算された総駆動トルクを、車両状態や運転者の操作状態に応じて、前軸13、後軸18各々に、目標駆動トルクとして配分している。前軸13へ配分する目標前軸駆動トルクは、車両状態や運転者の操作状態を変数とする関数F2又はF3により求めても良いし(例えば、下記式(1)、(2))、車両の荷重配分比(固定値)に応じて求めても良い(下記式(3))。
目標前軸駆動トルク=総駆動トルク×F2(アクセル開度又は駆動トルク) …(1)
目標前軸駆動トルク=総駆動トルク×F3(前後加速度) …(2)
目標前軸駆動トルク=総駆動トルク×荷重配分比(固定値) …(3)
In the torque distribution calculation means B2, the total drive torque calculated by the total drive torque calculation means B1 is distributed as a target drive torque to each of the front shaft 13 and the rear shaft 18 according to the vehicle state and the operation state of the driver. ing. The target front shaft drive torque to be distributed to the front shaft 13 may be obtained by a function F2 or F3 having the vehicle state or the driver's operation state as a variable (for example, the following formulas (1) and (2)), or the vehicle May be obtained according to the load distribution ratio (fixed value) of (the following formula (3)).
Target front shaft drive torque = total drive torque × F2 (accelerator opening or drive torque) (1)
Target front shaft drive torque = total drive torque × F3 (longitudinal acceleration) (2)
Target front shaft drive torque = total drive torque x load distribution ratio (fixed value) (3)

そして、後軸18へ配分する目標後軸駆動トルクは、上記式(1)〜(3)のいずれかを用いて求めた目標前軸駆動トルクを用いて、以下の式により求めている。
目標後軸駆動トルク=総駆動トルク−目標前軸駆動トルク
Then, the target rear shaft drive torque to be distributed to the rear shaft 18 is obtained by the following equation using the target front shaft drive torque obtained using any one of the above equations (1) to (3).
Target rear shaft drive torque = Total drive torque-Target front shaft drive torque

そして、後述するように、配分された目標前軸駆動トルク及び目標後軸駆動トルクに対して、補正トルクが求められるが、この補正トルクがトルク差上限値により制限されることになり、これにより差動制限を行うことになる。   As will be described later, a correction torque is obtained for the distributed target front shaft drive torque and target rear shaft drive torque, but this correction torque is limited by the torque difference upper limit value, thereby Differential restriction will be performed.

目標回転数差演算手段B5では、車両状態や運転者の操作状態に応じて、目標回転数差を演算している。具体的には、車速センサ、操舵角センサで検出された車速、操舵角に基づき、下記式に示すように、車速、操舵角を変数とする関数F4により目標回転数差を求める。
目標回転数差=F4(車速、操舵角)
なお、直進状態のとき、目標回転数差は、0となる。
The target rotational speed difference calculation means B5 calculates the target rotational speed difference according to the vehicle state and the driver's operation state. Specifically, based on the vehicle speed and the steering angle detected by the vehicle speed sensor and the steering angle sensor, the target rotational speed difference is obtained by a function F4 using the vehicle speed and the steering angle as variables, as shown in the following equations.
Target speed difference = F4 (vehicle speed, steering angle)
Note that the target rotational speed difference is 0 when the vehicle is running straight.

実前軸回転数演算手段B6、実後軸回転数演算手段B7では、各輪の車輪速センサを用いて、以下の式から、前軸13及び後軸18の実回転数を求めている。
実前軸回転数=(前右輪回転数+前左輪回転数)÷2
実後軸回転数=(後右輪回転数+後左輪回転数)÷2
In the actual front shaft speed calculating means B6 and the actual rear shaft speed calculating means B7, the actual speeds of the front shaft 13 and the rear shaft 18 are obtained from the following equations using the wheel speed sensors of the respective wheels.
Actual front shaft speed = (front right wheel speed + front left wheel speed) / 2
Actual rear shaft speed = (rear right wheel speed + rear left wheel speed) / 2

なお、実前軸回転数演算手段B6、実後軸回転数演算手段B7において、前軸モータ15、後軸モータ20で検出されたモータ回転数を用いて、実前軸回転数、実後軸回転数を求めるようにしても良い。
実前軸回転数=前軸モータ回転数×係数
実後軸回転数=後軸モータ回転数×係数
In the actual front shaft speed calculating means B6 and the actual rear shaft speed calculating means B7, the motor speed detected by the front shaft motor 15 and the rear shaft motor 20 is used to determine the actual front shaft speed and the actual rear shaft speed. The rotational speed may be obtained.
Actual front shaft speed = front motor speed × factor Actual rear shaft speed = rear motor speed × factor

そして、演算器C1において、実前軸回転数演算手段B6で求めた実前軸回転数から、実後軸回転数演算手段B7で求めた実後軸回転数を減算することで、実前後軸間回転数差を求めている。
実前後軸間回転数差=実前軸回転数−実後軸回転数
Then, in the calculator C1, by subtracting the actual rear shaft rotational speed obtained by the actual rear shaft rotational speed computing means B7 from the actual front shaft rotational speed obtained by the actual front shaft rotational speed computing means B6, the actual longitudinal axis The difference in rotational speed is obtained.
Difference between actual front and rear shaft speed = actual front shaft speed-actual rear shaft speed

目標回転数差追従制御手段B8では、実前後軸間回転数差を目標回転数差へ追従制御させるための補正トルクを演算している。具体的には、目標回転数差演算手段B5で求めた目標回転数差と、実前軸回転数演算手段B6、実後軸回転数演算手段B7及び演算器C1で求めた実前後軸間回転数差との偏差に基づき、下記式に示すように、PID制御により、目標前軸駆動トルク及び目標後軸駆動トルクを補正する補正トルクを求めている。
補正トルク=PID(目標回転数差−実前後軸間回転数差)
上記補正トルクが、後述するトルク差上限値演算手段B9で求められたトルク差上限値により制限されることになる。
なお、補正トルクは、PID制御に限らず、他の制御方法、例えば、H∞制御、ファジィ制御等により求めるようにしても良い。但し、本実施例では、どのような制御を用いた場合でも、応答性を高くするため、そのゲインを高く設定している。
The target rotational speed difference tracking control means B8 calculates a correction torque for controlling the actual rotational speed difference between the front and rear axes to follow the target rotational speed difference. Specifically, the target rotational speed difference obtained by the target rotational speed difference calculating means B5 and the actual front-rear shaft rotational speed obtained by the actual front shaft rotational speed calculating means B6, the actual rear shaft rotational speed calculating means B7 and the calculator C1. Based on the deviation from the number difference, as shown in the following equation, the correction torque for correcting the target front shaft drive torque and the target rear shaft drive torque is obtained by PID control.
Correction torque = PID (target speed difference-actual front-rear shaft speed difference)
The correction torque is limited by the torque difference upper limit value obtained by torque difference upper limit calculation means B9 described later.
Note that the correction torque is not limited to PID control, and may be obtained by other control methods such as H∞ control, fuzzy control, and the like. However, in this embodiment, the gain is set high in order to increase the responsiveness no matter what control is used.

トルク差上限値演算手段B9では、車両状態や運転者の操作状態に基づいて、目標回転数差追従制御手段B8で算出された補正トルクに対する上限値(トルク差上限値)を演算している。具体的には、図3(a)、(b)に示すマップを用いて、トルク差上限値が演算される。   The torque difference upper limit calculation means B9 calculates an upper limit value (torque difference upper limit value) for the correction torque calculated by the target rotational speed difference follow-up control means B8 based on the vehicle state and the driver's operation state. Specifically, the torque difference upper limit value is calculated using the maps shown in FIGS. 3 (a) and 3 (b).

図3(a)に示すマップ1(第1のマップ)は、運転者の加速要求となる総駆動トルクに基づいて、補正トルクの最大値を制限する最大差動制限トルクを演算するマップであり、総駆動トルクの増加に比例して、最大差動制限トルクを増加させている。後述の図3(b)のマップ2に示すように、操舵角の絶対値が0のとき、この最大差動制限トルクに対する補正係数は1である。そして、図3(a)に示すマップ1は、操舵角の絶対値が0のときのものであり、補正トルクを制限する最大値となる。   A map 1 (first map) shown in FIG. 3A is a map for calculating a maximum differential limiting torque that limits the maximum value of the correction torque based on the total driving torque that is a driver's acceleration request. The maximum differential limiting torque is increased in proportion to the increase in the total driving torque. As shown in a map 2 in FIG. 3B described later, when the absolute value of the steering angle is 0, the correction coefficient for the maximum differential limiting torque is 1. A map 1 shown in FIG. 3A is obtained when the absolute value of the steering angle is 0, and is a maximum value that limits the correction torque.

なお、総駆動トルクに代えて、運転者の加速要求となるアクセル開度に基づいて、最大差動制限トルクを演算してもよく、その場合のマップも、アクセル開度の増加に比例して、最大差動制限トルクを増加させている。アクセル開度は、アクセル開度センサを用いて検出する。   In place of the total driving torque, the maximum differential limiting torque may be calculated based on the accelerator opening that is the driver's acceleration request, and the map in that case is also proportional to the increase in the accelerator opening. The maximum differential limiting torque is increased. The accelerator opening is detected using an accelerator opening sensor.

図3(b)に示すマップ2(第2のマップ)は、操舵角センサで検出した操舵角に基づいて、マップ1で演算した最大差動制限トルクを補正する補正係数を演算するマップであり、操舵角の絶対値の増加に反比例して、補正係数を1から0へ減少させており、操舵角の絶対値が所定の値より大きい場合は、補正係数を0としている。   A map 2 (second map) shown in FIG. 3B is a map for calculating a correction coefficient for correcting the maximum differential limiting torque calculated in the map 1 based on the steering angle detected by the steering angle sensor. The correction coefficient is decreased from 1 to 0 in inverse proportion to the increase in the absolute value of the steering angle. When the absolute value of the steering angle is larger than a predetermined value, the correction coefficient is set to 0.

そして、トルク差上限値演算手段B9では、下記式に示すように、マップ1で演算した最大差動制限トルクにマップ2で演算した補正係数を積算することで、トルク差上限値を求めている。
トルク差上限値=(MAP1の最大差動制限トルク)×(MAP2の補正係数)
Then, in the torque difference upper limit calculation means B9, as shown in the following equation, the torque difference upper limit value is obtained by adding the correction coefficient calculated in Map 2 to the maximum differential limiting torque calculated in Map 1. .
Torque difference upper limit = (maximum differential limiting torque of MAP1) × (correction coefficient of MAP2)

リミッタB10では、目標回転数差追従制御手段B8から入力された補正トルクの絶対値を、トルク差上限値演算手段B9で演算されたトルク差上限値以下に制限し、出力している。具体的には、以下の式を用いて、補正トルクの絶対値の上限をトルク差上限値で制限したリミッタ出力を演算している。
リミッタ出力L=max{(−トルク差上限値)、min(トルク差上限値、補正トルク)}
In the limiter B10, the absolute value of the correction torque input from the target rotational speed difference follow-up control means B8 is limited to be equal to or less than the torque difference upper limit value calculated by the torque difference upper limit value calculation means B9. Specifically, a limiter output in which the upper limit of the absolute value of the correction torque is limited by the upper limit value of the torque difference is calculated using the following equation.
Limiter output L = max {(−torque difference upper limit value), min (torque difference upper limit value, correction torque)}

演算器C2では、リミッタB10で制限したリミッタ出力Lに係数Aを積算し、補正値[A×L]を出力する。なお、係数Aは、例えば、「0.5」であり、目標回転数差追従制御手段B8で算出された補正トルクと、本差動制限制御によるトルク差(具体的には、後述する演算器C3で算出された制限前軸駆動トルクと演算器C4で算出された制限後軸駆動トルクとの差)とを等しくするものである。   In the arithmetic unit C2, the coefficient A is added to the limiter output L limited by the limiter B10, and a correction value [A × L] is output. The coefficient A is, for example, “0.5”, and the correction torque calculated by the target rotational speed difference follow-up control means B8 and the torque difference by this differential limiting control (specifically, an arithmetic unit to be described later) The difference between the pre-restricted shaft drive torque calculated in C3 and the post-restricted shaft drive torque calculated in the calculator C4 is made equal.

演算器C2から出力された補正値[A×L]は、トルク配分演算手段B2で演算された目標前軸駆動トルク及び目標後軸駆動トルクを補正するものであり、これを、回転数の速い軸の方の目標駆動トルクから減算し、回転数の遅い軸の方の目標駆動トルクに加算することにより、各軸の目標駆動トルクを補正している。なお、本実施例では、前軸13の回転数を速い方とし、後軸18の回転数を遅い方として、以降の説明を行う。   The correction value [A × L] output from the calculator C2 is used to correct the target front shaft drive torque and the target rear shaft drive torque calculated by the torque distribution calculation means B2, and this is corrected with a high rotational speed. The target drive torque of each axis is corrected by subtracting it from the target drive torque of the axis and adding it to the target drive torque of the axis having the lower rotational speed. In the present embodiment, the following description will be made on the assumption that the rotational speed of the front shaft 13 is faster and the rotational speed of the rear shaft 18 is slower.

演算器C3では、トルク配分演算手段B2で演算された目標前軸駆動トルクから、演算器C2から出力された補正値[A×L]を減算することで、最終的な前軸駆動トルク(制限前軸駆動トルク)を出力しており、一方、演算器C4では、トルク配分演算手段B2で演算された目標後軸駆動トルクに、演算器C2から出力された補正値[A×L]を加算することで、最終的な後軸駆動トルク(制限後軸駆動トルク)を出力している。   The computing unit C3 subtracts the correction value [A × L] output from the computing unit C2 from the target front shaft driving torque computed by the torque distribution computing unit B2, thereby obtaining the final front shaft driving torque (limitation). On the other hand, the calculator C4 adds the correction value [A × L] output from the calculator C2 to the target rear axis drive torque calculated by the torque distribution calculator B2. Thus, the final rear shaft drive torque (restricted rear shaft drive torque) is output.

前軸駆動トルク→前軸モータトルク変換手段B3では、以下の式を用いて、演算器C3から出力された制限前軸駆動トルクを、前軸モータ15の前軸モータトルクに変換している。この式での係数は、前軸13の減速比に応じたものであり、例えば、係数=(1/減速比)である。
前軸モータトルク=制限前軸駆動トルク×係数
The front shaft drive torque → front shaft motor torque conversion means B3 converts the limited front shaft drive torque output from the computing unit C3 into the front shaft motor torque of the front shaft motor 15 using the following equation. The coefficient in this equation corresponds to the reduction ratio of the front shaft 13, and is, for example, coefficient = (1 / reduction ratio).
Front shaft motor torque = Limit front shaft drive torque x Factor

同様に、後軸駆動トルク→後軸モータトルク変換手段B11では、以下の式を用いて、演算器C4から出力された制限後軸駆動トルクを、後軸モータ20の後軸モータトルクに変換している。この式での係数は、後軸18の減速比に応じたものであり、例えば、係数=(1/減速比)である。
後軸モータトルク=制限後軸駆動トルク×係数
Similarly, the rear shaft driving torque → rear shaft motor torque converting means B11 converts the limited rear shaft driving torque output from the computing unit C4 into the rear shaft motor torque of the rear motor 20 using the following equation. ing. The coefficient in this equation corresponds to the reduction ratio of the rear shaft 18, and for example, coefficient = (1 / reduction ratio).
Rear shaft motor torque = Restricted rear shaft drive torque x coefficient

前軸モータ制御手段B4では、上記前軸モータトルクを出力するように、前軸モータ15を制御しており、後軸モータ制御手段B12では、上記後軸モータトルクとなるように、後軸モータ20を制御しており、このようにして、前軸モータ15及び後軸モータ20を制御することにより、差動制限を行うことになる。   The front shaft motor control means B4 controls the front shaft motor 15 so as to output the front shaft motor torque, and the rear shaft motor control means B12 controls the rear shaft motor so as to obtain the rear shaft motor torque. In this way, differential control is performed by controlling the front shaft motor 15 and the rear shaft motor 20.

ここで、図1〜図3を参照して、差動制限制御装置21における差動制限の制御手順の概略を説明する。   Here, with reference to FIG. 1 to FIG. 3, an outline of a control procedure for differential limitation in the differential limitation control device 21 will be described.

運転者の加速要求(車速、アクセル開度)に応じて、総駆動トルクを演算し、車両状態や運転者の操作状態に応じて、前軸13、後軸18各々に配分する目標前軸駆動トルク、目標後軸駆動トルクを求める(図2の総駆動トルク演算手段B1、トルク配分演算手段B2参照)。   The target front shaft drive that calculates the total drive torque according to the driver's acceleration request (vehicle speed, accelerator opening) and distributes it to each of the front shaft 13 and the rear shaft 18 according to the vehicle state and the driver's operation state. Torque and target rear shaft drive torque are obtained (see total drive torque calculation means B1 and torque distribution calculation means B2 in FIG. 2).

前軸13及び後軸18の実回転数又は前軸モータ15のモータ回転数及び後軸モータ20のモータ回転数を用いて、実前後軸間回転数差を演算する(図2の前軸実回転数演算手段B6、後軸実回転数演算手段B7及び演算器C1参照)。   Using the actual rotational speed of the front shaft 13 and the rear shaft 18, or the motor rotational speed of the front shaft motor 15 and the motor rotational speed of the rear shaft motor 20, the actual rotational speed difference between the front and rear axes is calculated (the front shaft actual speed in FIG. 2). (Refer rotation speed calculation means B6, rear-axis real rotation speed calculation means B7, and calculator C1).

車両状態(車速)や運転者の操作状態(操舵角)に基づき、目標回転数差を演算する(図2の目標回転数差演算手段B5参照)。   Based on the vehicle state (vehicle speed) and the driver's operation state (steering angle), the target rotational speed difference is calculated (see target rotational speed difference calculating means B5 in FIG. 2).

目標回転数差に対する実前後軸間回転数差の偏差を用いて、実前後軸間回転数差を目標回転数差へ追従制御させるための補正トルクを演算する(図2の目標回転数差追従制御手段B8参照)。例えば、PID制御により補正トルクを求めればよい。   Using the deviation of the actual front-rear shaft rotational speed difference from the target rotational speed difference, a correction torque for controlling the actual front-rear shaft rotational speed difference to the target rotational speed difference is calculated (target rotational speed difference tracking in FIG. 2). Control means B8). For example, the correction torque may be obtained by PID control.

運転者の操作状態(総駆動トルク(又はアクセル開度)、操舵角)に基づいて、補正トルクに対するトルク差上限値を演算する(図2のトルク差上限値演算手段B9及び図3(a)、(b)のマップ1、2参照)。このとき、総駆動トルク又はアクセル開度に基づいて、補正トルクの最大値を制限する最大差動制限トルクを演算し、操舵角に基づいて、最大差動制限トルクを補正する補正係数を演算し、最大差動制限トルクに補正係数を積算することで、トルク差上限値を求めている。   Based on the driver's operating state (total driving torque (or accelerator opening), steering angle), a torque difference upper limit value for the correction torque is calculated (torque difference upper limit calculation means B9 in FIG. 2 and FIG. 3 (a)). (See maps 1 and 2 in (b)). At this time, the maximum differential limiting torque that limits the maximum value of the correction torque is calculated based on the total driving torque or the accelerator opening, and the correction coefficient that corrects the maximum differential limiting torque is calculated based on the steering angle. The torque difference upper limit value is obtained by adding the correction coefficient to the maximum differential limit torque.

補正トルクの絶対値をトルク差上限値以下に制限するリミッタ処理を行う(図2のリミッタB10参照)。   A limiter process is performed to limit the absolute value of the correction torque to a torque difference upper limit value or less (see limiter B10 in FIG. 2).

リミッタ処理されたリミッタ出力Lに係数Aを積算して、補正値[A×L]を出力し、トルク配分演算手段B2で演算された目標前軸駆動トルクから補正値[A×L]を減算して、最終的な前軸駆動トルク(制限前軸駆動トルク)として出力すると共に、トルク配分演算手段B2で演算された目標後軸駆動トルクに補正値[A×L]を加算して、最終的な後軸駆動トルク(制限後軸駆動トルク)を出力する(図2の演算器C2、C3、C4参照)。   The coefficient A is added to the limiter output L subjected to the limiter process to output a correction value [A × L], and the correction value [A × L] is subtracted from the target front shaft drive torque calculated by the torque distribution calculation means B2. The final front shaft drive torque (restricted front shaft drive torque) is output, and the correction value [A × L] is added to the target rear shaft drive torque calculated by the torque distribution calculation means B2. The rear shaft driving torque (restricted rear shaft driving torque) is output (see the calculators C2, C3, and C4 in FIG. 2).

制限前軸駆動トルクを前軸モータ15で出力する前軸モータトルクに変換する(図2の前軸駆動トルク→前軸モータトルク変換手段B3参照)と共に、制限後軸駆動トルクを後軸モータ20で出力する後軸モータトルクに変換する(図2の後軸駆動トルク→後軸モータトルク変換手段B11参照)。   The restricted front shaft drive torque is converted into the front shaft motor torque output by the front shaft motor 15 (see front shaft drive torque → front shaft motor torque conversion means B3 in FIG. 2), and the restricted rear shaft drive torque is converted to the rear shaft motor 20. Is converted into the rear shaft motor torque (see rear shaft drive torque → rear shaft motor torque conversion means B11 in FIG. 2).

変換した前軸モータトルク及び後軸モータトルクを各々出力するように、前軸モータ15及び後軸モータ20を制御して、差動制限を行う(図2の前軸モータ制御手段B4、後軸モータ制御手段B12参照)。   The front shaft motor 15 and the rear shaft motor 20 are controlled so as to output the converted front shaft motor torque and rear shaft motor torque, respectively, and differential limitation is performed (front shaft motor control means B4, rear shaft in FIG. 2). See motor control means B12).

上述した制御により、ハイゲインの追従制御を行って、目標回転数差に対する補正トルクを算出しても、算出した補正トルクの上限を制限し、制限した補正トルクに基づくモータトルクを用いて、前軸モータ15及び後軸モータ20を制御するので、モータトルクの応答性、目標値への収斂性が向上する。その結果、電子制御LSDを用いたイニシャルトルクによる差動制限制御と同等の効果が得られ、安定性の向上やトラクション性能の向上を図ることができる。又、目標回転数差を0とする場合にも、電子制御LSDと同様の効果が得られるため、直進安定性が向上する。   Even if high gain follow-up control is performed by the above-described control and the correction torque for the target rotational speed difference is calculated, the upper limit of the calculated correction torque is limited, and the front torque is calculated using the motor torque based on the limited correction torque. Since the motor 15 and the rear shaft motor 20 are controlled, the responsiveness of the motor torque and the convergence to the target value are improved. As a result, an effect equivalent to the differential limiting control by the initial torque using the electronic control LSD can be obtained, and the stability and the traction performance can be improved. Further, when the target rotational speed difference is set to 0, the same effect as the electronic control LSD can be obtained, so that the straight running stability is improved.

又、上述した制御により、制限された補正トルク(リミッタ出力L)に係数Aを積算した補正値[A×L]を、目標前軸駆動トルク及び目標後軸駆動トルクの一方(回転数の遅い方)へ加算し、他方(回転数の速い方)から減算するので、差動制限制御が介入しても、総駆動トルクは変化せず、スムーズな加減速を実現することができる。   In addition, the correction value [A × L] obtained by adding the coefficient A to the limited correction torque (limiter output L) by the control described above is used as one of the target front shaft drive torque and the target rear shaft drive torque (slow rotation speed). Therefore, even if differential limiting control is involved, the total drive torque does not change and smooth acceleration / deceleration can be realized.

又、上述した制御では、車速及び操舵角から演算した目標回転数差を用いるので、目標車体姿勢から実車体姿勢がずれた分だけ差動制限トルクが作用し、スムーズな旋回と優れた安定性を両立することができる。   In the above-described control, the target rotational speed difference calculated from the vehicle speed and the steering angle is used, so that the differential limiting torque acts as much as the actual vehicle body posture deviates from the target vehicle body posture, smooth turning and excellent stability. Can be achieved.

(実施例2)
図4は、本実施例の電動車両の差動制限制御装置を説明する概略構成図である。又、図5は、図4に示した差動制限制御装置を説明するブロック図である。
(Example 2)
FIG. 4 is a schematic configuration diagram illustrating a differential limiting control device for an electric vehicle according to the present embodiment. FIG. 5 is a block diagram for explaining the differential limiting control device shown in FIG.

図1に示す電動車両30は、前左輪31と、前右輪32と、前左輪31を独立して駆動する動力源となる前左輪モータ33と、前右輪32を独立して駆動する動力源となる前右輪モータ34と、後左輪35と、後右輪36と、後左輪35を独立して駆動する動力源となる後左輪モータ37と、後右輪36を独立して駆動する動力源となる後右輪モータ38とを有する。つまり、四輪が独立して電動モータで駆動される構成である。   An electric vehicle 30 shown in FIG. 1 has a front left wheel 31, a front right wheel 32, a front left wheel motor 33 serving as a power source for independently driving the front left wheel 31, and power for independently driving the front right wheel 32. Front right wheel motor 34 as a source, rear left wheel 35, rear right wheel 36, rear left wheel motor 37 as a power source for independently driving the rear left wheel 35, and rear right wheel 36 are driven independently. And a rear right wheel motor 38 as a power source. That is, the four wheels are independently driven by the electric motor.

そして、後右輪モータ38(電動モータ)及び後左輪モータ37(他の電動モータ)は、差動制限制御装置39により制御される。差動制限制御装置39の制御対象は、前左輪モータ33及び前右輪モータ34のみでも、後左輪モータ37及び後右輪モータ38のみでも、前左輪モータ33、前右輪モータ34、後左輪モータ37及び後右輪モータ38全てでも構わないが、本実施例では、説明を簡単にするため、制御対象を後左輪モータ37及び後右輪モータ38のみとして説明を行う。つまり、本実施例においては、後右輪36が第1車輪となり、後左輪35が第2車輪となる。   The rear right wheel motor 38 (electric motor) and the rear left wheel motor 37 (other electric motors) are controlled by a differential restriction control device 39. The control object of the differential limiting control device 39 is only the front left wheel motor 33 and the front right wheel motor 34, or only the rear left wheel motor 37 and the rear right wheel motor 38, the front left wheel motor 33, the front right wheel motor 34, and the rear left wheel. Although all of the motor 37 and the rear right wheel motor 38 may be used, in the present embodiment, in order to simplify the explanation, only the rear left wheel motor 37 and the rear right wheel motor 38 are described as control targets. That is, in the present embodiment, the rear right wheel 36 is the first wheel, and the rear left wheel 35 is the second wheel.

次に、図5も参照して、差動制限制御装置39の機能及び制御を説明する。   Next, the function and control of the differential limiting control device 39 will be described with reference to FIG.

差動制限制御装置39は、総駆動トルク演算手段B21と、トルク配分演算手段B22と、後右輪駆動トルク→後右輪モータトルク変換手段B23と、後右輪モータ制御手段B24と、目標回転数差演算手段B25と、実後右輪回転数検出手段B26と、実後左輪回転数検出手段B27と、目標回転数差追従制御手段B28と、トルク差上限値演算手段B29と、リミッタB30と、後左輪駆動トルク→後左輪モータトルク変換手段B31と、後左輪モータ制御手段B32とを有する。   The differential limit control device 39 includes total drive torque calculation means B21, torque distribution calculation means B22, rear right wheel drive torque → rear right wheel motor torque conversion means B23, rear right wheel motor control means B24, and target rotation. Number difference calculation means B25, actual rear right wheel rotation speed detection means B26, actual rear left wheel rotation speed detection means B27, target rotation speed difference tracking control means B28, torque difference upper limit value calculation means B29, limiter B30, Rear left wheel drive torque → rear left wheel motor torque conversion means B31 and rear left wheel motor control means B32.

なお、センサ群A21は、例えば、車速を検出する車速センサ、アクセル開度を検出するアクセル開度センサ、ステアリングの操舵角を検出する操舵角センサ、各輪の車輪速から実回転数を検出する車輪速センサ、車両のヨーレートを検出するヨーレートセンサ、車両の横加速度を検出する横加速度センサ(共に図示省略)等であり、検出されたセンサ値を用いて、後述する演算が行われる。   The sensor group A21 detects, for example, a vehicle speed sensor that detects a vehicle speed, an accelerator opening sensor that detects an accelerator opening, a steering angle sensor that detects a steering angle of a steering wheel, and an actual rotational speed from the wheel speed of each wheel. A wheel speed sensor, a yaw rate sensor that detects the yaw rate of the vehicle, a lateral acceleration sensor that detects the lateral acceleration of the vehicle (both not shown), and the like, and a calculation described later is performed using the detected sensor values.

総駆動トルク演算手段B21では、運転者の加速要求に応じて、総駆動トルクを演算している。具体的には、車速センサ、アクセル開度センサで検出された車速、アクセル開度に基づき、下記式に示すように、車速、アクセル開度を変数とする関数F1により総駆動トルクを求めている。
総駆動トルク=F1(車速、アクセル開度)
The total drive torque calculation means B21 calculates the total drive torque in response to the driver's acceleration request. Specifically, based on the vehicle speed and the accelerator opening detected by the vehicle speed sensor and the accelerator opening sensor, the total driving torque is obtained by a function F1 having the vehicle speed and the accelerator opening as variables as shown in the following formula. .
Total drive torque = F1 (vehicle speed, accelerator opening)

トルク配分演算手段B22では、総駆動トルク演算手段B21で演算された総駆動トルクを、車両状態や運転者の操作状態に応じて、後左輪35、後右輪36各々に、目標駆動トルクとして配分している。後右輪36へ配分する目標後右輪駆動トルクは、目標ヨーレートとヨーレートセンサで検出された実ヨーレートとの偏差に基づき、PID制御により求めても良いし(下記式(4))、車両の荷重配分比(固定値)に応じて求めても良いし(下記式(5))、横加速度センサで検出された横加速度に基づき、横加速度を変数とする関数F4により求めても良い(下記式(6))。
目標後右輪駆動トルク=総駆動トルク×PID(目標ヨーレート−実ヨーレート)
…(4)
目標後右輪駆動トルク=総駆動トルク×荷重配分比(固定値) …(5)
目標後右輪駆動トルク=総駆動トルク×F5(横加速度) …(6)
In the torque distribution calculation means B22, the total drive torque calculated by the total drive torque calculation means B21 is distributed as a target drive torque to each of the rear left wheel 35 and the rear right wheel 36 in accordance with the vehicle state and the driver's operation state. is doing. The target rear right wheel driving torque to be distributed to the rear right wheel 36 may be obtained by PID control based on the deviation between the target yaw rate and the actual yaw rate detected by the yaw rate sensor (the following equation (4)), or It may be obtained according to the load distribution ratio (fixed value) (the following equation (5)), or may be obtained by a function F4 using the lateral acceleration as a variable based on the lateral acceleration detected by the lateral acceleration sensor (below) Formula (6)).
Target rear right wheel drive torque = total drive torque × PID (target yaw rate−actual yaw rate)
... (4)
Target rear right wheel drive torque = total drive torque × load distribution ratio (fixed value) (5)
Target rear right wheel driving torque = total driving torque × F5 (lateral acceleration) (6)

そして、後左輪35へ配分する目標後左輪駆動トルクは、上記式(4)〜(6)のいずれかを用いて求めた目標後右輪駆動トルクを用いて、以下の式により求めている。
目標後左輪駆動トルク=総駆動トルク−目標後右輪駆動トルク
And the target rear left wheel drive torque distributed to the rear left wheel 35 is calculated | required by the following formula | equation using the target rear right wheel drive torque calculated | required using either of said Formula (4)-(6).
Target rear left wheel drive torque = total drive torque-target rear right wheel drive torque

そして、後述するように、配分された目標後右輪駆動トルク及び目標後左輪駆動トルクに対して、補正トルクが求められるが、この補正トルクがトルク差上限値により制限されることになり、これにより差動制限を行うことになる。   As will be described later, a corrected torque is obtained for the distributed target rear right wheel drive torque and the target rear left wheel drive torque, and this corrected torque is limited by the torque difference upper limit value. Therefore, differential limitation is performed.

目標回転数差演算手段B25では、車両状態や運転者の操作状態に応じて、目標回転数差を演算している。具体的には、車速センサ、操舵角センサで検出された車速、操舵角に基づき、下記式に示すように、車速、操舵角を変数とする関数F4により目標回転数差を求める。
目標回転数差=F4(車速、操舵角)
なお、直進状態のとき、目標回転数差は、0となる。
The target rotational speed difference calculation means B25 calculates the target rotational speed difference according to the vehicle state and the driver's operation state. Specifically, based on the vehicle speed and the steering angle detected by the vehicle speed sensor and the steering angle sensor, the target rotational speed difference is obtained by a function F4 using the vehicle speed and the steering angle as variables, as shown in the following equations.
Target speed difference = F4 (vehicle speed, steering angle)
Note that the target rotational speed difference is 0 when the vehicle is running straight.

実後右輪回転数検出手段B26では、後右輪36の車輪速センサから実後右輪回転数を検出しており、実後左輪回転数検出手段B27では、後左輪35の車輪速センサから実後左輪回転数を検出しており、演算器C21において、下記式に示すように、検出した実後右輪回転数から検出した実後左輪回転数を減算することにより、後右輪36と後左輪35との回転数差である実左右輪回転数差を求めている。
実左右輪回転数差=実後右輪回転数−実後左輪回転数
又、後左輪モータ37及び後右輪モータ38で検出された後左輪実モータ回転数及び後右輪実モータ回転数に基づき、下記式に示すように、実左右輪回転数差を求めるようにしてもよい。
実左右輪回転数差=(後右輪実モータ回転数−後左輪実モータ回転数)×係数
The actual rear right wheel rotational speed detection means B26 detects the actual rear right wheel rotational speed from the wheel speed sensor of the rear right wheel 36, and the actual rear left wheel rotational speed detection means B27 detects from the wheel speed sensor of the rear left wheel 35. The actual rear left wheel rotational speed is detected, and the computing unit C21 subtracts the detected actual rear left wheel rotational speed from the detected actual rear right wheel rotational speed, as shown in the following equation, to obtain the rear right wheel 36 and The difference between the actual left and right wheel rotational speeds, which is the rotational speed difference from the rear left wheel 35, is obtained.
Difference between actual left and right wheel rotational speed = actual rear right wheel rotational speed-actual rear left wheel rotational speed Also, the rear left wheel actual motor rotational speed and rear right wheel actual motor rotational speed detected by rear left wheel motor 37 and rear right wheel motor 38 Based on the following equation, the actual left and right wheel rotation speed difference may be obtained.
Difference between actual left and right wheel speeds = (rear right wheel actual motor speed-rear left wheel actual motor speed) x coefficient

目標回転数差追従制御手段B28では、実左右輪回転数差を目標回転数差へ追従制御させるための補正トルクを演算している。具体的には、目標回転数差演算手段B25で求めた目標回転数差と、実後右輪回転数検出手段B26、実後左輪回転数検出手段B27及び演算器C21で求めた実左右輪回転数差との偏差に基づき、下記式に示すように、PID制御により補正トルクを求める。
補正トルク=PID(目標回転数差−実左右輪回転数差)
なお、補正トルクは、PID制御に限らず、他の制御方法、例えば、H∞制御、ファジィ制御等により求めるようにしても良い。但し、本実施例では、どのような制御を用いた場合でも、応答性を高くするため、そのゲインを高く設定している。
The target rotational speed difference tracking control means B28 calculates a correction torque for controlling the actual left and right wheel rotational speed difference to follow the target rotational speed difference. Specifically, the target rotational speed difference obtained by the target rotational speed difference calculating means B25 and the actual right and left wheel rotational speeds obtained by the actual rear right wheel rotational speed detecting means B26, the actual rear left wheel rotational speed detecting means B27 and the calculator C21. Based on the deviation from the number difference, the correction torque is obtained by PID control as shown in the following equation.
Correction torque = PID (target speed difference-actual left and right wheel speed difference)
Note that the correction torque is not limited to PID control, and may be obtained by other control methods such as H∞ control, fuzzy control, and the like. However, in this embodiment, the gain is set high in order to increase the responsiveness no matter what control is used.

トルク差上限値演算手段B29では、車両状態や運転者の操作状態に基づいて、目標回転数差追従制御手段B28で算出された補正トルクに対する上限値(トルク差上限値)を演算している。具体的には、図3(a)、(b)に示すマップを用いて、トルク差上限値が演算される。なお、本実施例で用いるマップは、厳密には、図3(a)、(b)に示すマップとは値が異なるが、形状は同様のものであるので、本実施例では、一例として、図3(a)、(b)を用いて、以降の説明を行う。   The torque difference upper limit calculation means B29 calculates an upper limit value (torque difference upper limit value) for the correction torque calculated by the target rotational speed difference follow-up control means B28 based on the vehicle state and the driver's operation state. Specifically, the torque difference upper limit value is calculated using the maps shown in FIGS. 3 (a) and 3 (b). The map used in the present embodiment is strictly different from the map shown in FIGS. 3A and 3B, but has the same shape. Therefore, in this embodiment, as an example, The following description will be given with reference to FIGS.

図3(a)に示すマップ1(第1のマップ)は、運転者の加速要求となる総駆動トルクに基づいて、補正トルクの最大値を制限する最大差動制限トルクを演算するマップであり、総駆動トルクの増加に比例して、最大差動制限トルクを増加させている。後述の図3(b)のマップ2に示すように、操舵角の絶対値が0のとき、この最大差動制限トルクに対する補正係数は1である。そして、図3(a)に示すマップ1は、操舵角の絶対値が0のときのものであり、補正トルクを制限する最大値となる。   A map 1 (first map) shown in FIG. 3A is a map for calculating a maximum differential limiting torque that limits the maximum value of the correction torque based on the total driving torque that is a driver's acceleration request. The maximum differential limiting torque is increased in proportion to the increase in the total driving torque. As shown in a map 2 in FIG. 3B described later, when the absolute value of the steering angle is 0, the correction coefficient for the maximum differential limiting torque is 1. A map 1 shown in FIG. 3A is obtained when the absolute value of the steering angle is 0, and is a maximum value that limits the correction torque.

なお、総駆動トルクに代えて、運転者の加速要求となるアクセル開度に基づいて、最大差動制限トルクを演算してもよく、その場合のマップも、アクセル開度の増加に比例して、最大差動制限トルクを増加させている。アクセル開度は、アクセル開度センサを用いて検出する。   In place of the total driving torque, the maximum differential limiting torque may be calculated based on the accelerator opening that is the driver's acceleration request, and the map in that case is also proportional to the increase in the accelerator opening. The maximum differential limiting torque is increased. The accelerator opening is detected using an accelerator opening sensor.

図3(b)に示すマップ2(第2のマップ)は、操舵角センサで検出した操舵角に基づいて、マップ1で演算した最大差動制限トルクを補正する補正係数を演算するマップであり、操舵角の絶対値の増加に反比例して、補正係数を1から0へ減少させており、操舵角の絶対値が所定の値より大きい場合は、補正係数を0としている。   A map 2 (second map) shown in FIG. 3B is a map for calculating a correction coefficient for correcting the maximum differential limiting torque calculated in the map 1 based on the steering angle detected by the steering angle sensor. The correction coefficient is decreased from 1 to 0 in inverse proportion to the increase in the absolute value of the steering angle. When the absolute value of the steering angle is larger than a predetermined value, the correction coefficient is set to 0.

そして、トルク差上限値演算手段B29では、下記式に示すように、マップ1で演算した最大差動制限トルクにマップ2で演算した補正係数を積算することで、トルク差上限値を求めている。
トルク差上限値=(MAP1の最大差動制限トルク)×(MAP2の補正係数)
Then, in the torque difference upper limit calculating means B29, as shown in the following equation, the torque difference upper limit value is obtained by adding the correction coefficient calculated in map 2 to the maximum differential limiting torque calculated in map 1. .
Torque difference upper limit = (maximum differential limiting torque of MAP1) × (correction coefficient of MAP2)

リミッタB30では、目標回転数差追従制御手段B28から入力された補正トルクの絶対値を、トルク差上限値演算手段B29で演算されたトルク差上限値以下に制限し、出力している。具体的には、以下の式を用いて、補正トルクの絶対値の上限をトルク差上限値で制限したリミッタ出力を演算している。
リミッタ出力=max{(−トルク差上限値)、min(トルク差上限値、補正トルク)}
In the limiter B30, the absolute value of the correction torque input from the target rotational speed difference tracking control unit B28 is limited to be equal to or less than the torque difference upper limit value calculated by the torque difference upper limit value calculation unit B29. Specifically, a limiter output in which the upper limit of the absolute value of the correction torque is limited by the upper limit value of the torque difference is calculated using the following equation.
Limiter output = max {(−torque difference upper limit value), min (torque difference upper limit value, correction torque)}

演算器C22では、リミッタB30で制限したリミッタ出力Lに係数Aを積算し、補正値[A×L]を出力する。なお、係数Aは、例えば、「0.5」であり、目標回転数差追従制御手段B28で算出された補正トルクと、本差動制限制御によるトルク差(具体的には、後述する演算器C23で算出された制限後右輪駆動トルクと演算器C24で算出された制限後左輪駆動トルクとの差)とを等しくするものである。   The computing unit C22 adds the coefficient A to the limiter output L limited by the limiter B30, and outputs a correction value [A × L]. The coefficient A is, for example, “0.5”, and the correction torque calculated by the target rotational speed difference follow-up control means B28 and the torque difference by this differential limiting control (specifically, an arithmetic unit to be described later) The difference between the post-restricted right wheel drive torque calculated in C23 and the post-restricted left wheel drive torque calculated in the calculator C24 is made equal.

演算器C23では、トルク配分演算手段B22で演算された目標後右輪駆動トルクに、演算器C22から出力された補正値[A×L]を加算することで、最終的な後右輪駆動トルク(制限後右輪駆動トルク)を出力しており、一方、演算器C24では、トルク配分演算手段B22で演算された目標後左輪駆動トルクから、演算器C22から出力された補正値[A×L]を減算することで、最終的な後左輪駆動トルク(制限後左輪駆動トルク)を出力している。   The calculator C23 adds the correction value [A × L] output from the calculator C22 to the target rear right wheel drive torque calculated by the torque distribution calculator B22, thereby obtaining the final rear right wheel drive torque. On the other hand, the calculator C24 outputs the correction value [A × L output from the calculator C22 from the target rear left wheel drive torque calculated by the torque distribution calculator B22. ] Is output as a final rear left wheel driving torque (restricted left wheel driving torque).

後右輪駆動トルク→後右輪モータトルク変換手段B23では、以下の式を用いて、演算器C23から出力された制限後右輪駆動トルクを、後右輪モータ38の後右輪モータトルクに変換している。この式での係数は、後右輪36の減速比に応じたものであり、例えば、係数=(1/減速比)である。
後右輪モータトルク=制限後右輪駆動トルク×係数
In the rear right wheel drive torque → rear right wheel motor torque conversion means B23, the restricted right wheel drive torque output from the calculator C23 is converted into the rear right wheel motor torque of the rear right wheel motor 38 using the following equation. It has been converted. The coefficient in this equation is in accordance with the reduction ratio of the rear right wheel 36, for example, coefficient = (1 / reduction ratio).
Rear right wheel motor torque = Right wheel drive torque after restriction x coefficient

同様に、後左輪駆動トルク→後左輪モータトルク変換手段B31では、以下の式を用いて、演算器C24から出力された制限後左輪駆動トルクを、後左輪モータ37の後左輪モータトルクに変換している。この式での係数は、後左輪35の減速比に応じたものであり、例えば、係数=(1/減速比)である。
後左輪モータトルク=制限後左輪駆動トルク×係数
Similarly, the rear left wheel drive torque → rear left wheel motor torque conversion means B31 converts the limited left wheel drive torque output from the calculator C24 into the rear left wheel motor torque of the rear left wheel motor 37 using the following equation. ing. The coefficient in this equation corresponds to the reduction ratio of the rear left wheel 35, for example, coefficient = (1 / reduction ratio).
Rear left wheel motor torque = Restricted left wheel drive torque x coefficient

後右輪モータ制御手段B24では、上記後右輪モータトルクを出力するように、後右輪モータ38を制御しており、後左輪モータ制御手段B32では、上記後左輪モータトルクとなるように、後左輪モータ37を制御しており、このようにして、後右輪モータ38及び後左輪モータ37を制御することにより、差動制限を行うことになる。   The rear right wheel motor control means B24 controls the rear right wheel motor 38 to output the rear right wheel motor torque. The rear left wheel motor control means B32 controls the rear left wheel motor torque to The rear left wheel motor 37 is controlled. In this way, by controlling the rear right wheel motor 38 and the rear left wheel motor 37, differential limitation is performed.

ここで、図3〜図5を参照して、差動制限制御装置39における差動制限の制御手順の概略を説明する。   Here, with reference to FIG. 3 to FIG. 5, an outline of a control procedure for differential limitation in the differential limitation control device 39 will be described.

運転者の加速要求(車速、アクセル開度)に応じて、総駆動トルクを演算し、車両状態や運転者の操作状態に応じて、後左輪35、後右輪36各々に配分する目標後左輪駆動トルク、目標後右輪駆動トルクを求める(図5の総駆動トルク演算手段B21、トルク配分演算手段B22参照)。   The target rear left wheel that calculates the total driving torque according to the driver's acceleration request (vehicle speed, accelerator opening) and distributes it to each of the rear left wheel 35 and the rear right wheel 36 according to the vehicle state and the driver's operation state. The driving torque and the target rear right wheel driving torque are obtained (refer to total driving torque calculating means B21 and torque distribution calculating means B22 in FIG. 5).

後左輪35及び後右輪36の実回転数又は後左輪モータ37のモータ回転数及び後右輪モータ38のモータ回転数を用いて、実左右輪回転数差を演算する(図5の後右輪実回転数検出手段B26、後左輪実回転数検出手段B27及び演算器C21参照)。   The difference between the actual left and right wheel rotational speeds is calculated using the actual rotational speeds of the rear left wheel 35 and the rear right wheel 36 or the motor rotational speed of the rear left wheel motor 37 and the motor rotational speed of the rear right wheel motor 38 (rear right and left in FIG. 5). Wheel real rotation speed detection means B26, rear left wheel real rotation speed detection means B27, and calculator C21).

車両状態(車速)や運転者の操作状態(操舵角)に基づき、目標回転数差を演算する(図5の目標回転数差演算手段B25参照)。   Based on the vehicle state (vehicle speed) and the driver's operation state (steering angle), the target rotational speed difference is calculated (see target rotational speed difference calculating means B25 in FIG. 5).

目標回転数差に対する実左右輪回転数差の偏差を用いて、実左右輪回転数差を目標回転数差へ追従制御させるための補正トルクを演算する(図5の目標回転数差追従制御手段B28参照)。例えば、PID制御により補正トルクを求めればよい。   Using the deviation of the actual left and right wheel rotational speed difference with respect to the target rotational speed difference, a correction torque for controlling the actual left and right wheel rotational speed difference to follow the target rotational speed difference is calculated (target rotational speed difference tracking control means in FIG. 5). B28). For example, the correction torque may be obtained by PID control.

運転者の操作状態(総駆動トルク(又はアクセル開度)、操舵角)に基づいて、補正トルクに対するトルク差上限値を演算する(図5のトルク差上限値演算手段B29及び図3(a)、(b)のマップ1、2参照)。このとき、総駆動トルク又はアクセル開度に基づいて、補正トルクの最大値を制限する最大差動制限トルクを演算し、操舵角に基づいて、最大差動制限トルクを補正する補正係数を演算し、最大差動制限トルクに補正係数を積算することで、トルク差上限値を求めている。   Based on the driver's operation state (total driving torque (or accelerator opening), steering angle), a torque difference upper limit value for the correction torque is calculated (torque difference upper limit calculation means B29 in FIG. 5 and FIG. 3 (a)). (See maps 1 and 2 in (b)). At this time, the maximum differential limiting torque that limits the maximum value of the correction torque is calculated based on the total driving torque or the accelerator opening, and the correction coefficient that corrects the maximum differential limiting torque is calculated based on the steering angle. The torque difference upper limit value is obtained by adding the correction coefficient to the maximum differential limit torque.

補正トルクの絶対値をトルク差上限値以下に制限するリミッタ処理を行う(図5のリミッタB30参照)。   A limiter process is performed to limit the absolute value of the correction torque to a torque difference upper limit value or less (see limiter B30 in FIG. 5).

リミッタ処理されたリミッタ出力Lに係数Aを積算して、補正値[A×L]を出力し、トルク配分演算手段B22で演算された目標後右輪駆動トルクに補正値[A×L]を加算して、最終的な後右輪駆動トルク(制限後右輪駆動トルク)として出力すると共に、トルク配分演算手段B22で演算された目標後左輪駆動トルクから補正値[A×L]を減算して、最終的な後左輪駆動トルク(制限後左輪駆動トルク)を出力する(図5の演算器C22、C23、C24参照)。   The coefficient A is added to the limiter output L subjected to the limiter process to output a correction value [A × L], and the correction value [A × L] is added to the target rear right wheel drive torque calculated by the torque distribution calculation means B22. These are added and output as the final rear right wheel drive torque (restricted right wheel drive torque), and the correction value [A × L] is subtracted from the target rear left wheel drive torque calculated by the torque distribution calculation means B22. Thus, the final rear left wheel driving torque (restricted left wheel driving torque) is output (see computing units C22, C23, and C24 in FIG. 5).

制限後右輪駆動トルクを後右輪モータ38で出力する後右輪モータトルクに変換する(図5の後右輪前軸駆動トルク→後右輪モータトルク変換手段B23参照)と共に、制限後左輪駆動トルクを後左輪モータ37で出力する後左輪モータトルクに変換する(図5の後左輪駆動トルク→後左輪モータトルク変換手段B31参照)。   The restricted right wheel drive torque is converted into a rear right wheel motor torque output by the rear right wheel motor 38 (see rear right wheel front shaft drive torque → rear right wheel motor torque conversion means B23 in FIG. 5), and the restricted left wheel The drive torque is converted into rear left wheel motor torque output by the rear left wheel motor 37 (see rear left wheel drive torque → rear left wheel motor torque conversion means B31 in FIG. 5).

変換した後右輪モータトルク及び後左輪モータトルクを各々出力するように、後右輪モータ38及び後左輪モータ37を制御して、差動制限を行う(図5の後右輪モータ制御手段B24、後左輪モータ制御手段B32参照)。   The rear right wheel motor 38 and the rear left wheel motor 37 are controlled so as to output the converted rear right wheel motor torque and rear left wheel motor torque, respectively, and differential limitation is performed (rear right wheel motor control means B24 in FIG. 5). The rear left wheel motor control means B32).

上述した制御により、ハイゲインの追従制御を行って、目標回転数差に対する補正トルクを算出しても、算出した補正トルクの上限を制限し、制限した補正トルクに基づくモータトルクを用いて、後右輪モータ38及び後左輪モータ37を制御するので、モータトルクの応答性、目標値への収斂性が向上する。その結果、電子制御LSDを用いたイニシャルトルクによる差動制限制御と同等の効果が得られ、安定性の向上やトラクション性能の向上を図ることができる。又、目標回転数差を0とする場合にも、電子制御LSDと同様の効果が得られるため、直進安定性が向上する。   Even if high gain follow-up control is performed by the above-described control and the correction torque for the target rotational speed difference is calculated, the upper limit of the calculated correction torque is limited, and the motor torque based on the limited correction torque is used. Since the wheel motor 38 and the rear left wheel motor 37 are controlled, the response of the motor torque and the convergence to the target value are improved. As a result, an effect equivalent to the differential limiting control by the initial torque using the electronic control LSD can be obtained, and the stability and the traction performance can be improved. Further, when the target rotational speed difference is set to 0, the same effect as the electronic control LSD can be obtained, so that the straight running stability is improved.

又、上述した制御では、車速及び操舵角から演算した目標回転数差を用いるので、目標車体姿勢から実車体姿勢がずれた分だけ差動制限トルクが作用し、スムーズな旋回と優れた安定性を両立することができる。   In the above-described control, the target rotational speed difference calculated from the vehicle speed and the steering angle is used, so that the differential limiting torque acts as much as the actual vehicle body posture deviates from the target vehicle body posture, smooth turning and excellent stability. Can be achieved.

本発明は、電動車両において、前後軸間、左右輪間の差動制限を行う際に好適なものである。   The present invention is suitable for limiting the differential between the front and rear shafts and between the left and right wheels in an electric vehicle.

11、31 前左輪
12、32 前右輪
13 前軸
14 デファレンシャル・ギア
15、20、33、34、37、38 電動モータ
16、35 後左輪
17、36 後右輪
18 後軸
19 デファレンシャル・ギア
21、39 差動制限制御装置
11, 31 Front left wheel 12, 32 Front right wheel 13 Front shaft 14 Differential gear 15, 20, 33, 34, 37, 38 Electric motor 16, 35 Rear left wheel 17, 36 Rear right wheel 18 Rear shaft 19 Differential gear 21 39 Differential limiting control device

Claims (4)

第1車輪を駆動する動力源として、少なくとも電動モータを有し、
第2車輪を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記第1車輪と前記第2車輪との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記第1車輪への目標第1車輪駆動トルクと前記第2車輪への目標第2車輪駆動トルクに各々配分し、
前記第1車輪の実回転数と前記第2車輪の実回転数から、前記第1車輪と前記第2車輪との間の実回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記第1車輪と前記第2車輪との間の目標回転数差を演算し、
前記実回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標第1車輪駆動トルク及び前記目標第2車輪駆動トルクのうち、一方に前記リミッタ出力を加算すると共に、他方から前記リミッタ出力を減算して、制限第1車輪駆動トルク及び制限第2車輪駆動トルクを演算し、
前記制限第1車輪駆動トルクとなるように、前記電動モータを制御すると共に、前記制限第2車輪駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする電動車両の差動制限制御装置。
As a power source for driving the first wheel, it has at least an electric motor,
As a power source for driving the second wheel, it has at least another electric motor,
A differential restriction control device that controls the electric motor and the other electric motor to perform differential restriction between the first wheel and the second wheel;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to the vehicle state and the operation state of the driver, the total drive torque is respectively distributed to the target first wheel drive torque to the first wheel and the target second wheel drive torque to the second wheel,
From the actual rotational speed of the first wheel and the actual rotational speed of the second wheel, the actual rotational speed difference between the first wheel and the second wheel is calculated,
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the first wheel and the second wheel is calculated,
Calculating a correction torque for causing the actual rotational speed difference to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
The limiter output is added to one of the target first wheel drive torque and the target second wheel drive torque, and the limiter output is subtracted from the other to limit the first wheel drive torque and the limit second wheel drive. Calculate the torque,
The electric motor is controlled so as to be the limited first wheel driving torque, and the other electric motor is controlled so as to be the limited second wheel driving torque, thereby performing differential limitation. A differential limiting control device for an electric vehicle.
前軸を駆動する動力源として、少なくとも電動モータを有し、
後軸を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記前軸と前記後軸との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記前軸への目標前軸駆動トルクと前記後軸への目標後軸駆動トルクに各々配分し、
前記前軸の実回転数と前記後軸の実回転数から、前記前軸と前記後軸との間の実回転数差である実前後軸間回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記前軸と前記後軸との間の目標回転数差を演算し、
前記実前後軸間回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標前軸駆動トルク及び前記目標後軸駆動トルクのうち、回転数の遅い軸の方に前記リミッタ出力を加算すると共に、回転数の速い軸の方から前記リミッタ出力を減算して、制限前軸駆動トルク及び制限後軸駆動トルクを演算し、
前記制限前軸駆動トルクとなるように、前記電動モータを制御すると共に、前記制限後軸駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする電動車両の差動制限制御装置。
As a power source for driving the front shaft, it has at least an electric motor,
As a power source for driving the rear shaft, it has at least another electric motor,
A differential limiting control device that controls the electric motor and the other electric motor to perform differential limiting between the front shaft and the rear shaft;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to a vehicle state and a driver's operation state, the total drive torque is distributed to the target front shaft drive torque to the front shaft and the target rear shaft drive torque to the rear shaft, respectively.
From the actual rotational speed of the front shaft and the actual rotational speed of the rear shaft, the actual rotational speed difference between the front and rear axes, which is the actual rotational speed difference between the front shaft and the rear shaft, is calculated.
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the front shaft and the rear shaft is calculated,
Calculate a correction torque for causing the actual front-rear shaft rotational speed difference to follow the target rotational speed difference,
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
Of the target front shaft drive torque and the target rear shaft drive torque, the limiter output is added to the shaft with the lower rotational speed, and the limiter output is subtracted from the shaft with the higher rotational speed, before the limit. Calculate shaft drive torque and post-restricted shaft drive torque,
The electric motor is controlled so as to be the pre-restricted shaft driving torque, and the other electric motor is controlled so as to be the post-restricted shaft driving torque to perform differential limitation. A differential limiting control device for an electric vehicle.
右輪を駆動する動力源として、少なくとも電動モータを有し、
左輪を駆動する動力源として、少なくとも他の電動モータを有し、
前記電動モータと前記他の電動モータとを制御して、前記右輪と前記左輪との間の差動制限を行う差動制限制御装置を備え、
前記差動制限制御装置は、
運転者の加速要求に応じて、車両の総駆動トルクを演算し、
車両状態及び運転者の操作状態に応じて、前記総駆動トルクを前記右輪への目標右輪駆動トルクと前記左輪への目標左輪駆動トルクに各々配分し、
前記右輪の実回転数と前記左輪の実回転数から、前記右輪と前記左輪との間の実回転数差である実左右輪回転数差を演算し、
前記車両の車速及び操舵角に基づいて、前記右輪と前記左輪との間の目標回転数差を演算し、
前記実左右輪回転数差を前記目標回転数差に追従させる補正トルクを演算し、
運転者の操作状態に基づいて、前記補正トルクの最大値を制限する最大差動制限トルクを演算し、
前記補正トルクの絶対値の上限値を前記最大差動制限トルクで制限したリミッタ出力を演算し、
前記目標右輪駆動トルクに前記リミッタ出力を加算して、制限右輪駆動トルクを演算すると共に、前記目標左輪駆動トルクから前記リミッタ出力を減算して、制限左輪駆動トルクを演算し、
前記制限右輪駆動トルクとなるように、前記電動モータを制御すると共に、前記制限左輪駆動トルクとなるように、前記他の電動モータを制御して、差動制限を行うことを特徴とする電動車両の差動制限制御装置。
As a power source for driving the right wheel, it has at least an electric motor,
As a power source for driving the left wheel, it has at least another electric motor,
A differential limiting control device that controls the electric motor and the other electric motor to perform differential limiting between the right wheel and the left wheel;
The differential limiting control device includes:
According to the driver's acceleration request, calculate the total driving torque of the vehicle,
According to the vehicle state and the driver's operation state, the total drive torque is respectively distributed to the target right wheel drive torque to the right wheel and the target left wheel drive torque to the left wheel,
From the actual rotational speed of the right wheel and the actual rotational speed of the left wheel, an actual left-right wheel rotational speed difference that is the actual rotational speed difference between the right wheel and the left wheel is calculated,
Based on the vehicle speed and steering angle of the vehicle, a target rotational speed difference between the right wheel and the left wheel is calculated,
Calculating a correction torque that causes the difference between the actual left and right wheel rotational speeds to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the correction torque is calculated,
A limiter output obtained by limiting the upper limit of the absolute value of the correction torque with the maximum differential limiting torque is calculated,
The limiter output is added to the target right wheel drive torque to calculate a limited right wheel drive torque, and the limiter output is subtracted from the target left wheel drive torque to calculate a limit left wheel drive torque.
The electric motor is controlled so as to be the limited right wheel driving torque, and the other electric motor is controlled so as to be the limited left wheel driving torque to perform differential limitation. A differential limiting control device for a vehicle.
請求項1から請求項3のいずれか1つに記載の電動車両の差動制限制御装置において、
前記差動制限制御装置は、
前記最大差動制限トルクを、運転者の加速要求の増加に応じて、当該最大差動制限トルクが増加する第1のマップを用いて演算し、
前記最大差動制限トルクを補正する補正係数を、前記操舵角の絶対値の増加に応じて、当該補正係数が1から0へ減少する第2のマップを用いて演算し、
前記最大差動制限トルクと前記補正係数とを積算して、前記補正トルクを制限するトルク差上限値を演算し、
前記補正トルクの絶対値の上限値を前記トルク差上限値で制限して、前記リミッタ出力を演算することを特徴とする電動車両の差動制限制御装置。
In the differential limiting control device for an electric vehicle according to any one of claims 1 to 3,
The differential limiting control device includes:
The maximum differential limiting torque is calculated using a first map in which the maximum differential limiting torque increases according to an increase in the driver's acceleration request,
A correction coefficient for correcting the maximum differential limiting torque is calculated using a second map in which the correction coefficient decreases from 1 to 0 in accordance with an increase in the absolute value of the steering angle;
The maximum differential limit torque and the correction coefficient are integrated to calculate a torque difference upper limit value for limiting the correction torque,
The differential limit control device for an electric vehicle, wherein the limiter output is calculated by limiting an upper limit value of the absolute value of the correction torque with the upper limit value of the torque difference.
JP2009288993A 2009-12-21 2009-12-21 Differential limiting control device for electric vehicle Active JP5250541B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009288993A JP5250541B2 (en) 2009-12-21 2009-12-21 Differential limiting control device for electric vehicle
DE102010055223A DE102010055223A1 (en) 2009-12-21 2010-12-20 Differential limiting control apparatus for hybrid vehicle, has electric motor that is controlled to become limiting secondary drive-shaft driving torque while controlling internal combustion engine to become main-drive-shaft driving torque

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288993A JP5250541B2 (en) 2009-12-21 2009-12-21 Differential limiting control device for electric vehicle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013082639A Division JP2013192446A (en) 2013-04-11 2013-04-11 Differential limit control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2011130629A true JP2011130629A (en) 2011-06-30
JP5250541B2 JP5250541B2 (en) 2013-07-31

Family

ID=44292563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288993A Active JP5250541B2 (en) 2009-12-21 2009-12-21 Differential limiting control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP5250541B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192446A (en) * 2013-04-11 2013-09-26 Mitsubishi Motors Corp Differential limit control device for electric vehicle
WO2014054148A1 (en) * 2012-10-04 2014-04-10 トヨタ自動車株式会社 Wheel control device, vehicle, and wheel control method
JP2015027134A (en) * 2013-07-24 2015-02-05 三菱自動車工業株式会社 Controller of automobile
JP2015077906A (en) * 2013-10-17 2015-04-23 本田技研工業株式会社 Vehicular drive force distribution apparatus
DE102015116042A1 (en) 2014-09-30 2016-03-31 Fuji Jukogyo Kabushiki Kaisha Device and method for controlling vehicles
CN106394259A (en) * 2016-11-10 2017-02-15 长春工业大学 Implementation method for electric vehicle braking force redistribution
JPWO2014162830A1 (en) * 2013-04-03 2017-02-16 日産自動車株式会社 Driving force control device for left and right motor drive wheels
CN109367401A (en) * 2018-10-23 2019-02-22 展欣(宁波)新能源科技有限公司 A kind of In-wheel motor driving bridge motor differential speed control method
JP2019156132A (en) * 2018-03-12 2019-09-19 三菱自動車工業株式会社 Control device of electric vehicle
JPWO2021075415A1 (en) * 2019-10-16 2021-04-22
CN112930277A (en) * 2019-01-08 2021-06-08 宝马股份公司 Device for calibrating two electric motors arranged on one axle in a two-axle motor vehicle
CN112977071A (en) * 2019-12-13 2021-06-18 长城汽车股份有限公司 Control method and device of new energy vehicle and new energy vehicle
CN113771856A (en) * 2021-10-15 2021-12-10 上海洛轲智能科技有限公司 Vehicle control method, device, equipment and medium
CN114896828A (en) * 2022-07-14 2022-08-12 合肥磐石智能科技股份有限公司 Traveling crane electronic differential algorithm and demonstration device based on large-curvature fixed track

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690577A (en) * 1992-09-04 1994-03-29 Aisin Aw Co Ltd Vehicle
JPH0698418A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JPH09233613A (en) * 1996-02-21 1997-09-05 Railway Technical Res Inst Vehicle driving controller
JPH1159362A (en) * 1997-08-20 1999-03-02 Toyota Motor Corp Vehicle yawing control device
JP2002030952A (en) * 2000-07-19 2002-01-31 Honda Motor Co Ltd Driving force control device for front and rear drive vehicle
JP2006256454A (en) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd Torque distribution control device of vehicle
JP2007055476A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Driving force distribution control device of vehicle
JP2007125998A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Driving force distribution control device of four-wheel-drive vehicle
JP2007245995A (en) * 2006-03-17 2007-09-27 Honda Motor Co Ltd Control device for hybrid four-wheel drive vehicle
JP2008062687A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2011127732A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Control device for right-left driving force adjusting device for vehicle
JP2011126481A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Differential limit control device for hybrid vehicle

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690577A (en) * 1992-09-04 1994-03-29 Aisin Aw Co Ltd Vehicle
JPH0698418A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JPH09233613A (en) * 1996-02-21 1997-09-05 Railway Technical Res Inst Vehicle driving controller
JPH1159362A (en) * 1997-08-20 1999-03-02 Toyota Motor Corp Vehicle yawing control device
JP2002030952A (en) * 2000-07-19 2002-01-31 Honda Motor Co Ltd Driving force control device for front and rear drive vehicle
JP2006256454A (en) * 2005-03-16 2006-09-28 Nissan Motor Co Ltd Torque distribution control device of vehicle
JP2007055476A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Driving force distribution control device of vehicle
JP2007125998A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Driving force distribution control device of four-wheel-drive vehicle
JP2007245995A (en) * 2006-03-17 2007-09-27 Honda Motor Co Ltd Control device for hybrid four-wheel drive vehicle
JP2008062687A (en) * 2006-09-05 2008-03-21 Nissan Motor Co Ltd Driving force distribution controller for vehicle
JP2011127732A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Control device for right-left driving force adjusting device for vehicle
JP2011126481A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Differential limit control device for hybrid vehicle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054148A1 (en) * 2012-10-04 2014-04-10 トヨタ自動車株式会社 Wheel control device, vehicle, and wheel control method
CN104520138A (en) * 2012-10-04 2015-04-15 丰田自动车株式会社 Wheel control device, vehicle, and wheel control method
JP5841265B2 (en) * 2012-10-04 2016-01-13 トヨタ自動車株式会社 Wheel control device, vehicle, wheel control method
CN104520138B (en) * 2012-10-04 2016-09-28 丰田自动车株式会社 Wheel controls device, vehicle, wheel control method
JPWO2014162830A1 (en) * 2013-04-03 2017-02-16 日産自動車株式会社 Driving force control device for left and right motor drive wheels
JP2013192446A (en) * 2013-04-11 2013-09-26 Mitsubishi Motors Corp Differential limit control device for electric vehicle
JP2015027134A (en) * 2013-07-24 2015-02-05 三菱自動車工業株式会社 Controller of automobile
JP2015077906A (en) * 2013-10-17 2015-04-23 本田技研工業株式会社 Vehicular drive force distribution apparatus
US9931931B2 (en) 2013-10-17 2018-04-03 Honda Motor Co., Ltd. Driving force distribution apparatus and method for distributing driving force
US9889743B2 (en) 2014-09-30 2018-02-13 Subaru Corporation Vehicle control device and vehicle control method
CN105459849B (en) * 2014-09-30 2017-08-01 株式会社斯巴鲁 The control device of vehicle and the control method of vehicle
CN105459849A (en) * 2014-09-30 2016-04-06 富士重工业株式会社 Vehicle control device and vehicle control method
DE102015116042A1 (en) 2014-09-30 2016-03-31 Fuji Jukogyo Kabushiki Kaisha Device and method for controlling vehicles
DE102015116042B4 (en) 2014-09-30 2024-02-15 Subaru Corporation Device and method for controlling vehicles
CN106394259A (en) * 2016-11-10 2017-02-15 长春工业大学 Implementation method for electric vehicle braking force redistribution
JP2019156132A (en) * 2018-03-12 2019-09-19 三菱自動車工業株式会社 Control device of electric vehicle
JP7054049B2 (en) 2018-03-12 2022-04-13 三菱自動車工業株式会社 Control device for electric vehicles
CN109367401A (en) * 2018-10-23 2019-02-22 展欣(宁波)新能源科技有限公司 A kind of In-wheel motor driving bridge motor differential speed control method
CN112930277B (en) * 2019-01-08 2024-04-12 宝马股份公司 Device and method for calibrating two electric motors
CN112930277A (en) * 2019-01-08 2021-06-08 宝马股份公司 Device for calibrating two electric motors arranged on one axle in a two-axle motor vehicle
US11850949B2 (en) 2019-01-08 2023-12-26 Bayerische Motoren Werke Aktiengesellschaft Device for calibrating two electric motors mounted on one axle in two-axle motor vehicles
JP7255701B2 (en) 2019-10-16 2023-04-11 三菱自動車工業株式会社 Motor control device for electric vehicle
JPWO2021075415A1 (en) * 2019-10-16 2021-04-22
CN112977071A (en) * 2019-12-13 2021-06-18 长城汽车股份有限公司 Control method and device of new energy vehicle and new energy vehicle
CN113771856A (en) * 2021-10-15 2021-12-10 上海洛轲智能科技有限公司 Vehicle control method, device, equipment and medium
CN114896828A (en) * 2022-07-14 2022-08-12 合肥磐石智能科技股份有限公司 Traveling crane electronic differential algorithm and demonstration device based on large-curvature fixed track

Also Published As

Publication number Publication date
JP5250541B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5250541B2 (en) Differential limiting control device for electric vehicle
US10654470B2 (en) Vehicle control apparatus and method for controlling vehicle
US9889743B2 (en) Vehicle control device and vehicle control method
JP5835583B2 (en) Driving force control device for electric vehicle
CN107848526B (en) Vehicle turning control device
US9221359B2 (en) Electric vehicle driving force control device and electric vehicle driving force control method
JP2013192446A (en) Differential limit control device for electric vehicle
JP2014208516A (en) Drive force distribution control device for four-wheel drive vehicle
JP4844320B2 (en) Hybrid vehicle driving force control device
US8744710B2 (en) Control device for controlling drive force that operates on vehicle
US8694220B2 (en) Left-right wheel drive force distribution control apparatus for a vehicle
JP5250540B2 (en) Hybrid vehicle differential limit control device
JP2008074185A (en) Vehicle motion control method and vehicle motion controller
JP5447670B2 (en) Vehicle left and right wheel driving force distribution control device
JP5299256B2 (en) Control device for right / left driving force adjusting device for vehicle
JP6082805B2 (en) VEHICLE CONTROL DEVICE AND MOTORCYCLE EQUIPPED WITH THE SAME
JP2010173477A (en) Driving torque control device for vehicle
JP4443582B2 (en) Understeer suppression device
WO2023013565A1 (en) Vehicle control device
JP2013173529A (en) Differential restriction control device of hybrid vehicle
JP5435162B2 (en) Control device for right / left driving force adjusting device for vehicle
KR20220067066A (en) Method for controlling driving force of vehicle
JP4148133B2 (en) Vehicle control device
JP5495047B2 (en) Vehicle speed control device
JP4959502B2 (en) Road friction coefficient estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5250541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3