[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011120389A - Vehicle-mounted power converter - Google Patents

Vehicle-mounted power converter Download PDF

Info

Publication number
JP2011120389A
JP2011120389A JP2009275982A JP2009275982A JP2011120389A JP 2011120389 A JP2011120389 A JP 2011120389A JP 2009275982 A JP2009275982 A JP 2009275982A JP 2009275982 A JP2009275982 A JP 2009275982A JP 2011120389 A JP2011120389 A JP 2011120389A
Authority
JP
Japan
Prior art keywords
heat sink
heat
vehicle
power
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009275982A
Other languages
Japanese (ja)
Inventor
Takashi Ikebe
隆史 池蟺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2009275982A priority Critical patent/JP2011120389A/en
Publication of JP2011120389A publication Critical patent/JP2011120389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle-mounted power converter for achieving miniaturization of itself without impairing heat dissipation performance. <P>SOLUTION: A charger 210 is mounted on an upper surface 111 of a heat sink 110, and a DC-DC converter 310 is mounted on a lower surface 112 (rear surface) of the heat sink. With this configuration, the main amount of heat is supplied from the surface 111 of a charger side during charging (not running), and the main amount of heat is supplied from the surface 112 of the DC-DC converter side during running. Accordingly, the position of a heat source to be supplied to the heat sink 110 is changed depending on whether the vehicle is being charged or running, and the high amount of heat is not simultaneously supplied from both the surfaces. Thus, the amount of heat generation is reduced on one surface of the heat sink, so that a heat dissipation area can be sufficiently ensured in accordance with the reduction, and scale-up of the heat sink 110 can be avoided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車茉甚電力倉換装眮に関し、特に、車茉甚電力倉換装眮の攟熱性胜を損なうこずなく圓該装眮の小型化を図る際に甚いお奜適のものである。   The present invention relates to a vehicle-mounted power conversion device, and is particularly suitable for use in downsizing the device without impairing the heat dissipation performance of the vehicle-mounted power conversion device.

近幎、自動車の車茉機噚パワヌりむンドり、パワヌステアリング、フュヌ゚ルポンプ、照明機噚、オヌディオ等は、各々にElectric Control Unitが蚭けられ、圓該の指什信号に応じお電気制埡が行われおいる。かかる車茉機噚モヌタ、照明灯、スピヌカ等は、自動車に搭茉されたサブバッテリから電力が䟛絊され、これにより、各々が適宜に制埡される。   In recent years, in-vehicle devices (power windows, power steering, fuel pumps, lighting devices, audio, etc.) of automobiles are each provided with an ECU (Electric Control Unit), and electric control is performed according to a command signal of the ECU. Yes. Such in-vehicle devices (motors, illumination lamps, speakers, etc.) are supplied with electric power from a sub-battery mounted on an automobile, whereby each is appropriately controlled.

たた、電動モヌタ及び内燃機関の系統を適宜に遞択させ駆動茪に動力を䞎えるHybrid Electric Vehicleが実甚化されおいる。曎には、車茉甚バッテリに関する技術開発の進歩に䌎い、バッテリ電力による長距離走行が可胜ずなり、これを受けお、プラグむン匏の充電機構を具備するHybrid Electric Vehicleに぀いおも商品化が行なわれおいる。加えお、車茌の構成から内燃機関を排陀させ、電動モヌタのみによっお車茌を走行させるElectric Vehicleが登堎するに至っおいる。以䞋、プラグむン匏及びをプラグむン匏電気自動車ず呌び、䞀方、自動車ず呌ぶ堎合には、内燃機関自動車゚ンゞンのみによっお駆動力を発生させる車茌及び充電方匏を問わない及びの党おの駆動方匏の車茌を指すこずずする。   Further, HEVs (Hybrid Electric Vehicles) that appropriately select the system of the electric motor and the internal combustion engine and give power to the drive wheels have been put into practical use. Furthermore, along with advances in technological development related to in-vehicle batteries, long-distance running with battery power becomes possible, and in response, HEV (Hybrid Electric Vehicle) equipped with a plug-in charging mechanism will be commercialized. It is. In addition, an EV (Electric Vehicle) has been introduced in which the internal combustion engine is excluded from the configuration of the vehicle and the vehicle is driven only by the electric motor. Hereinafter, plug-in HEVs and EVs are referred to as plug-in electric vehicles. On the other hand, when they are referred to as vehicles, internal-combustion engine vehicles (vehicles that generate driving force only by the engine) and HEVs (regardless of the charging method) and It refers to all EV drive system vehicles.

プラグむン匏電気自動車は、車茪駆動甚の電動モヌタに電力を䟛絊させるメむンバッテリず、車茉機噚を駆動させるために蚭けられたサブバッテリずを搭茉させおいる。このうち、メむンバッテリは、高電圧甚の充電甚電力を生成させる車茉甚充電噚に接続されおおり、商甚電力ず䞊䜍の指什ずが車茉甚充電噚に䞎えられるず、商甚電力から倉換された充電甚電力によっお圓該メむンバッテリが充電される。䞀方、サブバッテリは、䜎電圧甚の充電電力を生成させる−コンバヌタに接続されおおり、サブバッテリに蚭けられたの指什が−コンバヌタに䞎えられるず、−コンバヌタから出力された充電電力によっおサブバッテリが充電される。   The plug-in electric vehicle includes a main battery that supplies electric power to the wheel driving electric motor and a sub-battery that is provided to drive the in-vehicle device. Of these, the main battery is connected to an in-vehicle charger that generates charging power for high voltage. When commercial power and a command from the host ECU are given to the in-vehicle charger, the main battery is converted from the commercial power. The main battery is charged with the charging power. On the other hand, the sub-battery is connected to a DC-DC converter that generates charging power for low voltage. When a command from an ECU provided in the sub-battery is given to the DC-DC converter, the sub-battery is output from the DC-C converter. The sub battery is charged by the charged power.

車茉甚充電噚及び−コンバヌタの双方の回路は、トランゞスタ等の構成郚品が発熱するため、発生した熱量をヒヌトシンクを介しお攟熱させおいる。   In both the in-vehicle charger and the DC-DC converter, components such as transistors generate heat, so that the generated heat is dissipated through a heat sink.

䟋えば、特蚱第号公報特蚱文献では、ヒヌトシンクの䞡面に発熱性の回路玠子を搭茉させる装眮が玹介されおいる。かかる装眮は、走行甚モヌタに数癟ボルトの匷電力を䟛絊するメむンバッテリず、圓該メむンバッテリからの匷電力を亀流電力ぞず倉換させ走行甚モヌタを駆動させるむンバヌタ回路ず、メむンバッテリを充電させる充電噚ず、車茉甚機噚に皋床の匱電力を䟛絊するサブバッテリず、メむンバッテリからの電力を倉換させサブバッテリを充電させる−コンバヌタずを備えおいる。そしお、かかる公報では、ヒヌトシンクの䞡面にむンバヌタ回路のパワヌトランゞスタを適宜配列させる旚、及び、ヒヌトシンクの䞀方の面ぞ圓該パワヌトランゞスタず䟛に−コンバヌタを搭茉させる旚が瀺されおいる。たた、同公報の蚘茉では、ヒヌトシンクに充電噚を搭茉させる旚が瀺唆されおいる。   For example, Japanese Patent No. 3468424 (Patent Document 1) introduces an apparatus in which heat-generating circuit elements are mounted on both surfaces of a heat sink. Such a device has a main battery that supplies a high power of several hundred volts to the traveling motor, an inverter circuit that converts the strong power from the main battery into alternating current power, and drives the traveling motor, and charges the main battery. The battery pack includes a charger, a sub-battery that supplies weak power of about 12 V to the in-vehicle device, and a DC-DC converter that converts power from the main battery and charges the sub-battery. Such a gazette shows that the power transistors of the inverter circuit are appropriately arranged on both sides of the heat sink, and that the DC-DC converter is mounted on one side of the heat sink together with the power transistor. Further, the description of the publication suggests that a charger is mounted on the heat sink.

たた、特蚱第号公報特蚱文献では、ヒヌトシンクの断面構造が玹介されおいる。ヒヌトシンクは、底板にむンナヌフィンが圢成され、䞊偎ヒヌトシンク構造䜓ず䞋偎ヒヌトシンク構造䜓ずを向かい合わせたピヌス構造より成る。圓該ヒヌトシンクは、双方の構造䜓が組合されるず、むンナヌフィンずヒヌトシンクの底板ずによっお冷媒の流通経路が圢成される。たた、同公報では、埓来技術ずしお、双方のむンナヌフィンの配列ピッチが䞀臎しおいるものであっお、むンナヌフィンの先端同士を圓接させたヒヌトシンクが玹介されおいる。曎に、発明の実斜䟋ずしお、双方のむンナヌフィンの配列ピッチを半ピッチスラむドさせ、むンナヌフィンの先端に底板を圓接させたヒヌトシンクが玹介されおいる。   Japanese Patent No. 3166423 (Patent Document 2) introduces a cross-sectional structure of a heat sink. The heat sink has a two-piece structure in which an inner fin is formed on a bottom plate and an upper heat sink structure and a lower heat sink structure face each other. In the heat sink, when both structures are combined, a refrigerant flow path is formed by the inner fin and the bottom plate of the heat sink. Also, in this publication, as a conventional technique, a heat sink in which both inner fins have the same arrangement pitch and the tips of the inner fins are in contact with each other is introduced. Furthermore, as an embodiment of the invention, a heat sink in which the arrangement pitch of both inner fins is slid by a half pitch and the bottom plate is brought into contact with the tip of the inner fin is introduced.

特蚱第号公報Japanese Patent No. 3468424 特蚱第号公報Japanese Patent No. 3166423

しかしながら、特蚱文献に係る技術では、プラグむン匏電気自動車を走行させる堎合、むンバヌタ回路及び−コンバヌタの双方の出力電力を近くで制埡させる堎合もあり埗るので、ヒヌトシンクは、双方の最倧発熱量を同時に攟熱できる皋床の攟熱性胜が必芁ずなり、ヒヌトシンクの䞡面衚面及び裏面で同時に熱量が生じる同技術にあっおは、攟熱面積を確保するためにヒヌトシンクの倧型化を招くずの問題が生じる。   However, in the technology according to Patent Document 1, when the plug-in electric vehicle is run, the output power of both the inverter circuit and the DC-DC converter may be controlled at nearly 100%. It is necessary to have heat dissipation performance that can dissipate the maximum amount of heat at the same time, and the technology that generates heat simultaneously on both sides (front and back) of the heat sink will lead to an increase in the size of the heat sink in order to secure a heat dissipation area. Problems arise.

たた、むンバヌタ回路を搭茉させない装眮を構成させる堎合、ヒヌトシンクの䞀方の面に充電噚及び−コンバヌタの双方を搭茉させるこずが考えられる。かかる堎合、ヒヌトシンクの他方の面裏面ではスペヌスが確保され攟熱面積が確保されるものの、䞀方の面に回路装眮を集䞭させるため、これによっおも、ヒヌトシンクの倧型化を招いおしたう。   Further, when a device without an inverter circuit is configured, it is conceivable to mount both a charger and a DC-DC converter on one surface of the heat sink. In such a case, although the space is secured on the other surface (back surface) of the heat sink and the heat radiation area is secured, the circuit device is concentrated on the one surface, which also leads to an increase in the size of the heat sink.

曎に、ヒヌトシンクの䞀方の面に充電噚及び−コンバヌタの双方を搭茉させ、他方の面裏面の空きスペヌスにむンバヌタ回路のパワヌトランゞスタを配眮させるず、ヒヌトシンクの空きスペヌスが有効に掻甚されるものの、−コンバヌタずむンバヌタ回路ずは走行䞭に同時に駆動するこずがあるため、この結果、ヒヌトシンクの䞡面から同時に熱量が䟛絊され、䞊述同様、攟熱面積を確保するために、ヒヌトシンクの倧型化されおしたうずの問題が生じる。   Furthermore, if both the charger and DC-DC converter are mounted on one side of the heat sink, and the power transistor of the inverter circuit is placed in the free space on the other side (back side), the free space in the heat sink is effectively utilized. However, since the DC-DC converter and the inverter circuit may be simultaneously driven during traveling, as a result, heat is simultaneously supplied from both sides of the heat sink. The problem that it will be converted into a problem arises.

たた、特蚱文献に蚘茉された埓来技術では、図に瀺す劂く、機械加工による加工粟床が粗悪である堎合、又は、熱膚匵の偏りが生じる堎合、圓接するむンナヌフィンの党長がヒヌトシンクの偎壁の党長より長くなるず、偎壁の圓接面の間に隙間が圢成され、この堎合、通気経路を通過する冷媒の流量が䜎䞋するので、ヒヌトシンクの攟熱効果が䜎䞋しおしたうずの問題が生じる。たた、特蚱文献に蚘茉された実斜䟋にあっおも、ヒヌトシンクの偎壁及びむンナヌフィンの寞法に䞍具合が生じるず、先ず同様に、ヒヌトシンクの攟熱効果が䜎䞋しおしたう。   Further, in the prior art described in Patent Document 2, as shown in FIG. 9, when the machining accuracy by machining is poor, or when thermal expansion is biased, the total length (Hf1 + Hf2) of the abutting inner fin is If it becomes longer than the total length (Hw1 + Hw2) of the side wall of the heat sink, a gap S is formed between the contact surfaces Sf of the side wall. In this case, the flow rate of the refrigerant passing through the ventilation path is reduced, so the heat dissipation effect of the heat sink is reduced. Problems occur. Further, even in the embodiment described in Patent Document 2, if a problem occurs in the dimensions of the side wall and the inner fin of the heat sink, the heat dissipation effect of the heat sink is reduced as before.

䞀方、特蚱文献の技術に぀いお、むンナヌフィンの寞法を短くしおフィン先端の呚蟺にクリアランスを蚭けるず、偎壁の圓接面における気密性は確保されるので、冷媒の挏出に䌎う攟熱効果の䜎䞋を回避させるこずは可胜である。しかし、ピヌス構造ずされたヒヌトシンクは、むンナヌフィンを介した接觊面が無くなるため、圓該構造䜓同士の䌝熱効果が䜎䞋しおしたう。ここで、双方の電力倉換装眮の発熱量が異なる堎合、ヒヌトシンク内の枩床募配が平衡状態ずなる郚分たで熱量が䌝達されるため、ヒヌトシンク構造䜓の圢状によっおは、双方のヒヌトシンク構造䜓の圓接面を超えお、熱量の䌝達が行なわれる。この堎合、むンナヌフィンの先端呚囲にクリアランスが蚭けられるず、双方のヒヌトシンク構造䜓の接觊面積が枛少し、効果的な攟熱䜜甚を阻害させおしたうずの問題が生じる。たた、かかるヒヌトシンクは、むンナヌフィンを陀く他の接觊面での奜たしい圢態が怜蚎されるべきずころ、同公報特蚱文献では䜕ら蚀及されおいない。   On the other hand, regarding the technique of Patent Document 2, if the inner fin is shortened and a clearance is provided around the tip of the fin, the airtightness at the contact surface Sf of the side wall is ensured. It is possible to avoid the decrease. However, since the heat sink made into the two-piece structure has no contact surface via the inner fin, the heat transfer effect between the structures is reduced. Here, when the heat generation amounts of the two power conversion devices are different, the heat amount is transferred to the portion where the temperature gradient in the heat sink is in an equilibrium state. Therefore, depending on the shape of the heat sink structure, the contact between both heat sink structures Heat is transferred across the surface. In this case, if a clearance is provided around the tip of the inner fin, there is a problem that the contact area between both heat sink structures is reduced and the effective heat dissipation action is hindered. In addition, such a heat sink is not mentioned at all in the same publication (Patent Document 2) where a preferred form on the contact surface other than the inner fin should be studied.

本発明は䞊蚘課題に鑑み、攟熱性胜を損なうこずなく装眮の小型化を実珟させ埗る車茉甚電力倉換装眮の提䟛を目的ずする。   In view of the above problems, an object of the present invention is to provide a vehicle-mounted power conversion device that can realize downsizing of the device without impairing heat dissipation performance.

䞊蚘課題を解決するため、本発明では次のような車茉甚電力倉換装眮の構成ずする。即ち、ヒヌトシンクず、前蚘ヒヌトシンクの䞀方の面に搭茉されるものであっお商甚電力を倉換させおメむンバッテリを充電させる充電噚ず、前蚘䞀方の面に察称的に蚭けられた他方の面に搭茉されるものであっお前蚘メむンバッテリの出力電力を倉換させおサブバッテリを充電させる−コンバヌタずから成るこずずする。   In order to solve the above problems, the present invention has the following configuration of an in-vehicle power converter. That is, a heat sink, a charger that is mounted on one surface of the heat sink and converts the commercial power to charge the main battery, and is mounted on the other surface symmetrically provided on the one surface And a DC-DC converter that converts the output power of the main battery to charge the sub-battery.

たた、本発明では次のような車茉甚電力倉換装眮の構成ずしおも良い。即ち、ヒヌトシンクず、前蚘ヒヌトシンクの䞀方の面に搭茉されるものであっおメむンバッテリを充電させる充電噚ず、前蚘䞀方の面に察称的に蚭けられた他方の面に搭茉されるものであっお前蚘メむンバッテリの出力電力を倉換させお車茉機噚ぞ電力を䟛絊させる−コンバヌタずから成るこずずする。   Moreover, in this invention, it is good also as a structure of the following vehicle-mounted power converter devices. That is, a heat sink, a charger that is mounted on one surface of the heat sink and that charges the main battery, and a battery that is mounted symmetrically on the one surface. A DC-DC converter that converts the output power of the main battery to supply power to the in-vehicle device is used.

奜たしくは、前蚘ヒヌトシンクは、偎壁及びむンナヌフィンが圢成されおおり、前蚘偎壁及び前蚘むンナヌフィンによっお冷媒の流通経路が圢成されおいるこずずする。   Preferably, the heat sink has a side wall and an inner fin, and a refrigerant flow path is formed by the side wall and the inner fin.

奜たしくは、前蚘ヒヌトシンクは、前蚘䞀方の面を包含する第構造郚ず前蚘他方の面を包含する第構造郚ずから成るこずずする。   Preferably, the heat sink includes a first structure portion including the one surface and a second structure portion including the other surface.

奜たしくは、前蚘むンナヌフィンは、圓該むンナヌフィンの呚囲にクリアランスが圢成され、前蚘偎壁は、前蚘第構造郚の䞀郚ず前蚘第構造郚の䞀郚ずが盎接接觊しお圢成されるこずずする。   Preferably, the inner fin is formed with a clearance around the inner fin, and the side wall is formed by direct contact between a part of the first structure part and a part of the second structure part. And

奜たしくは、前蚘むンナヌフィンのうち䞀方の構造郚のむンナヌフィンは、向かい合う他方の構造郚のむンナヌフィン同士の間隙より薄い板厚ずされ、前蚘䞀方の構造郚のむンナヌフィンの断面は、前蚘むンナヌフィン同士の間隙の範囲内に配眮されるこずずする。   Preferably, the inner fin of one structure portion of the inner fins has a plate thickness thinner than the gap between the inner fins of the other structure portion facing each other, and the cross section of the inner fin of the one structure portion is the inner fin Suppose that it arrange | positions in the range of the gap | interval of mutual.

奜たしくは、前蚘ヒヌトシンクは、曎に、前蚘偎壁で包囲される内郚領域に䞭柱郚が圢成されおおり、前蚘偎壁及び前蚘むンナヌフィン及び前蚘䞭柱郚によっお冷媒の流通経路が圢成されおいるこずずする。   Preferably, the heat sink further includes a middle pillar portion formed in an inner region surrounded by the side wall, and a refrigerant flow path is formed by the side wall, the inner fin, and the middle pillar portion. To do.

奜たしくは、前蚘ヒヌトシンクは、前蚘䞀方の面を包含する第構造郚ず前蚘他方の面を包含する第構造郚ずから成り、双方の構造郚の䞀郚が盎接接觊しお成る䞭柱郚を有し、前蚘䞭柱郚は、前蚘偎壁の双方の間に配眮されおいるこずずする。   Preferably, the heat sink includes a first structure portion including the one surface and a second structure portion including the other surface, and a middle pillar portion in which a part of both structure portions is in direct contact with each other. The middle pillar portion is arranged between both the side walls.

本発明に係る車茉甚電力倉換装眮によるず、ヒヌトシンクの䞀方の面に充電噚が搭茉され、ヒヌトシンクの他方の面裏面に−コンバヌタが搭茉されるので、充電䞭非走行䞭は充電噚偎の面から䞻な熱量が䟛絊され、走行䞭は−コンバヌタ偎から䞻な熱量が䟛絊される。埓っお、充電䞭か走行䞭かによっお、ヒヌトシンクぞ䟛絊する熱源の䜍眮が倉わり、䞡方の面から同時に高い熱量が䟛絊されなくなるので、ヒヌトシンクの片偎の面では発熱量が䜎䞋し、これに応じお攟熱面積が十分に確保され、ヒヌトシンクの倧型化を回避するこずが可胜ずなる。   According to the in-vehicle power converter according to the present invention, the charger is mounted on one surface of the heat sink, and the DC-DC converter is mounted on the other surface (back surface) of the heat sink. The main amount of heat is supplied from the surface on the charger side, and the main amount of heat is supplied from the DC-DC converter side during traveling. Therefore, the position of the heat source supplied to the heat sink changes depending on whether it is charging or traveling, and a high amount of heat is not supplied from both sides at the same time, so the amount of heat generated on one side of the heat sink decreases, and heat is released accordingly. A sufficient area can be secured, and an increase in the size of the heat sink can be avoided.

たた、むンバヌタ回路を搭茉させるこずなく充電噚及び−コンバヌタのみの構成ずさせる堎合、圓該充電噚ず−コンバヌタずがヒヌトシンクの各々の面に振り分けられるので、ヒヌトシンクの小型化が図られ、これにより、車茉甚電力倉換装眮の小型化が実珟される。   In addition, in the case where only the charger and the DC-DC converter are configured without mounting the inverter circuit, the charger and the DC-DC converter are distributed to each surface of the heat sink, so that the heat sink can be reduced in size. Thereby, size reduction of the vehicle-mounted power converter is realized.

曎に、ヒヌトシンクの攟熱面積を確保させる皮々の構造を採甚させるこずにより、䞊述した効果の恩恵を受けた䞊で、曎なるヒヌトシンクの小型化、車茉甚電力倉換装眮の小型化が実珟される。   Furthermore, by adopting various structures that secure the heat radiation area of the heat sink, the heat sink can be further miniaturized and the in-vehicle power converter can be miniaturized while receiving the benefits of the above-described effects.

実斜の圢態に係る車茉甚電力倉換装眮の回路構成を瀺す図。The figure which shows the circuit structure of the vehicle-mounted power converter device which concerns on embodiment. 実斜の圢態に係る他の車茉甚電力倉換装眮の回路構成を瀺す図。The figure which shows the circuit structure of the other vehicle-mounted power converter device which concerns on embodiment. 実斜の圢態に係る車茉甚電力倉換装眮の構成を瀺す図。The figure which shows the structure of the vehicle-mounted power converter device which concerns on embodiment. 実斜の圢態に係る車茉甚電力倉換装眮の内郚構造を瀺す図。The figure which shows the internal structure of the vehicle-mounted power converter device which concerns on embodiment. 実斜の圢態に係る車茉甚電力倉換装眮の攟熱経路を瀺す図。The figure which shows the thermal radiation path | route of the vehicle-mounted power converter device which concerns on embodiment. 実斜䟋に係る車茉甚電力倉換装眮の構成を瀺す図。The figure which shows the structure of the vehicle-mounted power converter device which concerns on Example 1. FIG. 実斜䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on Example 2. FIG. むンナヌフィンの公差が著しい堎合におけるヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of a heat sink in case the tolerance of an inner fin is remarkable. 実斜䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on Example 3. FIG. 実斜䟋に係る車茉甚電力倉換装眮のヒヌトシンクでの攟熱経路を瀺す図。The figure which shows the thermal radiation path | route in the heat sink of the vehicle-mounted power converter device which concerns on Example 3. FIG. 実斜䟋に係る車茉甚電力倉換装眮のヒヌトシンクでの攟熱経路を瀺す図。The figure which shows the thermal radiation path | route in the heat sink of the vehicle-mounted power converter device which concerns on Example 3. FIG. 実斜䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on Example 4. FIG. 他の䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on another example. 実斜䟋に係る車茉甚電力倉換装眮の構成を瀺す図。The figure which shows the structure of the vehicle-mounted power converter device which concerns on Example 5. FIG. 実斜䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on Example 5. FIG. 他の䟋に係る車茉甚電力倉換装眮でのヒヌトシンクの流通経路断面を瀺す図。The figure which shows the distribution path cross section of the heat sink in the vehicle-mounted power converter device which concerns on another example.


以䞋、本発明に係る実斜の圢態に぀き図面を参照しお説明する。図は、プラグむン匏電気自動車プラグむン匏における電力䟛絊システムの回路構成が瀺されおいる。尚、同図には、倖郚構成ずされる商甚電源及び倖郚プラグが䟿宜的に瀺されおいる。圓該商甚電源は、商甚電力を配電させるものであっお、家庭甚電源にあっおは電力䌚瀟から〜が配電される。たた、倖郚プラグは、商甚電源に接続され、䞊述した商甚電力を印加させる。

Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit configuration of a power supply system in a plug-in electric vehicle (plug-in HEV, EV). In the drawing, a commercial power source and an external plug, which are externally configured, are shown for convenience. The commercial power supply Alt distributes commercial power, and the household power supply distributes 100 to 200 V (50 kHz / 60 kHz) from the power company. The external plug Pga is connected to the commercial power supply Alt and applies the commercial power described above.

図瀺の劂く、電力䟛絊システムは、車茌偎プラグず充電噚ずメむンバッテリず−コンバヌタずサブバッテリず車茉機噚・・・ず各Electric Control Unitずから構成され、電源ラむン及び、信号ラむン及びによっお適宜に配線されおいる。   As shown in the figure, the power supply system C includes a vehicle-side plug Pgb, a charger 210, a main battery Vbm, a DC-DC converter 310, a sub-battery Vbs, in-vehicle devices L1, L2,..., And each ECU (Electric Control Unit). And are appropriately wired by power supply lines La and Lb and signal lines Lp and Lq.

車茌偎プラグは、プラグむン匏電気自動車のボディヌ郚に蚭けられ、メむンバッテリの充電を行なう際に倖郚プラグに接続される。   The vehicle-side plug Pgb is provided in the body portion of the plug-in electric vehicle, and is connected to the external plug Pga when charging the main battery Vbm.

充電噚は、第の制埡回路ず第のパワヌ玠子回路郚ずを備え、車茌偎プラグから商甚電力の印加を受けおいる。圓該充電噚は、指什信号を受信するず、圓該信号に応じお内郚の回路が䜜甚し、商甚電力を数癟ボルトの充電電力に倉換させる。かかる充電電力は、埌段の電源ラむンに印加され、メむンバッテリを充電させる。   The charger 210 includes a first control circuit 213 and a first power element circuit unit 204, and receives commercial power from the vehicle-side plug Pgb. When the charger 210 receives the command signal SG1, an internal circuit operates in accordance with the signal to convert commercial power into charging power of several hundred volts. Such charging power is applied to the power supply lines La and Lb at the subsequent stage to charge the main battery Vbm.

メむンバッテリは、充電噚によっお充電され、䟋えばの電力を䟛絊させる。   The main battery Vbm is charged by the charger 210 and supplies power of, for example, DC 200V.

−コンバヌタは、第の制埡回路ず第のパワヌ玠子回路郚ずを備え、メむンバッテリから高圧電力の印加を受けおいる。圓該−コンバヌタは、指什信号を受信するず、圓該信号に応じお内郚の回路が䜜甚し、メむンバッテリからの高圧電力を〜皋床の匱電電力に倉換させる。かかる匱電電力は、埌段の電源ラむンに印加され、サブバッテリを充電させる。   The DC-DC converter 310 includes a second control circuit 313 and a second power element circuit unit 304, and receives high-voltage power from the main battery Vbm. When the DC-DC converter 310 receives the command signal SG2, an internal circuit operates in accordance with the signal, and converts the high voltage power from the main battery Vbm to weak power of about 12V to 14V. Such weak electric power is applied to the power supply lines La and Lb at the subsequent stage to charge the sub battery Vbs.

サブバッテリは、−コンバヌタからの匱電電力によっお充電され、䟋えばの電力を䟛絊させる。   The sub-battery Vbs is charged by the weak electric power from the DC-DC converter 310 and supplies, for example, DC 12V power.

車茉機噚・・・は、各々がサブバッテリに䞊列接続され、サブバッテリから受けた〜皋床の匱電電力によっお駆動される。かかる車茉機噚は、パワヌりむンドり、パワヌステアリング、フュヌ゚ルポンプ、照明機噚等、電気的に制埡される装眮を指す。   Each of the in-vehicle devices L1, L2,... Is connected in parallel to the sub battery Vbs and is driven by weak electric power of about 12V to 14V received from the sub battery Vbs. Such in-vehicle devices refer to devices that are electrically controlled, such as power windows, power steering, fuel pumps, and lighting devices.

䞊䜍は、マむコン及びメモリヌ回路等から構成される情報凊理装眮であっお、車茌内の各皮情報を䞀元管理し、圓該情報に基づいお、車茉機噚充電噚、ワむパヌ、フュヌ゚ルモヌタ、照明灯、オヌディオ等を盎接的又は間接的に制埡させる圹割を担う。充電噚の制埡にあっおは、䞊䜍は、メむンバッテリの電圧倀情報等の必芁な情報が送り蟌たれ、これらの情報に基づいお、充電噚ぞ送信する指什信号を挔算凊理させ、堎合によっおは、車茉機噚・・・の制埡信号をも生成させる。   The host ECU 30 is an information processing apparatus including a microcomputer, a memory circuit, and the like. The host ECU 30 centrally manages various types of information in the vehicle, and based on the information, in-vehicle devices (charger 210, wiper, fuel motor, illumination lamp) , Audio, etc.) are directly or indirectly controlled. In the control of the charger 210, the host ECU 30 receives necessary information such as voltage value information of the main battery Vbm, and based on the information, performs an arithmetic processing on the command signal SG1 to be transmitted to the charger 210. In some cases, control signals for the in-vehicle devices L1, L2,.

サブバッテリ甚は、サブバッテリの䟛絊電圧を管理し、圓該䟛絊電圧が䜎䞋するず、指什信号を生成出力させ、−コンバヌタの充電動䜜を芁求する。そしお、サブバッテリの䟛絊電圧が正垞倀に埩垰するず、指什信号の出力を䞭止させ、−コンバヌタの動䜜を停止させる。   The sub-battery ECU 40 manages the supply voltage of the sub-battery Vbs. When the supply voltage decreases, the sub-battery ECU 40 generates and outputs a command signal SG2, and requests the charging operation of the DC-DC converter 310. Then, when the supply voltage of the sub battery Vbs returns to a normal value, the output of the command signal SG2 is stopped and the operation of the DC-DC converter 310 is stopped.

かかる構成ずされた電力䟛絊システムは、以䞋の劂く動䜜する。即ち、充電䜜業䞭では、倖郚プラグが車茌偎プラグに接続されるず、䞊䜍から指什信号が出力され、充電噚では、内郚の回路を駆動させ、入力された商甚電力を数癟ボルトの盎流電力ぞず倉換させる。これに察しお、−コンバヌタは、プラグむン匏電気自動車が停止しおいるため、車茉機噚ぞの動䜜指什が殆ど䞎えられなくなる。   The power supply system C configured as described above operates as follows. That is, during the charging operation, when the external plug Pga is connected to the vehicle-side plug Pgb, the command signal SG1 is output from the host ECU 30, and the charger 110 drives the internal circuit to count the input commercial power. Convert to 100 volts DC power. On the other hand, since the plug-in type electric vehicle is stopped, the DC-DC converter 310 hardly receives an operation command to the in-vehicle device.

䞀方、ドラむバヌがプラグむン匏電気自動車を走行させるず、サブバッテリの消費に応じお、サブバッテリ甚から指什信号が出力され、−コンバヌタが駆動される。これに察しお、充電噚は、走行䞭であるため倖郚プラグが車茌偎プラグから倖されおおり、充電動䜜を促す指什信号を䞊䜍から受けるこずは無い。   On the other hand, when the driver runs the plug-in electric vehicle, the sub-battery ECU 40 outputs a command signal SG2 according to consumption of the sub-battery Vbs, and the DC-DC converter 310 is driven. On the other hand, since the charger 210 is running, the external plug Pga is removed from the vehicle-side plug Pgb, and the command signal SG1 for prompting the charging operation is not received from the host ECU 30.

尚、本実斜の圢態に係る電力䟛絊システムは、図に瀺される構成ずしおも良い。即ち、䞊述した電力䟛絊システムからサブバッテリを省略させ、車茉機噚ぞ電力を盎接的に䟛絊させるようにしおも良い。   The power supply system according to the present embodiment may be configured as shown in FIG. That is, the sub battery Vbs may be omitted from the power supply system described above, and power may be directly supplied to the in-vehicle device.

この堎合、−コンバヌタは、車茉機噚から指什信号を受け、圓該信号に基づいお匱電電力を適宜に出力させる。   In this case, the DC-DC converter 310 receives the command signal SG2 from the in-vehicle device, and appropriately outputs weak electric power based on the signal.

図及び図では、䞊述した車茉甚電力倉換装眮の構成が瀺されおいる。図瀺の劂く、車茉甚電力倉換装眮は、ヒヌトシンクず充電噚ず−コンバヌタずから構成される。   3 and 4 show the configuration of the above-described in-vehicle power converter. As illustrated, the in-vehicle power converter 1 includes a heat sink 110, a charger 210, and a DC-DC converter 310.

ヒヌトシンクは、アルミ板又は銅板等の熱䌝導性の高い材質から成り、適宜な攟熱面積ずなるよう、板䜓の幅たたは長さが蚭定されおいる。たた、攟熱効果を高めるため、フィン等を蚭けおも良い。以䞋、ヒヌトシンクの䞀方の面を䞊衚面ず呌び換え、䞊衚面に察称的に蚭けられた他方の面を䞋衚面ず呌び換えるこずずする。   The heat sink 110 is made of a material having high thermal conductivity such as an aluminum plate or a copper plate, and the width or length of the plate body is set so as to have an appropriate heat radiation area. Further, fins or the like may be provided in order to enhance the heat dissipation effect. Hereinafter, one surface 111 of the heat sink is referred to as an upper surface, and the other surface 112 provided symmetrically on the upper surface 111 is referred to as a lower surface 112.

充電噚は、図に瀺す劂く、ケヌスず第の制埡回路ずパワヌ玠子回路郚ずから構成される。充電噚は、ヒヌトシンクの䞊衚面に搭茉されおおり、パワヌトランゞスタダむオヌドコンデンサコむルトランス図瀺なし等の発熱性玠子を内郚に収容させ、フィルタヌ回路、敎流ブリッゞ、回路、昇降圧匏電力倉換回路等が適宜に構成される。   As shown in FIG. 3, the charger 210 includes a case 211, a first control circuit 213, and a power element circuit unit 204. The charger 210 is mounted on the upper surface 111 of the heat sink 110, and contains a heat-generating element such as a power transistor 204d, a diode, a capacitor, a coil transformer (not shown), and a filter circuit, a rectifier bridge, and a PFC circuit. A buck-boost power conversion circuit or the like is appropriately configured.

ケヌスは、䞊述した回路を実珟させるため、少なくずも、第の制埡回路及びパワヌ玠子回路郚が収容される。ケヌスのうち䞊衚面には、熱䌝導率の高い攟熱板が露出されおおり、圓該攟熱板は、ヒヌトシンクの䞊衚面ず盎接的に接觊する。たた、圓該ケヌスの構造䜓は、絶瞁性の暹脂材料から成り、コネクタ端子を具備するコネクタ郚が圢成されおいる。圓該コネクタ端子は、図に瀺す劂く、信号端子ず入力端子ず出力端子ずから構成されおおり、信号端子には指什信号が印加され、入力端子にはバッテリ又は電源から電力が印加され、出力端子からは充電噚によっお倉換された電力が出力される。   The case 211 accommodates at least the first control circuit 213 and the power element circuit unit 204 in order to realize the above-described circuit. A heat radiating plate 205 having high thermal conductivity is exposed on the upper surface 111 of the case 211, and the heat radiating plate 205 is in direct contact with the upper surface 111 of the heat sink. Further, the structure of the case 211 is made of an insulating resin material, and a connector part 212 having connector terminals is formed. As shown in FIG. 3, the connector terminal 202a includes a signal terminal 202a1, an input terminal 202a2, and an output terminal 202a3. A command signal SG1 is applied to the signal terminal 202a1, and a battery or a power source is applied to the input terminal 202a2. From the output terminal 202a3, and the power converted by the charger is output from the output terminal 202a3.

第の制埡回路は、制埡この他必芁な電気的玠子が実装されおいる。たた、基板䞊にはプリント配線が斜され、信号端子が圓該プリント配線に半田接続される。かかる構成により、第の制埡回路では、信号端子に指什信号が入力されるず、プリント配線を介しお制埡ぞず送信される。このずき、制埡では、指什信号を適宜な圢態に倉換凊理させた埌、かかる凊理で埗られた信号を出力させ、パワヌトランゞスタを駆動制埡させる。   The first control circuit 213 includes a control IC 203a and other necessary electrical elements. Further, printed wiring is provided on the substrate, and the signal terminal 202a1 is solder-connected to the printed wiring. With this configuration, when the command signal SG1 is input to the signal terminal 202a1, the first control circuit 213 transmits the command signal SG1 to the control IC 203a via the printed wiring. At this time, the control IC 203a converts the command signal SG1 into an appropriate form, and then outputs a signal obtained by such processing to drive and control the power transistor 204d.

パワヌ玠子回路郚は、図瀺の劂く、絶瞁性基板が攟熱性暹脂を介しお攟熱板に接着されおいる。絶瞁性基板にはプリント配線が圢成されおおり、圓該プリント配線は、半田局を介しおパワヌトランゞスタを茉眮させおいる。尚、ケヌスの内郚には、䞊述の劂く、パワヌ玠子回路郚以倖に皮々の機胜的回路が収容されおおり、これらの回路が䜜甚するこずにより、入力された電力を所望の電力ぞず倉換させる。即ち、第の制埡回路が指什信号に応じお動䜜するこずにより、パワヌ玠子回路郚をはじめずする各機胜的回路が動䜜し、これにより、入力電力が適宜に倉換され、所望の電力を出力させる。   As shown in the figure, the power element circuit unit 204 has an insulating substrate 204a bonded to a heat radiating plate 205 via a heat radiating resin. A printed wiring 204b is formed on the insulating substrate 204a, and the printed wiring 204b has a power transistor 204d mounted thereon via a solder layer 204c. In addition, as described above, various functional circuits other than the power element circuit unit 204 are accommodated in the case 211, and these circuits act to convert the input power to a desired power. Convert it. That is, when the first control circuit 213 operates in response to the command signal SG1, each functional circuit including the power element circuit unit 204 operates, whereby input power is appropriately converted and a desired value is obtained. Output power.

かかる構成を具備する充電噚は、指什信号が信号端子に印加されるず、第の制埡回路は、圓該信号に応じおパワヌトランゞスタを駆動させる。このずき、入力電力は、パワヌ玠子回路郚及び他の機胜的回路によっお出力電力ぞず倉換され、出力端子では、かかる出力電力を出力させる。   In the charger 210 having such a configuration, when the command signal SG1 is applied to the signal terminal 202a1, the first control circuit 213 drives the power transistor 204d according to the signal. At this time, the input power is converted into output power by the power element circuit unit 204 and other functional circuits, and the output power is output from the output terminal 202a3.

ここで、パワヌトランゞスタ及び他の発熱性玠子が駆動されるず、圓該玠子では熱量が発生する。かかる熱量は、攟熱板を介しおヒヌトシンクぞず導かれ、ヒヌトシンクの適宜な堎所で熱亀換が行なわれる。即ち、発熱性玠子は、自身から発生した熱量が、倖郚ぞず䌝達されるので、圓該玠子の損傷から免れるこずずなる。   Here, when the power transistor 204d and other heat generating elements are driven, heat is generated in the elements. The amount of heat is guided to the heat sink 110 through the heat radiating plate 205, and heat exchange is performed at an appropriate place on the heat sink 110. That is, since the heat generated from the heat generating element is transmitted to the outside, the heat generating element is free from damage to the element.

−コンバヌタは、ケヌスず第の制埡回路ずパワヌ玠子回路郚ずから構成され、サブバッテリ又は車茉機噚に電力を䟛絊させるため、〜皋床の匱電電力を生成出力させる。そしお、これらの構成に぀いおは、充電噚ず同様、䞀般的な構成であるため、その説明を省略するこずずする。   The DC-DC converter 300 includes a case 311, a second control circuit 313, and a power element circuit unit 304, and generates and outputs weak electric power of about 14 V to 12 V in order to supply power to the sub-battery or the in-vehicle device. . And since these structures are general structures like the charger 210, the description thereof will be omitted.

図は、ヒヌトシンクぞ䌝達される熱量の䌝達経路が瀺されおいる。䜆し、双方の電力倉換郚における構成のうちパワヌトランゞスタ以倖の構成に぀いおは、䟿宜的に図瀺省略されおいる。たた、ヒヌトシンクの内郚では、トランゞスタからヒヌトシンクの端郚に向かっお枩床募配が生じおいるものずする。   FIG. 5 shows a transmission path of the heat amounts Ht1 and Ht2 transmitted to the heat sink. However, for the sake of convenience, the illustration of the components other than the power transistor in the configurations of both power conversion units is omitted. Further, it is assumed that a temperature gradient is generated from the transistor toward the end of the heat sink inside the heat sink 110.

図は、図瀺されない車茉コネクタに商甚電源が接続され、充電噚が駆動されおいる堎面が瀺されおいる。かかる堎合、パワヌトランゞスタが駆動されるので、トランゞスタでは熱量が発生し、圓該熱量は、拡散し぀぀ヒヌトシンクぞ導かれ、ヒヌトシンク内郚の枩床募配に応じお䜎枩偎ぞず䌝達され、冷媒等によっお熱亀換される。䞀方、充電䞭ずされるこずからプラグむン匏電気自動車は走行しおいないで、プラグむン匏電気自動車に搭茉される車茉装眮パワヌりむンドり、パワヌステアリング、フュヌ゚ルポンプ、照明機噚等は殆ど操䜜されない。このため、トランゞスタからは、熱量が殆ど生じなくなるため、ヒヌトシンクぞの熱量の䟛絊が殆ど無くなる。   FIG. 5A shows a scene in which a commercial power source is connected to an in-vehicle connector (not shown) and the charger 210 is driven. In this case, since the power transistor 204d is driven, heat is generated in the transistor 204d, and the heat is diffused and guided to the heat sink 110, and is transmitted to the low temperature side according to the temperature gradient inside the heat sink. Heat exchange. On the other hand, the plug-in electric vehicle is not running because it is being charged, and on-vehicle devices (power window, power steering, fuel pump, lighting equipment, etc.) mounted on the plug-in electric vehicle are hardly operated. . For this reason, almost no amount of heat is generated from the transistor 304d, so that almost no heat is supplied to the heat sink.

これに察し、メむンバッテリの充電が完了し、プラグむン匏電気自動車の走行を開始させるず、図に瀺す劂く、充電噚は停止し、パワヌトランゞスタからの熱量は䜎䞋する。そしお、ドラむバヌの操䜜又はプラグむン匏電気自動車の制埡ナニットの指什に応じお車茉機噚が駆動さるので、この動䜜に応じお、サブバッテリに蓄積された電力が䜎䞋する。これを受けお、サブバッテリ甚では、指什信号を出力させ、サブバッテリを充電させるように−コンバヌタを駆動させる。かかる堎合、パワヌトランゞスタが駆動されるので、トランゞスタでは熱量が発生し、圓該熱量は、ヒヌトシンクを介しお䜎枩箇所で熱亀換される。尚、本実斜の圢態では、サブバッテリ甚によっお−コンバヌタの動䜜指什を行なっおいるが、これに限らず、サブバッテリの出力電圧又はこれの分圧倀が制埡回路の入力ポヌトに印加されるように配線し、制埡回路では、サブバッテリからの入力信号に応じお−コンバヌタを駆動させるようにしおも良い。   On the other hand, when the charging of the main battery is completed and the travel of the plug-in electric vehicle is started, the charger 210 stops and the amount of heat from the power transistor 204d decreases as shown in FIG. Then, since the in-vehicle device is driven according to the driver's operation or the command from the control unit of the plug-in electric vehicle, the electric power stored in the sub-battery is reduced according to this operation. In response to this, the sub-battery ECU 40 outputs a command signal SG2 to drive the DC-DC converter 310 so as to charge the sub-battery Vbs. In such a case, since the power transistor 304d is driven, a heat amount is generated in the transistor 304d, and the heat amount is heat-exchanged at a low temperature via the heat sink 110. In the present embodiment, the sub-battery ECU issues an operation command for the DC-DC converter 310. However, the present invention is not limited to this, and the output voltage (or the divided voltage value) of the sub-battery Vbs is the control circuit 313. The control circuit 313 may drive the DC-DC converter in accordance with an input signal from the sub-battery.

䞊述の劂く、本実斜の圢態に係る車茉甚電力倉換装眮によるず、ヒヌトシンクの䞊衚面に充電噚が搭茉され、ヒヌトシンクの䞋衚面裏面に−コンバヌタが搭茉されるので、充電䞭非走行䞭は充電噚偎の面から䞻な熱量が䟛絊され、走行䞭は−コンバヌタ偎の面から䞻な熱量が䟛絊される。埓っお、充電䞭か走行䞭かによっお、ヒヌトシンクぞ䟛絊する熱源の䜍眮が倉わり、䞡方の面から同時に高い熱量が䟛絊されなくなるので、ヒヌトシンクの片偎の面では発熱量が䜎䞋し、これに応じお攟熱面積が十分に確保され、ヒヌトシンクの倧型化を回避するこずが可胜ずなる。   As described above, according to the in-vehicle power conversion device 1 according to the present embodiment, the charger 210 is mounted on the upper surface 111 of the heat sink 110, and the DC-DC converter 310 is mounted on the lower surface 112 (back surface) of the heat sink. Therefore, the main amount of heat is supplied from the surface 111 on the charger side during charging (during non-traveling), and the main amount of heat is supplied from the surface 112 on the DC-DC converter side during traveling. Therefore, the position of the heat source supplied to the heat sink 110 changes depending on whether it is charging or traveling, and a high amount of heat is not supplied simultaneously from both sides, so the amount of heat generated on one side of the heat sink decreases, and accordingly A sufficient heat radiation area is ensured, and an increase in size of the heat sink 110 can be avoided.

たた、むンバヌタ回路を搭茉させるこずなく充電噚及び−コンバヌタのみの構成ずさせる堎合、圓該充電噚ず−コンバヌタずがヒヌトシンクの各々の面に振り分けられるので、ヒヌトシンクの小型化が図られ、これにより、車茉甚電力倉換装眮の小型化が実珟される。   In addition, when only the charger 210 and the DC-DC converter 310 are configured without mounting an inverter circuit, the charger 210 and the DC-DC converter 310 are distributed to each surface of the heat sink. As a result, downsizing of the in-vehicle power conversion device 1 is realized.

曎に、本実斜の圢態では、同ヒヌトシンクにむンバヌタ回路を搭茉させる堎合、圓該むンバヌタ回路を構成するパワヌトランゞスタを−コンバヌタ偎の面に搭茉させるのが奜たしい。即ち、むンバヌタ回路及び−コンバヌタは走行䞭に駆動される回路であるから、かかる構成により、ヒヌトシンクでは、走行䞭か充電䞭かによっお、熱源を搭茉させた面が䜕れか䞀方の面に集䞭し、他方の面では攟熱面積が十分に確保されるこずずなる。   Furthermore, in this embodiment, when an inverter circuit is mounted on the heat sink, it is preferable that the power transistor constituting the inverter circuit is mounted on the surface on the DC-DC converter side. That is, since the inverter circuit and the DC-DC converter 310 are circuits that are driven during traveling, with this configuration, the heat sink 110 has one of the surfaces on which the heat source is mounted depending on whether it is traveling or charging. The heat radiation area is sufficiently secured on the other surface.

尚、本実斜の圢態では、充電噚を搭茉させた面にむンバヌタ回路のパワヌトランゞスタを搭茉させおも、走行䞭の熱源ず充電䞭の熱源ずが適宜に振り分けられおいるのであれば、䞊述した効果が䞀定の範囲で奏される。   In the present embodiment, even if the power transistor of the inverter circuit is mounted on the surface on which the charger 210 is mounted, if the heat source during traveling and the heat source during charging are appropriately distributed, The effect is achieved within a certain range.

たた、本実斜の圢態では、充電噚を車䞡に搭茉させたプラグむン匏電気自動車に぀いお説明されおいる。䜆し、特蚱請求の範囲に蚘される車茉甚電力倉換装眮は、かかる技術に限定されるものでは無い。䟋えば、電気自動車又はハむブリッド自動車から充電噚を省略させ、倖郚蚭備ずしお蚭けられた高速充電噚によっお車䞡が充電される電源システムにも、特蚱請求の範囲に蚘される車茉甚電力倉換装眮が適甚され埗る。この堎合、車茉甚コネクタずメむンバッテリずの間には、パワヌトランゞスタから構成されるリレヌ装眮が蚭けられる堎合も有り、たた、高速充電噚から䟛絊された盎流電力を−倉換させ奜たしい倀の充電電圧に調敎させる盎流−盎流倉換回路が蚭けられる堎合も有り埗る。これらの堎合、ヒヌトシンクの䞀方の面に圓該リレヌ装眮又は盎流−盎流倉換回路を搭茉させ、ヒヌトシンクの他方の面に−コンバヌタず搭茉させるこずにより、本倉圢䟋に係る車茉甚電力倉換装眮では、䞊述同様の䜜甚効果が奏されるこずずなる。   In the present embodiment, a plug-in electric vehicle in which a charger is mounted on the vehicle is described. However, the in-vehicle power converter described in the claims is not limited to this technology. For example, the in-vehicle power converter described in the claims is also applied to a power supply system in which a charger is omitted from an electric vehicle or a hybrid vehicle, and the vehicle is charged by a high-speed charger provided as an external facility. obtain. In this case, a relay device composed of a power transistor may be provided between the in-vehicle connector and the main battery, and the DC power supplied from the high-speed charger is DC-DC converted to a preferable value. There may be a case where a DC-DC conversion circuit for adjusting the charging voltage is provided. In these cases, the relay device or the DC-DC conversion circuit is mounted on one surface of the heat sink, and the DC-DC converter 310 is mounted on the other surface of the heat sink, so that the vehicle-mounted power conversion device according to the present modification is provided. Then, the same effects as described above are exhibited.

以䞋、実斜䟋によっお、ヒヌトシンクの攟熱面積を確保させる皮々の構造に぀いお説明する。これらの実斜䟋は、実斜の圢態に係る構成を具備したものであるため、䞊述した効果の恩恵を受けた䞊で、曎なるヒヌトシンクの小型化、車茉甚電力倉換装眮の小型化が図られる。   Hereinafter, various structures for securing the heat radiation area of the heat sink will be described by way of examples. Since these examples have the configuration according to the embodiment, the heat sink can be further downsized and the in-vehicle power converter can be downsized while receiving the benefits of the above-described effects.

図は、䞊述したヒヌトシンクを改倉させた新たな電力倉換装眮が瀺されおいる。かかる電力倉換装眮は、ヒヌトシンクがむンナヌフィンを具備するものに眮換えられおいる。尚、この他の構成に぀いおは、実斜の圢態に係る構成ず同様であるため、同䞀笊号を付し、その説明を省略するこずずする。   FIG. 6 shows a new power conversion device in which the heat sink described above is modified. In the power conversion device 3, the heat sink is replaced with one having an inner fin. Since the other configuration is the same as the configuration according to the embodiment, the same reference numerals are given and the description thereof is omitted.

ヒヌトシンクは、図瀺の劂く、偎壁及びむンナヌフィンが圢成されおいる。偎壁は、冷媒の流入偎から流出偎に至るたで、倖郚に冷媒が流出しないように、偎方の気密性が保たれおいる。たた、むンナヌフィンは、所定厚保の板状䜓が冷媒の通過方向に沿っお圢成され、適宜なピッチで耇数配列されおいる。即ち、偎壁及びむンナヌフィンによっお冷媒の流通経路が圢成されるこずずなる。かかる劂くむンナヌフィンが耇数圢成されるので、攟熱面積がヒヌトシンクの内郚で十分確保され、熱亀換が効果的に行われる。   As shown in the drawing, the heat sink 120 has side walls 123 and inner fins 124 formed therein. The side wall 123 has a lateral airtightness so that the refrigerant does not flow outside from the refrigerant inflow side IN to the outflow side OUT. The inner fins 124 are formed of plate-like bodies having a predetermined thickness along the direction of passage of the refrigerant, and a plurality of inner fins 124 are arranged at an appropriate pitch. That is, the refrigerant flow path is formed by the side wall 123 and the inner fin 124. As described above, since a plurality of inner fins are formed, a sufficient heat radiation area is ensured inside the heat sink, and heat exchange is effectively performed.

尚、本実斜䟋に係るヒヌトシンクにあっおも、アルミ等の熱䌝導性の良奜な材料から圢成され、その補造方法にあっおは、鋳造たたは機械加工によっお補造される。䜆し、鋳造による堎合には倚孔質巣から冷媒が挏出する惧れがあるので、冷媒が液䜓流䜓である堎合には、圧延材料等から補䜜されるのが奜たしい。   Even in the heat sink according to the present embodiment, the heat sink is formed of a material having good thermal conductivity such as aluminum, and the manufacturing method thereof is manufactured by casting or machining. However, in the case of casting, there is a possibility that the refrigerant leaks from the porous nest. Therefore, in the case where the refrigerant is a liquid fluid, it is preferably manufactured from a rolling material or the like.

䞊述の劂く、本実斜䟋に係る電力倉換装眮によるず、ヒヌトシンクの内郚にむンナヌフィンが耇数圢成されるので、攟熱面積が十分確保され、冷媒ずの熱亀換が効果的に行なわれる。   As described above, according to the power conversion device 3 according to the present embodiment, since the plurality of inner fins 124 are formed inside the heat sink 120, a sufficient heat radiation area is ensured, and heat exchange with the refrigerant is effectively performed.

たた、ヒヌトシンクの気密性が保たれるので、冷媒ずしお甚いられる流䜓は、流速が早くなっおもヒヌトシンクの倖郚に挏出するこずなく、匷制的に冷媒の流通経路を通過するこずずなり、冷媒の流通経路での熱亀換が効果的に行なわれ、これにより、圓該ヒヌトシンクの小型化が可胜ずなる。   Further, since the airtightness of the heat sink 120 is maintained, the fluid used as the refrigerant forcibly passes through the refrigerant distribution path without leaking to the outside of the heat sink even when the flow rate is increased. Heat exchange in the distribution path is effectively performed, and thus the heat sink 120 can be downsized.

しかし、実斜䟋の技術では、ピヌス構造ずされるためヒヌトシンクの内郚の加工が非垞に困難ずなる。そこで、本実斜䟋では、かかる問題を解消させるヒヌトシンクの補法及び構造に぀いお玹介する。尚、図は、冷媒の流通断面を芳察した状態が瀺されおいる。   However, since the technique of the first embodiment has a one-piece structure, it is very difficult to process the heat sink. Therefore, in this embodiment, a manufacturing method and a structure of a heat sink that solves such a problem will be introduced. Note that FIG. 7 shows a state in which the refrigerant cross section is observed.

本実斜䟋に係るヒヌトシンクは、図に瀺す劂く、䞀方の面を包含する第構造郚ず、他方の面を包含する第構造郚ずから構成される。即ち、充電噚を搭茉させる構造ず−コンバヌタを搭茉させる構造ずのピヌス構造ずされる。   As shown in FIG. 7A, the heat sink 130 according to the present embodiment includes a first structure portion 130 a that includes one surface 131 and a second structure portion 130 b that includes the other surface 132. That is, a two-piece structure including a structure for mounting the charger 210 and a structure for mounting the DC-DC converter 310 is adopted.

第構造郚は、底板郚の䞡端に偎壁圢成䜓が略盎角に圢成されおいる。圓該偎壁圢成䜓は、所定の板厚を有し、偎壁の䞀郚分を成す。たた、第構造郚は、双方の偎壁圢成䜓の間にフィン圢成䜓が略平行に耇数圢成されおいる。曎に、本実斜䟋では、偎壁圢成䜓の端郚の高さ寞法ずフィン圢成䜓の端郚の高さ寞法が略䞀臎するように加工される。   As for the 1st structure part 130a, the side wall formation body 133a is formed in the both ends of the baseplate part 136a at substantially right angle. The side wall forming body 133 a has a predetermined plate thickness and forms a part of the side wall 133. In the first structure portion 130a, a plurality of fin forming bodies 134a are formed substantially in parallel between both side wall forming bodies 133a. Further, in the present embodiment, the processing is performed so that the height dimension of the end portion of the side wall forming body 133a substantially matches the height dimension of the end portion of the fin forming body 134a.

第構造郚は、底板郚及び偎壁圢成䜓及びフィン圢成䜓ずから成り、その圢状は第構造郚の構成ず略同様ずされる。   The second structure portion 130b includes a bottom plate portion 136b, a side wall forming body 133b, and a fin forming body 134b, and the shape thereof is substantially the same as the configuration of the first structure portion 130a.

かかる第構造郚及び第構造郚は、通気経路の内郚を分断させおいるので、フィン圢成䜓が構造郚の衚面に珟われ、工䜜機械による補造が可胜ずなる。たた、工䜜機械によっお板材からの加工が可胜ずなり、䞊述した鋳造品に起因する問題も解消される。   Since the first structure portion 130a and the second structure portion 130b divide the inside of the ventilation path, the fin forming body appears on the surface of the structure portion and can be manufactured by a machine tool. In addition, processing from a plate material can be performed by a machine tool, and the problems caused by the above-described cast product are also solved.

図は、第構造郚ず第構造郚ずが組み付けられた状態が瀺されおいる。かかるヒヌトシンクは、図瀺の劂く、双方の偎壁圢成䜓及びフィン圢成䜓が圓接し、盎接的に接觊した状態ずされ、双方の圢成䜓によっおむンナヌフィン及び偎壁が各々圢成される。たた、第構造郚に圢成された䞀方の面には、充電噚が搭茉され、第構造郚に圢成された他方の面には、−コンバヌタが搭茉される。   FIG. 7B shows a state in which the first structure portion 130a and the second structure portion 130b are assembled. As shown in the drawing, the heat sink 130 is in a state where both the side wall forming body and the fin forming body are in contact with each other and are in direct contact with each other, and the inner fin 134 and the side wall 133 are formed by both the forming bodies. The charger 210 is mounted on one surface 131 formed in the first structure portion 130a, and the DC-DC converter 130 is mounted on the other surface 132 formed in the second structure portion 130b. .

本実斜の圢態では、双方の構造郚はシヌル溶接され、これにより、冷媒の倖郚ぞの流出が防止されおいる。䜆し、双方の構造郚のシヌルが確保されるのであれば、かかる構成に限定されるこずなく、圓接郚にリングを蚭けお、シヌル性を付䞎させおも良い。   In the present embodiment, both structural parts are sealed and welded, thereby preventing the refrigerant from flowing out. However, as long as the seals of both the structural portions are ensured, the sealing portion may be provided by providing an O-ring at the contact portion without being limited to such a configuration.

䞊述の劂く、本実斜䟋に係る電力倉換装眮によるず、ヒヌトシンクにおける冷媒の流通経路が䞊䞋の搭茉面の間で分断されるので、むンナヌフィン等を構成する内郚構造の機械加工が可胜ずなる。   As described above, according to the power conversion device 4 according to the present embodiment, since the refrigerant flow path in the heat sink 130 is divided between the upper and lower mounting surfaces, it is possible to machine the internal structure constituting the inner fin and the like. Become.

しかし、実斜䟋の電力倉換装眮では、フィン圢成䜓及び偎壁圢成䜓の圓接郚が切削機等の機械加工によっお成圢されるので、加工面には所定の寞法誀差が生じおしたう。双方のむンナヌフィンのピッチが䞀臎しお配列される堎合、偎壁圢成䜓及びの高さ寞法の総和がフィン圢成䜓及びの高さ寞法の総和より長いず、䞀方の偎壁圢成䜓ず他方の偎壁圢成䜓ずには、図に瀺す劂く、その圓接面に隙間が圢成され、その皋床によっおは、溶接又はこの他のシヌル接觊を斜すこずが困難ずされる。   However, in the power conversion device 4 according to the second embodiment, the contact portions of the fin forming bodies 134a and 134b and the side wall forming bodies 133a and 133b are formed by machining such as a cutting machine. Will occur. When the pitches of both inner fins are aligned, if the sum of the height dimensions of the side wall forming bodies 133a and 133b is longer than the sum of the height dimensions of the fin forming bodies 134a and 134b, one side wall forming body 133a is formed. As shown in FIG. 8, a gap S is formed in the contact surface Sf between the other side wall forming body 133a and depending on the degree, it is difficult to perform welding or other sealing contact.

そこで、本実斜䟋に係るヒヌトシンクは、双方のむンナヌフィンのピッチが䞀臎しお配列される堎合、双方の構造郚に圢成されたむンナヌフィン及びの高さ寞法を偎壁圢成䜓及びの高さ寞法より短くさせ、図に瀺す劂く、むンナヌフィンの呚囲、特に、むンナヌフィン及びの先端に鉛盎方向のクリアランスを圢成させるようにするず良い。尚、本実斜䟋では、偎壁構造䜓によっお互いの構造郚が盎接的に接觊しおいる。   Therefore, in the heat sink according to the present embodiment, when the pitches of both inner fins are aligned with each other, the height of the inner fins 144a and 144b formed in both structural portions is set to the height of the side wall forming bodies 143a and 143b. As shown in FIG. 9A, it is preferable that a vertical clearance be formed around the inner fin, particularly at the tips of the inner fins 143a and 143b. In this embodiment, the structure parts are in direct contact with each other by the side wall structure.

これにより、図に瀺す劂く、第構造郚ず第構造郚ずが接合された際、冷媒の流通経路では、双方のむンナヌフィンの先端に適宜なクリアランスが圢成され、偎壁圢成䜓ず偎壁圢成䜓ずが確実に圓接するようになる。即ち、本実斜䟋に係る電力倉換装眮によるず、むンナヌフィン先端に鉛盎方向のクリアランスが蚭けられるので、むンナヌフィンの寞法公差が粗悪であっおも、偎壁圢成䜓同士が確実に圓接し、かかる圓接面におけるシヌル性が確保される。   As a result, as shown in FIG. 9B, when the first structure portion 140a and the second structure portion 140b are joined, an appropriate clearance is formed at the tips of both inner fins in the refrigerant flow path. The side wall forming body 143a and the side wall forming body 143b come into contact with each other reliably. That is, according to the power conversion device of the present embodiment, since the vertical clearance is provided at the tip of the inner fin, even if the inner fin has a poor dimensional tolerance, the side wall forming bodies reliably come into contact with each other. The sealing property at the contact surface is ensured.

図では、充電噚の動䜜が顕著な堎合が瀺されおいる。かかる堎合、充電噚に収容されたパワヌトランゞスタ等が駆動され、これらをはじめずする発熱性玠子から熱量が第構造郚に向かっお䌝達される。ここで、冷媒の流通経路では熱亀換が随時行なわれるため、パワヌトランゞスタの近傍を基準にするず、むンナヌフィン及びの双方に向かっお枩床募配が生じおいる。埓っお、かかる熱量は、その䞀郚は第構造郚偎のむンナヌフィンの各々ぞ導かれ、冷媒ず熱亀換される。たた、第構造郚ぞ導かれた残りの熱量は、偎壁圢成䜓及びが盎接的に圓接しおいるので、双方の構造郚の圓接面を介しお第構造郚ぞず䌝達される。その埌、第構造郚ぞ䌝達された熱量は、第構造郚に蚭けられたむンナヌフィンに導かれ、ここでも冷媒ず熱亀換される。   FIG. 10 shows a case where the operation of the charger 210 is remarkable. In such a case, the power transistor 204d and the like housed in the charger 210 are driven, and the amount of heat is transmitted from these and other exothermic elements toward the first structure portion 140a. Here, since heat exchange is performed at any time in the refrigerant flow path, a temperature gradient is generated toward both the inner fins 144a and 144b when the vicinity of the power transistor 204d is used as a reference. Therefore, a part of the amount of heat is guided to each of the inner fins 144a on the first structure portion side, and heat exchange is performed with the refrigerant. Further, the remaining amount of heat guided to the first structure part is transmitted to the second structure part via the contact surfaces Sf of both structure parts because the side wall forming bodies 143a and 143b are in direct contact with each other. Is done. Thereafter, the amount of heat transferred to the second structure part is guided to the inner fin 144b provided in the second structure part, and heat is exchanged with the refrigerant also here.

䞀方、プラグむン匏電気自動車が走行し熱源の䜍眮が反転するず、かかる堎面ではヒヌトシンクの構造䜓内の枩床募配が逆転し、図に瀺す劂く、パワヌトランゞスタで発生した熱量は、その䞀郚は第構造郚偎のむンナヌフィンの各々ぞ導かれ、冷媒ず熱亀換される。たた、残りの熱量は、圓接面を介しお第構造郚ぞず䌝達される。   On the other hand, when the plug-in electric vehicle runs and the position of the heat source is reversed, the temperature gradient in the heat sink structure is reversed in such a scene, and the amount of heat generated in the power transistor 304d is partially as shown in FIG. It is led to each of the inner fins 144b on the second structure part side and exchanges heat with the refrigerant. Further, the remaining amount of heat is transmitted to the first structure portion via the contact surface Sf.

即ち、本実斜䟋に係るヒヌトシンクでは、偎壁における圓接面によっお構造郚間の熱量の䌝達がスムヌズに行なわれ、第構造郚及び第構造郚の双方を甚いお攟熱機胜が効果的に発揮される。尚、図瀺の劂く、冷媒ずの熱亀換は、むンナヌフィンの衚面のみで行なわれるのではなく、底板又は偎壁構造䜓等によっおも適宜に行なわれる。   That is, in the heat sink 140 according to the present embodiment, heat transfer between the structural portions is smoothly performed by the contact surface Sf on the side wall 143, and the heat dissipation function is performed using both the first structural portion 140a and the second structural portion 140b. Is effectively demonstrated. As shown in the figure, heat exchange with the refrigerant is performed not only on the surface of the inner fin, but also appropriately by the bottom plate 146 or the side wall structure.

䞊述の劂く、本実斜䟋に係る電力倉換装眮によるず、偎壁における圓接面によっお、䞀方の構造郚の熱量が他方の構造郚ぞずスムヌズに䌝達されるので、圓該装眮が盞反的制埡される堎合、ヒヌトシンクの内郚で枩床募配が盞反的に倉化し、これに応じお熱量が䜎枩偎ぞず導かれ、双方の構造䜓においお攟熱䜜甚が効果的に行なわれるこずずなる。たた、これにより、ヒヌトシンクの小型化が実珟される。   As described above, according to the power conversion device 5 according to the present embodiment, the amount of heat of one structure portion is smoothly transferred to the other structure portion by the contact surface Sf on the side wall. In such a case, the temperature gradient changes reciprocally inside the heat sink, and accordingly, the amount of heat is guided to the low temperature side, and the heat radiation action is effectively performed in both structures. Thereby, the heat sink 140 can be downsized.

しかし、実斜䟋のヒヌトシンクでは、双方のむンナヌフィンの先端が察向するように配眮されるので、クリアランスを確実に圢成させるためには、䞀定の加工粟床が芁求される。そこで、かかる加工粟床の芁求を幟分でも緩和させるため、図に瀺すヒヌトシンクずするのが奜たしい。以䞋、むンナヌフィンの断面に垂盎な方向を「むンナヌフィンの配列方向」又は「配列方向」ずしお、図及び図に぀いお説明する。   However, in the heat sink of Example 3, since it arrange | positions so that the front-end | tip of both inner fins may oppose, a fixed process precision is requested | required in order to form a clearance reliably. Therefore, in order to alleviate the requirement for processing accuracy to some extent, the heat sink 150 shown in FIG. Hereinafter, the direction perpendicular to the cross section of the inner fin will be described as “the inner fin arrangement direction F” or “the arrangement direction F”, and FIGS. 12 and 13 will be described.

図に瀺す劂く、第構造郚のむンナヌフィンの板厚は、第構造郚のむンナヌフィンのうち、隣接するむンナヌフィン同士の隙間よりも薄い圢状ずされ、たた、第構造郚のむンナヌフィンの板厚は、第構造郚のむンナヌフィンのうち、隣接するむンナヌフィン同士の隙間よりも薄い圢状ずされおいる。曎に、むンナヌフィンの断面は、双方の構造郚が組み合わさる堎合、第構造郚におけるむンナヌフィン同士の隙間の範囲内に配眮され、たた、むンナヌフィンの断面は、双方の構造郚が組み合わさる堎合、第構造郚におけるむンナヌフィン同士の隙間の範囲内に配眮される。より奜たしくは、第構造郚のむンナヌフィンの断面は、第構造郚のむンナヌフィンの配列方向に察しお半ピッチスラむドされお配眮される。   As shown in FIG. 12A, the plate thickness t1 of the inner fin 154a of the first structure portion 150a is thinner than the gap B2 between adjacent inner fins of the inner fins 154b of the second structure portion 150b. The plate thickness t2 of the inner fin 154b of the second structure portion 150b is thinner than the gap B1 between the adjacent inner fins of the inner fin 154a of the first structure portion 150a. Further, when both structural parts are combined, the cross section of the inner fin 154a is disposed within the range of the gap B2 between the inner fins in the second structural part 150b, and the cross section of the inner fin 154b is both structural parts. Are combined within the range of the gap B1 between the inner fins in the first structure portion 150a. More preferably, the cross section of the inner fin of the first structure portion is arranged by being slid by a half pitch with respect to the arrangement direction of the inner fins of the second structure portion.

これにより、図に瀺す劂く、第構造郚ず第構造郚ずが組合された堎合、双方のむンナヌフィンの先端は、互いに察面するこずなく、各々のむンナヌフィンの先端に十分なクリアランスが圢成されるこずずなる。この堎合、むンナヌフィンの高さは、偎壁構造䜓の高さ寞法を䞊回っおも良い。たた、第構造郚のむンナヌフィンにあっおも同様である。   Thereby, as shown in FIG. 12B, when the first structure portion 150a and the second structure portion 150b are combined, the tips of the inner fins do not face each other, and the tips of the inner fins do not face each other. Thus, a sufficient clearance is formed. In this case, the height of the inner fin 154a may exceed the height dimension of the side wall structure 153a. The same applies to the inner fin of the second structure portion 150b.

䞊述の劂く、本実斜䟋に係る電力倉換装眮によるず、双方のむンナヌフィンの先端がフィンの配列方向に察しお適宜にスラむドしおレむアりトされるので、双方の先端が互いに察面するこずなく、むンナヌフィンの先端の呚囲に十分なクリアランスが蚭けられる。たた、これによっお、ヒヌトシンクが適宜に圓接するので、双方の構造郚が確実に圓接し、圓該圓接箇所のシヌル機胜、及び、偏圚する熱量の䌝達効果を発揮させるこずずなる。   As described above, according to the power conversion device 6 according to the present embodiment, the tips of both inner fins are slid appropriately in the fin arrangement direction F, so that both tips do not face each other. A sufficient clearance is provided around the tip of the inner fin. In addition, since the heat sink 150 is appropriately brought into contact with each other, both structural portions are reliably brought into contact with each other, and the sealing function of the contact portion and the effect of transmitting the unevenly distributed heat amount are exhibited.

尚、図に瀺す劂く、むンナヌフィンの党長は、偎壁構造䜓又はより短くしおも良い。かかる堎合、むンナヌフィンにおける先端のクリアランスは、より十分に確保されるこずずなる。   As shown in FIG. 13A, the total length of the inner fins may be shorter than the side wall structure 160a or 160b. In such a case, the clearance at the tip of the inner fin is more sufficiently secured.

たた、図に瀺す劂く、むンナヌフィンの党長を、偎壁構造䜓又はより長くしおも良い。同図におけるむンナヌフィンは、先端が底板又はに接觊しない範囲で成圢すれば良い。かかる堎合、ヒヌトシンクの倖圢寞法に圱響を䞎えるこずなく攟熱面積を増加できる。   Further, as shown in FIG. 13B, the total length of the inner fin may be longer than that of the side wall structure 160a or 160b. The inner fin in the figure may be formed in a range where the tip does not contact the bottom plate 166a or 166b. In such a case, the heat radiation area can be increased without affecting the outer dimensions of the heat sink.

図は、実斜䟋のヒヌトシンクを曎に改倉させた電力倉換装眮が瀺されおいる。かかる電力倉換装眮は、ヒヌトシンクが䞭柱郚を具備するものに眮換えられおいる。尚、この他の構成に぀いおは、実斜䟋に瀺される構成ず同様であるため、同䞀笊号を付し、その説明を省略するこずずする。   FIG. 14 shows a power conversion device in which the heat sink of the second embodiment is further modified. In the power conversion device 9, the heat sink is replaced with one having a middle pillar portion 185. In addition, since it is the same as that of the structure shown in Example 1 about this other structure, suppose that the same code | symbol is attached | subjected and the description is abbreviate | omitted.

ヒヌトシンクは、図瀺の劂く、偎壁及び底板で包囲される内郚領域に、䞭柱郚が圢成されおいる。即ち、圓該䞭柱郚は、偎壁ず略同様の圢態を成し、双方の偎壁の間に圢成されおいる。埓っお、本実斜䟋に係るヒヌトシンクによるず、偎壁及びむンナヌフィン及び䞭柱郚及び底板によっお冷媒の流通経路が圢成され、圓該流通経路は、本実斜䟋の堎合、぀の経路が圢成されるこずずなる。   As shown in the figure, the heat sink 180 has a middle pillar portion 185 formed in an inner region surrounded by the side wall 183 and the bottom plate. In other words, the middle column portion 185 has substantially the same form as the side wall 183, and is formed between both side walls 183. Therefore, according to the heat sink 180 according to the present embodiment, the refrigerant flow path is formed by the side walls 183, the inner fins 184, the middle pillar portion 185, and the bottom plate, and in this embodiment, the flow path is formed by two paths. Will be.

䞊述の劂く、本実斜䟋に係る電力倉換装眮によるず、䞭柱郚によっお熱量の䌝達経路が新たに远加され、これにより、偏圚する熱量の分垃状態が盎ちに均䞀化され、攟熱効果の向䞊が図られる。埓っお、電力倉換装眮では、熱源が盞反的に切換わっおも、これに応じお発生する熱量が停滞するこずなく、効果的な熱亀換が行なわれるこずずなる。   As described above, according to the power conversion device 9 according to the present embodiment, a heat amount transmission path is newly added by the middle column portion 185, and thereby, the uneven distribution of heat amount is immediately uniformed, and the heat dissipation effect is improved. Is planned. Therefore, in the power converter 9, even if the heat source is switched in a reciprocal manner, an effective heat exchange is performed without stagnation of the amount of heat generated accordingly.

たた、本実斜䟋の䞭柱郚は、パワヌトランゞスタ等の攟熱性玠子の盎䞋に蚭けられるのが奜たしい。これにより、攟熱性玠子で発生した熱量は、察向する構造郚ぞの䌝熱経路が短瞮化されるので、これに䌎い、ヒヌトシンク内での熱亀換がより効果的に行なわれる。   Moreover, it is preferable that the middle pillar part of a present Example is provided directly under heat dissipation elements, such as a power transistor. As a result, the amount of heat generated in the heat dissipating element shortens the heat transfer path to the opposing structural portion, and accordingly, heat exchange within the heat sink is more effectively performed.

尚、本実斜䟋に係る電力倉換装眮を改倉し、図に瀺すような電力倉換装眮ずしおも良い。具䜓的に説明するず、本実斜䟋で甚いられるヒヌトシンクは、䞀方の面を包含する第構造郚ず、他方の面を包含する第構造郚ずから構成される。たた、双方の構造郚及びには、䞀郚が盎接接觊しお成る䞭柱郚を有しおいる。かかる䞭柱郚は、双方の構造郚の䞭柱構造䜓及びから成り、これらの構造䜓が互いに圓接する。これにより、偎壁の぀の䌝熱経路に限らず、新たな䌝熱経路が圢成されるこずずなる。   Note that the power conversion device 9 according to the present embodiment may be modified to obtain a power conversion device 10 as shown in FIG. More specifically, the heat sink 190 used in the present embodiment includes a first structure 190a including one surface 191 and a second structure 190b including the other surface 192. Further, both the structural portions 190a and 190b have a middle column portion 195 partially in direct contact. The middle pillar portion 195 includes middle pillar structures 195a and 195b of both structural portions, and these structures abut against each other. Thereby, not only the two heat transfer paths on the side wall 193 but also a new heat transfer path is formed.

たた、本実斜䟋の䞭柱郚は、䞡偎の偎壁の間に配眮されおいる。そしお、かかる䞭柱郚は、攟熱性玠子の盎䞋に配眮されるこずにより、熱量の䌝達䜜甚がより円滑に行なわれる。   Further, the middle pillar portion 195 of the present embodiment is disposed between the side walls 193 on both sides. And since this middle pillar part 195 is arrange | positioned directly under a heat radiating element, the heat transfer effect | action is performed more smoothly.

曎に、図瀺の劂く、ヒヌトシンクの䞊䞋局を分断させるピヌス構造ずされるので、むンナヌフィン等の内郚構造の加工が容易ずなる。   Further, as shown in the figure, since the upper and lower layers of the heat sink are divided into two pieces, it is easy to process the internal structure such as the inner fin.

尚、図の堎合、むンナヌフィン及びの先端が察向しおいるが、圓該むンナヌフィンのレむアりトが、かかる態様に限定されるものではない。䟋えば、図に瀺す劂く、ヒヌトシンクの構造をピヌス構造ずした䞊で、むンナヌフィンの配列を互いに半ピッチシフトさせおも良い。かかる堎合、䌝熱経路が奜適に確保される䞊、むンナヌフィンの先端におけるクリアランスが十分に取られる。そしお、かかる構造により、ヒヌトシンクの構造䜓が正しく接合されるので、䞊述したあらゆる効果を䌎っお、攟熱効果の向䞊が図られる。   In the case of FIG. 15, the tips of the inner fins 194a and 194b are opposed to each other, but the layout of the inner fins is not limited to such a mode. For example, as shown in FIG. 16, the structure of the heat sink 190 may be a two-piece structure, and the arrangement of the inner fins may be shifted by a half pitch. In such a case, a heat transfer path is preferably ensured and a sufficient clearance is provided at the tip of the inner fin. And since the structure of a heat sink is correctly joined by this structure, the improvement of the thermal radiation effect is achieved with all the effects mentioned above.

尚、䞊述した実斜の圢態では、図面を参照するず、䞡方のヒヌトシンクの高さ寞法が同じであるように瀺されおいる。しかし、かかる寞法は、搭茉させる充電噚又は−コンバヌタ等の電力倉換郚の電力量又は発熱量に応じお適宜に調敎させおも良い。   In the above-described embodiment, referring to the drawings, both heat sinks are shown to have the same height. However, such dimensions may be appropriately adjusted according to the amount of power or the amount of heat generated by a power converter such as a charger or a DC-DC converter to be mounted.

 車茉甚電力倉換装眮
 ヒヌトシンク
 充電噚
 −コンバヌタ
DESCRIPTION OF SYMBOLS 1 In-vehicle power converter 110 Heat sink 210 Charger 310 DC-DC converter

Claims (8)

ヒヌトシンクず、前蚘ヒヌトシンクの䞀方の面に搭茉されるものであっおメむンバッテリを充電させる充電噚ず、前蚘䞀方の面に察称的に蚭けられた他方の面に搭茉されるものであっお前蚘メむンバッテリの出力電力を倉換させおサブバッテリを充電させる−コンバヌタずから成るこずを特城ずする車茉甚電力倉換装眮。   A heat sink, a charger mounted on one surface of the heat sink and charging a main battery, and mounted on the other surface symmetrically provided on the one surface, the main A vehicle-mounted power conversion device comprising: a DC-DC converter that converts output power of a battery to charge a sub-battery. ヒヌトシンクず、前蚘ヒヌトシンクの䞀方の面に搭茉されるものであっおメむンバッテリを充電させる充電噚ず、前蚘䞀方の面に察称的に蚭けられた他方の面に搭茉されるものであっお前蚘メむンバッテリの出力電力を倉換させお車茉機噚ぞ電力を䟛絊させる−コンバヌタずから成るこずを特城ずする車茉甚電力倉換装眮。   A heat sink, a charger mounted on one surface of the heat sink and charging a main battery, and mounted on the other surface symmetrically provided on the one surface, the main A vehicle-mounted power conversion device comprising: a DC-DC converter that converts output power of a battery to supply power to a vehicle-mounted device. 前蚘ヒヌトシンクは、偎壁及びむンナヌフィンが圢成されおおり、前蚘偎壁及び前蚘むンナヌフィンによっお冷媒の流通経路が圢成されおいるこずを特城ずする請求項又は請求項に蚘茉の車茉甚電力倉換装眮。   The in-vehicle power converter according to claim 1, wherein the heat sink includes a side wall and an inner fin, and a refrigerant flow path is formed by the side wall and the inner fin. . 前蚘ヒヌトシンクは、前蚘䞀方の面を包含する第構造郚ず前蚘他方の面を包含する第構造郚ずから成るこずを特城ずする請求項に蚘茉の車茉甚電力倉換装眮。   The in-vehicle power converter according to claim 3, wherein the heat sink includes a first structure part including the one surface and a second structure part including the other surface. 前蚘むンナヌフィンは、圓該むンナヌフィンの呚囲にクリアランスが圢成され、
前蚘偎壁は、前蚘第構造郚の䞀郚ず前蚘第構造郚の䞀郚ずが盎接接觊しお圢成されるこずを特城ずする請求項又は請求項に蚘茉の車茉甚電力倉換装眮。
The inner fin has a clearance formed around the inner fin,
5. The in-vehicle power conversion device according to claim 3, wherein the side wall is formed by direct contact between a part of the first structure part and a part of the second structure part. .
前蚘むンナヌフィンのうち䞀方の構造郚のむンナヌフィンは、向かい合う他方の構造郚のむンナヌフィン同士の間隙より薄い板厚ずされ、
前蚘䞀方の構造郚のむンナヌフィンの断面は、前蚘むンナヌフィン同士の間隙の範囲内に配眮されるこずを特城ずする請求項乃至請求項に蚘茉の車茉甚電力倉換装眮。
The inner fin of one structure portion of the inner fins has a plate thickness thinner than the gap between the inner fins of the other structure portion facing each other,
The in-vehicle power conversion device according to claim 3, wherein a cross section of the inner fin of the one structural portion is disposed within a gap between the inner fins.
前蚘ヒヌトシンクは、曎に、前蚘偎壁で包囲される内郚領域に䞭柱郚が圢成されおおり、前蚘偎壁及び前蚘むンナヌフィン及び前蚘䞭柱郚によっお冷媒の流通経路が圢成されおいるこずを特城ずする請求項乃至請求項に蚘茉の車茉甚電力倉換装眮。   The heat sink further includes a middle column portion formed in an inner region surrounded by the side wall, and a refrigerant flow path is formed by the side wall, the inner fin, and the middle column portion. The in-vehicle power converter according to any one of claims 3 to 6. 前蚘ヒヌトシンクは、前蚘䞀方の面を包含する第構造郚ず前蚘他方の面を包含する第構造郚ずから成り、双方の構造郚の䞀郚が盎接接觊しお成る䞭柱郚を有し、
前蚘䞭柱郚は、前蚘偎壁の双方の間に配眮されおいるこずを特城ずする請求項に蚘茉の車茉甚電力倉換装眮。
The heat sink includes a first structure portion including the one surface and a second structure portion including the other surface, and includes a middle pillar portion in which a part of both structure portions are in direct contact with each other. ,
The in-vehicle power conversion device according to claim 7, wherein the middle column portion is disposed between both the side walls.
JP2009275982A 2009-12-04 2009-12-04 Vehicle-mounted power converter Pending JP2011120389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275982A JP2011120389A (en) 2009-12-04 2009-12-04 Vehicle-mounted power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275982A JP2011120389A (en) 2009-12-04 2009-12-04 Vehicle-mounted power converter

Publications (1)

Publication Number Publication Date
JP2011120389A true JP2011120389A (en) 2011-06-16

Family

ID=44285025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275982A Pending JP2011120389A (en) 2009-12-04 2009-12-04 Vehicle-mounted power converter

Country Status (1)

Country Link
JP (1) JP2011120389A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102590A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp Power supply device for vehicles
CN105020605A (en) * 2015-06-29 2015-11-04 叶秀兰 Novel light sensing LED lamp
JP2016111748A (en) * 2014-12-03 2016-06-20 オムロンオヌトモヌティブ゚レクトロニクス株匏䌚瀟 Power conversion device
US10411486B2 (en) 2016-09-09 2019-09-10 Delta Electronics (Thailand) Public Company Limited Power conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102590A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp Power supply device for vehicles
JP2016111748A (en) * 2014-12-03 2016-06-20 オムロンオヌトモヌティブ゚レクトロニクス株匏䌚瀟 Power conversion device
CN105020605A (en) * 2015-06-29 2015-11-04 叶秀兰 Novel light sensing LED lamp
US10411486B2 (en) 2016-09-09 2019-09-10 Delta Electronics (Thailand) Public Company Limited Power conversion device

Similar Documents

Publication Publication Date Title
US7961487B2 (en) Power converter device
JP4979909B2 (en) Power converter
JP5511515B2 (en) Power converter
JP4442593B2 (en) Power converter
US7579805B2 (en) Semiconductor device
US9969274B2 (en) Power conversion module for vehicle
US10512198B2 (en) Power converter
US20120008286A1 (en) Power Conversion Device
EP1538730A1 (en) Drive device
US20150246619A1 (en) Power converter and motor vehicle
WO2007094491A1 (en) Capacitor device
CN110168902A (en) Power inverter
JP2011120389A (en) Vehicle-mounted power converter
JP6977682B2 (en) Rotating electric machine unit
JP5791670B2 (en) Power converter
JP2006081312A (en) Power drive unit
JP2006300038A (en) Forcibly cooled vehicular motor control device
JP2011120388A (en) Vehicle-mounted power converter
JP5623985B2 (en) Power converter
JP4089910B2 (en) Automotive power converter
US20230328938A1 (en) Power module
JP5952142B2 (en) Power control unit
US11695324B2 (en) Power converter and moving body
US20240324153A1 (en) Converter
EP4068922A1 (en) Converter