[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011109484A - Multi-lens camera apparatus and electronic information device - Google Patents

Multi-lens camera apparatus and electronic information device Download PDF

Info

Publication number
JP2011109484A
JP2011109484A JP2009263416A JP2009263416A JP2011109484A JP 2011109484 A JP2011109484 A JP 2011109484A JP 2009263416 A JP2009263416 A JP 2009263416A JP 2009263416 A JP2009263416 A JP 2009263416A JP 2011109484 A JP2011109484 A JP 2011109484A
Authority
JP
Japan
Prior art keywords
lens
sub
camera device
imaging
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009263416A
Other languages
Japanese (ja)
Other versions
JP5399215B2 (en
Inventor
Yoshito Ishimatsu
義人 石末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009263416A priority Critical patent/JP5399215B2/en
Publication of JP2011109484A publication Critical patent/JP2011109484A/en
Application granted granted Critical
Publication of JP5399215B2 publication Critical patent/JP5399215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a resolution while optimizing a distance interval between a lens area and an imaging area by matching lens characteristics with color filters of respective colors. <P>SOLUTION: Sub lenses 3a, 3b, 3c and 3d of a lens array 3 are configured in such a manner that the position of a focal plane of a wavelength light beam selectively transmitted through color filters of respective colors combined with these sub lenses becomes identical on respective imaging areas 6a, 6b, 6c and 6d of an imaging device substrate 6. Accordingly, distance intervals (focal distances) between the sub lenses 3a, 3b, 3c and 3d and the imaging areas 6a, 6b, 6c and 6d corresponding thereto can be optimized by matching lens characteristics with the color filters of respective colors, a lens having an accurate focal distance corresponding to the color of the color filters can be prepared for each color of the color filters, a color aberration is eliminated and the high resolution can be achieved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、携帯電話装置などに内蔵するのに好適なレンズ全長が短い撮像レンズを持つ多眼カメラ装置および、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。   The present invention relates to a multi-lens camera device having an imaging lens with a short overall lens length suitable for being incorporated in a mobile phone device or the like, and a digital video camera and a digital camera, for example, using this multi-eye camera device as an image input device in an imaging unit The present invention relates to an electronic information device such as a digital camera such as a still camera, an image input camera such as a surveillance camera, a scanner device, a facsimile device, a television phone device, and a camera-equipped mobile phone device.

近年、CCD(Charge Coupled Device)およびCMOS(Complementary Metal Oxide Semiconductor)に代表される固体撮像素子を用いたデジタルスチルカメラの普及が急速に進み、多種多様なデジタルスチルカメラが開発されている。このデジタルスチルカメラの小型化は、固体撮像素子における技術の進歩と共に年々進んでいる。その中でも、携帯型情報端末や携帯電話装置などに搭載されるカメラは、その筐体における大きさの制限などにより、特に、小型化が求められている。   In recent years, digital still cameras using solid-state imaging devices represented by CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) have been rapidly spreading, and various digital still cameras have been developed. Miniaturization of this digital still camera is progressing year by year with the advancement of technology in solid-state imaging devices. Among them, a camera mounted on a portable information terminal, a mobile phone device, or the like is particularly required to be miniaturized due to the size limitation of the housing.

カメラとして要求される画角が同一の場合、固体撮像素子の大きさ(撮像領域の対角長)によりレンズの光学長が制約を受ける。このレンズの光学長を短くするためには薄肉レンズや高屈折レンズ材料の採用などの方法が考えられるが、そのようなレンズの光学長を短くする方法には限界がある。
このため、固体撮像素子を分割し、その分割エリア毎にレンズを備えれば、分割した比率に応じてレンズの光学長の短縮化が可能となる。
When the angle of view required for the camera is the same, the optical length of the lens is restricted by the size of the solid-state imaging device (diagonal length of the imaging region). In order to shorten the optical length of this lens, methods such as the use of a thin lens or a high refractive lens material can be considered, but there is a limit to the method of shortening the optical length of such a lens.
For this reason, if the solid-state imaging device is divided and a lens is provided for each divided area, the optical length of the lens can be shortened according to the divided ratio.

特許文献1、2に記載された薄型カメラは、少なくとも3つのサブカメラを備えることにより薄型化を実現している。   The thin cameras described in Patent Documents 1 and 2 achieve thinning by including at least three sub cameras.

図5は、特許文献1、2に開示されている従来の多眼カメラ装置の概略構成例を示す斜視図である。図6は、図1の従来の多眼カメラ装置における撮像素子基板の概略構成例を示す斜視図である。図7は、図1の従来の従来の多眼カメラ装置における要部構成例を示す縦断面図である。
図5〜図7において、従来の多眼カメラ装置としての4眼式カメラ装置100は、開口絞りアレイ102、レンズアレイ103、透明ガラス基板などの平面板104、遮光マスク105および撮像素子基板106をこの順次に積層したカメラモジュールである。
レンズアレイ102は、サブカメラ毎にサブレンズ102a、102b、102cおよび102dのそれぞれを備えている。
撮像素子基板106は、遮光マスク105により、分割撮像領域106a、106b、106cおよび106dに4分割されて互いに隔離されており、それぞれ単色のカラーフィルタを有している。分割撮像領域106aおよび106bがG(緑)、分割撮像領域106cおよび106dがそれぞれR(赤)、B(青)となる。サブレンズ毎に集光された入射光は、それぞれが各色のカラーフィルタを、波長毎(色毎)に選択的に透過され、各サブレンズの直下に存在する分割撮像領域上に結像される。これらのサブレンズ102aおよび102bはG(緑)、サブレンズ102cはR(赤)、サブレンズ102dはB(青)の入射光を結像する。さらに、遮光マスク105によって、互いに隣接するサブカメラへの迷光は遮断されることになる。
FIG. 5 is a perspective view showing a schematic configuration example of a conventional multi-lens camera device disclosed in Patent Documents 1 and 2. FIG. FIG. 6 is a perspective view showing a schematic configuration example of an image sensor substrate in the conventional multi-lens camera device of FIG. FIG. 7 is a longitudinal sectional view showing an example of the configuration of the main part of the conventional conventional multi-lens camera device of FIG.
5 to 7, a four-lens camera device 100 as a conventional multi-lens camera device includes an aperture stop array 102, a lens array 103, a flat plate 104 such as a transparent glass substrate, a light shielding mask 105, and an image sensor substrate 106. This is a sequentially stacked camera module.
The lens array 102 includes sub lenses 102a, 102b, 102c, and 102d for each sub camera.
The image pickup device substrate 106 is divided into four divided image pickup regions 106a, 106b, 106c and 106d by a light shielding mask 105 and is separated from each other, and each has a single color filter. The divided imaging areas 106a and 106b are G (green), and the divided imaging areas 106c and 106d are R (red) and B (blue), respectively. The incident light collected for each sub-lens is selectively transmitted through each color filter for each wavelength (each color) and imaged on a divided imaging region that exists directly under each sub-lens. . The sub lenses 102a and 102b form an image of G (green), the sub lens 102c forms an R (red) image, and the sub lens 102d forms an B (blue) image. Further, the stray light to the sub-cameras adjacent to each other is blocked by the light shielding mask 105.

各サブレンズサブレンズ102a、102b、102cおよび102dが同じ仕様の場合、サブレンズ102cにより結像されるR(赤)の焦点面の位置は、サブレンズ102aおよび102bにより結像されるG(緑)の焦点面の位置よりも長く、サブレンズ102dによる結像されるB(青)の焦点面の位置は、サブレンズ102aおよび102bにより結像されるG(緑)の焦点面の位置よりも短い。   When each of the sub lenses 102a, 102b, 102c and 102d has the same specification, the position of the focal plane of R (red) formed by the sub lens 102c is G (green) formed by the sub lenses 102a and 102b. The position of the focal plane of B (blue) formed by the sub lens 102d is longer than the position of the focal plane of G (green) formed by the sub lenses 102a and 102b. short.

通常、波長の異なる光線を入射したとき、レンズの焦点面の位置は異なる。特許文献1、2によれば、撮像レンズはアレイ形状を有しており、サブカメラ毎に異なるカラーフィルタを持つ構造が記載されている。   Normally, when light rays having different wavelengths are incident, the position of the focal plane of the lens is different. According to Patent Documents 1 and 2, the imaging lens has an array shape, and describes a structure having a different color filter for each sub-camera.

特表2007−520166号公報Special table 2007-520166 WO2007/013250号公報WO2007 / 013250

上記従来の多眼カメラ装置では、レンズアレイ103のレンズ領域と、これに対応した撮像素子基板106の撮像領域との距離間隔を調整することにより、焦点面の位置にその撮像領域を配置することができるものの、従来の多眼カメラ装置100の場合、レンズアレイ103のレンズはアレイ構造であり、撮像素子基板106は分割撮像領域であるため、各サブレンズ毎に分割撮像領域との距離間隔を調整することができない。
特許文献2に開示された上記従来の多眼カメラ装置では、各レンズは、これに対応するカラーフィルタを透過させる光の波長に対して光学特性が最良となるように設計したとの記載があるが、具体的な事例は示されていない。
In the conventional multi-lens camera device, the imaging region is arranged at the position of the focal plane by adjusting the distance between the lens region of the lens array 103 and the imaging region of the imaging element substrate 106 corresponding thereto. However, in the case of the conventional multi-lens camera device 100, the lenses of the lens array 103 have an array structure, and the image sensor substrate 106 is a divided imaging region. It cannot be adjusted.
In the conventional multi-lens camera device disclosed in Patent Document 2, it is described that each lens is designed to have the best optical characteristics with respect to the wavelength of light transmitted through the corresponding color filter. However, no specific case has been shown.

通常、アレイ構造のレンズの場合、レンズの成型はレプリカ法と呼ばれる成型を行う。これは、雄型のマスタ金型を一つ製作し、マスタ金型をレンズ配列位置上に転写することで雌型を作成する方法である。この転写方法では、切削、研磨などによる金属加工による金型作成のコストを抑えることができる。しかしながら、レンズはレンズアレイであることから、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化することはできないという問題を有していた。   Usually, in the case of a lens having an array structure, the lens is molded by a so-called replica method. This is a method in which one male master mold is manufactured, and the master mold is transferred onto the lens arrangement position to create a female mold. With this transfer method, it is possible to reduce the cost of mold production by metal processing such as cutting and polishing. However, since the lens is a lens array, there has been a problem that the distance between the lens region and the imaging region cannot be optimized in accordance with the lens characteristics of each color filter.

本発明は、上記従来の問題を解決するもので、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化して解像度を向上することができる多眼カメラ装置、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and a multi-lens camera apparatus capable of improving the resolution by optimizing the distance between the lens area and the imaging area by matching the lens characteristics with the color filters of the respective colors. An object of the present invention is to provide an electronic information device such as a mobile phone device with a camera using the multi-eye camera device as an image input device in an imaging unit.

なお、同一レンズにおいて入射する光線の色(波長)によって焦点面が変わる。これを色収差という。したがって、通常のベイヤー配列でカラーフィルタを持つセンサでは、色収差のバランスの取れた位置で焦点面調整される。各色毎に見たら必ずしもベスト焦点面では無い。多眼構造にして、カラーフィルタの違うセンサ毎にレンズを作れば、色収差の問題を回避できる。しかしながら、多眼は、レンズアレイの構造を取るため、レンズ毎に焦点を合わせられない。それを如何に回避するのかというところが、本発明の趣旨である。   Note that the focal plane changes depending on the color (wavelength) of light rays incident on the same lens. This is called chromatic aberration. Therefore, in a sensor having a color filter in a normal Bayer array, the focal plane is adjusted at a position where chromatic aberration is balanced. If it sees for every color, it is not necessarily the best focal plane. The chromatic aberration problem can be avoided by using a multi-lens structure and making a lens for each sensor with a different color filter. However, since the multiview lens has a lens array structure, it cannot focus on each lens. The purpose of the present invention is how to avoid it.

本発明の多眼カメラ装置は、複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、該レンズアレイの少なくとも2つのサブレンズの該撮像領域に対する焦点距離が互いに異なっているものであり、そのことにより上記目的が達成される。   The multi-lens camera device of the present invention includes a plurality of imaging regions, a color filter of each color arranged for each imaging region, and a lens array provided with each sub lens corresponding to each imaging region. In the multi-lens camera device, the focal lengths of the at least two sub-lenses of the lens array with respect to the imaging region are different from each other, thereby achieving the above object.

また、本発明の多眼カメラ装置は、複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、該レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が該撮像領域上で同一となるように構成されているであり、そのことにより上記目的が達成される。   The multi-lens camera device of the present invention includes a plurality of imaging regions, a color filter of each color arranged for each imaging region, and a lens array provided with each sub lens corresponding to each imaging region. In the multi-lens camera device in which the sub-lenses of the lens array are stacked, the focal plane positions of the wavelength rays selectively transmitted by the color filters of the respective colors combined with the sub-lenses are the same on the imaging region. Thus, the above object is achieved.

さらに、好ましくは、本発明の多眼カメラ装置におけるレンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が前記撮像領域上で同一となるように構成されている。   Further preferably, in each of the sub-lenses of the lens array in the multi-lens camera device of the present invention, the position of the focal plane of the wavelength ray selectively transmitted by the color filter of each color combined with the sub-lens is on the imaging region. It is comprised so that it may become the same.

さらに、好ましくは、本発明の多眼カメラ装置におけるレンズアレイのサブレンズはそれぞれ、該サブレンズに対応したカラーフィルタの波長特性に合わせた焦点距離を有している。   Further preferably, each of the sub-lenses of the lens array in the multi-lens camera device of the present invention has a focal length that matches the wavelength characteristics of the color filter corresponding to the sub-lens.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの被写体側レンズ面から前記撮像領域までの距離を、前記カラーフィルタの透過波長毎の焦点距離に合わせている。   Furthermore, it is preferable that the distance from the subject-side lens surface of the sub lens in the multi-lens camera device of the present invention to the imaging region is matched with the focal length for each transmission wavelength of the color filter.

さらに、好ましくは、本発明の多眼カメラ装置において、前記焦点距離または前記焦点面の位置は、前記レンズアレイのサブレンズ毎の厚みによって設定されている。   Further preferably, in the multi-lens camera device of the present invention, the focal length or the position of the focal plane is set by the thickness of each sub-lens of the lens array.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの厚みを調整するのは、該サブレンズの被写体側のレンズ面および、該サブレンズの撮像領域側のレンズ面のうちの少なくともいずれかである。   Further preferably, the thickness of the sub lens in the multi-lens camera device of the present invention is adjusted by at least one of a lens surface on the subject side of the sub lens and a lens surface on the imaging region side of the sub lens. It is.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの積層枚数が2枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズおよび第2レンズの少なくともいずれかである。   Still preferably, in a multi-lens camera device according to the present invention, when the number of stacked sub lenses is two, the lens for adjusting the focal length or the position of the focal plane is at least one of the first lens and the second lens. It is.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの積層枚数が3枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかである。   Still preferably, in a multi-lens camera device according to the present invention, when the number of laminated sub lenses is three, the lens for adjusting the focal length or the position of the focal plane is the first lens, the second lens, and the third lens. At least one of them.

さらに、好ましくは、本発明の多眼カメラ装置における焦点距離または前記焦点面の位置は、前記レンズアレイと前記撮像領域との間に透明平行板を備える場合に、該透明平行板の厚さにより調整されている。   Further preferably, the focal length or the position of the focal plane in the multi-lens camera device of the present invention depends on the thickness of the transparent parallel plate when a transparent parallel plate is provided between the lens array and the imaging region. It has been adjusted.

さらに、好ましくは、本発明の多眼カメラ装置におけるカラーフィルタはそれぞれ、R(赤)、G(緑)およびB(青)の各色をそれぞれ有している。   Further preferably, the color filters in the multi-lens camera device of the present invention respectively have R (red), G (green), and B (blue) colors.

さらに、好ましくは、本発明の多眼カメラ装置におけるカラーフィルタはそれぞれ、C(水色)、M(赤紫)、Y(黄色)およびG(緑)の各色をそれぞれ有している。   Further preferably, the color filters in the multi-lens camera device of the present invention respectively have C (light blue), M (red purple), Y (yellow) and G (green) colors.

さらに、好ましくは、本発明の多眼カメラ装置における複数の撮像領域は、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域から均等に分割されている。   Further, preferably, the plurality of imaging regions in the multi-lens camera device of the present invention are equally divided from the imaging region provided with a plurality of light receiving units that photoelectrically convert incident light from a subject to perform imaging.

さらに、好ましくは、本発明の多眼カメラ装置において、基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられている。   Furthermore, preferably, in the multi-lens camera device of the present invention, a plurality of imaging regions provided with a plurality of light receiving units that photoelectrically convert incident light from a subject and image them are provided on a substrate.

さらに、好ましくは、本発明の多眼カメラ装置における撮像領域は4つあり、これと同数の前記サブレンズおよび前記カラーフィルタを有している。   Further, preferably, the multi-view camera device of the present invention has four imaging regions, and the same number of the sub lenses and the color filters are provided.

本発明の電子情報機器は、本発明の上記多眼カメラ装置を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。   An electronic information device according to the present invention uses the multi-lens camera device according to the present invention as an image input device in an imaging unit, thereby achieving the above object.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

カメラとして要求される画角が同一の場合、撮像領域の対角長によりレンズの光学長が制約を受ける。このため、レンズの光学長(焦点距離)を短くするために、撮像領域を分割し、その分割エリア毎にレンズを備えれば、分割した比率に応じてレンズの光学長(焦点距離)の短縮化が可能となってカメラの薄型化が可能となる。   When the angle of view required for the camera is the same, the optical length of the lens is restricted by the diagonal length of the imaging region. For this reason, in order to shorten the optical length (focal length) of the lens, if the imaging area is divided and a lens is provided for each divided area, the optical length (focal length) of the lens is shortened according to the divided ratio. The camera can be made thinner.

本発明においては、レンズアレイのサブレンズはそれぞれ、組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が固体撮像素子の各撮像領域上で同一となるように構成されている。   In the present invention, each of the sub-lenses of the lens array is configured such that the position of the focal plane of the wavelength ray selectively transmitted by the color filters of the respective colors combined is the same on each imaging region of the solid-state imaging device. ing.

これによって、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化することが可能となる。これによって、カラーフィルタの色毎に、その色に応じた焦点距離の正確なレンズを作ることができて、色収差をなくして高解像度とすることが可能となる。したがって、高解像度と薄型化が両立した多眼カメラ装置を実現可能となる。   This makes it possible to optimize the distance between the lens area and the imaging area (focal length) by matching the lens characteristics with the color filters of each color. As a result, an accurate lens having a focal length corresponding to each color of the color filter can be made, and chromatic aberration can be eliminated to achieve a high resolution. Therefore, it is possible to realize a multi-lens camera device that achieves both high resolution and thinning.

以上により、本発明によれば、固体撮像素子が複数の撮像領域を有しており、各撮像領域のそれぞれに対応するように複数のサブレンズを備えると、全撮像領域に対応した一つのレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。また、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化するため、色収差をなくして高解像度とすることができる。これによって、高解像度と薄型化の両立をした多眼カメラ装置を低コストで実現できる。   As described above, according to the present invention, when the solid-state imaging device has a plurality of imaging regions and includes a plurality of sub-lenses corresponding to the respective imaging regions, one lens corresponding to the entire imaging region is provided. Compared to the above, the plurality of sub-lenses have a shorter focal length, and the camera can be made thinner. In addition, since the distance between the lens region and the imaging region (focal length) is optimized by matching the lens characteristics with each color filter, it is possible to eliminate chromatic aberration and achieve high resolution. As a result, a multi-lens camera device that achieves both high resolution and thinning can be realized at low cost.

本発明の実施形態1における多眼カメラ装置の要部構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a principal part structure of the multi-lens camera apparatus in Embodiment 1 of this invention. 図1の多眼カメラ装置の概略構成例を示す斜視図である。It is a perspective view which shows the example of schematic structure of the multi-eye camera apparatus of FIG. 図1の撮像素子基板の概略構成例を示す斜視図である。It is a perspective view which shows the example of schematic structure of the image pick-up element board | substrate of FIG. 本発明の実施形態2として、本発明の実施形態1の4眼式カメラ装置1を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。As Embodiment 2 of this invention, it is a block diagram which shows the schematic structural example of the electronic information apparatus which used the 4 eye type camera apparatus 1 of Embodiment 1 of this invention for the imaging part. 特許文献1、2に開示されている従来の多眼カメラ装置の概略構成例を示す斜視図である。It is a perspective view which shows the example of schematic structure of the conventional multi-view camera apparatus currently disclosed by patent document 1,2. 図1の従来の多眼カメラ装置における撮像素子基板の概略構成例を示す斜視図である。It is a perspective view which shows the example of schematic structure of the image pick-up element board | substrate in the conventional multi-view camera apparatus of FIG. 図1の従来の従来の多眼カメラ装置における要部構成例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part structural example in the conventional conventional multi-view camera apparatus of FIG.

以下に、本発明の多眼カメラ装置の実施形態1として、4眼式カメラ装置の場合を説明し、この4眼式カメラ装置を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態2について、図面を参照しながら詳細に説明する。   Hereinafter, as a first embodiment of the multi-lens camera apparatus of the present invention, a case of a four-lens camera apparatus will be described, and for example, a camera-equipped mobile phone apparatus using the four-lens camera apparatus as an image input device in an imaging unit Embodiment 2 of the electronic information device will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1における多眼カメラ装置の要部構成例を示す縦断面図である。図2は、図1の多眼カメラ装置の概略構成例を示す斜視図である。図3は、図1の撮像素子基板の概略構成例を示す斜視図である。
(Embodiment 1)
FIG. 1 is a longitudinal cross-sectional view showing an exemplary configuration of a main part of a multi-lens camera device according to Embodiment 1 of the present invention. FIG. 2 is a perspective view illustrating a schematic configuration example of the multi-lens camera device of FIG. 1. FIG. 3 is a perspective view illustrating a schematic configuration example of the image sensor substrate in FIG. 1.

図1〜図3において、多眼カメラ装置としての4眼式カメラ装置1は、カメラモジュールであり、入射光絞り用の開口部が等間隔に4つ形成された開口絞りアレイ2と、4つの開口部にそれぞれ対応してレンズ領域が形成されたレンズアレイ3と、透明ガラス基板で構成される平面板4と、4つの開口部および4つのレンズ領域にそれぞれ対応して配置された各撮像領域の周囲に配設された遮光マスク5と、4つの撮像領域に分割して配設された撮像素子基板6とを有している。   1 to 3, a four-lens camera device 1 as a multi-lens camera device is a camera module, and includes an aperture stop array 2 in which four openings for incident light apertures are formed at equal intervals, and four aperture stop arrays 2. A lens array 3 in which lens areas are formed corresponding to the openings, a flat plate 4 made of a transparent glass substrate, and imaging areas arranged corresponding to the four openings and the four lens areas, respectively. A light-shielding mask 5 arranged around the image pickup device 5 and an image pickup device substrate 6 divided into four image pickup regions.

レンズアレイ3は、被写体からの入射光を光電変換して撮像する4つのサブカメラ毎にレンズ領域としてのサブレンズ3a、3b、3cおよび3dが互いに等間隔に、平面視で仮想正方形の4角位置にそれぞれ配置されている。   The lens array 3 includes four sub-lenses 3 a, 3 b, 3 c, and 3 d as lens areas that are equidistant from each other for each of the four sub-cameras that photoelectrically convert incident light from a subject to capture four corners of a virtual square in plan view. It is arranged at each position.

撮像素子基板6は、4つの撮像領域6a、6b、6cおよび6dに均等に分割されている。分割撮像領域6a、6b、6cおよび6dのそれぞれ毎にレンズを備えれば、分割した比率に応じてレンズの光学長(焦点距離)の短縮化が可能となってカメラ装置の薄型化が可能となる。これによって、高解像度と薄型化が両立した4眼式カメラ装置1を実現することができる。   The image pickup device substrate 6 is equally divided into four image pickup regions 6a, 6b, 6c and 6d. If a lens is provided for each of the divided imaging regions 6a, 6b, 6c, and 6d, the optical length (focal length) of the lens can be shortened according to the divided ratio, and the camera device can be thinned. Become. As a result, the four-lens camera device 1 that achieves both high resolution and thinning can be realized.

撮像素子基板6の各撮像領域6a、6b、6cおよび6dの上方にそれぞれ単色のカラーフィルタ(図示せず)を有している。例えば撮像領域6aおよび6bはG(緑)、撮像領域6cおよび6dはこの順にR(赤)、B(青)の単色のカラーフィルタが配置されている。サブレンズ3a、3b、3cおよび3dのそれぞれ毎に集光された入射光は、それぞれが各色のカラーフィルタによって、各色の特定波長毎に選択的に透過され、各サブレンズ3a、3b、3cおよび3dのそれぞれの直下に存在する撮像素子基板6の分割撮像領域6a、6b、6cおよび6d上にそれぞれ結像されるようになっている。即ち、サブレンズ3aおよび3bはG(緑)の入射光を分割撮像領域6a、6bに集光して結像し、サブレンズ3cはR(赤)、サブレンズ3dはB(青)の各入射光を分割撮像領域6c、6dに集光して結像する。   Monochromatic color filters (not shown) are provided above the imaging regions 6a, 6b, 6c, and 6d of the imaging element substrate 6, respectively. For example, G (green) is disposed in the imaging regions 6a and 6b, and R (red) and B (blue) single color filters are disposed in this order in the imaging regions 6c and 6d. The incident light collected for each of the sub lenses 3a, 3b, 3c and 3d is selectively transmitted for each specific wavelength of each color by the color filter of each color, and each of the sub lenses 3a, 3b, 3c and Images are formed on the divided imaging regions 6a, 6b, 6c and 6d of the imaging device substrate 6 existing immediately below each of 3d. That is, the sub lenses 3a and 3b focus the G (green) incident light on the divided imaging regions 6a and 6b to form an image, the sub lens 3c is R (red), and the sub lens 3d is B (blue). Incident light is focused on the divided imaging regions 6c and 6d to form an image.

撮像素子基板6の各撮像領域6a、6b、6cおよび6dの周囲にそれぞれ配置された遮光マスク5により、4つの撮像領域6a、6b、6cおよび6dが光学的に隔離されて、遮光マスク5によって隣接する各色のサブカメラへの迷光が遮断されて画質を向上させることができる。   The four imaging regions 6a, 6b, 6c, and 6d are optically isolated by the light shielding mask 5 arranged around the imaging regions 6a, 6b, 6c, and 6d of the imaging element substrate 6, respectively. The stray light to the adjacent sub-cameras of each color is blocked and the image quality can be improved.

ここで、本発明の特徴構成について詳細に説明する。   Here, the characteristic configuration of the present invention will be described in detail.

レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、これに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上でそれぞれ同一となるように構成されている。より具体的には、各サブレンズ3aおよび3bの第1レンズ面に対して、サブレンズ3cの第1レンズ面は高く(より被写体寄り)、サブレンズ3dの第1レンズ面は低く(より撮像領域寄り)なっている。   The sub-lenses 3a, 3b, 3c, and 3d of the lens array 3 have the focal plane positions of the wavelength rays that are selectively transmitted by the color filters of the respective colors combined with the sub-lenses 3a, 3b, 3c, and 3d. , 6c and 6d are configured to be the same. More specifically, the first lens surface of the sub lens 3c is higher (more toward the subject) and the first lens surface of the sub lens 3d is lower (more imaged) than the first lens surfaces of the sub lenses 3a and 3b. It is closer to the area.

この場合、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、各サブレンズに対応した各色のカラーフィルタの波長特性に合わせたレンズ焦点距離を有している。例えばサブレンズ3a、3b、3cおよび3dの被写体側レンズ面(上側レンズ面)から、対応する撮像素子基板6の撮像領域6a、6b、6cおよび6dのそれぞれまでの距離を、入射光が通過するカラーフィルタの波長毎のレンズ焦点距離に合わせて最適化している。このレンズ焦点距離は、レンズアレイ3のサブレンズ3a、3b、3cおよび3dのそれぞれ毎の厚みによって最適化かされている。図1の場合は、サブレンズ3aの厚みと、サブレンズ3cの厚みとの差が厚みtだけ高くなっている。   In this case, each of the sub lenses 3a, 3b, 3c, and 3d of the lens array 3 has a lens focal length that matches the wavelength characteristics of the color filter of each color corresponding to each sub lens. For example, incident light passes through distances from the subject side lens surfaces (upper lens surfaces) of the sub lenses 3a, 3b, 3c, and 3d to the imaging regions 6a, 6b, 6c, and 6d of the corresponding imaging device substrate 6, respectively. It is optimized according to the lens focal length for each wavelength of the color filter. This lens focal length is optimized by the thickness of each of the sub lenses 3a, 3b, 3c and 3d of the lens array 3. In the case of FIG. 1, the difference between the thickness of the sub lens 3a and the thickness of the sub lens 3c is increased by the thickness t.

各サブレンズ3a、3b、3cおよび3dのレンズ面(レンズ領域)の形状を同じくしてレンズ厚みで焦点面を位置調整する効果は、レンズアレイ3を製作する工法上も有利である。レンズアレイ3のレンズ面は、一つのマスタ型(雄型)を所定ピッチで順送りで転写し、アレイ金型(雌型)を製作し、成型を行う。なお、例えばマスタ型(雄型)をアレイで製作することは通常困難である。各サブレンズの面形状が異なる場合はこの工法でアレイ金型を製作することができない。   The effect of adjusting the focal plane with the lens thickness by making the lens surfaces (lens regions) of the sub-lenses 3a, 3b, 3c, and 3d the same is advantageous in terms of the manufacturing method of the lens array 3. On the lens surface of the lens array 3, one master mold (male mold) is transferred at a predetermined pitch in order, and an array mold (female mold) is manufactured and molded. For example, it is usually difficult to manufacture a master type (male type) with an array. When the surface shape of each sub lens is different, an array mold cannot be manufactured by this method.

このとき、各サブレンズ3a、3b、3cおよび3dのレンズ面形状と同じ形状のマスタ型(雄型)を用いて、各サブレンズ3a、3b、3cおよび3dのレンズ厚さの違いをどのようにして作製するのかについては、マスタ型(雄型)を用いて透明レンズ樹脂材料にレンズ面形状を作るときのストローク寸法を制御すればよい。   At this time, by using a master type (male type) having the same shape as the lens surface shape of each of the sub lenses 3a, 3b, 3c, and 3d, what is the difference in the lens thickness of each of the sub lenses 3a, 3b, 3c, and 3d? As to whether to manufacture the lens surface, the stroke size when the lens surface shape is formed on the transparent lens resin material using the master mold (male mold) may be controlled.

以上により、本実施形態1によれば、固体撮像素子としての撮像素子基板6が4つの撮像領域6a、6b、6cおよび6dを有しており、各撮像領域6a、6b、6cおよび6dのそれぞれに対応するように各サブレンズ3a、3b、3cおよび3dを備えると、全撮像領域に対応した一つの大きなレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。また、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、これに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上で同一となるように構成されている。これによって、レンズ特性を個々の各色のカラーフィルタに合わせてサブレンズ3a、3b、3cおよび3dと、これに対応する撮像領域6a、6b、6cおよび6dとの距離間隔(焦点距離)を最適化することができて、カラーフィルタの色毎に、その色に応じた焦点距離の正確なレンズを作ることができて、色収差をなくして高解像度とすることができる。したがって、高解像度と薄型化が両立した4眼式カメラ装置1を実現することができる。   As described above, according to the first embodiment, the imaging element substrate 6 as the solid-state imaging element has the four imaging areas 6a, 6b, 6c, and 6d, and each of the imaging areas 6a, 6b, 6c, and 6d, respectively. When the sub lenses 3a, 3b, 3c and 3d are provided so as to correspond to the above, the focal length of the plurality of sub lenses is shortened compared to one large lens corresponding to the entire imaging region, and the camera is thin. Can be realized. The sub-lenses 3a, 3b, 3c, and 3d of the lens array 3 are such that the positions of the focal planes of the wavelength rays that are selectively transmitted by the color filters of the respective colors combined with the sub-lenses 3a, 3b, 3c, and 3d , 6b, 6c, and 6d are configured to be the same. This optimizes the distance (focal length) between the sub-lenses 3a, 3b, 3c, and 3d and the corresponding imaging regions 6a, 6b, 6c, and 6d according to the color filters of the respective colors. In addition, for each color of the color filter, an accurate lens having a focal length corresponding to the color can be formed, and chromatic aberration can be eliminated and high resolution can be achieved. Accordingly, it is possible to realize the four-lens camera device 1 that achieves both high resolution and thinning.

本実施形態1の効果は、薄型化に限るわけでなく、撮像素子基板6への光線入射角度を小さくする(テレセントリック性)必要があるときにも有効である。   The effect of the first embodiment is not limited to thinning, but is also effective when the light incident angle on the image sensor substrate 6 needs to be reduced (telecentricity).

なお、本発明の具体的な実施形態1を示したが、本発明は、先に示した上記実施形態1の具体的形状および数値などに限定されるものではなく、所望の光学特性を得るために、各パラメータを適宜変更することができることは言うまでもないことである。   In addition, although specific Embodiment 1 of this invention was shown, this invention is not limited to the specific shape of the said Embodiment 1 shown previously, a numerical value, etc., In order to acquire a desired optical characteristic. Needless to say, each parameter can be changed as appropriate.

なお、本実施形態1では、レンズアレイ3のサブレンズ3a、3b、3cおよび3dの厚みを調整するのは、サブレンズ3a、3b、3cおよび3dの被写体側のレンズ面(上側のレンズ面)で行ったが、これに限らず、サブレンズ3a、3b、3cおよび3dの撮像領域側のレンズ面(下側のレンズ面)で、サブレンズ3a、3b、3cおよび3dの厚みを調整してもよい。要するに、サブレンズ3a、3b、3cおよび3dの厚みを調整するのは、サブレンズの被写体側のレンズ面であっても、撮像素子基板6側のレンズ面であってもよい。   In the first embodiment, the thickness of the sub lenses 3a, 3b, 3c, and 3d of the lens array 3 is adjusted by adjusting the subject lens surfaces (upper lens surfaces) of the sub lenses 3a, 3b, 3c, and 3d. However, the present invention is not limited to this, and the thickness of the sub lenses 3a, 3b, 3c and 3d is adjusted on the lens surface (lower lens surface) on the imaging region side of the sub lenses 3a, 3b, 3c and 3d. Also good. In short, the thickness of the sub lenses 3a, 3b, 3c, and 3d may be adjusted by the lens surface on the subject side of the sub lens or the lens surface on the imaging element substrate 6 side.

また、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dの積層枚数が2枚の場合にも、焦点面の位置を調整するサブレンズ3a、3b、3cおよび3dは、第1レンズおよび第2レンズのうちの少なくともいずれかであればよい。また、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dの積層枚数が3枚の場合にも、焦点面の位置を調整するサブレンズ3a、3b、3cおよび3dは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかであればよい。   Although not particularly described in the first embodiment, the sub-lenses 3a, 3b, 3c for adjusting the position of the focal plane and the sub-lenses 3a, 3b, 3c, and 3d are adjusted even when the number of the sub-lenses 3a, 3b, 3c, and 3d is two. 3d may be at least one of the first lens and the second lens. Although not particularly described in the first embodiment, the sub lenses 3a, 3b, 3c and the sub lenses 3a, 3b, 3c, and 3d for adjusting the position of the focal plane are also provided when the number of stacked sub lenses 3a, 3b, 3c, and 3d is three. 3d may be at least one of the first lens, the second lens, and the third lens.

さらに、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dのそれぞれから、撮像素子基板6の撮像領域6a、6b、6cおよび6dのそれぞれまでのレンズ焦点距離は、レンズアレイ3と撮像素子基板6との間に設けられた透明ガラス基板などの平行板4の厚さにより全体的に調整することも可能とである。即ち、レンズアレイ3と撮像素子基板6の間に撮像素子保護ガラスなどの平行板4を備える場合、上記焦点面の位置を調整するものが平行板4であってもよい。   Furthermore, although not specifically described in the first embodiment, the lens focal lengths from the sub lenses 3a, 3b, 3c, and 3d to the imaging regions 6a, 6b, 6c, and 6d of the imaging device substrate 6 are as follows. In addition, it is possible to make overall adjustment according to the thickness of the parallel plate 4 such as a transparent glass substrate provided between the lens array 3 and the image pickup device substrate 6. That is, when a parallel plate 4 such as an image sensor protective glass is provided between the lens array 3 and the image sensor substrate 6, the parallel plate 4 may adjust the position of the focal plane.

さらに、本実施形態1では、特に説明しなかったが、撮像素子基板6に設けたカラーフィルタの各色は、R(赤)、G(緑)およびB(青)の各色に限るものではなく、例えばC(水色)、M(赤紫)Y、(黄色)およびG(緑)の各色としてもよい。   Furthermore, although not specifically described in the first embodiment, the colors of the color filters provided on the image sensor substrate 6 are not limited to the colors R (red), G (green), and B (blue). For example, C (light blue), M (red purple) Y, (yellow), and G (green) may be used.

さらに、本実施形態1では、複数の撮像領域を持つ撮像素子基板6として、一つの撮像素子基板6の撮像領域を複数(ここでは4つ)に分割した場合について説明したが、これに限らず、例えば一枚の基板上に複数の撮像素子(複数の撮像領域)を実装しており、各サブレンズに対して個々の撮像素子(個々の撮像領域)との間隔(焦点距離)が調整されるようにすることができる。この場合も本発明は有効である。即ち、撮像素子基板6の複数の撮像領域(ここでは4つの撮像領域)として、基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられていてもよい。   Furthermore, in the first embodiment, as the imaging element substrate 6 having a plurality of imaging areas, the case where the imaging area of one imaging element substrate 6 is divided into a plurality (here, four) is described. For example, multiple image sensors (multiple image areas) are mounted on a single substrate, and the distance (focal length) between each sub lens and the individual image elements (individual image areas) is adjusted. You can make it. Also in this case, the present invention is effective. That is, as a plurality of imaging regions (here, four imaging regions) of the imaging element substrate 6, a plurality of imaging regions provided with a plurality of light receiving units that photoelectrically convert incident light from a subject on the substrate are provided. It may be done.

なお、上記実施形態1では、4眼式カメラ装置1を用いて説明したが、4眼式カメラ装置1に限るものではなく、2眼式でも3眼式でもよく、5眼式以上のカメラ装置であってもよい。   In the first embodiment, the description has been made using the four-eye camera device 1. However, the present invention is not limited to the four-eye camera device 1, and may be a two-eye type or a three-eye type, or a five-eye type or more camera device. It may be.

(実施形態2)
図4は、本発明の実施形態2として、本発明の実施形態1の4眼式カメラ装置1を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 2)
FIG. 4 is a block diagram illustrating a schematic configuration example of an electronic information device using the four-lens camera device 1 of the first embodiment of the present invention as an imaging unit as the second embodiment of the present invention.

図4において、本実施形態2の電子情報機器90は、上記実施形態1の4眼式カメラ装置1からの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示手段93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信手段94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力手段95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示手段93と、通信手段94と、プリンタなどの画像出力手段95とのうちの少なくともいずれかを有していてもよい。   In FIG. 4, an electronic information device 90 according to the second embodiment includes a solid-state imaging device 91 that obtains a color image signal by performing predetermined signal processing on the imaging signal from the four-lens camera device 1 according to the first embodiment. A memory unit 92 such as a recording medium capable of recording data after processing a color image signal from the solid-state imaging device 91 for recording, and a predetermined signal for displaying the color image signal from the solid-state imaging device 91 The display means 93 such as a liquid crystal display device that can be displayed on a display screen such as a liquid crystal display screen after processing, and the color image signal from the solid-state imaging device 91 can be subjected to communication processing after predetermined signal processing for communication. A communication means 94 such as a transmission / reception device, and a printer capable of performing print processing after performing predetermined print signal processing for color image signals from the solid-state imaging device 91 for printing. And an image output unit 95. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付きパーソナルコンピュータ、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic apparatus having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped personal computer, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態2によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力手段95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。   Therefore, according to the second embodiment, on the basis of the color image signal from the solid-state imaging device 91, it is displayed on the display screen, or is printed out on the paper by the image output means 95. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.

なお、本実施形態1では、4つの撮像領域6a、6b、6cおよび6dを持つ撮像素子基板6と、撮像領域6a、6b、6cおよび6dのそれぞれに配設された所定色配列のカラーフィルタ(図示せず)と、撮像領域6a、6b、6cおよび6dのそれぞれに対応して各サブレンズ3a、3b、3cおよび3dが設けられたレンズアレイ3とを備えた4眼式カメラ装置1において、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、各サブレンズ3a、3b、3cおよび3dのそれぞれに組み合わされる各色のカラーフィルタ(図示せず)によって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上で同一となるように構成されている場合について説明したが、これに限らず、レンズアレイ3の少なくとも2つのサブレンズの撮像領域に対する焦点距離が互いに異なっている場合にも、カラーフィルタの色に応じた焦点距離の正確なサブレンズを作ることができて、色収差をなくして高解像度とすることができる。したがって、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化して解像度を向上する本発明の目的を達成することができる。   In the first embodiment, the image pickup device substrate 6 having four image pickup areas 6a, 6b, 6c, and 6d, and a color filter having a predetermined color arrangement disposed in each of the image pickup areas 6a, 6b, 6c, and 6d ( (Not shown) and a four-lens camera device 1 including a lens array 3 provided with sub lenses 3a, 3b, 3c, and 3d corresponding to the imaging regions 6a, 6b, 6c, and 6d, The sub-lenses 3a, 3b, 3c, and 3d of the lens array 3 are wavelength light beams that are selectively transmitted by color filters (not shown) of the respective colors combined with the sub-lenses 3a, 3b, 3c, and 3d, respectively. The case where the focal plane position is configured to be the same on each of the imaging regions 6a, 6b, 6c, and 6d of the imaging device substrate 6 has been described. Not limited to this, even when the focal lengths of at least two sub-lenses of the lens array 3 with respect to the imaging region are different from each other, an accurate sub-lens having a focal length corresponding to the color of the color filter can be produced, and chromatic aberration can be reduced. Without it, high resolution can be achieved. Accordingly, it is possible to achieve the object of the present invention to improve the resolution by optimizing the distance between the lens area and the imaging area by matching the lens characteristics with the color filters of the respective colors.

以上のように、本発明の好ましい実施形態1、2を用いて本発明を例示してきたが、本発明は、この実施形態1、2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1、2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention was illustrated using preferable Embodiment 1, 2 of this invention, this invention should not be limited and limited to this Embodiment 1,2. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge, from the description of specific preferred embodiments 1 and 2 of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、携帯電話装置などに内蔵するのに好適なレンズ全長が短い撮像レンズを持つ多眼カメラ装置および、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、固体撮像素子が複数の撮像領域を有しており、各撮像領域のそれぞれに対応するように複数のサブレンズを備えると、全撮像領域に対応した一つのレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。また、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化するため、色収差をなくして高解像度とすることができる。これによって、高解像度と薄型化の両立をした多眼カメラ装置を低コストで実現できる。このようにして、本発明に係る多眼カメラ装置は、デジタルスチルカメラなどの撮像機器に好適に用いることができる。また、携帯用途に適した小型の撮像機器に対して特に好適に用いることができる。具体的には、携帯型情報端末や携帯電話装置などに搭載されるデジタルカメラなどを挙げることができる。   The present invention relates to a multi-lens camera device having an imaging lens with a short overall lens length suitable for being incorporated in a mobile phone device or the like, and a digital video camera and a digital camera, for example, using this multi-eye camera device as an image input device in an imaging unit In the field of electronic information equipment such as digital cameras such as still cameras, image input cameras such as surveillance cameras, scanner devices, facsimile devices, television telephone devices, and mobile phone devices with cameras, solid-state image sensors have multiple imaging areas. If a plurality of sub lenses are provided to correspond to each imaging region, the focal length of the plurality of sub lenses is shortened compared to one lens corresponding to the entire imaging region. The camera can be thinned. In addition, since the distance between the lens region and the imaging region (focal length) is optimized by matching the lens characteristics with each color filter, it is possible to eliminate chromatic aberration and achieve high resolution. As a result, a multi-lens camera device that achieves both high resolution and thinning can be realized at low cost. Thus, the multi-lens camera device according to the present invention can be suitably used for an imaging device such as a digital still camera. Further, it can be particularly preferably used for a small imaging device suitable for portable use. Specifically, a digital camera mounted on a portable information terminal, a mobile phone device, or the like can be given.

1 4眼式カメラ装置(多眼カメラ装置)
2 開口絞りアレイ
3 レンズアレイ
3a、3b、3c、3d サブレンズ
4 平面板
5 遮光マスク
6 撮像素子基板(固体撮像素子)
6a、6b、6c、6d 分割撮像領域
7a サブレンズ6aにより結像される光線
7c サブレンズ6cにより結像される光線
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示手段
94 通信手段
95 画像出力手段
1 4-eye camera device (multi-eye camera device)
2 Aperture stop array 3 Lens array 3a, 3b, 3c, 3d Sub-lens 4 Planar plate 5 Shading mask 6 Imaging element substrate (solid-state imaging element)
6a, 6b, 6c, 6d Divided imaging area 7a Light beam imaged by sub lens 6a 7c Light beam imaged by sub lens 6c 90 Electronic information device 91 Solid-state imaging device 92 Memory unit 93 Display means 94 Communication means 95 Image output means

Claims (16)

複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、
該レンズアレイの少なくとも2つのサブレンズの該撮像領域に対する焦点距離が互いに異なっている多眼カメラ装置。
In a multi-lens camera device in which a plurality of imaging regions, a color filter of each color arranged for each imaging region, and a lens array provided with each sub lens corresponding to each imaging region are stacked,
A multi-lens camera device in which focal lengths of the at least two sub-lenses of the lens array with respect to the imaging region are different from each other.
複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、
該レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が該撮像領域上で同一となるように構成されている多眼カメラ装置。
In a multi-lens camera device in which a plurality of imaging regions, a color filter of each color arranged for each imaging region, and a lens array provided with each sub lens corresponding to each imaging region are stacked,
Each of the sub-lenses of the lens array is configured so that the focal plane positions of the wavelength rays selectively transmitted by the color filters of the respective colors combined with the sub-lens are the same on the imaging region. Camera device.
前記レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が前記撮像領域上で同一となるように構成されている請求項1に記載の多眼カメラ装置。   The sub-lenses of the lens array are configured such that the focal plane positions of wavelength rays selectively transmitted by the color filters of the respective colors combined with the sub-lenses are the same on the imaging region. The multi-lens camera device according to 1. 前記レンズアレイのサブレンズはそれぞれ、該サブレンズに対応したカラーフィルタの波長特性に合わせた焦点距離を有している請求項1または2に記載の多眼カメラ装置。   3. The multi-lens camera device according to claim 1, wherein each of the sub-lenses of the lens array has a focal length in accordance with a wavelength characteristic of a color filter corresponding to the sub-lens. 前記サブレンズの被写体側レンズ面から前記撮像領域までの距離を、前記カラーフィルタの透過波長毎の焦点距離に合わせている請求項4に記載の多眼カメラ装置。   The multi-lens camera device according to claim 4, wherein a distance from a subject-side lens surface of the sub lens to the imaging region is matched with a focal length for each transmission wavelength of the color filter. 前記焦点距離または前記焦点面の位置は、前記レンズアレイのサブレンズ毎の厚みによって設定されている請求項1または2に記載の多眼カメラ装置。   The multi-lens camera device according to claim 1, wherein the focal distance or the position of the focal plane is set by a thickness of each sub lens of the lens array. 前記サブレンズの厚みを調整するのは、該サブレンズの被写体側のレンズ面および、該サブレンズの撮像領域側のレンズ面のうちの少なくともいずれかである請求項6に記載の多眼カメラ装置。   The multi-lens camera device according to claim 6, wherein the thickness of the sub lens is adjusted by at least one of a lens surface on the subject side of the sub lens and a lens surface on the imaging region side of the sub lens. . 前記サブレンズの積層枚数が2枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズおよび第2レンズの少なくともいずれかである請求項1または2に記載の多眼カメラ装置。   3. The multi-view according to claim 1, wherein when the number of laminated sub lenses is two, the lens for adjusting the focal length or the position of the focal plane is at least one of a first lens and a second lens. Camera device. 前記サブレンズの積層枚数が3枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかである請求項1または2に記載の多眼カメラ装置。   The lens for adjusting the focal length or the position of the focal plane when the number of laminated sub lenses is three is at least one of a first lens, a second lens, and a third lens. The multi-lens camera device according to 2. 前記焦点距離または前記焦点面の位置は、前記レンズアレイと前記撮像領域との間に透明平行板を備える場合に、該透明平行板の厚さにより調整されている請求項1または2に記載の多眼カメラ装置。   The focal length or the position of the focal plane is adjusted according to the thickness of the transparent parallel plate when a transparent parallel plate is provided between the lens array and the imaging region. Multi-eye camera device. 前記カラーフィルタはそれぞれ、R(赤)、G(緑)およびB(青)の各色をそれぞれ有している請求項1または2に記載の多眼カメラ装置。   The multi-view camera device according to claim 1, wherein each of the color filters has R (red), G (green), and B (blue) colors. 前記カラーフィルタはそれぞれ、C(水色)、M(赤紫)、Y(黄色)およびG(緑)の各色をそれぞれ有している請求項1または2に記載の多眼カメラ装置。   The multi-view camera device according to claim 1 or 2, wherein each of the color filters has C (light blue), M (red purple), Y (yellow), and G (green). 前記複数の撮像領域は、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域から均等に分割されている請求項1または2に記載の多眼カメラ装置。   The multi-view camera device according to claim 1, wherein the plurality of imaging regions are equally divided from an imaging region provided with a plurality of light receiving units that photoelectrically convert incident light from a subject to perform imaging. 基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられている請求項1または2に記載の多眼カメラ装置。   The multi-lens camera device according to claim 1, wherein a plurality of imaging areas each provided with a plurality of light receiving units that photoelectrically convert incident light from a subject to image are provided on a substrate. 前記撮像領域は4つあり、これと同数の前記サブレンズおよび前記カラーフィルタを有している請求項1に記載の多眼カメラ装置。   The multi-view camera device according to claim 1, wherein there are four imaging regions, and the same number of the sub lenses and the color filters are provided. 請求項1〜15のいずれかに記載の多眼カメラ装置を画像入力デバイスとして撮像部に用いた電子情報機器。   An electronic information device using the multi-lens camera device according to claim 1 as an image input device in an imaging unit.
JP2009263416A 2009-11-18 2009-11-18 Multi-lens camera device and electronic information device Expired - Fee Related JP5399215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263416A JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-lens camera device and electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263416A JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-lens camera device and electronic information device

Publications (2)

Publication Number Publication Date
JP2011109484A true JP2011109484A (en) 2011-06-02
JP5399215B2 JP5399215B2 (en) 2014-01-29

Family

ID=44232472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263416A Expired - Fee Related JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-lens camera device and electronic information device

Country Status (1)

Country Link
JP (1) JP5399215B2 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057619A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
CN102854549A (en) * 2011-07-01 2013-01-02 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US8692893B2 (en) 2011-05-11 2014-04-08 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US8804255B2 (en) 2011-06-28 2014-08-12 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US12067746B2 (en) 2021-05-07 2024-08-20 Intrinsic Innovation Llc Systems and methods for using computer vision to pick up small objects
US12069227B2 (en) 2021-03-10 2024-08-20 Intrinsic Innovation Llc Multi-modal and multi-spectral stereo camera arrays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078212A (en) * 1999-06-30 2001-03-23 Canon Inc Image pickup device
JP2006246193A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078212A (en) * 1999-06-30 2001-03-23 Canon Inc Image pickup device
JP2006246193A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Image pickup device

Cited By (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US12022207B2 (en) 2008-05-20 2024-06-25 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US12041360B2 (en) 2008-05-20 2024-07-16 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US9654696B2 (en) 2010-10-24 2017-05-16 LinX Computation Imaging Ltd. Spatially differentiated luminance in a multi-lens camera
US9681057B2 (en) 2010-10-24 2017-06-13 Linx Computational Imaging Ltd. Exposure timing manipulation in a multi-lens camera
US9025077B2 (en) 2010-10-24 2015-05-05 Linx Computational Imaging Ltd. Geometrically distorted luminance in a multi-lens camera
US9413984B2 (en) 2010-10-24 2016-08-09 Linx Computational Imaging Ltd. Luminance source selection in a multi-lens camera
US9578257B2 (en) 2010-10-24 2017-02-21 Linx Computational Imaging Ltd. Geometrically distorted luminance in a multi-lens camera
WO2012057619A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
WO2012057622A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
WO2012057620A2 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
US9615030B2 (en) 2010-10-24 2017-04-04 Linx Computational Imaging Ltd. Luminance source selection in a multi-lens camera
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US8692893B2 (en) 2011-05-11 2014-04-08 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US8804255B2 (en) 2011-06-28 2014-08-12 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
CN102854549A (en) * 2011-07-01 2013-01-02 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
CN102854549B (en) * 2011-07-01 2015-03-04 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US12052409B2 (en) 2011-09-28 2024-07-30 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US12002233B2 (en) 2012-08-21 2024-06-04 Adeia Imaging Llc Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US12099148B2 (en) 2019-10-07 2024-09-24 Intrinsic Innovation Llc Systems and methods for surface normals sensing with polarization
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US12069227B2 (en) 2021-03-10 2024-08-20 Intrinsic Innovation Llc Multi-modal and multi-spectral stereo camera arrays
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US12067746B2 (en) 2021-05-07 2024-08-20 Intrinsic Innovation Llc Systems and methods for using computer vision to pick up small objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
JP5399215B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5399215B2 (en) Multi-lens camera device and electronic information device
US9743051B2 (en) Thin form factor computational array cameras and modular array cameras
CN111508983B (en) Solid-state image sensor, solid-state image sensor manufacturing method, and electronic device
JP5879549B2 (en) Light field imaging apparatus and image processing apparatus
US9241111B1 (en) Array of cameras with various focal distances
JP2006033493A (en) Imaging apparatus
US20120274811A1 (en) Imaging devices having arrays of image sensors and precision offset lenses
US20110157451A1 (en) Imaging device
US20050128335A1 (en) Imaging device
US20130038691A1 (en) Asymmetric angular response pixels for single sensor stereo
EP2669949B1 (en) Lens array for partitioned image sensor
KR101808355B1 (en) Imaging device
CN101395926A (en) Fused multi-array color image sensor
CN102334333A (en) Improving the depth of field in an imaging system
JP2009063777A (en) Colored microlens array and manufacturing method, collar solid imaging element and manufacturing method, color display device and manufacturing method, and electronic information equipment
CN106537890A (en) Compound-eye imaging device
CN113924517A (en) Imaging system and method for generating composite image
CN103907189A (en) Solid-state imaging element, imaging device, and signal processing method
JP2015226299A (en) Image input device
WO2012001853A1 (en) Three-dimensional imaging device and optical transmission plate
CN113055575B (en) Image sensor, camera module and electronic equipment
JP5705462B2 (en) Solid-state imaging device and electronic information device
US20070252908A1 (en) Method of Creating Colour Image, Imaging Device and Imaging Module
US11513324B2 (en) Camera module
CN114666469B (en) Image processing device, method and lens module with image processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Ref document number: 5399215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees