[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011101483A - Drive power supply apparatus for vehicles - Google Patents

Drive power supply apparatus for vehicles Download PDF

Info

Publication number
JP2011101483A
JP2011101483A JP2009253909A JP2009253909A JP2011101483A JP 2011101483 A JP2011101483 A JP 2011101483A JP 2009253909 A JP2009253909 A JP 2009253909A JP 2009253909 A JP2009253909 A JP 2009253909A JP 2011101483 A JP2011101483 A JP 2011101483A
Authority
JP
Japan
Prior art keywords
power supply
supply device
voltage conversion
failure
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009253909A
Other languages
Japanese (ja)
Inventor
Hideki Sugita
英樹 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009253909A priority Critical patent/JP2011101483A/en
Publication of JP2011101483A publication Critical patent/JP2011101483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a drive power supply apparatus for vehicles whose operation can be continued without influence on a drive system or an electrical load when a failure occurs in a power supply system. <P>SOLUTION: The drive power supply apparatus includes a first power supply device 3 that supplies power to a rotary electric machine through an inverter 2 between the power supply device and the rotary electric machine 1 and receives regenerative power from the rotary electric machine, a second power supply device 4 that can be charged and discharged faster than the first power supply device is, a voltage conversion device 5 that is connected between a power supply line SL connecting together the first power supply device 3 and the inverter 2 and the second power supply device and converts the voltage of the second power supply device for supplying driving force to the rotary electric machine through the inverter, an anomaly detecting means 7 that detects any internal anomaly in the voltage conversion device or the second power supply device and generates an anomaly signal, switching means 6, 5a that connect and disconnect the voltage conversion device and the power supply line to and from each other, and a controller 8 that, on receiving an anomaly signal from the anomaly detecting means, opens the switching means to separate the voltage conversion device and the second power supply device from the power supply line. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、車両用駆動電源装置に関し、とくに永久磁石式交流同期モータを代表とする回転電機を駆動するための車両用駆動電源装置に関するものである。   The present invention relates to a vehicle drive power supply device, and more particularly to a vehicle drive power supply device for driving a rotating electrical machine represented by a permanent magnet AC synchronous motor.

車両に搭載され、二次電池と、二次電池よりも急速な充放電が可能な蓄電池を併用して、永久磁石式交流同期モータを代表とする回転電機を駆動する車両用駆動電源装置についての提案が、従来から数多くなされている。例えば、下記特許文献1では、バッテリと蓄電用の大容量コンデンサを並列に接続し、大容量コンデンサに蓄積されている電気エネルギーを、昇圧回路を介して効果的に取り出して使用することで、電気自動車の航続距離の延長を可能とする方法が開示されている。   About a vehicle drive power supply device for driving a rotating electrical machine represented by a permanent magnet type AC synchronous motor by using a secondary battery and a storage battery that can be charged / discharged more rapidly than a secondary battery. Many proposals have been made in the past. For example, in Patent Document 1 below, a battery and a large-capacity capacitor for power storage are connected in parallel, and electric energy stored in the large-capacity capacitor is effectively taken out and used via a booster circuit. A method is disclosed that allows an extension of the cruising range of an automobile.

特開平6−276616号公報JP-A-6-276616

上記特許文献1では、バッテリと大容量コンデンサを併用することで航続可能距離の延長を図る方法を提案しているが、昇圧回路や大容量コンデンサといった構成要素に故障が発生した場合への提案は示されていない。たとえば、昇圧回路の入出力端の短絡故障が発生すると、昇圧回路を介して大容量コンデンサに許容を上回る電圧が印加されることになり、大容量コンデンサの機能低下あるいは破壊を招く恐れがある。また、バッテリから昇圧回路を介して大容量コンデンサへ不要に電力が流れ込むために、駆動系や電気負荷の機能低下ないし不作動を引き起こす可能性があり、ひいては航続可能距離が正常状態よりも短くなってしまう可能性もある。   In the above-mentioned Patent Document 1, a method of extending the cruising range by using a battery and a large-capacity capacitor is proposed, but a proposal for a case where a component such as a booster circuit or a large-capacitance capacitor fails occurs. Not shown. For example, when a short-circuit failure occurs at the input / output terminal of the booster circuit, a voltage exceeding the allowable value is applied to the large-capacitance capacitor via the booster circuit, which may cause a reduction in function or destruction of the large-capacity capacitor. In addition, unnecessary power flows from the battery to the large-capacity capacitor via the booster circuit, which may cause the drive system and electrical load to degrade or fail, and the cruising range will be shorter than normal. There is also a possibility that.

また、たとえば大容量コンデンサに短絡故障が発生した場合では、大容量コンデンサを介して車両の電源系がショートすることとなり、車両の駆動系や電気負荷に、機能低下や不作動といった大きな影響を及ぼす恐れがある。   Also, for example, when a short-circuit failure occurs in a large-capacity capacitor, the vehicle power supply system is short-circuited via the large-capacitance capacitor, which greatly affects the drive system and electric load of the vehicle, such as reduced functionality and inoperability. There is a fear.

この発明は係る問題点を解決し、電源系(昇圧回路(電圧変換装置)、大容量コンデンサ等)を構成する要素に故障が発生した場合に、それを検出し適切に対処することで、電源系の構成要素の故障発生に影響されることなく、車両の駆動系(回転電機、インバータ等)ないし電気負荷の動作を継続することのできる車両用駆動電源装置を提供することを目的とする。   The present invention solves such problems, and when a failure occurs in an element constituting a power supply system (a boost circuit (voltage converter), a large-capacitance capacitor, etc.), the power supply is detected and appropriately dealt with. It is an object of the present invention to provide a vehicle drive power supply device that can continue the operation of a vehicle drive system (rotary electric machine, inverter, etc.) or an electric load without being affected by the occurrence of a failure of a system component.

この発明は、車両を駆動する回転電機との間でインバータを介して前記回転電機へ蓄えた電力を供給すると共に前記回転電機からの回生電力の供給を受ける第1の電源装置と、前記第1の電源装置よりも急速な充放電が可能な電力を蓄える第2の電源装置と、前記第1の電源装置とインバータを接続する電源線と前記第2の電源装置の間に接続され、前記インバータを介して前記回転電機に駆動電力を供給するために前記第2の電源装置の電圧を変換する電圧変換装置と、前記電圧変換装置または前記第2の電源装置の内部異常を検出して異常信号を発生する異常検出手段と、前記電圧変換装置と前記電源線の間を接続、切り離しを行う開閉手段と、前記異常検出手段からの異常信号を受けた時に前記開閉手段を開放させて前記電圧変換装置および第2の電源装置を前記電源線から分離する制御装置とを備えたことを特徴とする車両用駆動電源装置にある。   The present invention provides a first power supply apparatus that supplies power stored in the rotating electrical machine via an inverter to and from the rotating electrical machine that drives the vehicle, and that receives regenerative power from the rotating electrical machine, A second power supply device that stores electric power that can be charged and discharged more rapidly than the power supply device, a power supply line that connects the first power supply device and the inverter, and the second power supply device, and the inverter A voltage conversion device that converts the voltage of the second power supply device to supply driving power to the rotating electrical machine via an abnormality, and detects an internal abnormality of the voltage conversion device or the second power supply device to detect an abnormal signal An abnormality detecting means for generating a voltage, an opening / closing means for connecting / disconnecting the voltage conversion device and the power supply line, and the voltage conversion by opening the opening / closing means when receiving an abnormality signal from the abnormality detecting means. apparatus Preliminary in vehicle drive power supply device is characterized in that the second power supply and a control device for separating from the power line.

この発明では電源系に故障が発生した場合に駆動系や電気負荷に影響を与えず動作を継続可能にした車両用駆動電源装置を提供できる。   According to the present invention, it is possible to provide a vehicular drive power supply apparatus that can continue the operation without affecting the drive system and the electric load when a failure occurs in the power supply system.

この発明の実施の形態1による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 1 of this invention. この発明の実施の形態1における入出力短絡検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the input / output short circuit detection apparatus in Embodiment 1 of this invention. 図2の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図2のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態2による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 2 of this invention. この発明の実施の形態2における出力過電圧検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the output overvoltage detection apparatus in Embodiment 2 of this invention. 図6の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図6のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態3による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 3 of this invention. この発明の実施の形態3における出力過電流検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the output overcurrent detection apparatus in Embodiment 3 of this invention. 図10の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図10のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態4による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 4 of this invention. この発明の実施の形態4における過熱検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the overheat detection apparatus in Embodiment 4 of this invention. 図14の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図14のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態5による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 5 of this invention. この発明の実施の形態5における開放故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the open fault detection apparatus in Embodiment 5 of this invention. 図18の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図18のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態6による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 6 of this invention. この発明の実施の形態6における開放故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the open fault detection apparatus in Embodiment 6 of this invention. 図22の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図22のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態7による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 7 of this invention. この発明の実施の形態7における短絡故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the short circuit fault detection apparatus in Embodiment 7 of this invention. 図26の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図26のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態8による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 8 of this invention. この発明の実施の形態8における短絡故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the short circuit fault detection apparatus in Embodiment 8 of this invention. 図30の故障検出処理の処理手順の概略を示すフローチャートである。FIG. 31 is a flowchart showing an outline of a processing procedure of failure detection processing of FIG. 30. FIG. 図30のスイッチ制御処理の処理手順の概略を示すフローチャートである。FIG. 31 is a flowchart showing an outline of a processing procedure of switch control processing of FIG. 30. FIG. この発明の実施の形態9による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 9 of this invention. この発明の実施の形態9における地絡故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the ground fault detector in Embodiment 9 of this invention. 図34の故障検出処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the failure detection process of FIG. 図34のスイッチ制御処理の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the switch control process of FIG. この発明の実施の形態10による車両用駆動電源装置の構成を示す図である。It is a figure which shows the structure of the drive power supply device for vehicles by Embodiment 10 of this invention. この発明の実施の形態10における地絡故障検出装置の処理手順の概略を示すフローチャートである。It is a flowchart which shows the outline of the process sequence of the ground fault detector in Embodiment 10 of this invention. 図38の故障検出処理の処理手順の概略を示すフローチャートである。FIG. 39 is a flowchart showing an outline of a processing procedure of failure detection processing of FIG. 38. FIG. 図38のスイッチ制御処理の処理手順の概略を示すフローチャートである。FIG. 39 is a flowchart showing an outline of a processing procedure of switch control processing of FIG. 38. FIG.

以下、この発明による車両用駆動電源装置を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, a vehicle drive power supply device according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態1.
図1はこの発明の実施の形態1による車両用駆動電源装置の構成を示す図である。1は車両の駆動力を発生する回転電機である例えば永久磁石式交流同期モータ(以下モータと略す)、2はモータ1への供給電力を変換する電力変換器である例えばインバータ、3は蓄積電力をインバータ2を介してモータ1へ供給しかつモータ1の回生電力を蓄える第1の電源装置である例えばリチウムイオン電池である。
Embodiment 1 FIG.
1 is a diagram showing a configuration of a vehicle drive power supply apparatus according to Embodiment 1 of the present invention. In FIG. Reference numeral 1 denotes a rotating electrical machine that generates a driving force of a vehicle, for example, a permanent magnet AC synchronous motor (hereinafter abbreviated as a motor), 2 denotes a power converter that converts power supplied to the motor 1, for example, an inverter, and 3 denotes stored power Is, for example, a lithium-ion battery that is a first power supply device that supplies regenerative power of the motor 1 to the motor 1 via the inverter 2.

4はリチウムイオン電池3よりも急速な充放電が可能な第2の電源装置である例えばキャパシタ、5はインバータ2を介してモータ1に駆動電力を供給するためにキャパシタ4の電圧を変換する電圧変換装置、6は電圧変換装置5とキャパシタ4をリチウムイオン電池3とインバータ2を接続する電源線SLに接続、分離する開閉手段である例えば切替スイッチ、7は電圧変換装置5の入出力の電流を例えば電流検出器Aによりそれぞれ検知して短絡故障を検出する異常検出手段である例えば入出力短絡検出装置、8は入出力短絡検出装置7からの検出に基づく異常信号に従って切替スイッチ6を開閉制御する制御装置をそれぞれ示す。   Reference numeral 4 denotes a second power supply device that can charge and discharge more rapidly than the lithium ion battery 3, for example, a capacitor, and 5 denotes a voltage for converting the voltage of the capacitor 4 to supply driving power to the motor 1 via the inverter 2. A conversion device 6 is an open / close means for connecting and separating the voltage conversion device 5 and the capacitor 4 to and from the power supply line SL connecting the lithium ion battery 3 and the inverter 2, for example, a changeover switch 7 is an input / output current of the voltage conversion device 5 For example, an input / output short-circuit detection device, which is an abnormality detection means for detecting a short-circuit failure by detecting each of them by the current detector A, for example, 8 controls opening / closing of the changeover switch 6 according to an abnormal signal based on the detection from the input / output short-circuit detection device 7 Each control device is shown.

電圧変換装置5は例えば、切替スイッチ6とグランド間に、切替スイッチ6側から開閉手段である半導体スイッチ5a、鉄心入りのインダクタ5c、キャパシタ4が直列に接続され、さらに半導体スイッチ5aと鉄心入りのインダクタ5cとの接続点とキャパシタ4のグランド側の間に半導体スイッチ5bが接続されてなる昇圧/降圧回路である。昇圧/降圧の動作説明については、例えば図示しない別の制御装置又は制御装置8により半導体スイッチ5a、5bをオンオフ制御、スイッチング制御して行われるが、この発明に直接関係しないため、ここでは詳細な説明は省略する。   In the voltage conversion device 5, for example, a semiconductor switch 5a, which is an opening / closing means, an inductor 5c including an iron core, and a capacitor 4 are connected in series from the selector switch 6 side to the ground. This is a step-up / step-down circuit in which a semiconductor switch 5b is connected between a connection point with the inductor 5c and the ground side of the capacitor 4. The operation of the step-up / step-down operation is performed by, for example, controlling the semiconductor switches 5a and 5b by another control device (not shown) or the control device 8 and controlling the switching. However, since it is not directly related to the present invention, detailed description is given here. Description is omitted.

なお、説明する実施の形態においては、第1の電源装置としてリチウムイオン電池3、第2の電源装置としてキャパシタ4を使用することを仮定しているが、これらに限定されず、第1および第2の電源装置は他手段により構成しても構わない。また、電圧変換装置5とキャパシタ4を含む構成であれば、リチウムイオン電池3は他の種類の電源であってもよい。また、リチウムイオン電池3とインバータ2の間に、電圧を変換する電圧変換装置(図示省略)をさらに含んでもよい。また、説明する実施の形態においては、切替スイッチ6としてリレーを使用することを仮定するがこれに限定されず、他の構成の切替スイッチとしても構わない。   In the embodiment to be described, it is assumed that the lithium ion battery 3 is used as the first power supply device and the capacitor 4 is used as the second power supply device. However, the present invention is not limited to these. The second power supply device may be constituted by other means. Further, as long as the configuration includes the voltage conversion device 5 and the capacitor 4, the lithium ion battery 3 may be another type of power source. Further, a voltage converter (not shown) for converting a voltage may be further included between the lithium ion battery 3 and the inverter 2. In the embodiment to be described, it is assumed that a relay is used as the changeover switch 6, but the present invention is not limited to this, and a changeover switch having another configuration may be used.

次に動作について説明する。図2はこの実施の形態における入出力短絡検出装置7の処理手順の概略を示すフローチャートである。故障検出処理(S1)で電圧変換装置5の故障(入出力間短絡)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 2 is a flowchart showing an outline of the processing procedure of the input / output short-circuit detection device 7 in this embodiment. A failure (short-circuit between input and output) of the voltage converter 5 is detected in the failure detection process (S1), and a changeover switch control instruction to the control device 8 is determined in the switch control process (S2) based on the result.

図3は図2の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、電圧変換装置5の入出力の短絡故障を検出する場合を示す。電圧変換装置5の入出力端で電流検出器Aにより取得した入力電流Iinと出力電流Ioutを比較し(S1a)、一致した場合、電圧変換装置5の入出力間短絡故障が発生しているとして、故障検出状態に設定する(S1b)。電圧変換装置5の入力電流Iinと出力電流Ioutが一致しない場合は、電圧変換装置5は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、電圧変換装置5の入出力短絡故障を電圧変換装置5の入力電流と出力電流から検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 3 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, the case where the short circuit failure of the input / output of the voltage converter 5 is detected is shown. The input current Iin acquired by the current detector A at the input / output terminal of the voltage conversion device 5 is compared with the output current Iout (S1a). If they match, it is assumed that a short-circuit failure between the input and output of the voltage conversion device 5 has occurred. The failure detection state is set (S1b). If the input current Iin and the output current Iout of the voltage conversion device 5 do not match, the voltage conversion device 5 is assumed to be operating normally and is set to a failure undetected state (S1c). In this embodiment, the input / output short-circuit fault of the voltage converter 5 is detected from the input current and output current of the voltage converter 5, but the means used is not limited to this, and other means are used. It does not matter.

故障検出処理の後にスイッチ制御処理へと進む。図4は図2のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない:以下同様)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 4 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output (the same applies hereinafter) (S2c).

以上のようにすることで、入出力短絡検出装置7が電圧変換装置5の入出力短絡故障を検出した場合に、入出力短絡検出装置7から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4をリチウムイオン電池3が接続された電源線SLから切り離すよう指示することから、電圧変換装置5を介してキャパシタ4に許容値を上回る電力が印加されることを防止でき、キャパシタ4の機能低下ないし破壊を未然に防ぐことができる。また、リチウムイオン電池3から電圧変換装置5を介してキャパシタ4へ電力の流れ込みが起き、リチウムイオン電池3の電力を不要に消費してしまい、モータ1、インバータ2を含む駆動系や電気負荷が機能低下あるいは不作動となる事態を防ぐことができ、また航続可能距離の短縮を抑制できる。   As described above, when the input / output short-circuit detection device 7 detects an input / output short-circuit fault of the voltage conversion device 5, the change-over switch 6 is opened from the input / output short-circuit detection device 7 to the control device 8. Since the voltage conversion device 5 and the capacitor 4 are instructed to be disconnected from the power supply line SL to which the lithium ion battery 3 is connected, it is possible to prevent power exceeding the allowable value from being applied to the capacitor 4 via the voltage conversion device 5. It is possible to prevent functional degradation or destruction of the capacitor 4 in advance. In addition, the flow of power from the lithium ion battery 3 to the capacitor 4 via the voltage conversion device 5 causes the power of the lithium ion battery 3 to be consumed unnecessarily, and a drive system and an electric load including the motor 1 and the inverter 2 are required. It is possible to prevent a situation where the function is deteriorated or becomes inoperable, and it is possible to suppress a reduction in the cruising range.

実施の形態2.
図5はこの発明の実施の形態2による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、電圧変換装置5の入出力の電圧を例えば電圧検出器Vによりそれぞれ検知して出力過電圧を検出する出力過電圧検出装置17を設けた。
Embodiment 2. FIG.
FIG. 5 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 2 of the present invention. In this embodiment, an output overvoltage detection device 17 for detecting an output overvoltage by detecting the input / output voltage of the voltage conversion device 5 by, for example, the voltage detector V is provided as an abnormality detection means.

次に動作について説明する。図6はこの実施の形態における出力過電圧検出装置17の処理手順の概略を示すフローチャートである。故障検出処理(S1)で電圧変換装置5の故障(出力過電圧)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 6 is a flowchart showing an outline of the processing procedure of the output overvoltage detection device 17 in this embodiment. A failure (output overvoltage) of the voltage converter 5 is detected in the failure detection process (S1), and a changeover switch control instruction to the control device 8 is determined in the switch control process (S2) based on the result.

図7は図6の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、電圧変換装置5の出力過電圧を検出する場合を示す。電圧変換装置5の入出力端で電圧検出器Vにより取得した出力電圧V1およびV2と所定の閾値Vthを比較し(S1a)、出力電圧V1およびV2の少なくとも一方が閾値Vthより大きい場合、電圧変換装置5の出力が過電圧として、故障検出状態に設定する(S1b)。電圧変換装置5の出力電圧V1およびV2が共に閾値Vth以下の場合は、電圧変換装置5は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、電圧変換装置5の出力電圧と所定の閾値から出力過電圧を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 7 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, the case where the output overvoltage of the voltage converter 5 is detected is shown. The output voltages V1 and V2 acquired by the voltage detector V at the input / output terminal of the voltage converter 5 are compared with a predetermined threshold Vth (S1a), and if at least one of the output voltages V1 and V2 is greater than the threshold Vth, the voltage conversion The output of the device 5 is set to a fault detection state as an overvoltage (S1b). When the output voltages V1 and V2 of the voltage converter 5 are both equal to or lower than the threshold value Vth, the voltage converter 5 is assumed to be operating normally and is set to a failure undetected state (S1c). In this embodiment, the output overvoltage is detected from the output voltage of the voltage conversion device 5 and a predetermined threshold, but the means to be used is not limited to this, and other means may be used.

故障検出処理の後にスイッチ制御処理へと進む。図8は図6のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 8 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c).

以上のようにすることで、出力過電圧検出装置17で電圧変換装置5の出力過電圧を検出した場合に、出力過電圧検出装置17から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから切り離すよう指示することから、駆動系やリチウムイオン電池3およびキャパシタ4が過負荷となることを防止でき、かつ過負荷となることによる機能低下や不作動ないし破壊を防ぎ、また航続可能距離の短縮を抑制できる。   As described above, when the output overvoltage detection device 17 detects the output overvoltage of the voltage conversion device 5, the changeover switch 6 is opened to the control device 8 from the output overvoltage detection device 17 to the voltage conversion device. 5 and the capacitor 4 are instructed to be disconnected from the power supply line SL, so that it is possible to prevent the drive system, the lithium ion battery 3 and the capacitor 4 from being overloaded, and the function deterioration, malfunction or destruction caused by the overload. Can be prevented, and shortening of the cruising range can be suppressed.

実施の形態3.
図9はこの発明の実施の形態3による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、電圧変換装置5の入出力の電流を例えば電流検出器Aによりそれぞれ検知して出力過電流を検出する出力過電流検出装置27を設けた。
Embodiment 3 FIG.
FIG. 9 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 3 of the present invention. In this embodiment, an output overcurrent detection device 27 for detecting an output overcurrent by detecting the input / output current of the voltage conversion device 5 by, for example, the current detector A is provided as an abnormality detection means.

次に動作について説明する。図10はこの実施の形態における出力過電流検出装置27の処理手順の概略を示すフローチャートである。故障検出処理(S1)で電圧変換装置5の故障(出力過電流)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 10 is a flowchart showing an outline of the processing procedure of the output overcurrent detection device 27 in this embodiment. A failure (output overcurrent) of the voltage converter 5 is detected in the failure detection process (S1), and a changeover switch control instruction to the control device 8 is determined in the switch control process (S2) based on the result.

図11は図10の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、電圧変換装置5の出力過電流を検出する場合を示す。電圧変換装置5の入出力端で電流検出器Aにより取得した出力電流I1およびI2と所定の閾値Ithを比較し(S1a)、出力電流I1およびI2の少なくとも一方が閾値Ithより大きい場合、電圧変換装置5の出力が過電流として、故障検出状態に設定する(S1b)。電圧変換装置5の出力電流I1およびI2が共に閾値Ith以下の場合は、電圧変換装置5は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、電圧変換装置5の出力電流と所定の閾値から出力過電流を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 11 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, the case where the output overcurrent of the voltage converter 5 is detected is shown. The output currents I1 and I2 acquired by the current detector A at the input / output terminal of the voltage converter 5 are compared with a predetermined threshold value Ith (S1a), and if at least one of the output currents I1 and I2 is larger than the threshold value Ith, the voltage conversion The output of the device 5 is set as a fault detection state as an overcurrent (S1b). When the output currents I1 and I2 of the voltage conversion device 5 are both equal to or less than the threshold value Ith, the voltage conversion device 5 is assumed to be operating normally and set to a failure undetected state (S1c). In this embodiment, the output overcurrent is detected from the output current of the voltage conversion device 5 and a predetermined threshold. However, the means used is not limited to this, and other means may be used.

故障検出処理の後にスイッチ制御処理へと進む。図12は図10のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 12 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c).

以上のようにすることで、出力過電流検出装置27で電圧変換装置5の出力過電流を検出した場合に、出力過電流検出装置27から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから切り離すよう指示することから、駆動系やリチウムイオン電池3およびキャパシタ4が過負荷となることを防止でき、かつ過負荷となることによる機能低下や不作動ないし破壊を防ぎ、また航続可能距離の短縮を抑制できる。   As described above, when the output overcurrent of the voltage converter 5 is detected by the output overcurrent detection device 27, the changeover switch 6 is opened from the output overcurrent detection device 27 to the control device 8. Since the voltage conversion device 5 and the capacitor 4 are instructed to be disconnected from the power supply line SL, it is possible to prevent the drive system, the lithium ion battery 3 and the capacitor 4 from being overloaded, and to reduce the function or cause the malfunction due to the overload. It can prevent operation or destruction, and can suppress the shortening of the cruising range.

実施の形態4.
図13はこの発明の実施の形態4による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、電圧変換装置5での温度を例えば1つまたは複数の温度センサtによりそれぞれ検知して過熱を検出する過熱検出装置37を設けた。
Embodiment 4 FIG.
FIG. 13 is a diagram showing a configuration of a vehicle drive power supply apparatus according to Embodiment 4 of the present invention. In this embodiment, as the abnormality detection means, an overheat detection device 37 that detects the overheat by detecting the temperature in the voltage converter 5 by, for example, one or more temperature sensors t is provided.

次に動作について説明する。図14は、この実施の形態における過熱検出装置37の処理手順の概略を示すフローチャートである。故障検出処理(S1)で電圧変換装置5の故障(過熱)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 14 is a flowchart showing an outline of a processing procedure of the overheat detection device 37 in this embodiment. A failure (overheating) of the voltage converter 5 is detected in the failure detection process (S1), and a changeover switch control instruction to the control device 8 is determined in the switch control process (S2) based on the result.

図15は図14の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、電圧変換装置5の過熱を検出する場合を示す。電圧変換装置5の温度センサtにより取得した計測温度Tと所定の閾値Tthを比較し(S1a)、計測温度Tが閾値Tthより大きい場合、電圧変換装置5が過熱状態として、故障検出状態に設定する(S1b)。電圧変換装置5の計測温度Tが閾値Tth以下の場合は、電圧変換装置5は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、電圧変換装置5の計測温度と所定の閾値から過熱状態を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 15 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, the case where overheating of the voltage converter 5 is detected is shown. The measured temperature T acquired by the temperature sensor t of the voltage conversion device 5 is compared with a predetermined threshold value Tth (S1a), and when the measured temperature T is larger than the threshold value Tth, the voltage conversion device 5 is set to an overheated state and set to a failure detection state. (S1b). When the measured temperature T of the voltage conversion device 5 is equal to or lower than the threshold value Tth, the voltage conversion device 5 is assumed to be operating normally and is set to a failure undetected state (S1c). In this embodiment, the overheat state is detected from the measured temperature of the voltage conversion device 5 and a predetermined threshold, but the means to be used is not limited to this, and other means may be used.

故障検出処理の後にスイッチ制御処理へと進む。図16は図14のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 16 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c).

以上のようにすることで、過熱検出装置37で電圧変換装置5の過熱を検出した場合に、過熱検出装置37から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから切り離すよう指示することから、過熱による電圧変換装置5の故障と、それによるリチウムイオン電池3からキャパシタ4への不要な電力の流れ込みを防ぎ、動力性能の低下や航続可能距離の短縮を抑制し、また電気負荷の機能低下や不作動を防止できる。   As described above, when overheating of the voltage conversion device 5 is detected by the overheat detection device 37, the changeover switch 6 is opened from the overheat detection device 37 to the control device 8, and the voltage conversion device 5 and the capacitor are opened. 4 is disconnected from the power line SL, so that the failure of the voltage converter 5 due to overheating and the unnecessary flow of electric power from the lithium ion battery 3 to the capacitor 4 can be prevented, resulting in a decrease in power performance and a cruising range. It is possible to suppress the shortening of the electric load, and to prevent the functional deterioration and malfunction of the electric load.

実施の形態5.
図17はこの発明の実施の形態5による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、キャパシタ4の正極および負極の電圧を例えば電圧検出器Vによりそれぞれ検出して開放故障を検出する開放故障検出装置47を設けた。
Embodiment 5 FIG.
FIG. 17 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 5 of the present invention. In this embodiment, as an abnormality detection means, an open failure detection device 47 that detects the open failure by detecting the voltages of the positive electrode and the negative electrode of the capacitor 4 by, for example, the voltage detector V is provided.

次に動作について説明する。図18はこの実施の形態における開放故障検出装置47の処理手順の概略を示すフローチャートである。故障検出処理(S1)でキャパシタ4の故障(正極および負極の開放故障)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 18 is a flowchart showing an outline of the processing procedure of the open fault detection device 47 in this embodiment. In the failure detection process (S1), the failure of the capacitor 4 (positive and negative electrode open failure) is detected. Based on the result, the switch control instruction to the control device 8 is determined in the switch control process (S2).

図19は図18の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、キャパシタ4の正極および負極の開放故障を検出する場合を示す。キャパシタ4の正極側電圧Vpおよび負極側電圧Vmを所定の閾値Vthと比較し(S1a)、正極側電圧Vpおよび負極側電圧Vmの少なくとも一方が閾値Vth未満の場合、キャパシタ4の正極または負極に開放故障が発生しているとして、故障検出状態に設定する(S1b)。正極側電圧Vpと負極側電圧Vmがともに閾値Vth以上の場合は、キャパシタ4は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、キャパシタ4の正極側電圧および負極側電圧と所定の閾値から開放故障を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 19 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, a case where an open failure of the positive electrode and the negative electrode of the capacitor 4 is detected is shown. The positive side voltage Vp and the negative side voltage Vm of the capacitor 4 are compared with a predetermined threshold value Vth (S1a). If at least one of the positive side voltage Vp and the negative side voltage Vm is less than the threshold value Vth, Assuming that an open failure has occurred, a failure detection state is set (S1b). When both the positive side voltage Vp and the negative side voltage Vm are equal to or higher than the threshold value Vth, the capacitor 4 is assumed to be operating normally, and is set to a failure undetected state (S1c). In this embodiment, the open circuit failure is detected from the positive side voltage and the negative side voltage of the capacitor 4 and a predetermined threshold. However, the means to be used is not limited to this, and other means may be used. Absent.

故障検出処理の後にスイッチ制御処理へと進む。図20は図18のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 20 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c).

以上のようにすることで、開放故障検出装置47がキャパシタ4の正極あるいは負極の開放故障を検出した場合に、開放故障検出装置47から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから切り離すよう指示することから、キャパシタ4が充放電できない状況でのリチウムイオン電池3からの電力の流れ込みを防止し、リチウムイオン電池3の電力を不要に消費することと、それによる航続可能距離の短縮を防止できる。また、リチウムイオン電池3の不要な電力消費による、車両の電気負荷の性能低下ないし不作動を防止できる。   As described above, when the open failure detection device 47 detects an open failure of the positive electrode or the negative electrode of the capacitor 4, the open failure detection device 47 sets the changeover switch 6 to the open state to the control device 8, and the voltage is set. Since the conversion device 5 and the capacitor 4 are instructed to be disconnected from the power line SL, the flow of power from the lithium ion battery 3 is prevented when the capacitor 4 cannot be charged / discharged, and the power of the lithium ion battery 3 is consumed unnecessarily. This can prevent the cruising range from being shortened. In addition, it is possible to prevent a reduction in performance or malfunction of the electric load of the vehicle due to unnecessary power consumption of the lithium ion battery 3.

実施の形態6.
図21はこの発明の実施の形態6による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、実施の形態5と同様にキャパシタ4の正極および負極の電圧を例えば電圧検出器Vによりそれぞれ検出して開放故障を検出する開放故障検出装置47を設けた。しかしながら切替スイッチ6が設けられておらず、電圧変換装置5の半導体スイッチ5aが電源線SLに接続されている。また制御装置8が半導体スイッチ5aの開閉制御を行う。
Embodiment 6 FIG.
FIG. 21 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 6 of the present invention. In this embodiment, as an abnormality detection means, as in the fifth embodiment, an open failure detection device 47 that detects the open failure by detecting the positive and negative voltages of the capacitor 4 by, for example, the voltage detector V, is provided. However, the changeover switch 6 is not provided, and the semiconductor switch 5a of the voltage conversion device 5 is connected to the power supply line SL. The control device 8 performs open / close control of the semiconductor switch 5a.

次に動作について説明する。図22はこの実施の形態における開放故障検出装置47の処理手順の概略を示すフローチャート、図23,図24はそれぞれ図22の故障検出処理(S1)、スイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。動作については、制御装置8が切替スイッチ6の代わりに電圧変換装置5の半導体スイッチ5aの開閉制御を行う以外は基本的に実施の形態5と同じである。   Next, the operation will be described. FIG. 22 is a flowchart showing an outline of the processing procedure of the open fault detection apparatus 47 in this embodiment, and FIGS. 23 and 24 show the outline of the processing procedure of the fault detection process (S1) and the switch control process (S2) of FIG. It is a flowchart which shows. The operation is basically the same as that of the fifth embodiment except that the control device 8 performs open / close control of the semiconductor switch 5a of the voltage conversion device 5 instead of the changeover switch 6.

以上のようにすることで、実施の形態5に加えてさらに、電圧変換装置5に含まれる半導体スイッチ5aを使い電圧変換装置5とキャパシタ4の電源線SLからの分離を行うため、切替スイッチ6やリレー等の対策用の構成を追加する必要がなく、コスト削減、省スペース化を図ることができる。   In this manner, in addition to the fifth embodiment, the changeover switch 6 is used to separate the voltage conversion device 5 and the capacitor 4 from the power supply line SL using the semiconductor switch 5a included in the voltage conversion device 5. It is not necessary to add countermeasure configurations such as relays and relays, and cost reduction and space saving can be achieved.

実施の形態7.
図25はこの発明の実施の形態7による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、キャパシタ4の正極および負極の電圧を例えば電圧検出器Vによりそれぞれ検出して短絡故障を検出する短絡故障検出装置57を設けた。
Embodiment 7 FIG.
FIG. 25 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 7 of the present invention. In this embodiment, a short-circuit fault detection device 57 that detects the short-circuit fault by detecting the positive and negative voltages of the capacitor 4 by, for example, the voltage detector V is provided as an abnormality detection means.

次に動作について説明する。図26はこの実施の形態における短絡故障検出装置57の処理手順の概略を示すフローチャートである。故障検出処理(S1)でキャパシタ4の故障(正極と負極間の短絡故障)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 26 is a flowchart showing an outline of the processing procedure of the short-circuit fault detection device 57 in this embodiment. In the failure detection process (S1), a failure of the capacitor 4 (short-circuit failure between the positive electrode and the negative electrode) is detected. Based on the result, a switch control instruction to the control device 8 is determined in the switch control process (S2).

図27は図26の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、キャパシタ4の短絡故障を検出する場合を示す。キャパシタ4の正極側電圧Vpと負極側電圧Vmを比較し(S1a)、一致した場合、キャパシタ4に短絡故障が発生しているとして、故障検出状態に設定する(S1b)。正極側電圧Vpと負極側電圧Vmが一致しない場合は、キャパシタは正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、キャパシタ4の正極側電圧と負極側電圧から短絡故障を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 27 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, a case where a short-circuit fault of the capacitor 4 is detected is shown. The positive side voltage Vp and the negative side voltage Vm of the capacitor 4 are compared (S1a), and if they match, it is determined that a short circuit fault has occurred in the capacitor 4 and a fault detection state is set (S1b). When the positive side voltage Vp and the negative side voltage Vm do not match, it is determined that the capacitor is operating normally and is set to a failure undetected state (S1c). In this embodiment, the short-circuit failure is detected from the positive side voltage and the negative side voltage of the capacitor 4, but the means to be used is not limited to this, and other means may be used.

故障検出処理の後にスイッチ制御処理へと進む。図28は図26のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)。   After the failure detection process, the process proceeds to the switch control process. FIG. 28 is a flowchart showing an outline of the procedure of the switch control process (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c).

以上のようにすることで、短絡故障検出装置57がキャパシタ4の短絡故障を検出した場合に、短絡故障検出装置57から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから切り離すよう指示することから、車両の電源系であるリチウムイオン電池3、電圧変換装置5、キャパシタ4がショートすることを防ぐことができ、車両の駆動系であるモータ1、インバータ2や、電気負荷に、機能低下や不作動といった影響を及ぼす事態を防止することができる。   As described above, when the short-circuit fault detection device 57 detects a short-circuit failure of the capacitor 4, the switch 6 is opened from the short-circuit fault detection device 57 to the control device 8. Since the capacitor 4 is instructed to be disconnected from the power line SL, it is possible to prevent the lithium ion battery 3, the voltage conversion device 5, and the capacitor 4 that are the power supply system of the vehicle from being short-circuited, and the motor 1 that is the drive system of the vehicle. In addition, it is possible to prevent a situation in which the inverter 2 or the electric load has an effect such as a deterioration in function or malfunction.

実施の形態8.
図25はこの発明の実施の形態8による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、実施の形態7と同様にキャパシタ4の正極および負極の電圧を例えば電圧検出器Vによりそれぞれ検出して短絡故障を検出する短絡故障検出装置57を設けた。しかしながら切替スイッチ6が設けられておらず、電圧変換装置5の半導体スイッチ5aが電源線SLに接続されている。また制御装置8が半導体スイッチ5aの開閉制御を行う。
Embodiment 8 FIG.
FIG. 25 is a diagram showing the configuration of a vehicle drive power supply device according to Embodiment 8 of the present invention. In this embodiment, a short-circuit fault detection device 57 that detects the short-circuit fault by detecting the voltages of the positive electrode and the negative electrode of the capacitor 4 by, for example, the voltage detector V, as in the seventh embodiment, is provided as the abnormality detection means. However, the changeover switch 6 is not provided, and the semiconductor switch 5a of the voltage conversion device 5 is connected to the power supply line SL. The control device 8 performs open / close control of the semiconductor switch 5a.

次に動作について説明する。図30はこの実施の形態における短絡故障検出装置57の処理手順の概略を示すフローチャート、図31,図32はそれぞれ図30の故障検出処理(S1)、スイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。動作については、制御装置8が切替スイッチ6の代わりに電圧変換装置5の半導体スイッチ5aの開閉制御を行う以外は基本的に実施の形態7と同じである。   Next, the operation will be described. FIG. 30 is a flowchart showing an outline of the processing procedure of the short-circuit fault detection device 57 in this embodiment, and FIGS. 31 and 32 show the outline of the processing procedure of the fault detection process (S1) and the switch control process (S2) in FIG. 30, respectively. It is a flowchart which shows. The operation is basically the same as that of the seventh embodiment except that the control device 8 performs open / close control of the semiconductor switch 5a of the voltage conversion device 5 instead of the changeover switch 6.

以上のようにすることで、実施の形態7に加えてさらに、電圧変換装置5に含まれる半導体スイッチ5aを使い電圧変換装置5とキャパシタ4の電源線SLからの分離を行うため、切替スイッチ6やリレー等の対策用の構成を追加する必要がなく、コスト削減、省スペース化を図ることができる。   As described above, in addition to the seventh embodiment, the changeover switch 6 is used to separate the voltage conversion device 5 and the capacitor 4 from the power supply line SL using the semiconductor switch 5a included in the voltage conversion device 5. It is not necessary to add countermeasure configurations such as relays and relays, and cost reduction and space saving can be achieved.

実施の形態9.
図25はこの発明の実施の形態7による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、キャパシタ4の正極の電圧を例えば電圧検出器Vにより検出して正極の地絡故障を検出する地絡故障検出装置67を設けた。
Embodiment 9 FIG.
FIG. 25 is a diagram showing a configuration of a vehicle drive power supply device according to Embodiment 7 of the present invention. In this embodiment, a ground fault detection device 67 for detecting a positive ground fault by detecting the voltage of the positive pole of the capacitor 4 using, for example, the voltage detector V is provided as an abnormality detecting means.

次に動作について説明する。図34はこの実施の形態における地絡故障検出装置67の処理手順の概略を示すフローチャートである。故障検出処理(S1)でキャパシタ4の故障(正極の地絡故障)を検出し、その結果に基づきスイッチ制御処理(S2)で制御装置8への切替スイッチ制御指示を決定する。   Next, the operation will be described. FIG. 34 is a flowchart showing an outline of the processing procedure of the ground fault detection device 67 in this embodiment. A failure of the capacitor 4 (positive ground fault) is detected in the failure detection process (S1), and a changeover switch control instruction to the control device 8 is determined in the switch control process (S2) based on the result.

図35は図34の故障検出処理(S1)の処理手順の概略を示すフローチャートである。この実施の形態においては、キャパシタ4の正極の地絡故障を検出する場合を示す。キャパシタ4の正極側電圧Vp(S1a)が0Vの場合、キャパシタ4に地絡故障が発生しているとして、故障検出状態に設定する(S1b)。正極側電圧Vpが0Vではない場合は、キャパシタ4は正常に動作しているとして、故障未検出状態に設定する(S1c)。なお、この実施の形態においては、キャパシタ4の正極側電圧から地絡故障を検出することとしているが、使用する手段はこれに限定せず、他の手段としても構わない。   FIG. 35 is a flowchart showing an outline of the processing procedure of the failure detection processing (S1) of FIG. In this embodiment, the case where the ground fault of the positive electrode of the capacitor 4 is detected is shown. When the positive side voltage Vp (S1a) of the capacitor 4 is 0V, it is determined that a ground fault has occurred in the capacitor 4, and a failure detection state is set (S1b). If the positive side voltage Vp is not 0V, the capacitor 4 is assumed to be operating normally and is set to a failure undetected state (S1c). In this embodiment, the ground fault is detected from the positive side voltage of the capacitor 4. However, the means used is not limited to this, and other means may be used.

故障検出処理の後にスイッチ制御処理へと進む。図36は図34のスイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。故障検出処理(S1=S2a)にて故障検出状態と判定された場合、切替スイッチ6の開放指示となる異常信号を制御装置8に対して出力する(S2b)。これにより制御装置8は切替スイッチ6を開放する。故障検出処理(S1=S2a)で故障未検出状態と判定された場合は、切替スイッチ6の閉成指示(この場合閉成保持)となる信号を制御装置8に対して出力する(もしくは現状維持のため特に信号を出力しない)(S2c)   After the failure detection process, the process proceeds to the switch control process. FIG. 36 is a flowchart showing an outline of the processing procedure of the switch control processing (S2) of FIG. If it is determined in the failure detection process (S1 = S2a) that a failure has been detected, an abnormal signal serving as an instruction to open the changeover switch 6 is output to the control device 8 (S2b). As a result, the control device 8 opens the changeover switch 6. If it is determined in the failure detection process (S1 = S2a) that the failure has not been detected, a signal that is a closing instruction of the changeover switch 6 (in this case, closed) is output to the control device 8 (or the current state is maintained). Therefore, no signal is output) (S2c)

以上のようにすることで、地絡故障検出装置67がキャパシタ4の正極の地絡故障を検出した場合に、地絡故障検出装置67から制御装置8に対して、切替スイッチ6を開放状態として電圧変換装置5とキャパシタ4を電源線SLから分離するよう指示することから、車両の電源系であるリチウムイオン電池3、電圧変換装置5、キャパシタ4がショートすることを防ぐことができ、車両の駆動系であるモータ1、インバータ2や、電気負荷に、機能低下や不作動といった影響を及ぼす事態を防止することができる。   With the above configuration, when the ground fault detection device 67 detects a ground fault in the positive electrode of the capacitor 4, the changeover switch 6 is opened from the ground fault detection device 67 to the control device 8. Since the voltage conversion device 5 and the capacitor 4 are instructed to be separated from the power supply line SL, it is possible to prevent the lithium ion battery 3, the voltage conversion device 5, and the capacitor 4 that are the power supply system of the vehicle from being short-circuited. It is possible to prevent a situation in which the motor 1, the inverter 2, or the electric load that is the drive system has an effect such as reduced function or inoperative.

実施の形態10.
図37はこの発明の実施の形態10による車両用駆動電源装置の構成を示す図である。この実施の形態では異常検出手段として、実施の形態9と同様にキャパシタ4の正極の電圧を例えば電圧検出器Vにより検出して正極の地絡故障を検出する地絡故障検出装置67を設けた。しかしながら切替スイッチ6が設けられておらず、電圧変換装置5の半導体スイッチ5aが電源線SLに接続されている。また制御装置8が半導体スイッチ5aの開閉制御を行う。
Embodiment 10 FIG.
FIG. 37 is a diagram showing a configuration of a vehicle drive power supply apparatus according to Embodiment 10 of the present invention. In this embodiment, a ground fault detection device 67 for detecting a positive ground fault by detecting the voltage of the positive pole of the capacitor 4 by, for example, the voltage detector V is provided as an abnormality detecting means, as in the ninth embodiment. . However, the changeover switch 6 is not provided, and the semiconductor switch 5a of the voltage conversion device 5 is connected to the power supply line SL. The control device 8 performs open / close control of the semiconductor switch 5a.

次に動作について説明する。図38はこの実施の形態における地絡故障検出装置67の処理手順の概略を示すフローチャート、図39,図40はそれぞれ図38の故障検出処理(S1)、スイッチ制御処理(S2)の処理手順の概略を示すフローチャートである。動作については、制御装置8が切替スイッチ6の代わりに電圧変換装置5の半導体スイッチ5aの開閉制御を行う以外は基本的に実施の形態9と同じである。   Next, the operation will be described. FIG. 38 is a flowchart showing an outline of the processing procedure of the ground fault detection device 67 in this embodiment, and FIGS. 39 and 40 show the processing procedure of the fault detection processing (S1) and switch control processing (S2) in FIG. 38, respectively. It is a flowchart which shows an outline. The operation is basically the same as that of the ninth embodiment except that the control device 8 performs open / close control of the semiconductor switch 5a of the voltage conversion device 5 instead of the changeover switch 6.

以上のようにすることで、実施の形態9に加えてさらに、電圧変換装置5に含まれる半導体スイッチ5aを使い電圧変換装置5とキャパシタ4の電源線SLからの分離を行うため、切替スイッチ6やリレー等の対策用の構成を追加する必要がなく、コスト削減、省スペース化を図ることができる。   In this manner, in addition to the ninth embodiment, the changeover switch 6 is used to separate the voltage conversion device 5 and the capacitor 4 from the power supply line SL using the semiconductor switch 5a included in the voltage conversion device 5. It is not necessary to add countermeasure configurations such as relays and relays, and cost reduction and space saving can be achieved.

なおこの発明は上記各実施の形態に限定されるものはなく、これらの可能な組み合わせを全て含むことは云うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that all possible combinations thereof are included.

例えば、実施の形態1の入出力短絡検出装置7、実施の形態2の出力過電圧検出装置17、実施の形態3の出力過電流検出装置27、実施の形態4の過熱検出装置37、実施の形態5の開放故障検出装置47、実施の形態7の短絡故障検出装置57および実施の形態9の地絡故障検出装置67を設け、それぞれの異常信号を1つの制御装置8で受けていずれかの異常検出時に切替スイッチ6を開放するようにしてもよい。また、実施の形態6の開放故障検出装置47、実施の形態8の短絡故障検出装置57および実施の形態10の地絡故障検出装置67を設け、それぞれの異常信号を1つの制御装置8で受けていずれかの異常検出時に電圧変換装置5内の半導体スイッチを開放するようにしてもよい。   For example, the input / output short-circuit detection device 7 according to the first embodiment, the output overvoltage detection device 17 according to the second embodiment, the output overcurrent detection device 27 according to the third embodiment, the overheat detection device 37 according to the fourth embodiment, and the embodiment. 5 open fault detector 47, short-circuit fault detector 57 according to the seventh embodiment, and ground fault detector 67 according to the ninth embodiment. The changeover switch 6 may be opened at the time of detection. Further, an open fault detection device 47 according to the sixth embodiment, a short circuit fault detection device 57 according to the eighth embodiment, and a ground fault detection device 67 according to the tenth embodiment are provided, and each controller 8 receives each abnormal signal. When any abnormality is detected, the semiconductor switch in the voltage converter 5 may be opened.

1 モータ(回転電機)、2 インバータ、3 リチウムイオン電池(第1の電源装置)、4 キャパシタ(第2の電源装置)、5 電圧変換装置、5a,5b 半導体スイッチ、5c インダクタ、6 切替スイッチ(開閉手段)、7 入出力短絡検出装置(異常検出手段)、8 制御装置、17 出力過電圧検出装置(異常検出手段)、27 出力過電流検出装置(異常検出手段)、37 過熱検出装置(異常検出手段)、47 開放故障検出装置(異常検出手段)、57 短絡故障検出装置(異常検出手段)、67 地絡故障検出装置(異常検出手段)、A 電流検出器、SL 電源線、t 温度センサ、V 電圧検出器。   DESCRIPTION OF SYMBOLS 1 Motor (rotary electric machine), 2 Inverter, 3 Lithium ion battery (1st power supply device), 4 Capacitor (2nd power supply device), 5 Voltage converter, 5a, 5b Semiconductor switch, 5c Inductor, 6 Changeover switch ( 7) Input / output short-circuit detection device (abnormality detection means), 8 control device, 17 output overvoltage detection device (abnormality detection means), 27 output overcurrent detection device (abnormality detection means), 37 overheat detection device (abnormality detection) Means), 47 open fault detection device (abnormality detection means), 57 short circuit fault detection device (abnormality detection means), 67 ground fault detection device (abnormality detection means), A current detector, SL power line, t temperature sensor, V Voltage detector.

Claims (4)

車両を駆動する回転電機との間でインバータを介して前記回転電機へ蓄えた電力を供給すると共に前記回転電機からの回生電力の供給を受ける第1の電源装置と、
前記第1の電源装置よりも急速な充放電が可能な電力を蓄える第2の電源装置と、
前記第1の電源装置とインバータを接続する電源線と前記第2の電源装置の間に接続され、前記インバータを介して前記回転電機に駆動電力を供給するために前記第2の電源装置の電圧を変換する電圧変換装置と、
前記電圧変換装置または前記第2の電源装置の内部異常を検出して異常信号を発生する異常検出手段と、
前記電圧変換装置と前記電源線の間を接続、切り離しを行う開閉手段と、
前記異常検出手段からの異常信号を受けた時に前記開閉手段を開放させて前記電圧変換装置および第2の電源装置を前記電源線から分離する制御装置と、
を備えたことを特徴とする車両用駆動電源装置。
A first power supply that supplies power stored in the rotating electrical machine via an inverter to and from the rotating electrical machine that drives the vehicle, and that receives regenerative power from the rotating electrical machine;
A second power supply device for storing power capable of being charged and discharged more rapidly than the first power supply device;
The voltage of the second power supply device is connected between the power supply line connecting the first power supply device and the inverter and the second power supply device, and supplies driving power to the rotating electrical machine via the inverter. A voltage conversion device for converting
An abnormality detection means for detecting an internal abnormality of the voltage conversion device or the second power supply device and generating an abnormality signal;
Opening and closing means for connecting and disconnecting between the voltage converter and the power supply line,
A control device that opens the opening and closing means when receiving an abnormality signal from the abnormality detection means, and separates the voltage conversion device and the second power supply device from the power supply line;
A vehicle drive power supply device comprising:
前記異常検出手段が、前記電圧変換装置の内部故障による入出力間の短絡、出力過電圧、出力過電流、過熱、及び前記第2の電源装置の正極又は負極の開放故障、正極と負極間の短絡故障、正極の地絡故障のうちの少なくとも1つを検出し、前記制御装置が、前記開閉手段を構成する前記電圧変換装置と電源線の間に挿入された切替スイッチを開放することを特徴とする請求項1に記載の車両用駆動電源装置。   The abnormality detection means includes a short circuit between input and output due to an internal failure of the voltage conversion device, an output overvoltage, an output overcurrent, an overheat, and an open failure of the positive electrode or the negative electrode of the second power supply device, a short circuit between the positive electrode and the negative electrode. Detecting at least one of a failure and a ground fault of a positive electrode, and the control device opens a change-over switch inserted between the voltage conversion device and a power line constituting the switching means, The vehicle drive power supply device according to claim 1. 前記異常検出手段が、前記第2の電源装置の正極又は負極の開放故障、短絡故障、地絡故障のうちの少なくとも1つを検出し、前記制御装置が、前記開閉手段を構成する前記電圧変換装置と電源線の間を接続、切離しを行う前記電圧変換装置の内の半導体スイッチを開放することを特徴とする請求項1に記載の車両用駆動電源装置。   The abnormality detection means detects at least one of an open failure, a short-circuit failure, and a ground fault of the positive or negative electrode of the second power supply device, and the control device forms the voltage conversion that constitutes the switching means. 2. The vehicle drive power supply device according to claim 1, wherein a semiconductor switch in the voltage conversion device that connects and disconnects the device and the power supply line is opened. 前記第1の電源装置がリチウムイオン電池からなり、前記第2の電源装置がキャパシタからなり、前記回転電機が永久磁石式交流同期モータからなることを特徴とする請求項1から3までのいずれか1項に記載の車両用駆動電源装置。   The first power supply device is a lithium ion battery, the second power supply device is a capacitor, and the rotating electrical machine is a permanent magnet AC synchronous motor. 2. A vehicle drive power supply device according to item 1.
JP2009253909A 2009-11-05 2009-11-05 Drive power supply apparatus for vehicles Pending JP2011101483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253909A JP2011101483A (en) 2009-11-05 2009-11-05 Drive power supply apparatus for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253909A JP2011101483A (en) 2009-11-05 2009-11-05 Drive power supply apparatus for vehicles

Publications (1)

Publication Number Publication Date
JP2011101483A true JP2011101483A (en) 2011-05-19

Family

ID=44192189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253909A Pending JP2011101483A (en) 2009-11-05 2009-11-05 Drive power supply apparatus for vehicles

Country Status (1)

Country Link
JP (1) JP2011101483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175369A (en) * 2020-04-28 2021-11-01 低▲炭▼動能開發股▲ふん▼有限公司 Protection method for vehicular super-capacitor module and protection device for vehicular super-capacitor module executing the protection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225562A (en) * 2006-02-27 2007-09-06 Toyota Motor Corp Device and method for judging abnormality of power supply device
JP2007267504A (en) * 2006-03-28 2007-10-11 Mitsubishi Heavy Ind Ltd Storage apparatus of crane, crane power supply and power supply facility of crane
JP2008086077A (en) * 2006-09-26 2008-04-10 Toshiba Corp Railroad vehicle drive control device
JP2008226511A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Charge and discharge control device, and railroad vehicle using it
JP2009183098A (en) * 2008-01-31 2009-08-13 Meidensha Corp Motor drive device
JP2009219208A (en) * 2008-03-07 2009-09-24 Toshiba Corp Electric vehicle drive
JP2009254179A (en) * 2008-04-09 2009-10-29 Nissan Motor Co Ltd Vehicle driving device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225562A (en) * 2006-02-27 2007-09-06 Toyota Motor Corp Device and method for judging abnormality of power supply device
JP2007267504A (en) * 2006-03-28 2007-10-11 Mitsubishi Heavy Ind Ltd Storage apparatus of crane, crane power supply and power supply facility of crane
JP2008086077A (en) * 2006-09-26 2008-04-10 Toshiba Corp Railroad vehicle drive control device
JP2008226511A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Charge and discharge control device, and railroad vehicle using it
JP2009183098A (en) * 2008-01-31 2009-08-13 Meidensha Corp Motor drive device
JP2009219208A (en) * 2008-03-07 2009-09-24 Toshiba Corp Electric vehicle drive
JP2009254179A (en) * 2008-04-09 2009-10-29 Nissan Motor Co Ltd Vehicle driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021175369A (en) * 2020-04-28 2021-11-01 低▲炭▼動能開發股▲ふん▼有限公司 Protection method for vehicular super-capacitor module and protection device for vehicular super-capacitor module executing the protection method
JP7212099B2 (en) 2020-04-28 2023-01-24 低▲炭▼動能開發股▲ふん▼有限公司 A method for protecting a supercapacitor module for a vehicle and a protection device for a supercapacitor module for a vehicle that implements this protection method.

Similar Documents

Publication Publication Date Title
US9802562B2 (en) Automotive power unit
JP4939570B2 (en) Power supply
JP5101881B2 (en) Grid-connected inverter device
US10399518B2 (en) Relay device and power supply device
CN111032415B (en) Power supply system and electric automobile
US9676277B2 (en) Inverter for an electric machine and method for operating an inverter for an electric machine
JP5708625B2 (en) Power storage system
US9893511B2 (en) Protective circuit assemblage for a multi-voltage electrical system
US10784713B2 (en) Uninterruptible power supply device
US20100213904A1 (en) Vehicle and discharge method of smoothing capacitor in vehicle
US20140049215A1 (en) Method for monitoring the charging mode of an energy store in a vechile and charging system for charging an energy store in a vechile
US10023052B2 (en) Power supply system
US20090295224A1 (en) Power supply controlling apparatus for motor vehicle
JP5875214B2 (en) Power conversion system
JP2011004556A (en) Power supply device for vehicle
JP2013195183A (en) Fault monitoring system of power supply device, vehicle mounted with fault monitoring system, and fault monitoring method of power supply device
CN115917959A (en) Control circuit of power converter
JP2010081703A (en) Power supply control system for vehicle
JP2010104106A (en) Power supplying device
JP4701821B2 (en) Load driving device and vehicle equipped with the same
US20190084424A1 (en) Contactor supply bus
KR20050045597A (en) A power disconnecting unit for hybrid electric vehicle and fuel cell electric vehicle
JP2011101483A (en) Drive power supply apparatus for vehicles
KR20170108592A (en) Protection method for battery of hybrid vehicle
JP6162833B2 (en) Plug-in vehicle charging device and plug-in vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204