JP2011101291A - 無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 - Google Patents
無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 Download PDFInfo
- Publication number
- JP2011101291A JP2011101291A JP2009256000A JP2009256000A JP2011101291A JP 2011101291 A JP2011101291 A JP 2011101291A JP 2009256000 A JP2009256000 A JP 2009256000A JP 2009256000 A JP2009256000 A JP 2009256000A JP 2011101291 A JP2011101291 A JP 2011101291A
- Authority
- JP
- Japan
- Prior art keywords
- user
- boundary
- internal
- users
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
【課題】マルチユーザMIMOシステムにおける効率的なユーザ選択方法の提供。
【解決手段】自セル内のユーザを、自セルに隣接する隣接セルと自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、境界ユーザ及び内部ユーザのそれぞれについて、ユーザ分類部により分類されたユーザの中から、リソースブロック毎に受信電力が最大となる第1のユーザを選択し、第1のユーザとは異なる第2のユーザの中から、同じリソースブロックを利用した場合における第1のユーザとの間のチャネルキャパシティが大きい第2のユーザをリソースブロック毎に選択するユーザ選択部と、第1ユーザ選択部により選択された第1のユーザ及び第2のユーザに対し、当該第1及び第2ユーザに対応するリソースブロックを利用して信号を送信する送信部と、を備える基地局が提供される。
【選択図】図4
【解決手段】自セル内のユーザを、自セルに隣接する隣接セルと自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、境界ユーザ及び内部ユーザのそれぞれについて、ユーザ分類部により分類されたユーザの中から、リソースブロック毎に受信電力が最大となる第1のユーザを選択し、第1のユーザとは異なる第2のユーザの中から、同じリソースブロックを利用した場合における第1のユーザとの間のチャネルキャパシティが大きい第2のユーザをリソースブロック毎に選択するユーザ選択部と、第1ユーザ選択部により選択された第1のユーザ及び第2のユーザに対し、当該第1及び第2ユーザに対応するリソースブロックを利用して信号を送信する送信部と、を備える基地局が提供される。
【選択図】図4
Description
本発明は、基地局、マルチユーザMIMOシステム、及びユーザ選択方法に関する。特に、zero−forcing beamforming multi−user MIMO−OFDMシステムにおけるユーザスケジューリング方法に関する。
無線装置間の通信速度を高速化する技術の一つとして、多入力・多出力伝送(MIMO;Multiple Input Multiple Output)方式が知られている。この方式は、文字通り、複数のアンテナを用いた信号の入出力を基本としている。この方式の特徴は、異なる複数のアンテナを利用して、同じタイミング、かつ、同じ周波数で複数の送信データを一度に送信することが可能な点にある。そのため、同時に送信可能なチャネルの数が増加するにつれ、増加したチャネルの分だけ単位時間当たりに送信可能な情報量を増加させることが可能になる。また、この方式は、通信速度を向上させるに当たって、占有される周波数帯域が増加しないという利点も有する。
しかし、同一周波数の搬送波成分を有する複数の変調信号が同時に送信されるため、受信側において混信した変調信号を分離する手段が必要になる。そこで、受信側において、無線伝送路の伝送特性を表すチャネル行列が推定され、そのチャネル行列に基づき、受信信号から各サブストリームに対応する送信信号が分離される。尚、チャネル行列は、参照信号を用いて推定される。また、推定されたチャネル行列を用いて信号を検出する方法としては、例えば、MMSE(Minimum Mean Squared Error)検波方式やMLD(Maximum Likelihood Detection)検波方式を用いる方法が知られている。
最近では、複数の無線端末に向けて無線基地局に設置された複数のアンテナにより信号を送信して空間多重させ、受信して各信号を分離することにより、システム全体のスループットを向上させるマルチユーザMIMOシステムが利用されつつある。また、1つのセル内に複数のアンテナを分散して配置し、これら複数のアンテナを用いて無線基地局と無線端末との間で無線通信を実現する分散アンテナ無線アクセスシステム(以下、分散アンテナシステム)の利用が企図されている。例えば、下記の非特許文献1には、zero−forcing beamforming(以下、ZFBF) multi−user MIMO伝送方式を適用した分散アンテナシステムのシステム構成が記載されている。また、下記の非特許文献2には、ZFBFマルチユーザMIMO伝送方式における効果的なユーザ選択方法が記載されている。
C.B.Peel, B.M. Hochwald, and A.L. Swindlehurst",A vector-perturbation technique for near-capacity multiantennamultiuser communication Part I: channel inversion and regulation," IEEETrans. Commun., vol.53, no.1, pp.195-202, January2005
G.Dimic and N.D. Sidiropoulos,"On downlink beamforming with greedy userselection: performance analysis and a simple new algorithm", IEEE Trans.Signal Processing, vol.53, no.10, pp.3857-3868, October 2005
上記の非特許文献1に記載の技術は、ある無線基地局が管理する自セル内に複数のユーザが存在する環境において、自セル内の各ユーザに向けて送信される信号が互いに直交するようにZFBFを施すというものである。このような構成にすることにより、下り回線における各ユーザ向け信号の干渉を抑制することができる。しかしながら、同文献に記載の技術は、自セルに隣接する他セル(以下、隣接セル)との間の干渉を考慮したものではない。しかし、実際には、自セル内のユーザが隣接セルの近傍に位置する場合、自セルの分散アンテナシステムは、隣接セルの伝送信号による干渉の影響を被る。特に、セル境界を隔てて複数のユーザが近接している場合には、相互に干渉の影響を及ぼし合い、いずれのユーザにおいても伝送特性が大幅に劣化してしまう。
また、上記の非特許文献2に記載の技術は、受信信号電力が最大となるユーザ及び他の各ユーザのチャネルベクトルに基づいてチャネルキャパシティが大きくなるような他のユーザを順次選択するというものである。このような構成にすることにより、スループットの高いユーザの組み合わせが選択される。しかし、セル境界に位置するチャネルキャパシティの小さいユーザは、ほとんど選択されなくなってしまう。そのため、ユーザに対する公平性が保てなくなってしまう。また、この技術には演算量が多いという問題もある。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ユーザの公平性をある程度保ちつつ、スループットを向上させることが可能な、新規かつ改良された基地局、マルチユーザMIMOシステム、及びユーザ選択方法を提供することにある。
上記課題を解決するために、本発明のある観点によれば、自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、前記ユーザ分類部により分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択部と、前記ユーザ分類部により分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択部と、前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択部と、前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択部と、前記第1境界ユーザ選択部により選択された第1の境界ユーザ及び前記第2境界ユーザ選択部により選択された第2の境界ユーザに対し、当該第1及び第2境界ユーザに対応するリソースブロックを利用して信号を送信し、前記第1内部ユーザ選択部により選択された第1の内部ユーザ及び前記第2内部ユーザ選択部により選択された第2の内部ユーザに対し、当該第1及び第2の内部ユーザに対応するリソースブロックを利用して信号を送信する送信部と、を備える、無線基地局が提供される。
このように、セル内部ユーザと、セル境界ユーザとを分類し、分類毎にリソースブロックの割り当て、及び各リソースブロックに対する空間多重ユーザの選択を行うことにより、ユーザの公平性を保ちつつ、空間多重によるスループットの向上効果を得られる。
また、上記の無線基地局は、リソースブロック毎にチャネルベクトルを推定するチャネル推定部をさらに備えていてもよい。この場合、前記第1境界ユーザ選択部は、前記チャネル推定部により推定されたチャネルベクトルから計算されるリソースブロック毎の受信電力を用いて、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択し、前記第1内部ユーザ選択部は、前記チャネル推定部により推定されたチャネルベクトルから計算されるリソースブロック毎の受信電力を用いて、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する。リソースブロック毎にチャネルベクトルを推定し、推定したチャネルベクトルを用いてユーザの分類を行うことにより、雑音の影響を抑制することが可能となるため、より効果的にセル境界ユーザとセル内部ユーザとを分類することができる。
また、前記第2境界ユーザ選択部は、前記チャネル推定部により推定された前記第1の境界ユーザに対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の境界ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが最大となる第2の境界ユーザを選択するように構成されていてもよい。さらに、前記第2内部ユーザ選択部は、前記チャネル推定部により推定された前記第1の内部ユーザに対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の内部ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列に基づいてチャネルキャパシティが最大となる第2の内部ユーザを選択するように構成されていてもよい。
このように、空間多重ユーザを選択する際に、チャネルキャパシティの大きいユーザを順次選択することにより、セルスループットを向上させることができる。また、分類毎に空間多重ユーザの選択を行っているため、全ユーザを対象に空間多重ユーザの選択を行う場合に比べ、選択処理の対象となるユーザ数が少ない分だけユーザの組み合わせ数が少なくなり、結果として、分類毎に空間多重ユーザを選択する方が演算量を少なくすることができる。つまり、上記構成を適用することにより、空間多重ユーザの選択処理に要する演算量を低減することができる。
また、前記第2境界ユーザ選択部は、k=1〜n1(n1<境界ユーザの数)について、前記チャネルキャパシティがk番目に大きい第2の境界ユーザUkを選択する工程と、前記第1の境界ユーザに対応するチャネルベクトルと、前記第2の境界ユーザUp(p=1〜k)に対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の境界ユーザUpとは異なる第2の境界ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが(k+1)番目に大きい第2の境界ユーザU(k+1)を選択する工程と、を繰り返し実行し、前記第2内部ユーザ選択部は、l=1〜n2(n2<内部ユーザの数)について、前記チャネルキャパシティがk番目に大きい第2の内部ユーザUlを選択する工程と、前記第1の内部ユーザに対応するチャネルベクトルと、前記第2の内部ユーザUq(q=1〜l)に対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の内部ユーザUqとは異なる第2の内部ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが(k+1)番目に大きい第2の内部ユーザU(k+1)を選択する工程と、を繰り返し実行するように構成されていてもよい。このような構成にすることで、空間多重ユーザを順次選択しながら、選択したユーザのチャネル状態を考慮して所定数の空間多重ユーザを選択することが可能になる。
また、前記ユーザ分類部は、自セルのセル固有下り参照信号に基づいて計算される希望信号電力と、自セルの信号送信に利用していないリソースブロックで受信された信号電力に基づいて計算される干渉電力と、を用いて各ユーザにより推定されるリソースブロック全体の平均SIR(Signal to Interference Ratio)を利用して前記境界ユーザと前記内部ユーザとを分類するように構成されていてもよい。リソースブロック全体の平均SIRがユーザ毎に得られると、平均SIRを利用してセル境界ユーザとセル内部ユーザとを容易に分類することができる。また、平均SIRを利用することにより、基地局からの物理的な距離でユーザを分類する場合に比べ、チャネル環境を考慮した、より実際的な分類が可能になる。
また、前記ユーザ分類部は、前記平均SIRが所定の閾値を上回るユーザを前記内部ユーザに設定し、当該内部ユーザ以外のユーザを前記境界ユーザに設定するか、或いは、前記平均SIRが大きい順に所定割合のユーザを前記内部ユーザに設定し、当該内部ユーザ以外のユーザを前記境界ユーザに設定するように構成されていてもよい。例えば、セル内部ユーザの割合を多くし、セル境界ユーザの割合を少なく調整することができると、セル境界ユーザへの影響を抑えつつ、セル境界ユーザに割り当てる部分帯域を小さくすることが容易にできる。
また、上記課題を解決するために、本発明の別の観点によれば、自セル内のユーザから帰還された平均SIRを利用して、自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、前記ユーザ分類部により分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択部と、前記ユーザ分類部により分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択部と、前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択部と、前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択部と、前記第1境界ユーザ選択部により選択された第1の境界ユーザ及び前記第2境界ユーザ選択部により選択された第2の境界ユーザに対し、当該第1及び第2境界ユーザに対応するリソースブロックを利用して信号を送信し、前記第1内部ユーザ選択部により選択された第1の内部ユーザ及び前記第2内部ユーザ選択部により選択された第2の内部ユーザに対し、当該第1及び第2の内部ユーザに対応するリソースブロックを利用して信号を送信する送信部と、を有する、基地局と、自セルのセル固有下り参照信号に基づいて希望信号電力を計算し、自セルの信号送信に利用していないリソースブロックで受信された信号電力に基づいて干渉電力を計算し、前記希望信号電力及び前記干渉電力を用いてリソースブロック全体の平均SIRを算出するSIR算出部と、前記SIR算出部により算出された平均SIRを前記基地局に帰還する帰還部と、を有する、ユーザ端末と、を含む、マルチユーザMIMOシステムが提供される。
このように、セル内部ユーザと、セル境界ユーザとを分類し、分類毎にリソースブロックの割り当て、及び各リソースブロックに対する空間多重ユーザの選択を行うことにより、ユーザの公平性を保ちつつ、空間多重によるスループットの向上効果を得られる。また、平均SIRに基づいてユーザを分類することにより、物理的な距離に基づいてユーザを分類する場合に比べ、より実際的なユーザの分類が可能になる。
また、上記課題を解決するために、本発明の別の観点によれば、自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類工程と、前記ユーザ分類工程で分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択工程と、前記ユーザ分類工程で分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択工程と、前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択工程と、前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択工程と、を含む、マルチユーザMIMOシステムにおけるユーザ選択方法が提供される。
このように、セル内部ユーザと、セル境界ユーザとを分類し、分類毎にリソースブロックの割り当て、及び各リソースブロックに対する空間多重ユーザの選択を行うことにより、ユーザの公平性を保ちつつ、空間多重によるスループットの向上効果を得られる。
以上説明したように本発明によれば、ユーザの公平性をある程度保ちつつ、スループットを向上させることが可能になる。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
[説明の流れについて]
ここで、以下に記載する本発明の実施形態に関する説明の流れについて簡単に述べる。まず、図1を参照しながら、Round robin方式(以下、RR方式)のユーザ選択方法について説明する。次いで、図2を参照しながら、Fractional Frequency Reuse方式(以下、FFR方式)の概念について説明する。次いで、図3を参照しながら、ZFBFマルチユーザMIMOシステムにおけるユーザ選択方法(以下、ZFS;Zero−Forcing Selection)について説明する。
ここで、以下に記載する本発明の実施形態に関する説明の流れについて簡単に述べる。まず、図1を参照しながら、Round robin方式(以下、RR方式)のユーザ選択方法について説明する。次いで、図2を参照しながら、Fractional Frequency Reuse方式(以下、FFR方式)の概念について説明する。次いで、図3を参照しながら、ZFBFマルチユーザMIMOシステムにおけるユーザ選択方法(以下、ZFS;Zero−Forcing Selection)について説明する。
次いで、図4を参照しながら、本発明の一実施形態に係る基地局10の機能構成について説明する。この中で、図5A、図5Bを参照しながら、セル固有下り参照信号(Cell−specific downlink RS)の割り当て方法について説明する。また、図6を参照しながら、本実施形態に係るユーザ端末20の機能構成について説明する。さらに、図7を参照しながら、セル内部ユーザとセル境界ユーザとの分類方法について説明する。そして、図8を参照しながら、周波数帯域へのセルの割り当て方法について説明する。また、図9を参照しながら、各ユーザに対するリソースブロック(RB)の割り当て方法について説明する。さらに、図10を参照しながら、空間多重伝送の対象となるユーザの選択方法について説明する。
次いで、本実施形態の一応用例として、分散アンテナシステムへの応用について説明する。まず、図11を参照しながら、分散アンテナシステムにおけるセル構成及び分散アンテナの配置について説明する。次いで、図12、図13を参照しながら、本応用例に係る基地局30の機能構成について説明する。次いで、図14、図15を参照しながら、本実施形態に係る技術を適用することにより得られる効果について説明する。
[課題の整理]
まず、本発明の一実施形態に係る技術について詳細な説明をするに先立ち、同実施形態が解決しようとする課題について簡単に整理する。
まず、本発明の一実施形態に係る技術について詳細な説明をするに先立ち、同実施形態が解決しようとする課題について簡単に整理する。
(RR方式について)
まず、図1を参照しながら、MIMO−OFDMシステムにおけるRR方式のユーザ選択方法について説明する。図1の例では、各RBにおいて6ユーザを空間多重するものと仮定している。RR方式では、RBのインデックス(RB index;以下、RBインデックス)が1増加する毎に6ユーザのインデックス(例えば、{1,2,3,4,5,6};以下、ユーザインデックス)が1つシフト(例えば、{2,3,4,5,6,7})する構成となっている。なお、RBインデックスが1増加するに連れてユーザインデックスが巡回置換されるように構成されていてもよい。
まず、図1を参照しながら、MIMO−OFDMシステムにおけるRR方式のユーザ選択方法について説明する。図1の例では、各RBにおいて6ユーザを空間多重するものと仮定している。RR方式では、RBのインデックス(RB index;以下、RBインデックス)が1増加する毎に6ユーザのインデックス(例えば、{1,2,3,4,5,6};以下、ユーザインデックス)が1つシフト(例えば、{2,3,4,5,6,7})する構成となっている。なお、RBインデックスが1増加するに連れてユーザインデックスが巡回置換されるように構成されていてもよい。
このような構成にすることにより、全てのユーザがRBに対して均等に割り当てられる。そのため、ユーザへの高い公平性が実現される。しかし、RR方式の場合、ユーザとの間のチャネル状態が考慮されていないため、スループットの向上効果は見込めない。
(FFR方式について)
次に、図2を参照しながら、FFR方式について説明する。FFR方式は、セル端又はセル境界に位置するユーザの伝送品質を改善するために考案された技術である。セル端又はセル境界に位置するユーザは、隣接セルによるセル間干渉の影響を大きく受けてしまう。そのため、セル端又はセル境界に位置するユーザの伝送品質は、セル間干渉による影響を受けて大幅に劣化してしまう。そして、Rate Controlにより誤り訂正符号の符号化率や変調次数が下げられ、スループットが大きく低下してしまう。
次に、図2を参照しながら、FFR方式について説明する。FFR方式は、セル端又はセル境界に位置するユーザの伝送品質を改善するために考案された技術である。セル端又はセル境界に位置するユーザは、隣接セルによるセル間干渉の影響を大きく受けてしまう。そのため、セル端又はセル境界に位置するユーザの伝送品質は、セル間干渉による影響を受けて大幅に劣化してしまう。そして、Rate Controlにより誤り訂正符号の符号化率や変調次数が下げられ、スループットが大きく低下してしまう。
そこで、FFR方式では、セル端やセル境界に位置するユーザに対し、セル毎に予め決められた部分帯域を使用するように制限を課すことでセル間干渉を抑制する。FFR方式の場合、原理的には周波数利用効率が犠牲になるが、セル間干渉が大幅に低減するため、結果として伝送品質が改善され、実際には周波数利用効率の向上効果が得られる。
図2の例では、セル内部のユーザにFRF(Frequency Reuse Factor)=1、セル境界に位置するユーザにFRF=3が設定されている。FRFは、周波数繰り返しの数に相当する。図2の例では、(A)に示すようにセルの内部に位置するユーザ(以下、セル内部ユーザ)と、セルの境界に位置するユーザ(以下、セル境界ユーザ)とが分類され、(B)に示すように周波数帯域が分割して割り当てられている。
しかし、FFR方式の場合、セル内部ユーザとセル境界ユーザとを分類した後、それぞれのユーザに対するスケジューリングが必要になる。また、セル境界ユーザに割り当てられる部分帯域は、多くの場合、セル内部ユーザに割り当てられる部分帯域よりも小さく設定されるため、セル境界ユーザに対する公平性が保てないという問題がある。
(ZFS方式について)
次に、図3を参照しながら、ZFS方式について説明する。ZFS方式は、ZFBFマルチユーザMIMOシステムにおいてスループットを向上させるために考案されたユーザ選択技術である。なお、図3において、NTは基地局アンテナの本数、NUは空間多重するユーザの数を示す。
次に、図3を参照しながら、ZFS方式について説明する。ZFS方式は、ZFBFマルチユーザMIMOシステムにおいてスループットを向上させるために考案されたユーザ選択技術である。なお、図3において、NTは基地局アンテナの本数、NUは空間多重するユーザの数を示す。
図3に示すように、ZFS方式では、まず、各ユーザとの間のチャネルベクトルに基づいて受信信号電力を計算し、受信信号電力が最大となるユーザ(以下、第1ユーザ)を選択する(S21)。さらに、第1ユーザのチャネルベクトルを選択する(S21)。次いで、残りのユーザの中から1ユーザを選択し、そのユーザのチャネルベクトルと、第1ユーザのチャネルベクトルとを用いてチャネル行列を生成する(S22)。
次いで、生成してチャネル行列の逆行列を計算し(S23)、計算した逆行列の各対角成分の逆数をZFBF後のチャネル利得としてSum Rate(ユーザ数分のチャネルキャパシティの合計)を計算する(S24)。次に、ステップS22〜S24の操作を上記の残りのユーザ全てについて実施し(S27)、Sum rateが最大となるユーザ(以下、第2ユーザ)を検出する(S25、S26)。
同様に、第1及び第2ユーザのチャネルベクトルと、第1及び第2ユーザ以外の1ユーザのチャネルベクトルとを用いてチャネル行列を生成し(S22)、逆行列計算(S23)、Sum rate計算(S24)、最大Sum rateのユーザ検出(S25、S26)を行う。これら一連の操作を繰り返し実行し、チャネルキャパシティが大きくなるNUユーザの組み合わせを選択する(S28)。
上記ステップS21〜S28の操作を行うことにより、チャネルキャパシティを大きくするユーザの組み合わせが選択されるため、スループットの向上効果が見込める。しかし、ほとんど選択されないユーザが存在するため、ユーザの公平性が保たれなくなる。
<実施形態>
上記のような問題に鑑み、本件発明者は、ユーザの公平性を保ちつつ、スループットを向上させることが可能な方法を考案した。以下、このような方法に係る本発明の一実施形態について説明する。
上記のような問題に鑑み、本件発明者は、ユーザの公平性を保ちつつ、スループットを向上させることが可能な方法を考案した。以下、このような方法に係る本発明の一実施形態について説明する。
[基地局10の構成]
まず、図4を参照しながら、本実施形態に係る基地局10の機能構成について説明する。図4は、本実施形態に係る基地局10の機能構成例を示す説明図である。なお、基地局10は、マルチユーザMIMOシステムに含まれる無線基地局の一例である。また、以下の説明では、一例として図5Aに示すセル配置、及び図5Bに示すRB構成(下り参照信号の割り当て構成)を想定する。
まず、図4を参照しながら、本実施形態に係る基地局10の機能構成について説明する。図4は、本実施形態に係る基地局10の機能構成例を示す説明図である。なお、基地局10は、マルチユーザMIMOシステムに含まれる無線基地局の一例である。また、以下の説明では、一例として図5Aに示すセル配置、及び図5Bに示すRB構成(下り参照信号の割り当て構成)を想定する。
図4に示すように、基地局10は、主に、ユーザ分類部102(FFR用user分類部)と、RB選択部104(User fairness用RB選択部)と、ユーザ選択部106(High capacity用user選択部)と、空間多重部108、110(RB毎ZFBF MU−MIMO用NU user空間多重部)と、OFDM部112(Antenna毎OFDM部)とにより構成される。また、基地局10は、NT本のアンテナを有する。
(ユーザ分類部102)
まず、ユーザ分類部102について説明する。ユーザ分類部102は、セル境界ユーザが受けるセル間干渉の影響を低減させる手段である。ユーザ分類部102は、FFR方式に基づいて自セル内のユーザをセル内部ユーザ(inner−cell user set)と、セル境界ユーザ(Cell−edge user set)と、に分類する。なお、ユーザ分類部102には、各ユーザのユーザ端末20(後述)から帰還された平均SIR(Signal to Interference Ratio;k番目のユーザから帰還された平均SIRをSIRkと表現する。)が入力される。
まず、ユーザ分類部102について説明する。ユーザ分類部102は、セル境界ユーザが受けるセル間干渉の影響を低減させる手段である。ユーザ分類部102は、FFR方式に基づいて自セル内のユーザをセル内部ユーザ(inner−cell user set)と、セル境界ユーザ(Cell−edge user set)と、に分類する。なお、ユーザ分類部102には、各ユーザのユーザ端末20(後述)から帰還された平均SIR(Signal to Interference Ratio;k番目のユーザから帰還された平均SIRをSIRkと表現する。)が入力される。
ユーザ分類部102は、図7に示すように、ユーザ端末20から帰還された平均SIRが大きい順にユーザをランク付けする(S31)。さらに、ユーザ分類部102は、ランクが高いユーザをセル内部ユーザに分類し(S32)、その他のユーザをセル境界ユーザに分類する(S33)。但し、分類は、所定の閾値を用いてもよいし、所定の配分比を用いてもよい。
例えば、平均SIRが所定の閾値を越えるユーザをセル内部ユーザに分類し、それ以外のユーザをセル境界ユーザに分類する。また、所定の配分比によりセル内部ユーザを設定し、その数だけ平均SIRが高いユーザをセル内部ユーザに分類し、それ以外のユーザをセル境界ユーザに分類してもよい。なお、図7(B)には、距離に応じてセル内部ユーザとセル境界ユーザとが分類されているように見えるが、実際には必ずしも地理的な距離により分類されるわけではない点に注意されたい。
(RB選択部104)
次に、RB選択部104について説明する。RB選択部104は、ユーザの公平性を保つための手段である。ユーザ分類部102によりユーザが分類されると、RB選択部104は、各分類のユーザ毎にRBを選択する。なお、RB選択部104には、FFR用セル固有部分帯域の情報が入力される。例えば、セル内部ユーザに関する部分帯域の情報として、図8に示す帯域f、FRF=1の情報が入力され、セル境界ユーザに関する部分帯域の情報として、図8に示す帯域f1、f2、f3、FRF=3の情報が入力される。
次に、RB選択部104について説明する。RB選択部104は、ユーザの公平性を保つための手段である。ユーザ分類部102によりユーザが分類されると、RB選択部104は、各分類のユーザ毎にRBを選択する。なお、RB選択部104には、FFR用セル固有部分帯域の情報が入力される。例えば、セル内部ユーザに関する部分帯域の情報として、図8に示す帯域f、FRF=1の情報が入力され、セル境界ユーザに関する部分帯域の情報として、図8に示す帯域f1、f2、f3、FRF=3の情報が入力される。
RB選択部104は、図9(A)に示すように、セル内部ユーザについて、各ユーザによりSounding参照信号から推定されたチャネルベクトルの推定値を用いてRB毎の受信信号電力を計算する(S41)。次いで、RB選択部104は、図9(B)に示すように、各RBの帯域における受信信号電力の最大値(以下、最大受信信号電力)をユーザ毎に比較し、最大受信信号電力が大きい順にユーザをランク付けする(S42)。
次いで、RB選択部104は、最も高いランクのユーザからランクが大きい順に、各ユーザの最大受信信号電力をRB間で比較し、最大受信信号電力が最大となるRBを選択する(S43)。但し、選択したRBが他のユーザのRBとして選択されている場合、RB選択部104は、2番目に大きな最大受信信号電力となるRBを選択する(S44)。なお、RB選択部104は、選択したRBが他のユーザのRBとして選択されている場合に重複してRBを選択するように構成されていてもよい。
同様に、RB選択部104は、図9(A)に示すように、セル境界ユーザについて、各ユーザによりSounding参照信号から推定されたチャネルベクトルの推定値を用いてRB毎の受信信号電力を計算する(S45)。次いで、RB選択部104は、図9(B)に示すように、各RBの帯域における最大受信信号電力をユーザ毎に比較し、最大受信信号電力が大きい順にユーザをランク付けする(S46)。
次いで、RB選択部104は、最も高いランクのユーザからランクが大きい順に、各ユーザの最大受信信号電力をRB間で比較し、最大受信信号電力が最大となるRBを選択する(S47)。但し、選択したRBが他のユーザのRBとして選択されている場合、RB選択部104は、2番目に大きな最大受信信号電力となるRBを選択する(S48)。なお、RB選択部104は、選択したRBが他のユーザのRBとして選択されている場合に重複してRBを選択するように構成されていてもよい。
ステップS41〜S44、S45〜S48の操作により、各RBに対して1ユーザの割り当てが完了する。このように、TDD(Time Division Duplex)の上り回線で推定されたRB毎のチャネルベクトルから受信信号電力を計算し、その計算結果に基づいて各ユーザで最大受信信号電力が得られているRBを選択することにより、スループットの向上に寄与する。また、対象とするユーザが全て選択されるため、ユーザの公平性を保つことができる。
(ユーザ選択部106)
次に、ユーザ選択部106について説明する。ユーザ選択部106は、スループットを向上させるための手段である。ユーザ選択部106は、ZFSにより、RB毎にRB選択部104により選択されたユーザのチャネルベクトルを基準に、そのチャネルベクトルに直交し、かつ、チャネル利得の大きいチャネルベクトルを持つユーザを選択する。
次に、ユーザ選択部106について説明する。ユーザ選択部106は、スループットを向上させるための手段である。ユーザ選択部106は、ZFSにより、RB毎にRB選択部104により選択されたユーザのチャネルベクトルを基準に、そのチャネルベクトルに直交し、かつ、チャネル利得の大きいチャネルベクトルを持つユーザを選択する。
図10に示すように、RB選択部104により、RB毎に選択されたユーザ(第1ユーザ)、及び第1ユーザのチャネルベクトルが選択されている(S51)。まず、ユーザ選択部106は、他ユーザのチャネルベクトルを候補として選択し(S57)、第1ユーザのチャネルベクトルと候補のチャネルベクトルとによりチャネル行列を生成する(S52)。この段階では、2ユーザのチャネル行列が生成される。次いで、ユーザ選択部106は、生成したチャネル行列の逆行列を計算する(S53)。次いで、ユーザ選択部106は、計算した逆行列の対角成分の逆数からSum rateを計算する(S54)。
次いで、ユーザ選択部106は、第1ユーザとは異なる他ユーザのチャネルベクトルの候補に対し、上記ステップS52〜S54の操作を繰り返してSum rateを計算する(S57)。そして、ユーザ選択部106は、計算したSum rateの最大値を検出し、その最大値に対応するユーザを第2ユーザに選択する(S55、S56)。
次いで、ユーザ選択部106は、第1及び第2ユーザとは異なる他ユーザのチャネルベクトルを候補として選択し(S57、S58)、第1及び第2ユーザのチャネルベクトルと、候補のチャネルベクトルとによりチャネル行列を生成し(S52)、逆行列計算(S53)、Sum rate計算(S54)、及びSum rateが最大になるユーザの選択(S55、S56)を実行する。同様にして、ユーザ選択部106は、上記のステップS52〜S58を逐次実行することにより、NUユーザの組み合わせを選択する。
このような操作により、各RBについてRB選択部104により選択されたユーザのチャネルベクトルを基準として、空間多重した際にスループットが最大になると予想されるユーザの組み合わせが選択される。この組み合わせを用いて空間多重信号を送信することにより、スループットの向上効果が期待される。また、ユーザを予めセル内部ユーザとセル境界ユーザとに分類し、分類毎にZFSを実施しているため、ZFSの対象ユーザ数が少ない分だけユーザの組み合わせ数が大幅に少なくなり、全ユーザに対してZFSを適用する場合に比べて全体の演算量が大幅に低減される。
(空間多重部108、110、OFDM部112)
次に、空間多重部108、110、OFDM部112について説明する。ユーザ選択部106により、分類毎、RB毎にユーザの組み合わせが選択されると、空間多重部108、110は、各ユーザに送信すべきデータに対してRB毎にチャネル符号化及び変調処理を施し、さらに、送信ビームフォーミングを施して空間多重する。次いで、OFDM部112は、IFFT(Inverse Fast Fourier Transform)により、全てのRBに関するリソース要素を直交周波数分割多重して送信する。
次に、空間多重部108、110、OFDM部112について説明する。ユーザ選択部106により、分類毎、RB毎にユーザの組み合わせが選択されると、空間多重部108、110は、各ユーザに送信すべきデータに対してRB毎にチャネル符号化及び変調処理を施し、さらに、送信ビームフォーミングを施して空間多重する。次いで、OFDM部112は、IFFT(Inverse Fast Fourier Transform)により、全てのRBに関するリソース要素を直交周波数分割多重して送信する。
以上、本実施形態に係る基地局10の構成について説明した。上記の通り、基地局10は、平均SIRに基づくユーザ分類、各分類におけるユーザ毎のRB選択、RB毎の空間多重ユーザ選択の3要素を含むユーザ選択方法を実現することができる。ユーザ分類を行い、分類毎にRB及び空間多重ユーザの組み合わせを選択するため、ユーザの公平性を維持しつつ、スループットを向上させることが可能になる。
ところで、セル内部ユーザとセル境界ユーザとを分類する際に配分比を用いる場合、セル境界ユーザに分類されるユーザ数を少なくすることで、セル境界ユーザ用の部分帯域に割り当てられるユーザ数が減少するため、セル境界ユーザ用の部分帯域を小さく設定しても、セル境界ユーザの低い公平性を補うことができる。また、空間多重されるセル境界ユーザのユーザ数を増やすことにより、セル境界ユーザ用の部分帯域を小さく設定しても、セル境界ユーザの低い公平性を補うことができる。その結果、セル境界ユーザが受けるセル間干渉を低減し、各ユーザへのリソース割り当ての公平性を保ちつつ、空間多重によるスループットの向上効果を得ることができる。
[補足:参照信号の割り当て方法について]
ここで、図5A、図5Bを参照しながら、参照信号の割り当て方法について説明する。なお、図5Aに例示したセル配置(図5A、図5B、図6で同じ濃度のハッチングが付された構成要素は互いに対応関係を有する点に注意されたい。)を想定する。また、TDDによる通信を前提とする。この前提により、上り回線と下り回線とで同じ周波数を利用して参照信号が送信可能となる。また、TDDの下り回線においては全基地局アンテナに共通の下り参照信号が用いられるものとする。このような構成にすることで、基地局アンテナの本数が増加してもフレーム効率が低下せずに済む。
ここで、図5A、図5Bを参照しながら、参照信号の割り当て方法について説明する。なお、図5Aに例示したセル配置(図5A、図5B、図6で同じ濃度のハッチングが付された構成要素は互いに対応関係を有する点に注意されたい。)を想定する。また、TDDによる通信を前提とする。この前提により、上り回線と下り回線とで同じ周波数を利用して参照信号が送信可能となる。また、TDDの下り回線においては全基地局アンテナに共通の下り参照信号が用いられるものとする。このような構成にすることで、基地局アンテナの本数が増加してもフレーム効率が低下せずに済む。
図5Bに示すように、本実施形態においては、隣接セルにおいて時間・周波数空間(リソース)の異なる位置にセル固有下り参照信号(Cell−specific downlink RS)を割り当てるように制限を課している。さらに、隣接セルでセル固有下り参照信号が割り当てられている時間・周波数空間の位置に一切信号を割り当てないように制限を課している。このような制限を課すことにより、隣接セルでセル固有下り参照信号が割り当てられた位置には何も送信されない。そのため、隣接セルからセル間干渉の影響を受けずに済むようになる。後述するように、このようなセル固有下り参照信号の割り当て方法を適用することにより、平均SIRの推定が容易になる。
[ユーザ端末20の構成]
次に、図6を参照しながら、本実施形態に係るユーザ端末20の機能構成について説明する。図6は、本実施形態に係るユーザ端末20の機能構成例を示す説明図である。ユーザ端末20の機能構成は、上記のユーザ分類に用いる平均SIRの推定方法に関する。
次に、図6を参照しながら、本実施形態に係るユーザ端末20の機能構成について説明する。図6は、本実施形態に係るユーザ端末20の機能構成例を示す説明図である。ユーザ端末20の機能構成は、上記のユーザ分類に用いる平均SIRの推定方法に関する。
図6に示すように、ユーザ端末20は、主に、GI除去&FFT部202と、チャネルベクトル推定部204と、平均電力推定部206と、干渉波平均電力推定部208と、平均SIR推定部210と、量子化部212とにより構成される。
まず、ユーザ端末20は、複数の端末アンテナ(#1〜#nR)を用いて、基地局10により送信されたOFDM信号を受信する。このOFDM信号は、GI除去&FFT部202に入力される。GI除去&FFT部202は、入力されたOFDM信号にガードインターバルが付加されている場合に、そのガードインターバルを除去する。さらに、GI除去&FFT部202は、OFDM信号に高速フーリエ変換(FFT;Fast Fourier Transform)を施してサブキャリア信号に変換する。
GI除去&FFT部202における変換処理の出力は、チャネルベクトル推定部204に入力される。サブキャリア信号が入力されると、チャネルベクトル推定部204は、入力されたサブキャリア信号に多重されたセル固有下り参照信号を用いてチャネルベクトルを推定する。自セル(例えば、Cell#1)のセル固有下り参照信号を用いて推定されたチャネルベクトルは、平均電力推定部206の希望波平均電力推定部に入力される。一方、他セル(例えば、Cell#2、#3、#4)のセル固有下り参照信号を用いて推定されたチャネルベクトルは、それぞれ対応する平均電力推定部206の干渉波平均電力推定部に入力される。
希望波平均電力推定部は、チャネルベクトル推定部204から入力されたサブキャリア毎のチャネルベクトルに基づいて希望波の受信電力を推定する。同様に、各干渉波平均電力推定部は、チャネルベクトル推定部204から入力されたサブキャリア毎のチャネルベクトルに基づいて干渉波の受信電力を推定する。
先に述べた通り、自セルにおいて何も送信されないRBには隣接セルのセル固有下り参照信号が割り当てられている。例えば、Cell#1において何も送信されないRBにはCell#2、#3、#4のセル固有下り参照信号が割り当てられている。この場合、Cell#1のセル固有下り参照信号が割り当てられたRBでの受信信号電力は、希望波の信号電力と、隣接していないCell#14〜#19から受ける干渉信号の電力との和となる。また、Cell#1のセル固有下り参照信号が割り当てられていないRBでの受信信号電力は、隣接するCell#3、#6、#8、#11から受ける干渉信号の電力と、Cell#4、#7、#9、#12から受ける干渉信号の電力との和となる。
希望波平均電力推定部は、自セルのセル固有下り参照信号が割り当てられているRBで受信された信号電力を希望波信号電力と近似して平均SIR推定部210に入力する。また、各干渉波平均電力推定部は、自セルのセル固有下り参照信号が割り当てられていない各RBで受信された受信電力の和を干渉波平均電力推定部208に入力する。干渉波平均電力推定部208は、各干渉波平均電力推定部から入力された受信電力の和を全RBで平均した平均値を他セルから受けた干渉信号の電力(以下、他セル干渉信号電力)と近似して平均SIR推定部210に入力する。平均SIR推定部210は、希望波信号電力、及び他セル干渉信号電力から平均SIRを算出し、量子化部212に入力する。量子化部212は、平均SIRを帰還用に量子化して基地局10へと帰還する。
以上、本実施形態に係るユーザ端末20の機能構成について説明した。上記の通り、本実施形態においては、隣接セルのセル固有下り参照信号が干渉しないよう、セル固有下り参照信号の割り当て方法が工夫されているため、容易に平均SIRを推定することができる。結果として、基地局10においてセル内部ユーザとセル境界ユーザとを容易に分類することが可能になる。なお、セル固有下り参照信号には、送信ビームフォーミングが施されないため、送信ビームフォーミングが施されたデータ伝送用のチャネルとはチャネル特性が異なっている。しかし、本実施形態に係る技術を用いることにより、潜在的にセル間干渉を受けやすいユーザを検出することが可能になる。このようにして検出されたユーザは、FRF≧2の部分周波数帯域に割り当てられ、セル間干渉の影響が低減される。
[応用例:分散アンテナシステムへの応用]
次に、図11〜図13を参照しながら、本実施形態の技術を分散アンテナシステムに適用した応用例について説明する。図11は、分散アンテナシステムにおけるセル構成及びアンテナ配置例を示す説明図である。図12、図13は、本応用例に係る基地局30の機能構成例を示す説明図である。
次に、図11〜図13を参照しながら、本実施形態の技術を分散アンテナシステムに適用した応用例について説明する。図11は、分散アンテナシステムにおけるセル構成及びアンテナ配置例を示す説明図である。図12、図13は、本応用例に係る基地局30の機能構成例を示す説明図である。
まず、図11を参照する。図11に示すように、本応用例で想定する分散アンテナシステムにおいては、多数の基地局アンテナがセル内に満遍なく配置される。また、各セルは、セル内部の領域とセル境界の領域とに分けられる。但し、セル内部とセル境界との分類は、必ずしも地理的な距離によるものではなく、例えば、先に説明した平均SIRに基づいて分類される。なお、図11の例で、同じハッチングが施された部分は同じ周波数帯域が用いられ、異なるハッチングが施された部分は互いに異なる周波数帯域が用いられる。また、セル境界ユーザに割り当てられる部分帯域は、一例として、3セル周波数繰り返しで重複しないように設定されているものと仮定する。
次に、図12を参照する。図12には、基地局30が有する機能構成のうち、ユーザ選択に関する機能構成(後述するユーザ選択部312)が詳細に記載されている。図12に示すように、ユーザ選択部312は、ユーザ分類部302(FFR用user分類部)と、RB選択部304(User fairness用RB選択部)と、ユーザ選択部306(High−capacity用user選択部)とにより構成されている。なお、基本的な構成は、上記の基地局10と同じである。
ユーザ分類部302は、各ユーザから帰還された平均SIRを用いてランキングを行い、ランキング上位のユーザをセル内部ユーザに分類し、ランキング下位のユーザをセル境界ユーザに分類する。また、ユーザ分類部302は、セル内部ユーザのランキング情報、及びセル境界ユーザのランキング情報をRB選択部304に通知する。RB選択部304は、各RBについて受信信号電力を計算し、計算した受信信号電力に基づいて各RBに割り当てるユーザを選択する。このとき、ユーザ分類部302から通知されたランキング情報を利用し、RBをランキング上位のユーザから順番に選択することで、RB選択の処理を簡略化することができる。
RB選択部304によりRB毎に1ユーザが選択されると、ユーザ選択部306は、各RBにおいて空間多重されるユーザの組み合わせを選択する。ユーザ選択部306は、RB選択部304により選択されたユーザのチャネルベクトルを基準に、他のユーザのチャネルベクトルを用いてSum Rateが最大となるユーザを順次選択し、チャネルキャパシティが大きいNUユーザの組み合わせを選択する。ユーザ選択部306により選択されたNUユーザの組み合わせ(NU user indexes)は、分類毎、RB毎に後段の処理部へと出力される。
次に、図13を参照する。図13に示すように、基地局30は、ユーザ選択部312(User選択部)と、AMC部314と、ユーザ固有参照信号多重部316(User固有RS多重部)と、ZFBF部318と、アンテナ共通セル固有下り参照信号多重部320と、OFDM部322と、FFT部324と、チャネルベクトル推定部326(K user channel vector推定部)とにより構成される。ここではZFBFマルチユーザMIMO−OFDMシステムを想定している。
まず、アンテナ共通セル固有下り参照信号多重部320において、NT本の基地局アンテナ間で共通の下り参照信号が生成される。そして、アンテナ共通セル固有下り参照信号多重部320は、送信データに下り参照信号を多重して送信フレームを生成する。アンテナ共通セル固有下り参照信号多重部320で生成された送信フレームは、各基地局アンテナに対応するOFDM部322に入力される。OFDM部322は、送信フレームを直並列変換し、並列化されたビット列を互いに直交する複数のサブキャリア信号に変換した後、そのサブキャリア信号にIFFTを施してOFDM信号を生成する。OFDM部322で生成されたOFDM信号は、それぞれ対応する基地局アンテナから送信される。
基地局アンテナから送信されたOFDM信号は、複数の端末アンテナを有する各ユーザ端末により受信される。複数の端末アンテナで受信されたOFDM信号は、各ユーザ端末においてガードインターバルが除去され、FFTが施されてサブキャリア信号に変換される。さらに、各ユーザ端末は、サブキャリア信号に多重されている下り参照信号に基づいてチャネルベクトルを推定する。チャネルベクトルが推定されると、チャネルベクトルの複素共役が算出され、さらに電力正規化されて上り参照信号用のビームフォーミングウェイトベクトル(以下、BFウェイトベクトル)が生成される。
また、各ユーザ端末では、上り参照信号としてZadoff−Chu系列が生成される。Zadoff−Chu系列は、自己相関特性に優れた系列の一例である。また、Zadoff−Chu系列を循環シフトして得られる複数の系列は、相互相関特性に優れた系列の一例である。各ユーザ端末は、上り参照信号としてZadoff−Chu系列を生成する際、自セルと同じサブキャリアが利用される他セルが存在する場合に、他セルと異なる系列インデックスを持つ系列を上り参照信号に利用する。そして、同一セル内のユーザ毎に異なるシフトインデックスを持つ系列を上り参照信号として生成する。
次に、このようにして生成された上り参照信号に対し、BFウェイトベクトルが乗積される。そして、この乗積演算の出力にIFFTが施され、ガードインターバルが付加されて分散FDMA信号が生成される。そして、生成された分散FDMA信号(上り参照信号)は、複数の端末アンテナを介してTDDの上り回線で基地局30に送信される。
各ユーザ端末から送信された上り参照信号は、基地局30が有する複数の基地局アンテナを介して受信される。基地局アンテナを介して受信された上り参照信号は、FFT部324に入力され、FFTが施された後、チャネルベクトル推定部326に入力される。チャネルベクトル推定部326では、複数のユーザ端末から受信した上り参照信号をユーザ毎に分離し、周波数方向に沿ってリソースブロック毎のチャネル推定を行う。チャネルベクトル推定部326によるチャネル推定で得られたチャネルベクトルは、ユーザ選択部312に入力される。また、ユーザ選択部312には、各ユーザ端末から帰還された平均SIRの情報が入力される。
チャネルベクトルが入力されると、ユーザ選択部312は、入力されたチャネルベクトルを用いて、下り送信ビームフォーミング後のデータ伝送スループットが最大となるように、NUユーザを選択する。このとき、ユーザ選択部312は、チャネルベクトル推定部326により入力されたチャネルベクトル、及び各ユーザ端末から帰還された平均SIRの情報に基づき、図12に例示した構成により、ユーザの公平性を保ちつつ、スループットが向上するようなNUユーザの組み合わせを選択する。ユーザ選択部312により選択されたユーザの組み合わせは、ZFBF部318に入力される。
ZFBF部318は、ユーザ選択部312により選択されたNUユーザの組み合わせに対する送信ビームフォーミングウェイト行列を算出する。また、ZFBF部318には、ユーザ固有参照信号多重部316により生成されたユーザ毎に固有の下り参照信号が入力される。ユーザ固有参照信号多重部316により生成される下り参照信号は、アンテナ共通セル固有下り参照信号多重部320で生成される下り参照信号とは異なり、ユーザ選択部312で選択された各ユーザに固有の下り参照信号である。ZFBF部318は、先に算出した送信ビームフォーミング行列を用いて下り参照信号に送信ビームフォーミングを施し、OFDM部322を介して複数の基地局アンテナから送信する。
基地局30から送信されたOFDM信号は、各ユーザ端末が有する複数の端末アンテナで受信され、ガードインターバルが除去され、サブキャリア信号に変換される。そして、自ユーザに向けて送信されたユーザ固有の下り参照信号、及び他ユーザに向けて送信されたユーザ固有の下り参照信号から、ビームフォーミング後のチャネル行列が推定される。ここで推定されたチャネル行列は、チャネル推定値の推定精度不足及びチャネル時変動によるユーザ間干渉を除去するためのMMSE受信ビームフォーミングウェイトベクトル(以下、受信BFウェイトベクトル)の算出に利用される。
チャネル行列を利用して受信BFウェイトベクトルが算出されると、受信BFウェイトベクトルから受信ビームフォーミング後のSINR(Signal to Noise Interference Ratio)が推定される。そして、推定されたSINRは、誤り無く復号可能であり、かつ、最大の伝送速度を達成することが可能なModulation and coding set(MCS)の選択に利用される。そして、SINRの推定値を利用して選択されたMCSの情報(MCSインデックス)は、基地局30に帰還される。
各ユーザ端末から帰還されたMCSインデックスは、AMC部314に入力される。MCSインデックスが入力されると、AMC部314は、入力されたMCSインデックスに基づいて送信データに誤り訂正符号化及び変調マッピングを施し、ZFBF部318に入力する。なお、AMCは、Adaptive Modulation and Codingの略である。また、誤り訂正符号としては、例えば、Turbo符号が用いられる。ZFBF部318は、AMC部314で誤り訂正符号化及び変調マッピングが施された送信データに送信ビームフォーミングを施し、OFDM部322を介して送信する。このとき、OFDM部322では、全てのRBのリソース要素をIFFTにより直交周波数分割多重して送信する。
以上、本実施形態の一応用例について説明した。上記応用例を含め、本実施形態に係る技術を適用することにより、ZFBFマルチユーザMIMO−OFDMシステムにおいて、周波数多重に係る各RBと空間多重に係る各ストリームにユーザを割り当てる際、セル境界付近に位置するユーザに対するセル間干渉の低減、ユーザへのリソース割り当ての公平性、空間多重によるスループットの向上という3つの要求を満たすことが可能になる。その結果、システムの効果的な運用に寄与する。
[効果]
最後に、図14、図15を参照しながら、本実施形態に係る構成を適用することにより得られる効果について説明する。図14は、ZFS方式及びRR方式の適用により得られる平均セルスループット特性と本実施形態に係るユーザ選択方式(Proposed user scheduling;以下、PR方式)の適用により得られる平均セルスループット特性との比較に関するシミュレーション結果を示したものである。図15は、ZFS方式及びRR方式の適用により得られる平均ユーザスループット特性とPR方式の適用により得られる平均ユーザスループット特性との比較に関するシミュレーション結果を示したものである。シミュレーションの条件は、ユーザ数24、RB数100(FRF=1のRB数76、FRF=3のRB数=8)、空間多重数6である。
最後に、図14、図15を参照しながら、本実施形態に係る構成を適用することにより得られる効果について説明する。図14は、ZFS方式及びRR方式の適用により得られる平均セルスループット特性と本実施形態に係るユーザ選択方式(Proposed user scheduling;以下、PR方式)の適用により得られる平均セルスループット特性との比較に関するシミュレーション結果を示したものである。図15は、ZFS方式及びRR方式の適用により得られる平均ユーザスループット特性とPR方式の適用により得られる平均ユーザスループット特性との比較に関するシミュレーション結果を示したものである。シミュレーションの条件は、ユーザ数24、RB数100(FRF=1のRB数76、FRF=3のRB数=8)、空間多重数6である。
図14に示すように、平均セルスループット特性は、ZFS方式、PR方式、RR方式の順で良好な結果が得られる。RR方式の場合、チャネル状態が考慮されないため、平均セルスループットは当然に低くなる。一方、ZFS方式の場合、チャネルキャパシティが大きなユーザの組み合わせを最優先に選択しているため、チャネル状態の悪いユーザがほとんど選択されなくなり、平均セルスループットが非常に高くなる。しかし、図15に示すように、ZFS方式の場合、平均ユーザスループットの差は著しいものとなる。
図15に示したグラフの横軸は、ユーザインデックスを示す。また、ユーザスループットの高いユーザから順にユーザインデックスを割り振っている。そのため、ユーザインデックスが1番のユーザが最もユーザスループットの高いユーザとなり、ユーザインデックスが24番のユーザが最もユーザスループットの低いユーザとなる。つまり、ユーザインデックス1のユーザ(以下、ユーザ#1)とユーザインデックス24のユーザ(以下、ユーザ#24)との間で平均ユーザスループットを比較することで、ユーザの公平性の度合いを評価することができる。
上記の通り、ZFS方式の場合、チャネルキャパシティの高いユーザを優先的に選択するため、高いセルスループットが得られるものの、ユーザ#1のユーザスループットとユーザ#24のユーザスループットとの差は、10万倍程度になっている。一方、RR方式の場合、セルスループットは低いものの、ユーザ#1のユーザスループットとユーザ#24のユーザスループットとの差は、10倍程度に抑えられている。一方、PR方式の場合、ユーザ#1のユーザスループットとユーザ#24のユーザスループットとの差は、30倍程度に抑えられている。また、平均セルスループットについてもZFS方式には及ばないものの、RR方式に比べて非常に良好な特性が得られている。
このように、本実施形態に係る技術を適用することにより、ユーザの公平性を保ちつつ、スループットを向上させることが可能になる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
10 基地局
102 ユーザ分類部
104 RB選択部
106 ユーザ選択部
108、110 空間多重部
112 OFDM部
20 ユーザ端末
202 GI除去&FFT部
204 チャネルベクトル推定部
206 平均電力推定部
208 干渉波平均電力推定部
210 平均SIR推定部
212 量子化部
30 基地局
302 ユーザ分類部
304 RB選択部
306、312 ユーザ選択部
314 AMC部
316 ユーザ固有参照信号多重部
318 ZFBF部
320 アンテナ共通セル固有下り参照信号多重部
322 OFDM部
324 FFT部
326 チャネルベクトル推定部
102 ユーザ分類部
104 RB選択部
106 ユーザ選択部
108、110 空間多重部
112 OFDM部
20 ユーザ端末
202 GI除去&FFT部
204 チャネルベクトル推定部
206 平均電力推定部
208 干渉波平均電力推定部
210 平均SIR推定部
212 量子化部
30 基地局
302 ユーザ分類部
304 RB選択部
306、312 ユーザ選択部
314 AMC部
316 ユーザ固有参照信号多重部
318 ZFBF部
320 アンテナ共通セル固有下り参照信号多重部
322 OFDM部
324 FFT部
326 チャネルベクトル推定部
Claims (8)
- 自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、
前記ユーザ分類部により分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択部と、
前記ユーザ分類部により分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択部と、
前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択部と、
前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択部と、
前記第1境界ユーザ選択部により選択された第1の境界ユーザ及び前記第2境界ユーザ選択部により選択された第2の境界ユーザに対し、当該第1及び第2境界ユーザに対応するリソースブロックを利用して信号を送信し、前記第1内部ユーザ選択部により選択された第1の内部ユーザ及び前記第2内部ユーザ選択部により選択された第2の内部ユーザに対し、当該第1及び第2の内部ユーザに対応するリソースブロックを利用して信号を送信する送信部と、
を備える
ことを特徴とする、無線基地局。 - リソースブロック毎にチャネルベクトルを推定するチャネル推定部をさらに備え、
前記第1境界ユーザ選択部は、前記チャネル推定部により推定されたチャネルベクトルから計算されるリソースブロック毎の受信電力を用いて、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択し、
前記第1内部ユーザ選択部は、前記チャネル推定部により推定されたチャネルベクトルから計算されるリソースブロック毎の受信電力を用いて、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する
ことを特徴とする、請求項1に記載の無線基地局。 - 前記第2境界ユーザ選択部は、
前記チャネル推定部により推定された前記第1の境界ユーザに対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の境界ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが最大となる第2の境界ユーザを選択し、
前記第2内部ユーザ選択部は、
前記チャネル推定部により推定された前記第1の内部ユーザに対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の内部ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列に基づいてチャネルキャパシティが最大となる第2の内部ユーザを選択する
ことを特徴とする、請求項2に記載の無線基地局。 - 前記第2境界ユーザ選択部は、k=1〜n1(n1<境界ユーザの数)について、
前記チャネルキャパシティがk番目に大きい第2の境界ユーザUkを選択する工程と、
前記第1の境界ユーザに対応するチャネルベクトルと、前記第2の境界ユーザUp(p=1〜k)に対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の境界ユーザUpとは異なる第2の境界ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが(k+1)番目に大きい第2の境界ユーザU(k+1)を選択する工程と、
を繰り返し実行し、
前記第2内部ユーザ選択部は、l=1〜n2(n2<内部ユーザの数)について、
前記チャネルキャパシティがk番目に大きい第2の内部ユーザUlを選択する工程と、
前記第1の内部ユーザに対応するチャネルベクトルと、前記第2の内部ユーザUq(q=1〜l)に対応するチャネルベクトルと、前記チャネル推定部により推定された前記第2の内部ユーザUqとは異なる第2の内部ユーザに対応するチャネルベクトルと、により形成されるチャネル行列の逆行列を算出し、当該逆行列の対角成分に基づいてチャネルキャパシティが(k+1)番目に大きい第2の内部ユーザU(k+1)を選択する工程と、
を繰り返し実行する
ことを特徴とする、請求項3に記載の無線基地局。 - 前記ユーザ分類部は、
自セルのセル固有下り参照信号に基づいて計算される希望信号電力と、自セルの信号送信に利用していないリソースブロックで受信された信号電力に基づいて計算される干渉電力と、を用いて各ユーザにより推定されるリソースブロック全体の平均SIR(Signal to Interference Ratio)を利用して前記境界ユーザと前記内部ユーザとを分類する
ことを特徴とする、請求項1〜4のいずれか1項に記載の無線基地局。 - 前記ユーザ分類部は、
前記平均SIRが所定の閾値を上回るユーザを前記内部ユーザに設定し、当該内部ユーザ以外のユーザを前記境界ユーザに設定するか、或いは、前記平均SIRが大きい順に所定割合のユーザを前記内部ユーザに設定し、当該内部ユーザ以外のユーザを前記境界ユーザに設定する
ことを特徴とする、請求項5のいずれか1項に記載の無線基地局。 - 自セル内のユーザから帰還された平均SIRを利用して、自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類部と、
前記ユーザ分類部により分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択部と、
前記ユーザ分類部により分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択部と、
前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択部と、
前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択部と、
前記第1境界ユーザ選択部により選択された第1の境界ユーザ及び前記第2境界ユーザ選択部により選択された第2の境界ユーザに対し、当該第1及び第2境界ユーザに対応するリソースブロックを利用して信号を送信し、前記第1内部ユーザ選択部により選択された第1の内部ユーザ及び前記第2内部ユーザ選択部により選択された第2の内部ユーザに対し、当該第1及び第2の内部ユーザに対応するリソースブロックを利用して信号を送信する送信部と、
を有する、基地局と、
自セルのセル固有下り参照信号に基づいて希望信号電力を計算し、自セルの信号送信に利用していないリソースブロックで受信された信号電力に基づいて干渉電力を計算し、前記希望信号電力及び前記干渉電力を用いてリソースブロック全体の平均SIR(Signal to Interference Ratio)を算出するSIR算出部と、
前記SIR算出部により算出された平均SIRを前記基地局に帰還する帰還部と、
を有する、ユーザ端末と、
を含む
ことを特徴とする、マルチユーザMIMOシステム。 - 自セル内のユーザを、前記自セルに隣接する隣接セルと前記自セルとの境界付近に位置する境界ユーザと、当該境界ユーザ以外の内部ユーザと、に分類するユーザ分類工程と、
前記ユーザ分類工程で分類された境界ユーザの中から、リソースブロック毎に受信電力が最大となる第1の境界ユーザを選択する第1境界ユーザ選択工程と、
前記ユーザ分類工程で分類された内部ユーザの中から、リソースブロック毎に受信電力が最大となる第1の内部ユーザを選択する第1内部ユーザ選択工程と、
前記第1の境界ユーザとは異なる第2の境界ユーザの中から、同じリソースブロックを利用した場合における前記第1の境界ユーザとの間のチャネルキャパシティが大きい第2の境界ユーザをリソースブロック毎に選択する第2境界ユーザ選択工程と、
前記第1の内部ユーザとは異なる第2の内部ユーザの中から、同じリソースブロックを利用した場合における前記第1の内部ユーザとの間のチャネルキャパシティが大きい第2の内部ユーザをリソースブロック毎に選択する第2内部ユーザ選択工程と、
を含む
ことを特徴とする、マルチユーザMIMOシステムにおけるユーザ選択方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009256000A JP2011101291A (ja) | 2009-11-09 | 2009-11-09 | 無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009256000A JP2011101291A (ja) | 2009-11-09 | 2009-11-09 | 無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011101291A true JP2011101291A (ja) | 2011-05-19 |
Family
ID=44192091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009256000A Pending JP2011101291A (ja) | 2009-11-09 | 2009-11-09 | 無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011101291A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151499A (ja) * | 2010-01-19 | 2011-08-04 | National Institute Of Information & Communication Technology | Mimo−ofdmシステムにおける無線リソース割り当て方法,及び無線リソース割り当て装置 |
JP2015502078A (ja) * | 2011-11-11 | 2015-01-19 | 富士通株式会社 | 無線ユーザエンドポイントに無線通信サービスを提供するために通信機を選択するシステム及び方法 |
US8964681B2 (en) | 2012-04-26 | 2015-02-24 | Samsung Electronics Co., Ltd. | Method and apparatus for user scheduling in multi-user multiple input multiple output (MIMO) communication system |
JP2017216700A (ja) * | 2017-07-06 | 2017-12-07 | 株式会社Nttドコモ | ユーザ端末、無線基地局、及び無線通信方法 |
JP2018007118A (ja) * | 2016-07-05 | 2018-01-11 | 富士通株式会社 | 送信制御装置及び送信制御方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004886A (ja) * | 2007-06-19 | 2009-01-08 | Samsung Electronics Co Ltd | 通信装置、及び送信レート設定方法 |
JP2009017011A (ja) * | 2007-07-02 | 2009-01-22 | Nec Corp | マルチユーザmimo通信のユーザ選択方法 |
WO2009033358A1 (fr) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | Procédé de rétroaction d'information, système, dispositif utilisateur et station de base basée sur le domaine spatial, fréquentiel et temporel |
JP2009171535A (ja) * | 2007-12-17 | 2009-07-30 | Nec Corp | マルチユーザmimoのスケジューリング方法 |
JP2009206945A (ja) * | 2008-02-28 | 2009-09-10 | Fujitsu Ltd | 無線リソースの割当制御装置及び方法並びに無線基地局 |
-
2009
- 2009-11-09 JP JP2009256000A patent/JP2011101291A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009004886A (ja) * | 2007-06-19 | 2009-01-08 | Samsung Electronics Co Ltd | 通信装置、及び送信レート設定方法 |
JP2009017011A (ja) * | 2007-07-02 | 2009-01-22 | Nec Corp | マルチユーザmimo通信のユーザ選択方法 |
WO2009033358A1 (fr) * | 2007-09-12 | 2009-03-19 | Sharp Kabushiki Kaisha | Procédé de rétroaction d'information, système, dispositif utilisateur et station de base basée sur le domaine spatial, fréquentiel et temporel |
JP2009171535A (ja) * | 2007-12-17 | 2009-07-30 | Nec Corp | マルチユーザmimoのスケジューリング方法 |
JP2009206945A (ja) * | 2008-02-28 | 2009-09-10 | Fujitsu Ltd | 無線リソースの割当制御装置及び方法並びに無線基地局 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151499A (ja) * | 2010-01-19 | 2011-08-04 | National Institute Of Information & Communication Technology | Mimo−ofdmシステムにおける無線リソース割り当て方法,及び無線リソース割り当て装置 |
JP2015502078A (ja) * | 2011-11-11 | 2015-01-19 | 富士通株式会社 | 無線ユーザエンドポイントに無線通信サービスを提供するために通信機を選択するシステム及び方法 |
US8964681B2 (en) | 2012-04-26 | 2015-02-24 | Samsung Electronics Co., Ltd. | Method and apparatus for user scheduling in multi-user multiple input multiple output (MIMO) communication system |
JP2018007118A (ja) * | 2016-07-05 | 2018-01-11 | 富士通株式会社 | 送信制御装置及び送信制御方法 |
JP2017216700A (ja) * | 2017-07-06 | 2017-12-07 | 株式会社Nttドコモ | ユーザ端末、無線基地局、及び無線通信方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5119977B2 (ja) | 無線リソースの割当制御装置及び方法並びに無線基地局 | |
KR100975720B1 (ko) | 다중 송수신 안테나를 구비하는 직교주파수분할다중화 시스템에서 공간 분할 다중화를 고려하여 채널 할당을 수행하는 방법 및 시스템 | |
JP2022141625A (ja) | 無線セルラシステムにおけるセル間多重化利得の利用 | |
JP5262562B2 (ja) | Mimo無線通信システム | |
JP5275835B2 (ja) | 基地局装置、端末装置および無線通信システム | |
JP2019216477A (ja) | 分散入力分散出力技術を介して無線セルラシステムにおけるセル間多重化利得を利用するシステム及び方法 | |
JP2008160822A (ja) | 無線送信装置、無線受信装置、無線送信方法、及び、無線受信方法 | |
KR20160025487A (ko) | 신호 처리 장치, 신호 처리 방법 및 기록 매체 | |
CN101483874A (zh) | 分布式天线mimo-ofdma/sdma系统的上行资源分配方法 | |
JP2007184933A (ja) | 動的空間周波数分割多重通信システム及び方法 | |
WO2006048037A1 (en) | Multiuser transmission system | |
US7974178B2 (en) | Pilot method for 802.16m | |
Zhang et al. | Adaptive resource allocation for multiaccess MIMO/OFDM systems with matched filtering | |
JP2011101291A (ja) | 無線基地局、マルチユーザmimoシステム、及びユーザ選択方法 | |
Ksairi et al. | Pilot pattern adaptation for 5G MU-MIMO wireless communications | |
Sharma et al. | Multiple access techniques for next generation wireless: Recent advances and future perspectives | |
KR20080040539A (ko) | 수신 장치, 송신 장치, 통신 시스템 및 통신 방법 | |
JP2011041001A (ja) | 無線基地局、及び無線通信方法 | |
Sulyman et al. | Adaptive MIMO beamforming algorithm based on gradient search of the channel capacity in OFDM-SDMA systems | |
Karachontzitis et al. | A chunk-based resource allocation scheme for downlink MIMO-OFDMA channel using linear precoding | |
JP2017525217A (ja) | データ通信方法及びmimo基地局 | |
Hefnawi | Space division multiplexing access aided cognitive radio networks | |
EP3662586B1 (en) | Improved block-diagnolization based beamforming | |
Wu et al. | Sum rate analysis of SDMA transmission in single carrier FDMA system | |
Mielczarek et al. | Throughput of realistic multi-user MIMO-OFDM systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131210 |