JP2011100802A - Magnetic material and coil component - Google Patents
Magnetic material and coil component Download PDFInfo
- Publication number
- JP2011100802A JP2011100802A JP2009253570A JP2009253570A JP2011100802A JP 2011100802 A JP2011100802 A JP 2011100802A JP 2009253570 A JP2009253570 A JP 2009253570A JP 2009253570 A JP2009253570 A JP 2009253570A JP 2011100802 A JP2011100802 A JP 2011100802A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic material
- value
- core
- coil component
- core member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Description
本発明は、磁性材料およびそれを用いたコイル部品に関し、詳しくは、六方晶フェライト系の磁性材料およびそれを用いて形成したコア部材を有するコイル部品に関する。 The present invention relates to a magnetic material and a coil component using the same, and more particularly to a hexagonal ferrite magnetic material and a coil component having a core member formed using the same.
近年、電子機器の高周波化にともない、その構成部品についても高周波化への対応が求められている。
このような構成部品の中で、酸化物磁性材料からなるコア部材を備えたコイル部品においても高周波化への対応が強く求められるに至っている。
In recent years, with the increase in the frequency of electronic devices, the component parts are also required to cope with the higher frequency.
Among such components, a coil component including a core member made of an oxide magnetic material has been strongly required to cope with high frequency.
ところで、コイル部品のコア部材を構成する材料としては、従来、磁性体や誘電体が用いられている。そして、磁性体としては、スピネル型酸化物磁性材料が広く用いられている。
しかしながら、スピネル型酸化物磁性材料の場合、周波数がある程度以上に高くなると透磁率が急激に低下するという問題点がある。特にニッケルフェライトの場合、周波数が300MHzを超えた付近から、透磁率の実部(μ’)が低下し、周波数が150MHzを超えた付近から、透磁率の虚部(μ”)が高くなり、クロスポイント周波数が600MHz程度となる。そのため、ニッケルフェライトは、高Qを必要とする場合は、150MHzを超える高周波領域で使用されるコイル部品のコア部材としては用いることができないという問題点がある。
By the way, as a material constituting the core member of the coil component, conventionally, a magnetic material or a dielectric is used. As the magnetic material, spinel oxide magnetic materials are widely used.
However, in the case of a spinel type oxide magnetic material, there is a problem in that the magnetic permeability rapidly decreases when the frequency becomes higher than a certain level. Particularly in the case of nickel ferrite, the real part (μ ′) of the magnetic permeability decreases from the vicinity where the frequency exceeds 300 MHz, and the imaginary part (μ ″) of the magnetic permeability increases from the vicinity where the frequency exceeds 150 MHz, Since the cross-point frequency is about 600 MHz, nickel ferrite cannot be used as a core member of a coil component used in a high frequency region exceeding 150 MHz when high Q is required.
そこで高周波領域で使用されるコイル部品においては、コア部材として、誘電体セラミックが広く用いられている。ここで、誘電体セラミックは非磁性体であることから、コイル部品において必要なインダクタンスを得るためには、コア部材を大きくするか、コア部材の周りに配置される巻線の巻回数を多くすることが必要になる。
しかしながら、コア部材を大きくした場合、製品であるコイル部品の小型化が困難になるという問題点があり、コア部材の周りへの巻線の巻回数を多くした場合、巻線抵抗が増大してコイルのQが低下し、回路の感度が低下するなどの問題点がある。
Therefore, dielectric ceramics are widely used as core members in coil components used in the high frequency region. Here, since the dielectric ceramic is a non-magnetic material, in order to obtain the necessary inductance in the coil component, the core member is enlarged or the number of windings arranged around the core member is increased. It will be necessary.
However, when the core member is enlarged, there is a problem that it is difficult to reduce the size of the coil component as a product. When the number of windings around the core member is increased, the winding resistance increases. There is a problem that the Q of the coil is lowered and the sensitivity of the circuit is lowered.
そこで、磁性体でありながら、高周波領域で透磁率(実部)μ’が低下しない材料が望まれるに至っており、このような要求に応える材料として、Z型六方晶フェライトが検討され、種々の提案がなされている。 Therefore, a material that is a magnetic material and does not lower the permeability (real part) μ ′ in a high frequency region has been desired. As a material that meets such a demand, Z-type hexagonal ferrite has been studied, Proposals have been made.
例えば、上述のような見地から、一般式Ba3Co2Fe24O41で表される材料において、Baの1/3以下をSr、Ca、Pbにより置換した強磁性材料が提案されている(特許文献1参照)。 For example, from the above viewpoint, in the material represented by the general formula Ba 3 Co 2 Fe 24 O 41 , a ferromagnetic material in which 1/3 or less of Ba is substituted with Sr, Ca, Pb has been proposed ( (See Patent Document 1).
また、酸化物換算で、Fe2O3を68〜73mol%、MO(MはBa、Sr、Pbの少なくとも1種)を15〜22mol%、CoOを9〜13mol%、SiO2を0.04〜1.0mol%、CaOを0.04〜1.0mol%の範囲で含有したZ型六方晶系酸化物磁性材料が提案されている(特許文献2参照)。 Further, in terms of oxide, Fe 2 O 3 is 68 to 73 mol%, MO (M is at least one of Ba, Sr, and Pb) is 15 to 22 mol%, CoO is 9 to 13 mol%, and SiO 2 is 0.04. A Z-type hexagonal oxide magnetic material containing ˜1.0 mol% and CaO in a range of 0.04 to 1.0 mol% has been proposed (see Patent Document 2).
さらに、BaO:10〜30mol%、Fe2O3:56〜65mol%、MeO:8〜25mpl%(但し、MeはZn、Co、Ni、Cu、Mnの少なくとも一種の二価の金属イオン)を主成分とし、前記主成分に対し、SiO2を0.05〜0.5wt%、CaOを0.05〜0.5wt%含有する軟磁性六方晶フェライトが提案されている(特許文献3参照)。 Further, BaO: 10~30mol%, Fe 2 O 3: 56~65mol%, MeO: 8~25mpl% ( where, Me is Zn, Co, Ni, Cu, at least one trivalent metal ion Mn) of A soft magnetic hexagonal ferrite containing 0.05 to 0.5 wt% of SiO 2 and 0.05 to 0.5 wt% of CaO with respect to the main component has been proposed (see Patent Document 3). .
しかしながら、これら磁性材料はいずれも、高周波領域、特に250MHz以上の高周波領域における透磁率(実部)μ’、およびQ値(=μ’/μ”)が必ずしも十分に要望を満たしているとは言えず、さらに高周波領域での透磁率(実部)μ’の低下が少なく、高いQ値を有する磁性材料が求められているのが実情である。 However, in any of these magnetic materials, the permeability (real part) μ ′ and the Q value (= μ ′ / μ ″) in the high-frequency region, particularly in the high-frequency region of 250 MHz or higher, do not necessarily satisfy the requirements sufficiently. In fact, there is a need for a magnetic material having a high Q value with little decrease in permeability (real part) μ ′ in a high frequency region.
本発明は、上記課題を解決するものであり、高周波領域で高い透磁率を得ることが可能で、しかもQ値の高い磁性材料、および該磁性材料からなるコア部材を備えた、通常のスピネル型酸化物材料ではQ値が低くて使用することができないような、150MHz〜250MHzの周波数領域においても、Q値の高いコイル部品を提供することを目的とする。 The present invention solves the above-described problems, and can obtain a high magnetic permeability in a high frequency region, and further includes a magnetic material having a high Q value, and a normal spinel type including a core member made of the magnetic material An object of the present invention is to provide a coil component having a high Q value even in a frequency range of 150 MHz to 250 MHz, in which an oxide material has a low Q value and cannot be used.
上記課題を解決するため、磁性材料は、
組成式(Ba3-x+yCax)Co2+zFe24O41-δで表され、前記x、y、zは、モル比を示し、それぞれ、0.3≦x≦0.8、0.02≦y≦0.4、−0.3≦z≦0.3を満たすことを特徴としている。
In order to solve the above problems, the magnetic material is
Expressed by a composition formula (Ba 3-x + y Ca x)
また、本発明のコイル部品は、請求項1に記載の磁性材料からなるコア部材を備えていることを特徴としている。
A coil component of the present invention is characterized by including a core member made of the magnetic material according to
また、本発明のコイル部品においては、前記コア部材が、巻芯部と、この巻芯部の軸方向端部に形成された鍔部とを含み、前記巻芯部の周りに巻線が巻回されていることを特徴としている。 In the coil component of the present invention, the core member includes a core portion and a flange portion formed at an end portion in the axial direction of the core portion, and the winding is wound around the core portion. It is characterized by being turned.
本発明の磁性材料は、組成式(Ba3-x+yCax)Co2+zFe24O41-δで表され、x、y、zが、モル比で、それぞれ、0.3≦x≦0.8、0.02≦y≦0.4、−0.3≦z≦0.3の条件を満たすようにしているので、高周波領域で透磁率(実部)μ’が低下せず、高いQ値を有する磁性材料を提供することが可能になる。
Magnetic material of the present invention are represented by a composition formula (Ba 3-x + y Ca x)
また、本発明のコイル部品は、上述の本発明の磁性材料からなるコア部材を備えているので、通常のスピネル型酸化物材料ではQ値が低くて使用することができないような、150MHz〜250MHzの周波数領域においても、Q値の高いコイル部品を提供することができる。 In addition, since the coil component of the present invention includes the core member made of the above-described magnetic material of the present invention, the normal spinel type oxide material has a low Q value and cannot be used. Even in the frequency region, a coil component having a high Q value can be provided.
また、本発明のコイル部品のように、コア部材が、巻芯部と、その軸方向端部に形成された鍔部とを含み、巻芯部の周りに巻線が巻回された構成とすることにより、150MHz〜250MHzの周波数領域においてもQ値の高い、巻線型のコイル部品を提供することが可能になる。 Further, as in the coil component of the present invention, the core member includes a core portion and a flange portion formed at an end portion in the axial direction, and a winding is wound around the core portion. This makes it possible to provide a wire-wound coil component having a high Q value even in the frequency range of 150 MHz to 250 MHz.
以下に本発明の実施の形態を示して、本発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below to describe the features of the present invention in more detail.
比表面積が2〜20m2/gの範囲にあるBaCO3、CaCO3、Co3O4、Fe2O3の原料粉末を、組成式(Ba3-x+yCax)Co2+zFe24O41-δにおいて、表1に示すモル比率(フェライト組成)になるように秤量した。それから、秤量した原料粉末をボールミルで混合した後、大気中にて900〜1300℃の温度で10時間仮焼して一次仮焼粉末を得た。 BaCO 3 , CaCO 3 , Co 3 O 4 , and Fe 2 O 3 raw powders having a specific surface area in the range of 2 to 20 m 2 / g are represented by a composition formula (Ba 3−x + y Ca x ) Co 2 + z Fe. 24 O 41-δ was weighed so as to have the molar ratio (ferrite composition) shown in Table 1. Then, the weighed raw material powders were mixed with a ball mill and then calcined in the atmosphere at a temperature of 900 to 1300 ° C. for 10 hours to obtain a primary calcined powder.
そして、これらの一次仮焼粉末をボールミルなどにより粉砕した後、大気中にて900〜1300℃の温度で10時間仮焼して二次仮焼粉末(2回仮焼工程を経た仮焼粉末)を得た。 These primary calcined powders are pulverized by a ball mill or the like and then calcined in the atmosphere at a temperature of 900 to 1300 ° C. for 10 hours to obtain secondary calcined powders (calcined powders that have undergone a double calcining step). Got.
この二次仮焼粉末をボールミルなどにより粉砕した後、バインダーとしてPVAを添加してスプレー造粒することにより造粒体を得た。それからこの造粒体をプレス成形した後、成形体を1000〜1300℃で焼成することにより焼結体を得た。 The secondary calcined powder was pulverized with a ball mill or the like, and then PVA was added as a binder and spray granulated to obtain a granulated body. Then, after this granulated body was press-molded, the molded body was fired at 1000 to 1300 ° C. to obtain a sintered body.
[各試料の透磁率、クロスポイントおよびQ値の測定]
上述のようにして得た各焼結体(試料)を、JIS規格C−2560−2の附属書に示されているように、外径が10mm、内径が6mm、厚みが2mmのリング形状に加工した。そして、このようにして得られるリング状焼結体(試料)について、透磁率μ’(実部)、μ”(虚部)と、クロスポイント周波数(μ’=μ”となる周波数)を、JIS規格C−2560−2にしたがって測定した。なお、各試料の透磁率μ’(実部)、μ”(虚部)の測定は、アジレント・テクノロジー社製のインピーダンスアナライザ(型番HP4291A)を用いて行った。
[Measurement of permeability, cross point and Q value of each sample]
Each sintered body (sample) obtained as described above is formed into a ring shape having an outer diameter of 10 mm, an inner diameter of 6 mm, and a thickness of 2 mm as shown in the appendix of JIS standard C-2560-2. processed. And about the ring-shaped sintered compact (sample) obtained in this way, permeability μ ′ (real part), μ ″ (imaginary part), and cross-point frequency (frequency at which μ ′ = μ ″) are obtained, It measured according to JIS standard C-2560-2. The magnetic permeability μ ′ (real part) and μ ″ (imaginary part) of each sample was measured using an impedance analyzer (model number HP4291A) manufactured by Agilent Technologies.
250、500MHz、および1GHzの周波数における透磁率μ’およびクロスポイント周波数(μ’=μ”となる周波数)の測定結果を表1に示す。
また、各試料の透磁率μ’(実部)、μ”(虚部)の値からQ値(=μ’/μ”)を求めた。その結果を表1に併せて示す。
Table 1 shows the measurement results of the magnetic permeability μ ′ and the crosspoint frequency (frequency at which μ ′ = μ ″) at frequencies of 250, 500 MHz, and 1 GHz.
Further, the Q value (= μ ′ / μ ″) was determined from the values of the magnetic permeability μ ′ (real part) and μ ″ (imaginary part) of each sample. The results are also shown in Table 1.
[比抵抗の測定]
造粒体をプレス成形した後、成形体を1000〜1300℃で焼成することにより得た焼結体を円板状に加工して比抵抗測定用の試料を作成した。
そして、作製した各試料の端面にIn−Ga電極を形成し、絶縁抵抗計にて絶縁抵抗を測定し、この絶縁抵抗と試料の外形寸法とから比抵抗を求めた。各試料の比抵抗の値を表1に併せて示す。
[Measurement of resistivity]
After the granulated body was press-molded, a sintered body obtained by firing the molded body at 1000 to 1300 ° C. was processed into a disk shape to prepare a sample for measuring specific resistance.
And the In-Ga electrode was formed in the end surface of each produced sample, the insulation resistance was measured with the insulation resistance meter, and the specific resistance was calculated | required from this insulation resistance and the external dimension of the sample. The specific resistance value of each sample is also shown in Table 1.
なお、表1において、試料番号に*を付した試料は、本発明の要件を備えていない試料である。 In Table 1, samples with a sample number marked with * are samples that do not have the requirements of the present invention.
表1に示す結果から、(Ba3-x+yCax)Co2+zFe24O41-δにおいて、Caの置換量(x)を増加させると、μ’、およびクロスポイント周波数は単調に増加する傾向にあり、Q値、および比抵抗は置換量が0.5モル(x=0.5)付近で極大を示す(例えば、試料番号7〜12の試料)ことが確認された。
From the results shown in Table 1, in the (Ba 3-x + y Ca x)
xが0.3未満の場合(例えば、試料番号7,8の試料)、250MHzでのμ’の値は10以上となるものの、250MHzでのQ値は15を下回る(試料番号7の試料ではQ=10、試料番号8の試料ではQ=12)結果となっており、あまり好ましくないことが確認された。
When x is less than 0.3 (for example, samples of
また、Caの置換量(x)が0.8を超えると、yおよびzの値が本発明の要件を満たしていても(試料番号12の試料)、250MHzでのμ’が5となり、7を下回るため好ましくないことが確認された。
この結果から、Caの置換量(x)は0.3〜0.8の範囲とすることが好ましいことがわかる。
Further, when the amount of substitution (x) of Ca exceeds 0.8, even if the values of y and z satisfy the requirements of the present invention (sample No. 12), μ ′ at 250 MHz is 5 and 7 It was confirmed that it is not preferable because it is less than.
From this result, it can be seen that the substitution amount (x) of Ca is preferably in the range of 0.3 to 0.8.
また、BaとCaの合計のモル数のずれを表すyの値が0のとき、すなわち化学量論組成の場合(試料番号1〜6の試料)、xを0〜1.0まで変化させても、250MHzでのμ’が7以上、Q値が15以上を同時に満足することはできないことが確認された。
In addition, when the value of y representing the deviation of the total number of moles of Ba and Ca is 0, that is, in the case of a stoichiometric composition (samples of
これに対し、y=0.1のとき、すなわちBaとCaの合計のモル数を化学量論組成よりも少なくしたとき(試料番号7〜12の試料)、y=0のときに比べて、μ’、およびQ値が高くなることが確認された。
In contrast, when y = 0.1, that is, when the total number of moles of Ba and Ca is less than the stoichiometric composition (
また、y=0.02〜0.4の試料番号10,14〜17の試料の場合にも、y=0のときに比べて、μ’、およびQ値が高くなることが確認された。
しかし、yの値が0.5にまで大きくなると(試料番号13の試料)、逆にμ’が7未満、Q値も15未満と小さくなり、好ましくないことが確認された。
この結果から、BaとCaの合計のモル数のずれを表すyの値は、0.02〜0.4の範囲とすることが好ましいことがわかる。
It was also confirmed that μ ′ and the Q value were higher in the case of samples Nos. 10 and 14 to 17 with y = 0.02 to 0.4 than when y = 0.
However, it was confirmed that when the value of y was increased to 0.5 (sample No. 13), μ ′ was less than 7 and the Q value was less than 15, which was not preferable.
From this result, it can be seen that the value of y representing the deviation in the total number of moles of Ba and Ca is preferably in the range of 0.02 to 0.4.
さらに、Coのモル数のずれを表すzの値は、−0.3〜0.3の範囲とするのが好ましいことが確認された。zの値がこの範囲を超えると、μ’が7未満と小さくなったり、Q値が15未満と小さくなったりするため好ましくない(試料番号18,21の試料)。 Furthermore, it was confirmed that the value of z representing the deviation in the number of moles of Co is preferably in the range of -0.3 to 0.3. If the value of z exceeds this range, μ ′ is less than 7 and the Q value is less than 15 (samples Nos. 18 and 21).
上述のように、本発明によれば、250MHzでのμ’が7以上、Q値が15以上の磁性材料が得られる。したがって、本発明の磁性材料を用いることにより、スピネル型酸化物材料ではQ値が低く使用することができない150MHz〜250MHzの周波数領域でも、Q値の高いコイル部品を提供することが可能になる。 As described above, according to the present invention, a magnetic material having μ ′ at 250 MHz of 7 or more and a Q value of 15 or more can be obtained. Therefore, by using the magnetic material of the present invention, it is possible to provide a coil component having a high Q value even in a frequency range of 150 MHz to 250 MHz that cannot be used with a spinel oxide material having a low Q value.
また、クロスポイント周波数が1GHz以上となる磁性材料を得ることが可能であり、このような磁性材料は、1GHzまでは透磁率の虚部に比べて実部が大きいので、コイル部品として実使用の可能な磁性材料を提供することができる。すなわち、1GHzではQ値は当然それなりには低くなるが、1GHzまではコイルとして機能するので、例えばQ値がそれほど高くなくても構わないような用途にはコイルとして用いることができる。なお、上述とは逆に、クロスポイント周波数が低いと、クロスポイント周波数を超えた周波数では、透磁率の虚部が大きくなり、抵抗Rが主体の素子になってしまい、コイルとしての機能は期待できなくなる。 In addition, it is possible to obtain a magnetic material having a crosspoint frequency of 1 GHz or more. Since such a magnetic material has a larger real part than the imaginary part of the magnetic permeability up to 1 GHz, it can be used as a coil component. Possible magnetic materials can be provided. That is, although the Q value is naturally low at 1 GHz, it functions as a coil up to 1 GHz. Therefore, it can be used as a coil in applications where the Q value does not need to be so high. Contrary to the above, when the cross-point frequency is low, the imaginary part of the magnetic permeability becomes large at the frequency exceeding the cross-point frequency, and the resistance R becomes a main element, and the function as a coil is expected. become unable.
また、コイル部品を構成する際、電極部の信頼性向上のために、電極を覆うように電解めっき処理を施すことが行われるが、磁性材料の比抵抗が低いと電極部から磁性材料部にメッキの伸びを生じてしまうが、本発明の磁性材料は、比抵抗が106Ωcm以上と高いため、めっきの伸びを防止することができる。 Moreover, when configuring the coil component, in order to improve the reliability of the electrode part, an electrolytic plating process is performed so as to cover the electrode, but if the specific resistance of the magnetic material is low, the electrode part is changed to the magnetic material part. Although the elongation of the plating occurs, the magnetic material of the present invention has a high specific resistance of 10 6 Ωcm or more, so that the elongation of the plating can be prevented.
また、比抵抗が106Ωcm以上と高いため、コイル部品を構成した場合に、渦電流損失が小さく、コイル部品のQ値を大きくすることができる。 In addition, since the specific resistance is as high as 10 6 Ωcm or more, when the coil component is configured, the eddy current loss is small and the Q value of the coil component can be increased.
以上のような特徴を有する磁性材料は、具体的には、例えば、図1に示すようなコイル部品に適用することができる。
このコイル部品1は、図1に示すように、巻線型コイルであり、コア部材2と、電極部3と、巻線4とを備えている。コア部材2は、巻芯部5と、巻芯部5の軸方向の両端部に形成された二つの(一対の)鍔部6とを含む。
Specifically, the magnetic material having the above characteristics can be applied to, for example, a coil component as shown in FIG.
As shown in FIG. 1, the
巻芯部5は、例えば、軸方向に直交する断面の形状が横長の長方形であり、かつ、軸方向に平衡な方向の縦断面の形状が横長の長方形であるような直方体形状を備えている。
The
また、一対の鍔部6は、互いに対称の形状を有しており、軸方向に直交する断面の形状が、同方向の巻芯部5の断面よりも寸法の大きな長方形で、軸方向に厚みの薄い略直方体形状を有している。そして、一対の鍔部6の下部の巻芯部5との境界部には、段差部7に湾曲した面から構成されるように曲面部70が形成されている。さらに、鍔部6の外周面の一つの面(図1では下面)には、電極部3が設けられている。
The pair of
そして、巻線4は、上記一対の鍔部6に挟まれた領域である巻芯部5の周囲に巻回されており、巻線4の端部である引き出し部分41が、例えば、はんだ付けなどの方法で、鍔部6の下面に配設された電極部3に接続されている。
The winding 4 is wound around the winding
本発明の磁性材料を用いて上述のような巻線型コイルを作製することにより、150MHz〜250MHzの周波数領域でも、Q値の高い、巻線型コイルを提供することが可能になる。 By producing the winding coil as described above using the magnetic material of the present invention, it is possible to provide a winding coil having a high Q value even in the frequency range of 150 MHz to 250 MHz.
本発明は、さらにその他の点においても、上記実施例に限定されるものではなく、本発明の磁性材料の製造工程で用いられる原料粉末の種類、製造工程における焼成条件などの具体的な条件、本発明の磁性材料をコア部材として用いたコイル部品の具体的な構造などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 In addition, the present invention is not limited to the above-described examples in other respects. Specific conditions such as the type of raw material powder used in the production process of the magnetic material of the present invention, firing conditions in the production process, With respect to the specific structure of the coil component using the magnetic material of the present invention as the core member, various applications and modifications can be made within the scope of the invention.
1 コイル部品(巻線型コイル)
2 コア部材
3 電極部
4 巻線
5 巻芯部
6 鍔部
7 鍔部と巻芯部の間の段差部
41 巻線の引き出し部分
70 曲面部
1 Coil parts (winding coil)
2
Claims (3)
前記巻芯部の周りに巻線が巻回されていること
を特徴とする、請求項2に記載のコイル部品。 The core member includes a core part and a flange part formed at an axial end of the core part,
The coil component according to claim 2, wherein a winding is wound around the winding core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009253570A JP2011100802A (en) | 2009-11-05 | 2009-11-05 | Magnetic material and coil component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009253570A JP2011100802A (en) | 2009-11-05 | 2009-11-05 | Magnetic material and coil component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011100802A true JP2011100802A (en) | 2011-05-19 |
Family
ID=44191773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009253570A Withdrawn JP2011100802A (en) | 2009-11-05 | 2009-11-05 | Magnetic material and coil component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011100802A (en) |
-
2009
- 2009-11-05 JP JP2009253570A patent/JP2011100802A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106057393B (en) | Complex ferrite composition and electronic component | |
JP6740817B2 (en) | Ferrite composition, ferrite sintered body, electronic component and chip coil | |
KR20140133479A (en) | Composite ferrite composition and elecronic device | |
US10839995B2 (en) | Ferrite composition and multilayer electronic component | |
JP2010018482A (en) | Ferrite, and manufacturing method thereof | |
KR20120036536A (en) | Ferrite composition for high frequency bead and chip bead comprising the same | |
JP5871017B2 (en) | Wire-wound coil component having a magnetic material and a core formed using the same | |
JP2010235328A (en) | Ferrite material and electronic component | |
KR102362501B1 (en) | Ferrite composition and multilayer electronic component | |
JP3975051B2 (en) | Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component | |
JP2017197417A (en) | Ni-Zn FERRITE MATERIAL AND METHOD FOR MANUFACTURING Ni-Zn FERRITE MATERIAL | |
JP2011100802A (en) | Magnetic material and coil component | |
CN111484323B (en) | Ferrite composition and laminated electronic component | |
JP5882811B2 (en) | Ferrite sintered body and pulse transformer core comprising the same | |
JP4074438B2 (en) | Magnetic oxide sintered body and high-frequency circuit component using the same | |
JP6967418B2 (en) | Magnetic materials and laminated chip parts | |
JP7221751B2 (en) | Magnetic materials and laminated chip components | |
JP2006151702A (en) | Ferrite magnetic material and electronic component obtained by using the same | |
JP4556668B2 (en) | Ferrite material and inductor element | |
JP6079951B2 (en) | Ferrite-based magnetic body, method for producing the same, and electronic component using the ferrite-based magnetic body | |
JP2008184364A (en) | Oxide magnetic material | |
JP4631348B2 (en) | Ni-Zn-Cu ferrite material and inductor element | |
JP6442251B2 (en) | Magnetic material and magnetic porcelain composition | |
JP7539601B1 (en) | MnZn ferrite | |
JP5660698B2 (en) | Magnetic oxide material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130108 |