[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011194393A - Harmful substance decomposition material - Google Patents

Harmful substance decomposition material Download PDF

Info

Publication number
JP2011194393A
JP2011194393A JP2010094511A JP2010094511A JP2011194393A JP 2011194393 A JP2011194393 A JP 2011194393A JP 2010094511 A JP2010094511 A JP 2010094511A JP 2010094511 A JP2010094511 A JP 2010094511A JP 2011194393 A JP2011194393 A JP 2011194393A
Authority
JP
Japan
Prior art keywords
decomposition
carbon catalyst
carbon
base material
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094511A
Other languages
Japanese (ja)
Other versions
JP5767441B2 (en
Inventor
Yasuyoshi Kato
泰美 加藤
Yuji Kubota
裕次 窪田
Emiko Maeba
恵美子 前馬
Masamitsu Iizuka
真実 飯塚
Shinichi Horiguchi
晋市 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2010094511A priority Critical patent/JP5767441B2/en
Publication of JP2011194393A publication Critical patent/JP2011194393A/en
Application granted granted Critical
Publication of JP5767441B2 publication Critical patent/JP5767441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a harmful substance decomposition material which decomposes a harmful substance effectively without deteriorating the substrate and to provide a method for decomposing a harmful substance.SOLUTION: The harmful substance decomposition material contains a carbon catalyst having catalytic activities to decompose the harmful substance and the substrate to carry the carbon catalyst. The harmful substance may be a volatile organic compound. The carbon catalyst may be obtained by carbonization of the raw material containing an organic substance and a metal. The substrate may be a fibrous substrate.

Description

本発明は、有害物質分解材に関し、特に、有害物質を分解する炭素触媒を含む有害物質分解材に関する。   The present invention relates to a hazardous substance decomposition material, and more particularly to a hazardous substance decomposition material containing a carbon catalyst for decomposing harmful substances.

従来、有害物質を除去する方法としては、例えば、二酸化チタン等の光触媒を使用する方法、活性炭やゼオライト等の吸着剤を使用する方法、白金等の貴金属触媒を使用する方法があった。特許文献1には、紙基材の表面を、バインダーと光触媒とを含有するコート剤で被覆してなる光触媒含有シートが記載されている。   Conventionally, methods for removing harmful substances include, for example, a method using a photocatalyst such as titanium dioxide, a method using an adsorbent such as activated carbon or zeolite, and a method using a noble metal catalyst such as platinum. Patent Document 1 describes a photocatalyst-containing sheet obtained by coating the surface of a paper substrate with a coating agent containing a binder and a photocatalyst.

特開平10−128125号公報JP-A-10-128125

しかしながら、上記従来の有害物質除去方法には次のような問題があった。すなわち、光触媒は、その光触媒反応を起こすために十分な光量を必要とするため、光源のない環境では使用することができなかった。吸着材は、使用に伴い吸着能力が低下するため、繰り返しの使用には不向きであった。貴金属は、高価であり、埋蔵量による制限を受けるため、汎用性に乏しかった。   However, the conventional harmful substance removal method has the following problems. That is, since the photocatalyst needs a sufficient amount of light to cause the photocatalytic reaction, it cannot be used in an environment without a light source. Adsorbents are unsuitable for repeated use because their adsorption capacity decreases with use. Precious metals are expensive and have limited versatility because they are limited by reserves.

また、光触媒を基材に担持して使用する場合には、光触媒反応によって当該基材が劣化するという問題があった。そこで、従来、特許文献1に記載のように、光触媒と基材との直接接触を避けるため、当該光触媒及び基材をコーティングする等の特殊な加工を施す工夫がなされてきた。   Further, when the photocatalyst is supported on a base material, the base material is deteriorated by a photocatalytic reaction. Therefore, conventionally, as described in Patent Document 1, in order to avoid direct contact between the photocatalyst and the base material, special measures such as coating the photocatalyst and the base material have been made.

しかしながら、光触媒をコーティングする場合には、当該光触媒の性能が低下することを避けることはできなかった。また、基材の劣化を低減するための特殊な加工は、製造方法を煩雑化させることとなっていた。   However, when coating with a photocatalyst, it was impossible to avoid a decrease in the performance of the photocatalyst. Further, special processing for reducing deterioration of the base material complicates the manufacturing method.

本発明は、上記課題に鑑みて為されたものであり、基材を劣化させることなく有害物質を効果的に分解する有害物質分解材を提供することをその目的の一つとする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a hazardous substance decomposition material that effectively decomposes harmful substances without degrading the base material.

上記課題を解決するための本発明の一実施形態に係る有害物質分解材は、有害物質を分解する触媒活性を有する炭素触媒と、前記炭素触媒を担持する基材と、を含むことを特徴とする。本発明によれば、基材を劣化させることなく有害物質を効果的に分解する有害物質分解材を提供することもできる。   A hazardous substance decomposition material according to an embodiment of the present invention for solving the above-described problem includes a carbon catalyst having catalytic activity for decomposing a harmful substance, and a base material supporting the carbon catalyst, To do. ADVANTAGE OF THE INVENTION According to this invention, the hazardous | toxic substance decomposition material which decomposes | disassembles a harmful | toxic substance effectively can be provided, without deteriorating a base material.

また、前記有害物質は、揮発性有機化合物であることとしてもよい。この場合、前記揮発性有機化合物は、アルデヒド類及びその酸化物であることとしてもよい。また、前記炭素触媒は、有機物と金属とを含有する原料の炭素化により得られたこととしてもよい。   The harmful substance may be a volatile organic compound. In this case, the volatile organic compound may be aldehydes and oxides thereof. The carbon catalyst may be obtained by carbonization of a raw material containing an organic substance and a metal.

また、前記基材は、繊維基材であることとしてもよい。この場合、前記繊維基材は、有機繊維基材であることとしてもよい。また、この場合、前記有機繊維基材は、紙基材であることとしてもよい。さらに、この場合、前記有害物質分解材は、前記炭素触媒を含む原料スラリーの抄紙により得られたこととしてもよい。   The base material may be a fiber base material. In this case, the fiber base material may be an organic fiber base material. In this case, the organic fiber base material may be a paper base material. Furthermore, in this case, the harmful substance decomposition material may be obtained by papermaking of a raw slurry containing the carbon catalyst.

本発明によれば、基材を劣化させることなく有害物質を効果的に分解する有害物質分解材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the harmful substance decomposition material which decomposes | disassembles a harmful substance effectively without deteriorating a base material can be provided.

本発明の一実施形態に係る実施例において、紙基材に炭素触媒を担持してなる有害物質分解材を走査型電子顕微鏡で観察した結果の一例を示す説明図である。In the Example which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having observed the harmful substance decomposition material formed by carrying | supporting a carbon catalyst on a paper base material with the scanning electron microscope. 本発明の一実施形態に係る実施例において、炭素触媒を担持していない紙基材を走査型電子顕微鏡で観察した結果の一例を示す説明図である。In the Example which concerns on one Embodiment of this invention, it is explanatory drawing which shows an example of the result of having observed the paper base material which does not carry | support the carbon catalyst with the scanning electron microscope. 本発明の一実施形態に係る実施例におけるホルムアルデヒド分解試験の結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of the formaldehyde decomposition test in the Example which concerns on one Embodiment of this invention. 本発明の一実施形態に係る実施例における基材の劣化試験の結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of the deterioration test of the base material in the Example which concerns on one Embodiment of this invention. 本発明の一実施形態に係る実施例における一酸化炭素酸化分解試験の結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of the carbon monoxide oxidation decomposition test in the Example which concerns on one Embodiment of this invention. 本発明の一実施形態に係る実施例における抗菌性試験の結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of the antimicrobial test in the Example which concerns on one Embodiment of this invention. 本発明の一実施形態に係る実施例におけるかび抵抗性試験の結果の一例を示す説明図である。It is explanatory drawing which shows an example of the result of the mold resistance test in the Example which concerns on one Embodiment of this invention.

以下に、本発明の一実施形態について説明する。なお、本発明は本実施形態に限られるものではない。   Hereinafter, an embodiment of the present invention will be described. Note that the present invention is not limited to the present embodiment.

本実施形態に係る有害物質分解材(以下、「本分解材」という。)は、有害物質を分解する触媒活性を有する炭素触媒と、当該炭素触媒を担持する基材と、を有する。   The harmful substance decomposition material (hereinafter referred to as “the present decomposition material”) according to the present embodiment includes a carbon catalyst having catalytic activity for decomposing a harmful substance and a base material supporting the carbon catalyst.

本分解材に含まれる炭素触媒は、それ自身が有害物質を分解する触媒活性を有する炭素材料である。すなわち、本分解材は、基材に担持された炭素触媒の触媒活性を効果的に利用することにより、有害物質を分解する。本分解材により分解される有害物質は、気体であってもよいし、水その他の溶媒中に溶解されていてもよい。   The carbon catalyst contained in the present decomposition material is a carbon material having catalytic activity that decomposes harmful substances. That is, this decomposition material decomposes harmful substances by effectively utilizing the catalytic activity of the carbon catalyst supported on the substrate. The harmful substance decomposed by the present decomposition material may be a gas, or may be dissolved in water or another solvent.

本分解材により分解される有害物質(すなわち、炭素触媒により分解される有害物質)としては、例えば、揮発性有機化合物(Volatile Organic Compound:VOC)が挙げられる。   Examples of harmful substances decomposed by the present decomposition material (that is, harmful substances decomposed by the carbon catalyst) include, for example, volatile organic compounds (VOC).

VOCとしては、例えば、ホルムアルデヒド、アセトアルデヒド、ノネナール、アクロレイン等のアルデヒド類、ギ酸、酢酸、イソ吉草酸、酪酸、(メタ)アクリル酸等のカルボン酸類、エタノール、1−プロパノール、2−プロパノール、1−ブタノール等のアルコール類、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、ブチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、蟻酸メチル、フタル酸ジブチル、フタル酸ジ−2−エチルヘキシル、フェノブカルブ等のエステル類、トルエン、キシレン、フェノール、スチレン、ベンゼン、エチルベンゼン、安息香酸、リモネン、クメン等の芳香族炭化水素類、メタン、エタン、プロパン、ヘキサン、ペンタン、テトラデカン、シクロへキサン、シクロペンタノン、エチルシクロヘキサン等の脂肪族炭化水素類、インドール等の複素環類、アンモニア、トリメチルアミン、トリエチルアミン、エチレンジアミン、ピリジン、シクロヘキシルアミン、N−メチル−2−ピロリドン等のアミン類、クロルピリホス、ダイアジノン等のリン化合物類、四塩化炭素、クロロメタン、クロロホルム、クロロエチレン、パラジクロロベンゼン等の塩素化合物類からなる群より選択される1種又は2種以上が挙げられる。すなわち、本分解材は、例えば、アルデヒド類、又はアルデヒド類及びその酸化物を分解する分解材とすることができる。   Examples of VOC include aldehydes such as formaldehyde, acetaldehyde, nonenal, and acrolein, carboxylic acids such as formic acid, acetic acid, isovaleric acid, butyric acid, and (meth) acrylic acid, ethanol, 1-propanol, 2-propanol, 1- Alcohols such as butanol, ketones such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, butyl ethyl ketone, ethyl acetate, butyl acetate, methyl (meth) acrylate, ethyl (meth) acrylate, methyl formate, phthalic acid Esters such as dibutyl, di-2-ethylhexyl phthalate, and fenocarb, toluene, xylene, phenol, styrene, benzene, ethylbenzene, benzoic acid, limonene, cumene and other aromatic hydrocarbons, methane, ethane, propane, hexa Aliphatic hydrocarbons such as pentane, tetradecane, cyclohexane, cyclopentanone, ethylcyclohexane, heterocycles such as indole, ammonia, trimethylamine, triethylamine, ethylenediamine, pyridine, cyclohexylamine, N-methyl-2-pyrrolidone And one or more selected from the group consisting of phosphorus compounds such as chloropyrifos and diazinon, and chlorine compounds such as carbon tetrachloride, chloromethane, chloroform, chloroethylene and paradichlorobenzene. That is, this decomposition material can be used as, for example, a decomposition material that decomposes aldehydes or aldehydes and oxides thereof.

また、本分解材により分解される有害物質としては、例えば、悪臭物質が挙げられる。悪臭物質としては、例えば、腐卵臭を生じる硫黄化合物、体臭や排泄物臭を生じるアミン類、カルボン酸類及びアルデヒド類、醗酵した臭いを生じるアルコール類、塗料等に含まれるケトン類、エステル類及び芳香族炭化水素類が挙げられる。   Moreover, as a harmful substance decomposed | disassembled by this decomposition material, a malodorous substance is mentioned, for example. Malodorous substances include, for example, sulfur compounds that produce an odor of eggs, amines that produce body odors and excrement odors, carboxylic acids and aldehydes, alcohols that produce fermented odors, ketones and esters contained in paints, etc. Aromatic hydrocarbons can be mentioned.

より具体的に、悪臭物質としては、例えば、硫化水素、硫化メチル、二硫化メチル、メチルメルカプタン、エチルメルカプタン等の硫黄化合物、アンモニア、トリメチルアミン等のアミン類、プロピオン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸等のカルボン酸類、アセトアルデヒド、プロピオンアルデヒド、ノルマルブチルアルデヒド、イソブチルアルデヒド、ノルマルバレルアルデヒド、イソバレルアルデヒド等のアルデヒド類、イソブタノール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル等のエステル類、トルエン、スチレン、キシレン等の芳香族炭化水素類、オゾンからなる群より選択される1種又は2種以上が挙げられる。   More specifically, as malodorous substances, for example, sulfur compounds such as hydrogen sulfide, methyl sulfide, methyl disulfide, methyl mercaptan, ethyl mercaptan, amines such as ammonia, trimethylamine, propionic acid, normal butyric acid, normal valeric acid, Carboxylic acids such as isovaleric acid, acetaldehyde, propionaldehyde, normal butyraldehyde, isobutyraldehyde, normal valeraldehyde, aldehydes such as isovaleraldehyde, alcohols such as isobutanol, ketones such as methyl ethyl ketone and methyl isobutyl ketone, acetic acid Examples thereof include one or more selected from the group consisting of esters such as ethyl, aromatic hydrocarbons such as toluene, styrene and xylene, and ozone.

また、炭素触媒は、上述のように有害物質を分解する触媒活性を有することに加えて、有毒ガスを酸化分解する触媒活性を有する炭素材料とすることもできる。本分解材により酸化分解される有毒ガス(すなわち、炭素触媒によって酸化分解される有毒ガス)としては、例えば、一酸化炭素(CO)、窒素酸化物(NOx)、硫黄酸化物(SOx)からなる群より選択される1種又は2種以上が挙げられる。すなわち、本分解材は、例えば、常温又は高温で一酸化炭素を酸化分解することができる。また、本分解材は、例えば、常温でも窒素酸化物及び/又は硫黄酸化物を酸化分解することができる。この場合、本分解材は、いわゆるセルフクリーニング機能を有することができる。   The carbon catalyst can also be a carbon material having catalytic activity for oxidative decomposition of toxic gases in addition to having catalytic activity for decomposing harmful substances as described above. The toxic gas that is oxidatively decomposed by the present decomposition material (that is, the toxic gas that is oxidatively decomposed by the carbon catalyst) includes, for example, carbon monoxide (CO), nitrogen oxide (NOx), and sulfur oxide (SOx). 1 type (s) or 2 or more types selected from a group are mentioned. That is, this decomposition material can oxidatively decompose carbon monoxide at room temperature or high temperature, for example. Moreover, this decomposition material can oxidatively decompose nitrogen oxides and / or sulfur oxides even at room temperature, for example. In this case, the present decomposition material can have a so-called self-cleaning function.

また、炭素触媒は、上述のように有害物質を分解する触媒活性を有することに加えて、当該有害物質を実質的に吸着しない炭素材料とすることもできる。この場合、例えば、有害物質を実質的に吸着しない基材を使用することにより、本分解材は、有害物質を実質的に吸着しない分解材とすることができる。   In addition to having the catalytic activity of decomposing harmful substances as described above, the carbon catalyst can be a carbon material that does not substantially adsorb the harmful substances. In this case, for example, by using a base material that does not substantially adsorb harmful substances, the present decomposed material can be a decomposed material that does not substantially adsorb harmful substances.

また、炭素触媒は、比較的低い温度の環境下においても有害物質を分解することができる。この場合、本分解材は、例えば、0℃以上で有害物質を分解することができる。より具体的に、本分解材が有害物質を分解する温度は、例えば、0℃以上、300℃以下とすることができ、0℃以上、100℃以下とすることができ、0℃以上、40℃以下とすることもできる。   In addition, the carbon catalyst can decompose harmful substances even in a relatively low temperature environment. In this case, the present decomposition material can decompose harmful substances at, for example, 0 ° C. or higher. More specifically, the temperature at which this decomposition material decomposes harmful substances can be, for example, 0 ° C. or higher and 300 ° C. or lower, 0 ° C. or higher and 100 ° C. or lower, 0 ° C. or higher, 40 It can also be below ℃.

また、炭素触媒は、有機物と金属とを含有する原料の炭素化により得られた炭素材料とすることができる。この場合、原料に含まれる有機物は、炭素化できるもの(炭素源として使用できるもの)であれば特に限られず、任意の1種又は2種以上を使用することができる。   The carbon catalyst can be a carbon material obtained by carbonization of a raw material containing an organic substance and a metal. In this case, the organic substance contained in the raw material is not particularly limited as long as it can be carbonized (can be used as a carbon source), and any one kind or two or more kinds can be used.

すなわち、有機物としては、例えば、高分子量の有機化合物(例えば、熱可塑性樹脂や熱硬化性樹脂等の樹脂)及び低分子量の有機化合物の一方又は両方を使用することができる。また、例えば、植物廃材等のバイオマスを使用することもできる。   That is, as the organic substance, for example, one or both of a high molecular weight organic compound (for example, a resin such as a thermoplastic resin or a thermosetting resin) and a low molecular weight organic compound can be used. Further, for example, biomass such as plant waste material can be used.

有機物としては、例えば、窒素を含有する有機物を好ましく使用することができる。窒素を含有する有機物は、その分子内に窒素原子を含む有機化合物を含有するものであれば特に限られず、任意の1種又は2種以上を使用することができる。   As the organic substance, for example, an organic substance containing nitrogen can be preferably used. The organic substance containing nitrogen is not particularly limited as long as it contains an organic compound containing a nitrogen atom in the molecule, and any one kind or two or more kinds can be used.

有機物としては、例えば、金属に配位可能な配位子を好ましく使用することができる。すなわち、この場合、その分子内に1又は複数個の配位原子を含む有機化合物を使用する。より具体的に、例えば、配位原子として、その分子内に窒素原子、リン原子、酸素原子、硫黄原子からなる群より選択される1種又は2種以上を含む有機化合物を使用することができる。また、例えば、配位基として、その分子内にアミノ基、フォスフィノ基、カルボキシル基、チオール基からなる群より選択される1種又は2種以上を含む有機化合物を使用することもできる。   As the organic substance, for example, a ligand capable of coordinating with a metal can be preferably used. That is, in this case, an organic compound containing one or more coordination atoms in the molecule is used. More specifically, for example, as a coordination atom, an organic compound containing one or more selected from the group consisting of a nitrogen atom, a phosphorus atom, an oxygen atom, and a sulfur atom in the molecule can be used. . Further, for example, an organic compound containing one or more selected from the group consisting of an amino group, a phosphino group, a carboxyl group, and a thiol group in the molecule can also be used as a coordination group.

具体的に、有機化合物としては、例えば、ピロール、ポリピロール、ポリビニルピロール、3−メチルポリピロール、フラン、チオフェン、オキサゾール、チアゾール、ピラゾール、ビニルピリジン、ポリビニルピリジン、ピリダジン、ピリミジン、ピペラジン、ピラン、モルホリン、イミダゾール、1−メチルイミダゾール、2−メチルイミダゾ−ル、キノキサリン、アニリン、ポリアニリン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリスルフォン、ポリアミノビスマレイミド、ポリイミド、ポリビニルアルコール、ポリビニルブチラール、ベンゾイミダゾ−ル、ポリベンゾイミダゾ−ル、ポリアミド、ポリエステル、ポリ乳酸、アクリロニトリル、ポリアクリロニトリル、ポリエ−テル、ポリエ−テルエ−テルケトン、セルロ−ス、リグニン、キチン、キトサン、絹、毛、ポリアミノ酸、核酸、DNA、RNA、ヒドラジン、ヒドラジド、尿素、サレン、ポリカルバゾール、ポリビスマレイミド、トリアジン、アイオノマー、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリメタクリル酸、ポリウレタン、ポリアミドアミン、ポリカルボジイミド、ポリアクリロニトリル−ポリメタクリル酸共重合体、フェノール樹脂、メラミン、メラミン樹脂、エポキシ樹脂、フラン樹脂、ポリアミドイミド樹脂からなる群より選択される1種又は2種以上を使用することができる。   Specifically, examples of the organic compound include pyrrole, polypyrrole, polyvinylpyrrole, 3-methylpolypyrrole, furan, thiophene, oxazole, thiazole, pyrazole, vinylpyridine, polyvinylpyridine, pyridazine, pyrimidine, piperazine, pyran, morpholine, imidazole. 1-methylimidazole, 2-methylimidazole, quinoxaline, aniline, polyaniline, succinic acid dihydrazide, adipic acid dihydrazide, polysulfone, polyaminobismaleimide, polyimide, polyvinyl alcohol, polyvinyl butyral, benzoimidazole, polybenzoimidazole -Polyamide, Polyester, Polylactic acid, Acrylonitrile, Polyacrylonitrile, Polyether, Polyetheretherketone, Cell -Su, lignin, chitin, chitosan, silk, hair, polyamino acid, nucleic acid, DNA, RNA, hydrazine, hydrazide, urea, salen, polycarbazole, polybismaleimide, triazine, ionomer, polyacrylic acid, polyacrylate, Selected from the group consisting of polymethacrylic acid ester, polymethacrylic acid, polyurethane, polyamidoamine, polycarbodiimide, polyacrylonitrile-polymethacrylic acid copolymer, phenol resin, melamine, melamine resin, epoxy resin, furan resin, polyamideimide resin 1 type (s) or 2 or more types can be used.

廃材等のバイオマスとしては、例えば、酒粕、麹、コーヒー出し殻、お茶出し殻、ビール絞り粕、米ぬか等の食品産業廃棄物、林地残材、建築廃材等の木質系廃材、下水汚泥等の生活系廃材からなる群より選択される1種又は2種以上を使用することができる。有機物は、例えば、炭素触媒の活性を向上させる成分として、ホウ素、リン、酸素、硫黄からなる群より選択される1種又は2種以上をさらに含有することもできる。   Examples of biomass such as waste wood include liquor waste, coffee lees, coffee grounds, tea grounds, beer squeezed rice, rice industry, food industry waste such as rice bran, woody waste such as forest land, building waste, and sewage sludge. 1 type (s) or 2 or more types selected from the group which consists of a system waste material can be used. The organic substance may further contain, for example, one or more selected from the group consisting of boron, phosphorus, oxygen, and sulfur as a component that improves the activity of the carbon catalyst.

原料に含まれる金属は、炭素触媒の触媒活性を阻害しないものであれば特に限られず、任意の1種又は2種以上を使用することができる。すなわち、金属としては、例えば、遷移金属を好ましく使用することができ、周期表の3族から12族の第4周期に属する金属を特に好ましく使用することができる。   The metal contained in the raw material is not particularly limited as long as it does not inhibit the catalytic activity of the carbon catalyst, and any one type or two or more types can be used. That is, as the metal, for example, a transition metal can be preferably used, and a metal belonging to Group 4 to Group 12 of the periodic table can be particularly preferably used.

具体的に、例えば、コバルト、鉄、ニッケル、マンガン、亜鉛、銅、クロムからなる群より選択される1種又は2種以上を好ましく用いることができ、コバルト、鉄、マンガン、ニッケルを特に好ましく使用することができる。   Specifically, for example, one or more selected from the group consisting of cobalt, iron, nickel, manganese, zinc, copper, and chromium can be preferably used, and cobalt, iron, manganese, and nickel are particularly preferably used. can do.

金属としては、当該金属の単体又は当該金属の化合物を使用することができる。金属化合物としては、例えば、金属塩、金属酸化物、金属水酸化物、金属窒化物、金属硫化物、金属炭素化物、金属錯体を使用することができ、金属塩、金属酸化物、金属硫化物、金属錯体を好ましく使用することができる。なお、上述の有機化合物として配位子を使用する場合には、原料中において金属錯体が形成されることとなる。   As the metal, a simple substance of the metal or a compound of the metal can be used. As the metal compound, for example, metal salts, metal oxides, metal hydroxides, metal nitrides, metal sulfides, metal carbonides, metal complexes can be used, and metal salts, metal oxides, metal sulfides can be used. A metal complex can be preferably used. In addition, when using a ligand as the above-mentioned organic compound, a metal complex is formed in the raw material.

炭素触媒の原料は、さらに炭素材料を含有することもできる。この炭素材料は、その全体又は一部が炭素化された材料であれば特に限られず、任意の1種又は2種以上を使用することができる。すなわち、この炭素材料としては、例えば、それ自身は触媒活性を有しないものを使用することができる。   The raw material for the carbon catalyst may further contain a carbon material. The carbon material is not particularly limited as long as the whole or a part of the carbon material is carbonized, and any one type or two or more types can be used. That is, as the carbon material, for example, a material that does not have catalytic activity can be used.

具体的に、例えば、有機物の炭素化により得られた炭素材料又は天然鉱物であって、それ自身は触媒活性を有しないものを使用することができる。より具体的に、例えば、カ−ボンブラック(例えば、ケッチェンブラック、アセチレンブラック)、黒鉛、コークス、活性炭、褐炭、泥炭、豆炭、カ−ボンナノチュ−ブ、カ−ボンナノホ−ン、カ−ボンナノファイバ−、カ−ボンフィブリルからなる群より選択される1種又は2種以上を使用することができる。   Specifically, for example, a carbon material or natural mineral obtained by carbonization of an organic substance and having no catalytic activity can be used. More specifically, for example, carbon black (for example, ketjen black, acetylene black), graphite, coke, activated carbon, brown coal, peat, bean coal, carbon nanotube, carbon nanohorn, carbon nano One type or two or more types selected from the group consisting of fiber and carbon fibril can be used.

原料の炭素化は、上述のような有機物と金属とを含有する原料を加熱して、当該原料を炭素化できる所定温度(炭素化温度)で保持することにより行う。炭素化温度は、原料を炭素化できる温度であれば特に限られず、例えば、300℃以上とすることができ、好ましくは700℃以上とすることができる。より具体的に、炭素化温度は、例えば、300〜3000℃の範囲とすることができ、好ましくは700〜2000℃の範囲とすることができ、より好ましくは700〜1500℃の範囲とすることができる。   Carbonization of the raw material is performed by heating the raw material containing the organic substance and the metal as described above and holding the raw material at a predetermined temperature (carbonization temperature) at which the raw material can be carbonized. The carbonization temperature is not particularly limited as long as the raw material can be carbonized, and can be, for example, 300 ° C. or higher, and preferably 700 ° C. or higher. More specifically, the carbonization temperature can be, for example, in the range of 300 to 3000 ° C, preferably in the range of 700 to 2000 ° C, and more preferably in the range of 700 to 1500 ° C. Can do.

炭素化温度までの昇温速度は、例えば、0.5〜300℃/分の範囲とすることができる。上述の炭素化温度で原料を保持する時間は、例えば、5分〜24時間の範囲とすることができ、好ましくは20分〜5時間の範囲とすることができる。炭素化は、窒素等の不活性ガスの流通下で行うことが好ましい。   The rate of temperature rise to the carbonization temperature can be, for example, in the range of 0.5 to 300 ° C./min. The time for holding the raw material at the above carbonization temperature can be, for example, in the range of 5 minutes to 24 hours, and preferably in the range of 20 minutes to 5 hours. The carbonization is preferably performed under a flow of an inert gas such as nitrogen.

炭素触媒は、例えば、原料の炭素化により得られた炭素材料を粉砕したものとすることもできる。粉砕方法は、特に限られず、例えば、ボールミルやビーズミル等の粉砕装置を使用することができる。粉砕後の炭素触媒の平均粒径は、例えば、1000μm以下とすることができ、好ましくは150μm以下とすることができる。   For example, the carbon catalyst may be obtained by pulverizing a carbon material obtained by carbonization of a raw material. The pulverization method is not particularly limited, and for example, a pulverizer such as a ball mill or a bead mill can be used. The average particle size of the carbon catalyst after pulverization can be, for example, 1000 μm or less, and preferably 150 μm or less.

炭素触媒は、例えば、原料の炭素化により得られた炭素材料に対して、金属の含有量を減少させ又は金属を除去する洗浄処理を施して得られた炭素材料とすることもできる。この洗浄処理には、例えば、塩酸や硫酸等の酸を好ましく使用することができる。   The carbon catalyst can be a carbon material obtained by subjecting a carbon material obtained by carbonization of a raw material to a cleaning treatment for reducing the metal content or removing the metal, for example. For this washing treatment, for example, an acid such as hydrochloric acid or sulfuric acid can be preferably used.

炭素触媒は、例えば、原料の炭素化により得られた炭素材料を賦活化して得られた炭素材料とすることもできる。賦活方法は特に限られず、例えば、アンモオキシデーション、二酸化炭素賦活、リン酸賦活、アルカリ賦活、水蒸気賦活を使用することができる。   A carbon catalyst can also be made into the carbon material obtained by activating the carbon material obtained by carbonization of a raw material, for example. The activation method is not particularly limited, and for example, ammoxidation, carbon dioxide activation, phosphoric acid activation, alkali activation, and water vapor activation can be used.

炭素触媒は、例えば、原料の炭素化により得られた炭素材料に熱処理を施して得られる炭素材料とすることもできる。この熱処理は、炭素化により得られた炭素材料を、さらに所定の温度で保持することにより行う。熱処理の温度は、例えば、300〜1500℃の範囲とすることができる。   The carbon catalyst can be a carbon material obtained by subjecting a carbon material obtained by carbonization of a raw material to a heat treatment, for example. This heat treatment is performed by holding the carbon material obtained by carbonization at a predetermined temperature. The temperature of heat processing can be made into the range of 300-1500 degreeC, for example.

炭素触媒は、例えば、原料の炭素化により得られた炭素材料に対して、金属含浸法、メカニカルアロイング法等の方法により金属を添加して得られた炭素材料とすることもできる。炭素化後に添加する金属は、炭素材料の触媒活性を阻害しないものであれば特に限られず、例えば、チタン、マンガン、ニッケル、ジルコニウム、コバルト、アルミニウム、鉄、ニオブ、バナジウム、マグネシウム、パラジウム、カルシウム、亜鉛、白金類金属を好ましく使用することができる。   The carbon catalyst can be a carbon material obtained by adding metal to a carbon material obtained by carbonization of a raw material by a method such as a metal impregnation method or a mechanical alloying method. The metal added after carbonization is not particularly limited as long as it does not inhibit the catalytic activity of the carbon material. For example, titanium, manganese, nickel, zirconium, cobalt, aluminum, iron, niobium, vanadium, magnesium, palladium, calcium, Zinc and platinum metals can be preferably used.

本分解材に含まれる基材は、上述のような炭素触媒を担持できるものであれば特に限られず、任意の1種又は2種以上を使用することができる。   The base material contained in the present decomposition material is not particularly limited as long as it can support the carbon catalyst as described above, and any one kind or two or more kinds can be used.

基材としては、例えば、繊維基材を使用することができる。繊維基材としては、有機繊維基材を使用することができる。有機繊維基材としては、紙基材又は有機繊維の布基材を使用することができる。   As the substrate, for example, a fiber substrate can be used. As the fiber base material, an organic fiber base material can be used. As the organic fiber substrate, a paper substrate or an organic fiber cloth substrate can be used.

紙基材を構成する有機繊維としては、例えば、針葉樹晒クラフトパルプ、広葉樹晒クラフトパルプ、針葉樹未晒クラフトパルプ、広葉樹未晒クラフトパルプ、針葉樹サルファイトパルプ、サーモメカニカルパルプ等の木材パルプや、コットンリンターパルプ、ケナフ、バンブー、バガス、麻、バナナ、ケブラー(トワロン)等の非木材パルプが挙げられる。   Examples of organic fibers constituting the paper base include wood pulp such as softwood bleached kraft pulp, hardwood bleached kraft pulp, softwood unbleached kraft pulp, hardwood unbleached kraft pulp, conifer sulfite pulp, thermomechanical pulp, and cotton Non-wood pulps such as linter pulp, kenaf, bamboo, bagasse, hemp, banana, Kevlar (Twaron) are listed.

布基材としては、例えば、有機繊維の不織布、織布又は編物を使用することができる。布材を構成する有機繊維としては、例えば、綿、絹、麻、毛等の天然有機繊維や、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、ナイロン繊維、アラミド繊維、レーヨン繊維、ビニロン繊維、アセテ−ト繊維、ポリウレタン繊維、ポリ乳酸繊維、ポリ塩化ビニル繊維等の合成有機繊維が挙げられる。   As the cloth substrate, for example, an organic fiber nonwoven fabric, woven fabric or knitted fabric can be used. Examples of organic fibers constituting the cloth material include natural organic fibers such as cotton, silk, hemp, and hair, polyester fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, nylon fibers, aramid fibers, rayon fibers, vinylon fibers, Examples include synthetic organic fibers such as acetate fibers, polyurethane fibers, polylactic acid fibers, and polyvinyl chloride fibers.

また、繊維基材としては、無機繊維基材を使用することもできる。無機繊維基材を構成する無機繊維としては、例えば、カーボン繊維、ガラス繊維、ロックウール、セラミック繊維、炭化ケイ素繊維、ボロン繊維、アルミナ繊維が挙げられる。   Moreover, an inorganic fiber base material can also be used as a fiber base material. Examples of the inorganic fiber constituting the inorganic fiber substrate include carbon fiber, glass fiber, rock wool, ceramic fiber, silicon carbide fiber, boron fiber, and alumina fiber.

なお、本分解材に含まれる有機繊維基材は、例えば、光触媒を担持した場合には当該光触媒による光触媒反応によって劣化するような、有機繊維を主成分とする繊維基材であればよく、さらに無機繊維等の他の成分が添加されたものであってもよい。   In addition, the organic fiber base material contained in this decomposition material should just be a fiber base material which has an organic fiber as a main component which deteriorates by the photocatalytic reaction by the said photocatalyst, for example, when supporting a photocatalyst, What added other components, such as an inorganic fiber, may be used.

また、基材としては、樹脂成形体を使用することもできる。この場合、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸メチル、ポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエステル、ポリ乳酸、ポリエ−テル、ポリサルホン、フェノ−ル樹脂、フェノ−ルホルムアルデヒド樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、塩化ビニル樹脂、ポリアミド、ポリイミド、ポリアミドイミド、カルボジイミド樹脂、ユリア樹脂等の樹脂を所定の形状に成形して得られる樹脂成形体を使用することができる。また、基材としては、セラミックス(例えば、アルミナやコージライト)タイル、ガラス等の無機材料や、金属を使用することもできる。   Moreover, a resin molding can also be used as a base material. In this case, for example, polyethylene, polypropylene, polystyrene, poly (meth) acrylic acid, poly (meth) acrylate methyl, polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, polyethylene glycol, polypropylene glycol, polyethylene terephthalate, polybutylene terephthalate, polyester Polylactic acid, polyether, polysulfone, phenol resin, phenol formaldehyde resin, epoxy resin, melamine resin, urethane resin, vinyl chloride resin, polyamide, polyimide, polyamideimide, carbodiimide resin, urea resin, etc. A resin molded body obtained by molding into a predetermined shape can be used. Moreover, as a base material, ceramics (for example, alumina, cordierite) tile, inorganic materials, such as glass, and a metal can also be used.

基材の形状は、当該基材による炭素触媒の担持が可能であれば特に限られず、例えば、シート状、フィルム状、繊維状、網状、プレート状、板状、ハニカム状、プリーツ状、コルゲート状、コルゲートハニカム状、ペレット状、粒状、わた状、ウール状、ブロック状、円柱状、多角柱状、中空体、発泡体、多孔質体とすることができる。   The shape of the substrate is not particularly limited as long as the carbon catalyst can be supported by the substrate. For example, a sheet shape, a film shape, a fiber shape, a net shape, a plate shape, a plate shape, a honeycomb shape, a pleated shape, a corrugated shape Corrugated honeycomb, pellet, granular, cotton, wool, block, columnar, polygonal column, hollow body, foam, porous body.

すなわち、これらの場合、本分解材の形状もまた、シート状、フィルム状、繊維状、網状、プレート状、板状、ハニカム状、プリーツ状、コルゲート状、コルゲートハニカム状、ペレット状、粒状、わた状、ウール状、ブロック状、円柱状、多角柱状、中空体、発泡体、多孔質体とすることができる。また、本分解材は、例えば、紙、織物、編地、不織布等の繊維体や、フィルター、塗工シート、多層体とすることができる。   That is, in these cases, the shape of the decomposed material is also a sheet shape, a film shape, a fiber shape, a net shape, a plate shape, a plate shape, a honeycomb shape, a pleated shape, a corrugated shape, a corrugated honeycomb shape, a pellet shape, a granular shape, a cotton Shape, wool shape, block shape, columnar shape, polygonal column shape, hollow body, foamed body, porous body. Moreover, this decomposition material can be used as fiber bodies, such as paper, a textile fabric, a knitted fabric, a nonwoven fabric, a filter, a coating sheet, and a multilayer body, for example.

本分解材において、基材は、炭素触媒の表面の少なくとも一部が露出するように、当該基材の表面及び/又は内部に当該炭素触媒を担持する。   In the present decomposition material, the base material supports the carbon catalyst on the surface and / or inside of the base material such that at least a part of the surface of the carbon catalyst is exposed.

繊維基材を使用する場合には、例えば、当該繊維基材の製造時に、繊維間に炭素触媒を取り込むことにより、又は予め製造された当該繊維基材に炭素触媒を付着させることにより、当該炭素触媒を当該繊維基材に担持することができる。   In the case of using a fiber base material, for example, when the fiber base material is manufactured, the carbon base material is captured by incorporating a carbon catalyst between the fibers or by attaching the carbon catalyst to the fiber base material manufactured in advance. The catalyst can be supported on the fiber substrate.

繊維基材への炭素触媒の担持は、例えば、当該繊維基材にバインダーを介して当該炭素触媒を付着させることにより行うことができる。また、繊維基材を構成する繊維の融点付近での融着により、当該繊維基材に炭素触媒を付着させることもできる。この場合、バインダーを使用することなく、炭素触媒を繊維基材に直接担持させることができる。   The carbon catalyst can be supported on the fiber base material by, for example, attaching the carbon catalyst to the fiber base material via a binder. Moreover, a carbon catalyst can also be made to adhere to the said fiber base material by melt | fusion in the vicinity of melting | fusing point of the fiber which comprises a fiber base material. In this case, the carbon catalyst can be directly supported on the fiber base material without using a binder.

紙基材を使用する場合、本分解材は、例えば、炭素触媒を含む原料スラリーの抄紙により得られた分解材とすることができる。すなわち、この場合、まず、紙繊維原料(例えば、パルプ)と炭素触媒とを混合することにより、当該紙繊維原料と炭素材料とを含む原料スラリー(例えば、パルプスラリー)を調製し、次いで、当該原料スラリーを用いて抄紙を行うことにより、本分解材を製造することができる。抄紙方法としては、公知の方法を使用することができる。   When using a paper base material, this decomposition material can be made into the decomposition material obtained by the papermaking of the raw material slurry containing a carbon catalyst, for example. That is, in this case, first, a raw material slurry (for example, pulp slurry) containing the paper fiber raw material and the carbon material is prepared by mixing a paper fiber raw material (for example, pulp) and a carbon catalyst, By performing paper making using the raw material slurry, the present decomposed material can be produced. As a papermaking method, a known method can be used.

この場合、バインダーを使用することなく、炭素触媒を紙基材に直接担持させることができる。また、抄紙においては、従来公知のサイズ剤、填料、紙力増強剤、染料、塗料等の添加剤を使用することもでき、当該添加剤を使用しないとすることもできる。これらの方法により、炭素触媒が紙基材から脱落する問題(いわゆる粉落ち)を効果的に回避することができる。また、一般的な抄紙方法をそのまま利用できるため、簡便な方法によって、優れた有害物質分解性能を有する本分解材を確実に製造することができる。なお、紙基材への炭素触媒の担持は、上述の抄紙に限られず、例えば、予め製造された当該紙基材に、バインダーを介して当該炭素触媒を付着させることにより行うこともできる。   In this case, the carbon catalyst can be directly supported on the paper substrate without using a binder. In papermaking, conventionally known additives such as sizing agents, fillers, paper strength enhancers, dyes, paints, etc. can be used, and the additives can be omitted. By these methods, it is possible to effectively avoid the problem of the carbon catalyst falling off from the paper substrate (so-called powder falling). In addition, since a general papermaking method can be used as it is, the present decomposed material having excellent harmful substance decomposition performance can be reliably produced by a simple method. In addition, loading of the carbon catalyst on the paper base material is not limited to the above-mentioned papermaking, and for example, the carbon catalyst can be attached to the paper base material manufactured in advance via a binder.

無機繊維基材を使用する場合には、例えば、樹脂による融着、無機繊維の表面処理又はハイブリダイゼーションにより、本分解材を製造することができる。また、本分解材は、例えば、フィルター(例えば、ハニカム状のフィルター)を構成する繊維基材と、当該フィルターに充填された炭素触媒と、を含むものとすることもできる。   When an inorganic fiber substrate is used, the present decomposition material can be produced by, for example, fusion with a resin, surface treatment of inorganic fibers, or hybridization. Moreover, this decomposition material can also contain the fiber base material which comprises a filter (for example, honeycomb-shaped filter), and the carbon catalyst with which the said filter was filled, for example.

基材として樹脂成形体を使用する場合には、例えば、当該樹脂成形体を構成する樹脂の融点付近での融着により、当該樹脂基材に炭素触媒を付着させることができる。また、本分解材は、例えば、樹脂と炭素触媒との混合物の成形体とすることもできる。この場合、例えば、樹脂原料を溶融し又は溶媒で溶解し、次いで当該樹脂原料に炭素触媒を分散した後、得られた混合物を所定の形状に成形することにより、本分解材を製造することができる。   When using a resin molding as a base material, a carbon catalyst can be made to adhere to the said resin base material, for example by melt | fusion in the vicinity of melting | fusing point of resin which comprises the said resin molding. Moreover, this decomposition material can also be made into the molded object of the mixture of resin and a carbon catalyst, for example. In this case, for example, the present raw material can be produced by melting the resin raw material or dissolving it with a solvent, and then dispersing the carbon catalyst in the resin raw material, and then molding the obtained mixture into a predetermined shape. it can.

本分解材は、基材を劣化させることなく有害物質を効果的に分解する。すなわち、本分解材に含まれる炭素触媒は、有害物質を効果的に分解する優れた触媒活性を有することに加えて、当該触媒活性の発現により基材を劣化させることがない。   This decomposition material effectively decomposes harmful substances without degrading the base material. That is, the carbon catalyst contained in the present cracking material has excellent catalytic activity for effectively decomposing harmful substances, and does not deteriorate the substrate due to the development of the catalytic activity.

このため、本分解材においては、例えば、上述のように、炭素触媒を基材に直接担持することができる。したがって、本分解材は、炭素触媒が有する触媒活性を最大限に利用して、優れた有害物質分解性能を発揮することができる。また、本分解材は、煩雑で特殊な加工を含まない簡便な方法により、効率よく且つ確実に製造することができる。   For this reason, in this decomposition material, a carbon catalyst can be directly carry | supported on a base material as mentioned above, for example. Therefore, the present decomposition material can exhibit an excellent performance of decomposing harmful substances by making maximum use of the catalytic activity of the carbon catalyst. In addition, the present decomposed material can be efficiently and reliably produced by a simple method that is complicated and does not include special processing.

また、本分解材は、例えば、基材に担持されていない炭素触媒より高い有害物質分解性能を有することができる。すなわち、例えば、所定量の炭素触媒を基材に担持してなる本分解材は、当該基材に担持されていない当該所定量の炭素触媒に比べて、大きな有害物質分解速度を示すことができる。   Moreover, this decomposition material can have a hazardous | toxic substance decomposition performance higher than the carbon catalyst which is not carry | supported by the base material, for example. That is, for example, the present decomposition material formed by supporting a predetermined amount of carbon catalyst on a base material can exhibit a higher rate of decomposition of harmful substances than the predetermined amount of carbon catalyst not supported on the base material. .

また、光触媒がその触媒活性を発揮する上では、当該光触媒への光照射が必要となるが、本分解材による有害物質の分解には、そのような光照射は必要ない。したがって、本分解材は、光源のない環境(例えば、遮光下)においても、有害物質を効果的に分解することができる。   In addition, in order for the photocatalyst to exhibit its catalytic activity, it is necessary to irradiate the photocatalyst with light, but such light irradiation is not necessary for the decomposition of harmful substances by the decomposition material. Therefore, the present decomposition material can effectively decompose harmful substances even in an environment without a light source (for example, under light shielding).

また、本分解材による有害物質の分解は、炭素触媒の触媒活性に基づくものであり、且つ当該炭素触媒の触媒反応は基材を劣化させない。このため、本分解材は、繰り返し、長期間にわたって使用することができる。したがって、本分解材を使用することにより、環境負荷やランニングコストを効果的に低減しつつ有害物質を効率よく分解することができる。   Further, the decomposition of harmful substances by the present decomposition material is based on the catalytic activity of the carbon catalyst, and the catalytic reaction of the carbon catalyst does not deteriorate the base material. For this reason, this decomposition material can be repeatedly used over a long period of time. Therefore, by using this decomposition material, harmful substances can be efficiently decomposed while effectively reducing the environmental load and running cost.

また、本分解材に含まれる炭素触媒は、それ自身で優れた触媒活性を示すため、本分解材は、光触媒や貴金属触媒を含むことなく、有害物質を効果的に分解することができる。したがって、本分解材は、安価で汎用性の高い有害物質分解材とすることができる。   Moreover, since the carbon catalyst contained in this decomposition material shows the outstanding catalytic activity by itself, this decomposition material can decompose | disassemble a harmful substance effectively, without including a photocatalyst and a noble metal catalyst. Therefore, the present decomposed material can be an inexpensive and highly versatile harmful material decomposed material.

また、本分解材は、優れた抗菌性やかび抵抗性を有することもできる。したがって、本分解材は、例えば、抗菌性やかび抵抗性が要求されるような用途にも使用することができる。   Moreover, this decomposition material can also have the outstanding antibacterial property and mold resistance. Therefore, this decomposition material can be used also for the use as which antibacterial property and mold resistance are requested | required, for example.

本分解材を使用して有害物質を分解する方法においては、例えば、本分解材を、除去すべき有害物質を含有する流体(気体又は液体)と接触させる。具体的に、例えば、本分解材を、VOC等の有害物質を含有する気体と接触させることにより、当該有害物質を分解する。また、例えば、本分解材を、CO、NOx、SOx等の有毒ガスを含有する気体と接触させることにより、当該有毒ガスを酸化分解することもできる。   In the method of decomposing a harmful substance using the present decomposing material, for example, the decomposing material is brought into contact with a fluid (gas or liquid) containing the harmful substance to be removed. Specifically, for example, the decomposition material is decomposed by bringing the decomposition material into contact with a gas containing a hazardous material such as VOC. For example, the toxic gas can be oxidatively decomposed by bringing the decomposition material into contact with a gas containing a toxic gas such as CO, NOx, and SOx.

なお、本分解材は、他の有害物質除去材と併用することもできる。すなわち、例えば、本分解材と、他の有害物質分解材及び/又は有害物質吸着剤と、を組み合わせて使用することもできる。   In addition, this decomposition material can also be used together with another harmful substance removal material. That is, for example, the present decomposed material can be used in combination with another harmful substance decomposed material and / or a harmful substance adsorbent.

また、本分解材の用途としては、例えば、有害物質の分解や一酸化炭素の酸化分解等に関連して、内燃機関等における排ガス浄化、喫煙品(タバコフィルター)、改質ガス中のCO選択酸化(例えば、水素リッチガス等の燃料改質ガス中のCO除去)、ガスセンサー(電気化学的酸化含む)、高純度ガスの精製、光触媒反応装置(光触媒との併用)、水生ガスシフト触媒、メタノール改質用マイクロリアクター、エタノール酸化による酢酸製造、防毒マスク、石油ストーブのガスフィルター、空気清浄機のフィルターが挙げられる。また、本分解材の用途としては、例えば、有害物質の分解や窒素酸化物及び/又は硫黄酸化物の酸化分解等に関連して、屋内及び屋外におけるセルフクリーニング、防汚機能を持つ外壁材や窓ガラス、タイル、防曇機能を持つ自動車ドアミラーが挙げられる。   In addition, the use of this decomposition material is related to, for example, the decomposition of harmful substances and the oxidative decomposition of carbon monoxide, exhaust gas purification in internal combustion engines, smoking goods (cigarette filters), and CO selection in reformed gas Oxidation (for example, removal of CO in fuel reformed gas such as hydrogen rich gas), gas sensor (including electrochemical oxidation), purification of high purity gas, photocatalytic reactor (combined with photocatalyst), aquatic gas shift catalyst, methanol reforming Quality microreactor, production of acetic acid by ethanol oxidation, gas mask, gas filter of oil stove, air cleaner filter. In addition, examples of the use of this decomposition material include outdoor wall materials having self-cleaning and antifouling functions indoors and outdoors in connection with decomposition of harmful substances and oxidative decomposition of nitrogen oxides and / or sulfur oxides. Window glass, tiles, and automotive door mirrors with anti-fogging function.

次に、本実施形態に係る具体的な実施例について説明する。   Next, specific examples according to the present embodiment will be described.

[電子顕微鏡観察]
走査電子顕微鏡(S−4800、株式会社日立ハイテクノロジーズ製)を用い、100倍率で写真を撮影した。
[Electron microscope observation]
Using a scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation), a photograph was taken at 100 magnification.

[アルデヒド分解試験]
25℃でテドラーバッグに、試料を収納すると共に、ホルムアルデヒドを1000ppmの濃度で含有する空気3Lを注入し、暗室下で放置した。3時間及び24時間後、テドラーバッグ内のホルムアルデヒド濃度と、当該ホルムアルデヒドが分解されることにより発生した二酸化炭素の濃度と、を測定した。ホルムアルデヒドの濃度及び二酸化炭素の濃度は、ホルムアルデヒド用検知管及び二酸化炭素用検知管(株式会社ガステック製)でそれぞれ測定した。
[Aldehyde degradation test]
The sample was stored in a Tedlar bag at 25 ° C., and 3 L of air containing formaldehyde at a concentration of 1000 ppm was injected and left in a dark room. After 3 hours and 24 hours, the concentration of formaldehyde in the Tedlar bag and the concentration of carbon dioxide generated by the decomposition of the formaldehyde were measured. The concentration of formaldehyde and the concentration of carbon dioxide were measured with a detector tube for formaldehyde and a detector tube for carbon dioxide (manufactured by Gastec Co., Ltd.).

そして、ホルムアルデヒド分解率(%)を次の式;ホルムアルデヒド分解率(%)=[3時間後又は24時間後の二酸化炭素濃度(ppm)−大気中の二酸化炭素量(ppm)]/初期のホルムアルデヒド濃度(ppm)×100;により求めた。また、ホルムアルデヒド消失率(%)を次の式;ホルムアルデヒド消失率(%)=[(初期のホルムアルデヒド濃度(ppm)−3時間後又は24時間後のホルムアルデヒド濃度(ppm))/初期のホルムアルデヒド濃度(ppm)]×100;により求めた。さらに、ホルムアルデヒド吸着率(%)を次の式;ホルムアルデヒド吸着率(%)=ホルムアルデヒド消失率(%)−ホルムアルデヒド分解率(%);により求めた。   The formaldehyde decomposition rate (%) is expressed by the following formula: formaldehyde decomposition rate (%) = [carbon dioxide concentration (ppm) after 3 hours or 24 hours−carbon dioxide amount (ppm) in the atmosphere] / initial formaldehyde Concentration (ppm) × 100; Further, the formaldehyde disappearance rate (%) is expressed by the following formula: formaldehyde disappearance rate (%) = [(initial formaldehyde concentration (ppm) —after 3 hours or after 24 hours formaldehyde concentration (ppm)) / initial formaldehyde concentration ( ppm)] × 100; Furthermore, the formaldehyde adsorption rate (%) was determined by the following formula: formaldehyde adsorption rate (%) = formaldehyde disappearance rate (%) − formaldehyde decomposition rate (%).

[劣化試験]
25℃のテドラーバッグに、試料を収納すると共に、空気3Lを注入した。次いで、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、テドラーバッグに対して、0.1mW/cmの強度で紫外線の照射を開始した。
[Deterioration test]
A sample was stored in a 25 ° C. Tedlar bag and 3 L of air was injected. Next, using a UV lamp (black light fluorescent lamp FL15BLB-A: peak wavelength 352 nm, manufactured by Toshiba Lighting & Technology Co., Ltd.), irradiation of UV light with a strength of 0.1 mW / cm 2 was started on the Tedlar bag.

24時間後、テドラーバッグ内の基材が分解されることにより発生した二酸化炭素及び一酸化炭素の濃度を、二酸化炭素及び一酸化炭素用検知管(株式会社ガステック製)で測定した。   After 24 hours, the concentrations of carbon dioxide and carbon monoxide generated by the decomposition of the substrate in the Tedlar bag were measured with a carbon dioxide and carbon monoxide detector tube (manufactured by Gastec Corporation).

24時間後におけるテドラーバッグ内の二酸化炭素及び一酸化炭素の濃度は、測定された濃度から大気中の濃度を減じた値として算出した。また、試験前後の基材の黄変化の有無を目視により確認した。   The concentration of carbon dioxide and carbon monoxide in the Tedlar bag after 24 hours was calculated as a value obtained by subtracting the concentration in the atmosphere from the measured concentration. Moreover, the presence or absence of the yellow change of the base material before and behind a test was confirmed visually.

[実施例1]
1.5gのポリアクリロニトリル−ポリメタクリル酸共重合体(PAN/PMA)を30mLのジメチルホルムアミドに溶解させ、さらに1.5gの2−メチルイミダゾールと、1.5gの塩化コバルト六水和物(CoCl・6HO)(関東化学株式会社製)と、を加え、室温で2時間攪拌した。こうして得られた混合物に、ケッチェンブラック(ECP600JD、ライオン株式会社製)を、溶媒を除いた成分中の含有量が30重量%となるように加え、乳鉢を用いて混合した。得られた混合物を、60℃で12時間、真空乾燥した。
[Example 1]
1.5 g of polyacrylonitrile-polymethacrylic acid copolymer (PAN / PMA) is dissolved in 30 mL of dimethylformamide, and 1.5 g of 2-methylimidazole and 1.5 g of cobalt chloride hexahydrate (CoCl and 2 · 6H 2 O) (manufactured by Kanto Chemical Co., Inc.), and the mixture was stirred for 2 hours at room temperature. To the mixture thus obtained, ketjen black (ECP600JD, manufactured by Lion Corporation) was added so that the content in the component excluding the solvent would be 30% by weight, and mixed using a mortar. The resulting mixture was vacuum dried at 60 ° C. for 12 hours.

さらに、この混合物を大気中で加熱して、30分間で室温から150℃まで昇温し、続いて2時間かけて150℃から220℃まで昇温した。その後、混合物を220℃で3時間保持し、当該混合物の不融化を行った。こうして原料を調製した。   Further, this mixture was heated in the air, and the temperature was raised from room temperature to 150 ° C. in 30 minutes. Subsequently, the temperature was raised from 150 ° C. to 220 ° C. over 2 hours. Thereafter, the mixture was kept at 220 ° C. for 3 hours to infusibilize the mixture. In this way, the raw material was prepared.

次に、上述のようにして得られた原料を石英管に入れ、イメージ炉にて、20分間窒素パージし、窒素雰囲気中で加熱により18分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持した。こうして原料の炭素化を行った。   Next, the raw material obtained as described above was put in a quartz tube, purged with nitrogen for 20 minutes in an image furnace, and heated from room temperature to 900 ° C. over 18 minutes by heating in a nitrogen atmosphere. Thereafter, this raw material was held at 900 ° C. for 1 hour. In this way, the raw material was carbonized.

さらに、遊星ボールミル(P−7、フリッチュジャパン株式会社製)内に直径が10mmのジルコニアボールをセットし、当該遊星ボールミルによって炭素材料を回転速度650rpmで5分間粉砕する処理を10サイクル行った。こうして炭素材料を粉砕した。その後、粉砕した炭素材料を取り出し、目開き106μmの篩にかけた。そして、篩を通過した炭素材料を、粉砕された微粒子状の炭素触媒1(PCo)として得た。   Further, a zirconia ball having a diameter of 10 mm was set in a planetary ball mill (P-7, manufactured by Fritsch Japan Co., Ltd.), and the carbon material was pulverized at a rotational speed of 650 rpm for 5 minutes by the planetary ball mill for 10 cycles. Thus, the carbon material was pulverized. Thereafter, the pulverized carbon material was taken out and passed through a sieve having an aperture of 106 μm. And the carbon material which passed the sieve was obtained as the pulverized particulate carbon catalyst 1 (PCo).

次に、上述のようにして得た炭素触媒1(PCo)を紙基材に担持した。すなわち、針葉樹晒クラフトパルプ50質量部と広葉樹クラフトパルプ50質量部とを水に離解し、3.5%のパルプスラリーを調製した。このパルプスラリーを叩解して400mlc.s.fに調整した。   Next, the carbon catalyst 1 (PCo) obtained as described above was supported on a paper substrate. That is, 50 parts by mass of softwood bleached kraft pulp and 50 parts by mass of hardwood kraft pulp were disaggregated in water to prepare 3.5% pulp slurry. This pulp slurry was beaten to give 400 mlc.s. Adjusted to f.

そこに、湿潤紙力増強剤を固形分で0.5質量%添加し、乾燥紙力増強剤を固形分で1質量%添加して分散し、さらに炭素触媒1(PCo)を固形分で40質量%添加して攪拌した。   There, 0.5% by weight of wet paper strength enhancer is added in solid content, 1% by weight of dry paper strength enhancer is added and dispersed, and carbon catalyst 1 (PCo) is added in solid content of 40%. Mass% was added and stirred.

その後、このパルプスラリーを用いて、JIS P 8222に準拠した抄紙方法により、炭素触媒1(PCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/mのペーパーシートを製造した。 Thereafter, using this pulp slurry, a sheet-like harmful substance decomposition material formed by supporting the carbon catalyst 1 (PCo) on a paper base material by a papermaking method in accordance with JIS P 8222, the basis weight is 70 g / m 2 . A paper sheet was produced.

こうして得られたペーパーシートの走査型電子顕微鏡観察を行った。また、200mgの炭素触媒1(PCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。   The paper sheet thus obtained was observed with a scanning electron microscope. Moreover, the aldehyde decomposition | disassembly test and the deterioration test were done using the paper sheet (10 cm x 10 cm) containing the carbon catalyst 1 (PCo) of 200 mg as a sample.

[実施例2]
5gの黒鉛AG.B(伊藤黒鉛工業株式会社製)、5gのコハク酸ジヒドラジド(株式会社日本ファインケム製)、5gの塩化コバルト六水和物(CoCl・6HO)を50mLの蒸留水に混合溶解した。こうして得られた溶液を100℃で12時間、乾燥させ、さらに乳鉢で粉砕して、原料を得た。
[Example 2]
5 g of graphite AG. B (manufactured by Ito Graphite Industries, Ltd.), (manufactured by Nippon Finechem) succinic acid dihydrazide 5g, were mixed and dissolved cobalt chloride hexahydrate 5g of (CoCl 2 · 6H 2 O) in distilled water 50 mL. The solution thus obtained was dried at 100 ° C. for 12 hours and further pulverized in a mortar to obtain a raw material.

次に、上述のようにして得られた原料を石英管に入れ、管状炉にて20分間窒素パージし、窒素雰囲気中で加熱により90分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持した。こうして原料の炭素化を行った。   Next, the raw material obtained as described above was put in a quartz tube, purged with nitrogen for 20 minutes in a tubular furnace, and heated from room temperature to 900 ° C. over 90 minutes by heating in a nitrogen atmosphere. Thereafter, this raw material was held at 900 ° C. for 1 hour. In this way, the raw material was carbonized.

さらに、こうして得られた炭素材料を乳鉢により粉砕した。その後、粉砕した炭素材料を取り出し、目開き106μmの篩にかけた。そして、篩を通過した炭素材料を、粉砕された微粒子状の炭素触媒2(AGBCo)として得た。   Further, the carbon material thus obtained was pulverized with a mortar. Thereafter, the pulverized carbon material was taken out and passed through a sieve having an aperture of 106 μm. And the carbon material which passed the sieve was obtained as the pulverized particulate carbon catalyst 2 (AGBCo).

炭素触媒1(PCo)に代えて炭素触媒2(AGBCo)を使用した以外は上述の実施例1と同様にして、当該炭素触媒2(AGBCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/mのペーパーシートを製造した。そして、200mgの炭素触媒2(AGBCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。 Except for using carbon catalyst 2 (AGBCo) instead of carbon catalyst 1 (PCo), a sheet-like harmful article formed by supporting the carbon catalyst 2 (AGBCo) on a paper substrate in the same manner as in Example 1 above. A paper sheet having a basis weight of 70 g / m 2 was manufactured as a material decomposition material. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg of carbon catalyst 2 (AGBCo) as a sample.

[実施例3]
上述の実施例1と同様にして炭素触媒1(PCo)を得た。次いで、この炭素触媒1(PCo)を有機繊維不織布に担持した。すなわち、5.16gのポリビニルアルコール系水性バインダー(PVA R1130、株式会社クラレ製)を78.4gの水道水で溶解させた後、分散機で撹拌させながら、徐々に13.94gの炭素触媒1(PCo)を添加した。全ての成分を混合した後、混合液を1000rpmで10分間、撹拌した。撹拌後、混合液をコットン不織布(オイコス:目付け40g/m、日清紡テキスタイル株式会社製)に浸透させ、100℃の熱風乾燥機にて1分間乾燥させることにより、炭素触媒1(PCo)を有機繊維不織布基材に担持してなるシート状の有害物質分解材を製造した。そして、200mgの炭素触媒1(PCo)を含む不織布(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Example 3]
Carbon catalyst 1 (PCo) was obtained in the same manner as in Example 1 described above. Next, the carbon catalyst 1 (PCo) was supported on an organic fiber nonwoven fabric. That is, after 5.16 g of polyvinyl alcohol-based aqueous binder (PVA R1130, manufactured by Kuraray Co., Ltd.) was dissolved in 78.4 g of tap water, 13.94 g of carbon catalyst 1 ( PCo) was added. After mixing all the components, the mixture was stirred at 1000 rpm for 10 minutes. After stirring, the mixed liquid is infiltrated into a cotton non-woven fabric (Oikos: basis weight 40 g / m 2 , manufactured by Nisshinbo Textile Co., Ltd.) and dried in a hot air dryer at 100 ° C. for 1 minute, whereby the carbon catalyst 1 (PCo) is organic. A sheet-like material for decomposing a harmful substance formed on a fiber nonwoven fabric substrate was produced. And the aldehyde decomposition | disassembly test was done using the nonwoven fabric (10 cm x 10 cm) containing 200 mg of carbon catalyst 1 (PCo) as a sample.

[実施例4]
1gの黒鉛AG.B(伊藤黒鉛工業株式会社製)、5gの20重量%ポリアクリルアミド系紙力剤(星光PMC株式会社製)、1gの硫酸コバルト七水和物(CoSO・7HO)を混合し、得られた粘調溶液を80℃で12時間、乾燥させた。
[Example 4]
1 g of graphite AG. B (manufactured by Ito Graphite Industries Co., Ltd.), 5 g of 20 wt% polyacrylamide paper strength agent (manufactured by Seiko PMC Co., Ltd.), and 1 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) were mixed to obtain The resulting viscous solution was dried at 80 ° C. for 12 hours.

次に、原料の炭素化を行った。すなわち、上述のようにして得られた原料を石英管に入れ、イメージ炉にて20分間窒素パージし、加熱により90分かけて室温から900℃まで昇温した。その後、この原料を900℃で1時間保持し、炭素化材料を得た。   Next, the raw material was carbonized. That is, the raw material obtained as described above was placed in a quartz tube, purged with nitrogen for 20 minutes in an image furnace, and heated from room temperature to 900 ° C. over 90 minutes. Thereafter, this raw material was held at 900 ° C. for 1 hour to obtain a carbonized material.

さらに、炭素化材料を乳鉢により粉砕した。その後、粉砕した炭素化材料を取り出し、目開き106μmの篩いを通過した炭素化材料を、粉砕された微粒子状の炭素触媒3(AASCo)として得た。   Further, the carbonized material was pulverized with a mortar. Thereafter, the pulverized carbonized material was taken out, and a carbonized material that passed through a sieve having an aperture of 106 μm was obtained as a pulverized particulate carbon catalyst 3 (AASCo).

炭素触媒1(PCo)に代えて炭素触媒3(AASCo)を使用した以外は上述の実施例1と同様にして、当該炭素触媒3(AASCo)を紙基材に担持してなるシート状の有害物質分解材として、坪量70g/mのペーパーシートを製造した。そして、200mgの炭素触媒3(AASCo)を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。 Except for using carbon catalyst 3 (AASCo) instead of carbon catalyst 1 (PCo), in the same manner as in Example 1 above, a sheet-like harmful article formed by supporting the carbon catalyst 3 (AASCo) on a paper substrate A paper sheet having a basis weight of 70 g / m 2 was manufactured as a material decomposition material. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg of carbon catalysts 3 (AASCo) as a sample.

[比較例1]
有害物質分解材として炭素触媒1(PCo)の粉末をそのまま用いた。200mgの炭素触媒1(PCo)の粉末を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 1]
The powder of carbon catalyst 1 (PCo) was used as it was as a harmful substance decomposition material. An aldehyde decomposition test was performed using 200 mg of powder of carbon catalyst 1 (PCo) as a sample.

[比較例2]
有害物質分解材として炭素触媒2(AGBCo)の粉末をそのまま用いた。200mgの炭素触媒2(AGBCo)の粉末を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 2]
The carbon catalyst 2 (AGBCo) powder was used as it was as a harmful substance decomposition material. An aldehyde decomposition test was performed using 200 mg of carbon catalyst 2 (AGBCo) powder as a sample.

[比較例3]
炭素触媒1(PCo)を使用しない以外は、実施例1と同様の方法により、ペーパーシート(すなわち、実施例1に係る有害物質分解材の紙基材のみ)を製造した。得られたペーパーシートの電子顕微鏡観察を行った。また、このペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
[Comparative Example 3]
A paper sheet (that is, only the paper substrate of the hazardous substance decomposing material according to Example 1) was produced in the same manner as in Example 1 except that the carbon catalyst 1 (PCo) was not used. The obtained paper sheet was observed with an electron microscope. Moreover, the aldehyde decomposition | disassembly test and the deterioration test were done using this paper sheet (10 cm x 10 cm) as a sample.

[比較例4]
炭素触媒に代えて高性能活性炭(関西熱化学株式会社製、MSC−30)を用いた以外は上述の実施例1と同様の方法により、当該活性炭を紙基材に担持してなるペーパーシートを製造した。そして、200mgの活性炭を含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 4]
A paper sheet obtained by supporting the activated carbon on a paper substrate in the same manner as in Example 1 except that high-performance activated carbon (MSC-30, manufactured by Kansai Thermal Chemical Co., Ltd.) was used instead of the carbon catalyst. Manufactured. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg activated carbon as a sample.

[比較例5]
炭素触媒に代えてY型ゼオライト(HISIV6000、ユニオン昭和株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該Y型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのY型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 5]
A paper sheet is produced by supporting the Y-type zeolite on a paper substrate in the same manner as in Example 1 except that Y-type zeolite (HISIV6000, manufactured by Union Showa Co., Ltd.) is used instead of the carbon catalyst. did. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg Y-type zeolite as a sample.

[比較例6]
炭素触媒に代えてA型ゼオライト(モレキュラシーブ4Aパウダー、ユニオン昭和株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該A型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのA型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 6]
A paper sheet in which the A-type zeolite is supported on a paper substrate in the same manner as in Example 1 except that A-type zeolite (Molecular Sieve 4A powder, Union Showa Co., Ltd.) is used instead of the carbon catalyst. Manufactured. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg A-type zeolite as a sample.

[比較例7]
炭素触媒に代えてX型ゼオライト(ゼオラムF−9、東ソー株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該X型ゼオライトを紙基材に担持してなるペーパーシートを製造した。そして、200mgのX型ゼオライトを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 7]
A paper sheet in which the X-type zeolite is supported on a paper substrate in the same manner as in Example 1 except that X-type zeolite (Zeoram F-9, manufactured by Tosoh Corporation) is used instead of the carbon catalyst. Manufactured. And the aldehyde decomposition | disassembly test was done using the paper sheet (10 cm x 10 cm) containing 200 mg X-type zeolite as a sample.

[比較例8]
炭素触媒に代えて光触媒A(石原産業株式会社製、ST-01)を用いた以外は上述の実施例1と同様の方法により、当該光触媒Aを紙基材に担持してなるペーパーシートを製造した。そして、200mgの光触媒Aを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
[Comparative Example 8]
A paper sheet is produced by supporting the photocatalyst A on a paper substrate in the same manner as in Example 1 except that the photocatalyst A (manufactured by Ishihara Sangyo Co., Ltd., ST-01) is used instead of the carbon catalyst. did. And the aldehyde decomposition | disassembly test and the deterioration test were done using the paper sheet (10 cm x 10 cm) containing 200 mg of photocatalysts A as a sample.

なお、アルデヒド分解試験及び劣化試験においては、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、ペーパーシートに対して0.1mW/cmの強度で紫外線を照射した。 In the aldehyde decomposition test and the deterioration test, an ultraviolet lamp (black light fluorescent lamp FL15BLB-A: peak wavelength 352 nm, manufactured by Toshiba Lighting & Technology Co., Ltd.) was used, with an intensity of 0.1 mW / cm 2 to the paper sheet. Irradiated with ultraviolet rays.

[比較例9]
上述の比較例8と同様の方法で得た200mgの光触媒Aを含むペーパーシート(10cm×10cm)を試料として用いて、紫外線を照射しない以外は上述の比較例8と同様の方法でアルデヒド分解試験を行った。
[Comparative Example 9]
Using a paper sheet (10 cm × 10 cm) containing 200 mg of photocatalyst A obtained by the same method as in Comparative Example 8 described above as a sample, the aldehyde decomposition test was performed in the same manner as in Comparative Example 8 except that UV irradiation was not performed. Went.

[比較例10]
炭素触媒に代えて光触媒B(TP-S201、住友化学株式会社製)を用いた以外は上述の実施例1と同様の方法により、当該光触媒Bを紙基材に担持してなるペーパーシートを製造した。そして、200mgの光触媒Bを含むペーパーシート(10cm×10cm)を試料として用いて、アルデヒド分解試験及び劣化試験を行った。
[Comparative Example 10]
A paper sheet is produced by supporting the photocatalyst B on a paper substrate in the same manner as in Example 1 except that the photocatalyst B (TP-S201, manufactured by Sumitomo Chemical Co., Ltd.) is used instead of the carbon catalyst. did. And the aldehyde decomposition | disassembly test and the deterioration test were done using the paper sheet (10 cm x 10 cm) containing 200 mg of photocatalyst B as a sample.

なお、アルデヒド分解試験及び劣化試験においては、紫外線ランプ(ブラックライト蛍光ランプFL15BLB-A:ピーク波長352nm、東芝ライテック株式会社製)を用いて、ペーパーシートに対して0.1mW/cmの強度で紫外線を照射した。 In the aldehyde decomposition test and the deterioration test, an ultraviolet lamp (black light fluorescent lamp FL15BLB-A: peak wavelength 352 nm, manufactured by Toshiba Lighting & Technology Co., Ltd.) was used, with an intensity of 0.1 mW / cm 2 to the paper sheet. Irradiated with ultraviolet rays.

[比較例11]
上述の比較例10と同様の方法で得た200mgの光触媒Bを含むペーパーシート(10cm×10cm)を試料として用いて、紫外線を照射しない以外は上述の比較例10と同様の方法でアルデヒド分解試験を行った。
[Comparative Example 11]
Using a paper sheet (10 cm × 10 cm) containing 200 mg of photocatalyst B obtained by the same method as in Comparative Example 10 described above as a sample, an aldehyde decomposition test was performed in the same manner as in Comparative Example 10 except that UV irradiation was not performed. Went.

[比較例12]
炭素触媒1に代えてZSM-5ゼオライト(ユニオン昭和株式会社製、HISIV3000)を用いた以外は上述の実施例3と同様の方法により、当該ZSM-5ゼオライトを有機繊維不織布基材に担持してなる不織布を製造した。そして、200mgのZSM-5ゼオライトを含む不織布(10cm×10cm)を試料として用いて、アルデヒド分解試験を行った。
[Comparative Example 12]
The ZSM-5 zeolite was supported on an organic fiber nonwoven fabric substrate in the same manner as in Example 3 except that ZSM-5 zeolite (Union Showa Co., Ltd., HISIV3000) was used instead of the carbon catalyst 1. A nonwoven fabric was produced. And the aldehyde decomposition | disassembly test was done using the nonwoven fabric (10 cm x 10 cm) containing 200 mg of ZSM-5 zeolite as a sample.

[電子顕微鏡観察の結果]
図1A及び図1Bには、上述の実施例1及び比較例3で得られた電子顕微鏡写真をそれぞれ示す。図1Aに示すように、実施例1で製造されたペーパーシートにおいては、紙基材の紙繊維間に炭素触媒の微粒子が分散して担持されていることが確認された。また、炭素触媒は、その表面の大部分が露出した状態で、且つ紙基材に強固に付着していた。
[Results of electron microscope observation]
1A and 1B show electron micrographs obtained in Example 1 and Comparative Example 3 described above, respectively. As shown in FIG. 1A, in the paper sheet manufactured in Example 1, it was confirmed that the fine particles of the carbon catalyst were dispersed and supported between the paper fibers of the paper base material. Moreover, the carbon catalyst was firmly attached to the paper base material with most of its surface exposed.

[アルデヒド分解試験の結果]
図2に、アルデヒド分解試験で得られた結果を示す。図2には、実施例1〜4及び比較例1〜12の各々について、3時間後及び24時間後における、ホルムアルデヒド(HCHO)濃度(ppm)、二酸化炭素(CO)濃度(ppm)、ホルムアルデヒド分解率(%)、ホルムアルデヒド消失率(%)及びホルムアルデヒド吸着率(%)を評価した結果を示す。なお、二酸化炭素濃度は、テドラーバッグ内における測定値から、大気中(テドラーバッグ外)の測定値を減じた値である。
[Results of aldehyde decomposition test]
FIG. 2 shows the results obtained in the aldehyde decomposition test. FIG. 2 shows formaldehyde (HCHO) concentration (ppm), carbon dioxide (CO 2 ) concentration (ppm), and formaldehyde after 3 hours and 24 hours for each of Examples 1 to 4 and Comparative Examples 1 to 12. The results of evaluation of decomposition rate (%), formaldehyde disappearance rate (%) and formaldehyde adsorption rate (%) are shown. The carbon dioxide concentration is a value obtained by subtracting the measured value in the atmosphere (outside the Tedlar bag) from the measured value in the Tedlar bag.

図2に示すように、実施例1に係る炭素触媒1(PCo)を含むペーパーシート、実施例2に係る炭素触媒2(AGBCo)を含むペーパーシート、実施例3に係る炭素触媒1(PCo)を含む有機繊維不織布及び炭素触媒3(AASCo)を含むペーパーシートは、いずれも、24時間後において、100%のホルムアルデヒド分解率を達成した。すなわち、実施例1〜4に係る有害物質分解材は、優れたアルデヒド分解性能を有することが確認された。   As shown in FIG. 2, a paper sheet containing carbon catalyst 1 (PCo) according to Example 1, a paper sheet containing carbon catalyst 2 (AGBCo) according to Example 2, and a carbon catalyst 1 (PCo) according to Example 3. Both the organic fiber nonwoven fabric containing and the paper sheet containing the carbon catalyst 3 (AASCo) achieved a formaldehyde decomposition rate of 100% after 24 hours. That is, it was confirmed that the hazardous substance decomposition materials according to Examples 1 to 4 have excellent aldehyde decomposition performance.

また、3時間後におけるアルデヒド分解率から明らかなように、これら実施例1〜4に係る有害物質分解材のアルデヒド分解速度は、比較例1に係る炭素触媒1(PCo)粉末や比較例2に係る炭素触媒2(AGBCo)粉末に比べて顕著に大きかった。すなわち、炭素触媒1(PCo)粉末、炭素触媒2(AGBCo)粉末及び炭素触媒3(AASCo)粉末は、紙基材や不織布といった繊維基材に担持されることによって、その有害物質分解速度が顕著に向上した。また、実施例1〜4に係る有害物質分解材は、ホルムアルデヒドを実質的に吸着しなかった。   Further, as apparent from the aldehyde decomposition rate after 3 hours, the aldehyde decomposition rates of the hazardous substance decomposition materials according to Examples 1 to 4 are the same as those of the carbon catalyst 1 (PCo) powder according to Comparative Example 1 and Comparative Example 2. It was significantly larger than the carbon catalyst 2 (AGBCo) powder. That is, carbon catalyst 1 (PCo) powder, carbon catalyst 2 (AGBCo) powder and carbon catalyst 3 (AASCo) powder are supported on a fiber base material such as a paper base material or a non-woven fabric, so that their harmful substance decomposition rate is remarkable. Improved. Moreover, the harmful substance decomposition material which concerns on Examples 1-4 did not adsorb | suck formaldehyde substantially.

なお、比較例8及び比較例10に係る光触媒を含むペーパーシートからは、24時間の紫外線照射によって、アルデヒドの初期濃度1000ppm以上の大量のCOが発生した。したがって、光触媒を含むペーパーシートにおいては、紙基材の顕著な劣化が起こったと考えられた。 In addition, from the paper sheet containing the photocatalyst according to Comparative Example 8 and Comparative Example 10, a large amount of CO 2 having an initial aldehyde concentration of 1000 ppm or more was generated by ultraviolet irradiation for 24 hours. Therefore, in the paper sheet containing a photocatalyst, it was thought that remarkable deterioration of the paper base material occurred.

[劣化試験の結果]
図3に、劣化試験で得られた結果を示す。図3に示すように、実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート及び比較例3に係る当該紙基材からなるペーパーシートからは、24時間の紫外線照射によっても、二酸化炭素(CO)及び一酸化炭素(CO)は全く発生しなかった。また、これらのペーパーシートにおいては、紫外線照射による外観上の黄変化も認められなかった。
[Results of deterioration test]
FIG. 3 shows the results obtained in the deterioration test. As shown in FIG. 3, from the paper sheet which carries the carbon catalyst 1 (PCo) which concerns on Example 1 on the paper base material, and the paper sheet which consists of the said paper base material which concerns on the comparative example 3, ultraviolet rays for 24 hours are shown. Irradiation produced no carbon dioxide (CO 2 ) or carbon monoxide (CO). Further, in these paper sheets, no yellow change in appearance due to ultraviolet irradiation was observed.

これに対し、比較例8及び比較例10に係る光触媒を含むペーパーシートからは、24時間の紫外線照射によって、大量の二酸化炭素及び一酸化炭素が発生した。この大量の二酸化炭素及び一酸化炭素の発生は、光触媒を含むペーパーシートにおいては、紙基材が劣化したことによるものと考えられた。さらに、光触媒を含むペーパーシートは、紫外線が照射されることによって、その外観に黄変化が見られた。   In contrast, a large amount of carbon dioxide and carbon monoxide were generated from the paper sheet containing the photocatalyst according to Comparative Example 8 and Comparative Example 10 by ultraviolet irradiation for 24 hours. The generation of this large amount of carbon dioxide and carbon monoxide was thought to be due to the deterioration of the paper substrate in the paper sheet containing the photocatalyst. Further, the paper sheet containing the photocatalyst was yellowed in appearance when irradiated with ultraviolet rays.

このようなアルデヒド分解試験及び劣化試験により、実施例1〜4に係る炭素触媒を含む有害物質分解材は、基材を劣化させることなく、有害物質を効果的に分解することが確認された。   By such an aldehyde decomposition test and degradation test, it was confirmed that the hazardous substance decomposition material containing the carbon catalyst according to Examples 1 to 4 effectively decomposes the hazardous substance without deteriorating the base material.

[一酸化炭素の酸化分解試験]
実施例1に係る100mgの炭素触媒1(PCo)を含むペーパーシート(5cm×10cm)又は比較例1に係る100mgの炭素触媒1(PCo)粉末を、25℃のテドラーバッグに収納すると共に、当該テドラーバッグに、一酸化炭素を2100ppmの濃度で含有する空気3Lを注入し、暗室下で放置した。
[Oxidative decomposition test of carbon monoxide]
A paper sheet (5 cm × 10 cm) containing 100 mg of carbon catalyst 1 (PCo) according to Example 1 or 100 mg of carbon catalyst 1 (PCo) powder according to Comparative Example 1 is housed in a 25 ° C. Tedlar bag, and the Tedlar bag Then, 3 L of air containing carbon monoxide at a concentration of 2100 ppm was injected and left in a dark room.

24時間後及び60時間後に、テドラーバッグ内の一酸化炭素濃度と、当該一酸化炭素が酸化分解されることにより発生した二酸化炭素の濃度と、を測定した。一酸化炭素の濃度及び二酸化炭素の濃度は、一酸化炭素用検知管及び二酸化炭素用検知管(株式会社ガステック製)で測定した。   After 24 hours and 60 hours, the carbon monoxide concentration in the Tedlar bag and the concentration of carbon dioxide generated by the oxidative decomposition of the carbon monoxide were measured. The concentration of carbon monoxide and the concentration of carbon dioxide were measured with a carbon monoxide detector tube and a carbon dioxide detector tube (manufactured by Gastec Co., Ltd.).

そして、一酸化炭素分解率(%)を次の式;一酸化炭素分解率(%)=[24時間後又は60時間後の二酸化炭素濃度(ppm)−大気中の二酸化炭素量(ppm)]/初期の一酸化炭素濃度(ppm)×100;により求めた。また、一酸化炭素消失率(%)を次の式;一酸化炭素消失率(%)=[(初期の一酸化炭素濃度(ppm)−24時間後又は60時間後の一酸化炭素濃度(ppm))/初期の一酸化炭素濃度(ppm)]×100;により求めた。さらに、一酸化炭素吸着率(%)を次の式;一酸化炭素吸着率(%)=一酸化炭素消失率(%)−一酸化炭素分解率(%);により求めた。   The carbon monoxide decomposition rate (%) is expressed by the following formula; carbon monoxide decomposition rate (%) = [carbon dioxide concentration (ppm) after 24 hours or 60 hours−carbon dioxide amount in the atmosphere (ppm)] / Initial carbon monoxide concentration (ppm) × 100; Further, the carbon monoxide disappearance rate (%) is expressed by the following formula: carbon monoxide disappearance rate (%) = [(initial carbon monoxide concentration (ppm) −carbon monoxide concentration after 24 hours or 60 hours (ppm )) / Initial carbon monoxide concentration (ppm)] × 100. Furthermore, the carbon monoxide adsorption rate (%) was determined by the following formula: carbon monoxide adsorption rate (%) = carbon monoxide disappearance rate (%) − carbon monoxide decomposition rate (%).

図4に、一酸化炭素の酸化分解試験の結果を示す。図4に示すように、実施例1に係るペーパーシートは、一酸化炭素を酸化分解することが確認され、且つ当該ペーパーシートは、比較例1に係る炭素触媒1(PCo)粉末そのものに比べて高い一酸化炭素酸化分解性能を有することが確認された。また、実施例1に係るペーパーシートは、比較例1に係る炭素触媒1(PCo)と同様、一酸化炭素を実質的に吸着しなかった。   FIG. 4 shows the results of the oxidative decomposition test of carbon monoxide. As shown in FIG. 4, the paper sheet according to Example 1 was confirmed to oxidatively decompose carbon monoxide, and the paper sheet was compared with the carbon catalyst 1 (PCo) powder itself according to Comparative Example 1. It was confirmed to have high carbon monoxide oxidative decomposition performance. Moreover, the paper sheet which concerns on Example 1 did not adsorb | suck carbon monoxide substantially similarly to the carbon catalyst 1 (PCo) which concerns on the comparative example 1. FIG.

[抗菌性試験]
実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート,比較例3に係る当該紙基材からなるペーパーシート及び比較例8に係る光触媒を紙基材に担持してなるペーパーシートの抗菌性を評価した。
[Antimicrobial test]
A paper sheet obtained by carrying the carbon catalyst 1 (PCo) according to Example 1 on a paper base material, a paper sheet comprising the paper base material according to Comparative Example 3, and a photocatalyst according to Comparative Example 8 carried on a paper base material The antibacterial properties of the paper sheets were evaluated.

抗菌性は、JIS L 1902−2008により規定される繊維製品の抗菌性方法に準拠した定性試験(ハロー試験)における、ハロー(発育阻止帯)の有無及び幅により評価した。供試菌として、黄色ぶどう球菌(Staphylococcus aureus ATCC 6538P)又は大腸菌(Escherichia coil NBRC3301)を使用した。   The antibacterial property was evaluated by the presence and width of a halo (growth inhibition zone) in a qualitative test (halo test) based on the antibacterial method of textile products specified by JIS L 1902-2008. As a test bacterium, Staphylococcus aureus ATCC 6538P or Escherichia coli NBRC3301 was used.

図5には、抗菌性試験の結果を示す。図5に示すように、実施例1に係るペーパーシートを用いた場合にのみ、発育阻止帯が生成された。すなわち、実施例1に係るペーパーシートは抗菌性を示すことが確認された。   FIG. 5 shows the results of the antibacterial test. As shown in FIG. 5, the growth inhibition zone was generated only when the paper sheet according to Example 1 was used. That is, it was confirmed that the paper sheet according to Example 1 exhibits antibacterial properties.

[かび抵抗性試験]
実施例1に係る炭素触媒1(PCo)を紙基材に担持してなるペーパーシート,比較例3に係る当該紙基材からなるペーパーシート及び比較例8に係る光触媒を紙基材に担持してなるペーパーシートのかび抵抗性を評価した。
[Mold resistance test]
A paper sheet obtained by carrying the carbon catalyst 1 (PCo) according to Example 1 on a paper base material, a paper sheet comprising the paper base material according to Comparative Example 3, and a photocatalyst according to Comparative Example 8 carried on a paper base material The mold resistance of the paper sheet was evaluated.

かび抵抗性は、JIS Z 2911−2000(湿式法)のかび抵抗試験方法に準拠した試験により評価した。すなわち、平板培地上にペーパーシートの試験片(5cm×5cm)を密着させて貼付し、次いで、当該試験片にかび混合胞子懸濁液を吹き付け、28±2℃で1週間培養した。供試菌として、Aspergillus niger NBRC 6341、Penicillium citrnum NBRC 6352、Chaetomium globosum NBRC 6347又はMyrothecium verrucaria NBRC 6113を使用した。   Mold resistance was evaluated by a test based on the mold resistance test method of JIS Z 2911-2000 (wet method). That is, a test piece (5 cm × 5 cm) of a paper sheet was stuck on and adhered to a flat plate medium, and then the mold mixed spore suspension was sprayed on the test piece and cultured at 28 ± 2 ° C. for 1 week. As a test bacterium, Aspergillus niger NBRC 6341, Penicillium citrinum NBRC 6352, Chaetmium globosum NBRC 6347 or Myrothecerium verrucaria NBRC 6113 was used.

そして、試料に発育したかびの面積により、当該試料のかび抵抗性を評価した。具体的に、試料にかび胞子を接触させた部分に菌糸の発育が認められない場合には「0」と評価し、試料にかび胞子を接触させた部分に認められる菌糸の発育部分の面積が全面積の1/3を超えない場合には「1」と評価し、試料にかび胞子を接触させた部分に認められる菌糸の発育部分の面積が全面積の1/3を超える場合には「2」と評価した。   Then, the mold resistance of the sample was evaluated based on the area of the mold grown on the sample. Specifically, when the mycelium growth is not observed in the part where the fungus spores are contacted with the sample, it is evaluated as “0”, and the area of the mycelial growth part recognized in the part where the fungus spores are contacted with the sample is When it does not exceed 1/3 of the total area, it is evaluated as “1”, and when the area of the mycelial growth part observed in the part where the fungus spores are in contact with the sample exceeds 1/3 of the total area, 2 ”.

図6には、かび抵抗性試験の結果を示す。図6に示すように、実施例1に係るペーパーシートにおいてのみ、かび菌糸の発育が認められなかった。すなわち、実施例1に係るペーパーシートは、かび抵抗性を有することが確認された。   FIG. 6 shows the results of the mold resistance test. As shown in FIG. 6, only in the paper sheet which concerns on Example 1, the growth of mold | fungi hypha was not recognized. That is, it was confirmed that the paper sheet according to Example 1 has mold resistance.

Claims (8)

有害物質を分解する触媒活性を有する炭素触媒と、
前記炭素触媒を担持する基材と、
を含む
ことを特徴とする有害物質分解材。
A carbon catalyst having catalytic activity to decompose harmful substances;
A base material carrying the carbon catalyst;
Hazardous substance decomposition material characterized by containing.
前記有害物質は、揮発性有機化合物である
ことを特徴とする請求項1に記載された有害物質分解材。
The hazardous substance decomposition material according to claim 1, wherein the harmful substance is a volatile organic compound.
前記揮発性有機化合物は、アルデヒド類及びその酸化物である
ことを特徴とする請求項2に記載された有害物質分解材。
The volatile organic compound is an aldehyde or an oxide thereof. The hazardous substance decomposing material according to claim 2.
前記炭素触媒は、有機物と金属とを含有する原料の炭素化により得られた
ことを特徴とする請求項1乃至3のいずれかに記載された有害物質分解材。
The hazardous substance decomposition material according to any one of claims 1 to 3, wherein the carbon catalyst is obtained by carbonization of a raw material containing an organic substance and a metal.
前記基材は、繊維基材である
ことを特徴とする請求項1乃至4のいずれかに記載された有害物質分解材。
The harmful substance-decomposing material according to any one of claims 1 to 4, wherein the base material is a fiber base material.
前記繊維基材は、有機繊維基材である
ことを特徴とする請求項5に記載された有害物質分解材。
The harmful substance decomposition material according to claim 5, wherein the fiber base material is an organic fiber base material.
前記有機繊維基材は、紙基材である
ことを特徴とする請求項6に記載された有害物質分解材。
The toxic substance decomposition material according to claim 6, wherein the organic fiber base material is a paper base material.
前記炭素触媒を含む原料スラリーの抄紙により得られた
ことを特徴とする請求項7に記載された有害物質分解材。
The harmful substance decomposition material according to claim 7, which is obtained by papermaking of a raw slurry containing the carbon catalyst.
JP2010094511A 2010-02-25 2010-04-15 Hazardous substance decomposition material Active JP5767441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094511A JP5767441B2 (en) 2010-02-25 2010-04-15 Hazardous substance decomposition material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010040777 2010-02-25
JP2010040777 2010-02-25
JP2010094511A JP5767441B2 (en) 2010-02-25 2010-04-15 Hazardous substance decomposition material

Publications (2)

Publication Number Publication Date
JP2011194393A true JP2011194393A (en) 2011-10-06
JP5767441B2 JP5767441B2 (en) 2015-08-19

Family

ID=44873265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094511A Active JP5767441B2 (en) 2010-02-25 2010-04-15 Hazardous substance decomposition material

Country Status (1)

Country Link
JP (1) JP5767441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147131A1 (en) * 2014-03-28 2015-10-01 国立大学法人群馬大学 Production method for carbon alloy catalyst and carbon alloy catalyst
CN112604680A (en) * 2020-12-14 2021-04-06 陕西科技大学 Formaldehyde decomposition material and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154888A (en) * 1974-10-18 1976-05-14 Kanebo Ltd
JPS5230283A (en) * 1975-09-03 1977-03-07 Showa Denko Kk Catalyst for removing formaldehyde in polluted air
JPH05345130A (en) * 1991-04-11 1993-12-27 Kenji Hashimoto Carbonaceous shape-selective catalyst and production thereof
JPH08266602A (en) * 1995-03-30 1996-10-15 Mitsubishi Paper Mills Ltd Manufacture of material for removing harmful matter containing titanium oxide
JPH11333235A (en) * 1998-03-25 1999-12-07 Daikin Ind Ltd Deodorizing device, deodorizing machine equipped therewith, and air conditioner
JP2001321677A (en) * 2000-05-18 2001-11-20 Kohjin Co Ltd Titanium oxide/carbon composite particle and its manufacturing method
JP2004337731A (en) * 2003-05-15 2004-12-02 National Institute Of Advanced Industrial & Technology Sheet-like catalyst structure using carbon nanotube and its production method
JP2006007156A (en) * 2004-06-29 2006-01-12 Toray Ind Inc Functional coating film and producing method thereof
JP2009082908A (en) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp Metal-supported carbon catalyst and method for decomposing and removing volatile organic compound
JP2009291714A (en) * 2008-06-05 2009-12-17 Seizo Miyata Catalyst and method for producing the same, membrane electrode assembly and method for producing the same, fuel cell member and method for producing the same, fuel cell and electric storage apparatus
JP2011065125A (en) * 2009-09-15 2011-03-31 Samsung Electro-Mechanics Co Ltd Display array substrate and method for manufacturing the display substrate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5154888A (en) * 1974-10-18 1976-05-14 Kanebo Ltd
JPS5230283A (en) * 1975-09-03 1977-03-07 Showa Denko Kk Catalyst for removing formaldehyde in polluted air
JPH05345130A (en) * 1991-04-11 1993-12-27 Kenji Hashimoto Carbonaceous shape-selective catalyst and production thereof
JPH08266602A (en) * 1995-03-30 1996-10-15 Mitsubishi Paper Mills Ltd Manufacture of material for removing harmful matter containing titanium oxide
JPH11333235A (en) * 1998-03-25 1999-12-07 Daikin Ind Ltd Deodorizing device, deodorizing machine equipped therewith, and air conditioner
JP2001321677A (en) * 2000-05-18 2001-11-20 Kohjin Co Ltd Titanium oxide/carbon composite particle and its manufacturing method
JP2004337731A (en) * 2003-05-15 2004-12-02 National Institute Of Advanced Industrial & Technology Sheet-like catalyst structure using carbon nanotube and its production method
JP2006007156A (en) * 2004-06-29 2006-01-12 Toray Ind Inc Functional coating film and producing method thereof
JP2009082908A (en) * 2007-09-12 2009-04-23 Mitsubishi Chemicals Corp Metal-supported carbon catalyst and method for decomposing and removing volatile organic compound
JP2009291714A (en) * 2008-06-05 2009-12-17 Seizo Miyata Catalyst and method for producing the same, membrane electrode assembly and method for producing the same, fuel cell member and method for producing the same, fuel cell and electric storage apparatus
JP2011065125A (en) * 2009-09-15 2011-03-31 Samsung Electro-Mechanics Co Ltd Display array substrate and method for manufacturing the display substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147131A1 (en) * 2014-03-28 2015-10-01 国立大学法人群馬大学 Production method for carbon alloy catalyst and carbon alloy catalyst
CN112604680A (en) * 2020-12-14 2021-04-06 陕西科技大学 Formaldehyde decomposition material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5767441B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5192085B2 (en) Carbon catalyst for decomposing toxic substances, decomposing substances and decomposing method
Robert et al. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review
Maleki et al. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects
US10898879B2 (en) Visible light-activated photocatalytic coating composition and air purification filter
JP5173105B2 (en) Filter media
CN112371177B (en) Flexible porous composite material doped with piezoelectric catalytic material and preparation thereof
Fujiwara et al. Fabrication of photocatalytic paper using TiO2 nanoparticles confined in hollow silica capsules
MX2007005797A (en) Methods for preparing catalysts supported on carbon nanotube networks.
Roso et al. Graphene/TiO2 based photo-catalysts on nanostructured membranes as a potential active filter media for methanol gas-phase degradation
WO2007039984A1 (en) Photocatalyst-containing organic material
Ko et al. Carboxymethyl cellulose-templated synthesis of hierarchically structured metal oxides
JP5767441B2 (en) Hazardous substance decomposition material
Zhang et al. Construction of high-performance gC 3 N 4-based photo-Fenton catalysts by ferrate-induced defect engineering
Nawaz et al. Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment
JP5544618B2 (en) Tungsten oxide secondary structure with antibacterial action
JP2007229092A (en) Cigarette smoke deodorizing filter
JPH11179213A (en) Raw material for purification of environment and purifying material for environment using that
CN110605118B (en) Integral Pd/K for degrading formaldehyde at room temperature2Ti6O13-NWs catalyst, preparation method and application
Mondal et al. Cooperative and Bifunctional Adsorbent‐Catalyst Materials for In‐situ VOCs Capture‐Conversion
JPWO2005037334A1 (en) Deodorant filter
Li et al. Flexible g-C3N4@ bacterial cellulose aerogels for integrated indoor air purification
KR20180098709A (en) Metal-active carbon composite by using an organometallic coupling agent, preparation thereof and a sorption-decomposition catalyst using the same
Roso et al. Design and development of nanostructured filter media for VOCs abatement in closed environments
JP2007277433A (en) Functional masterbatch, functional molded product of the functional masterbatch, functional fiber material, functional fiber product and functional filter processed by using the functional fiber material
Li et al. Preparation of enhanced visible light-responsive photocatalytic paper containing Ag/N-TiO2 aerogel for detoxification of environmental pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R150 Certificate of patent or registration of utility model

Ref document number: 5767441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250