[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011190523A - Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone - Google Patents

Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone Download PDF

Info

Publication number
JP2011190523A
JP2011190523A JP2010060161A JP2010060161A JP2011190523A JP 2011190523 A JP2011190523 A JP 2011190523A JP 2010060161 A JP2010060161 A JP 2010060161A JP 2010060161 A JP2010060161 A JP 2010060161A JP 2011190523 A JP2011190523 A JP 2011190523A
Authority
JP
Japan
Prior art keywords
mass
oxide film
less
stainless steel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010060161A
Other languages
Japanese (ja)
Inventor
Tomoharu Shigetomi
智治 重富
Junichi Katsuki
淳一 香月
Hiroshi Morikawa
広 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010060161A priority Critical patent/JP2011190523A/en
Publication of JP2011190523A publication Critical patent/JP2011190523A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel which has excellent corrosion resistance in the weld heat affected zone. <P>SOLUTION: The stainless steel sheet having improved corrosion resistance in the weld heat affected zone is characterized in that the thickness of an oxide film is ≥15 nm, the concentration of Al in the oxide film is ≥50 atomic% in the atomic ratio of Al, Si, Mn, Cr and Fe, and further the defect rate of the oxide film is ≤3.0%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は予め付与された酸化皮膜によって、溶接熱影響部などの大気中で再度加熱される部位に生成する酸化皮膜を改質し、その耐食性を改善するものである。   The present invention improves the corrosion resistance of the oxide film formed at a site heated again in the atmosphere, such as a weld heat affected zone, by using a previously applied oxide film.

ステンレス鋼はその優れた耐食性により様々な用途で利用されているが、一般に溶接によって製造された製品については、溶接熱影響部の耐食性が劣化することが知られている。これは、溶接熱影響部が酸化されることでステンレス鋼の耐食性を担う不動態皮膜が破壊されるためと考えられている。その対策として、溶接時にArガスなどのシールガスを用いて溶接熱影響部の酸化を軽減する方法や、溶接後に溶接熱影響部に生成した酸化皮膜を研磨や酸洗などにより除去するとともに不動態皮膜を復元することによって耐食性が改善されている。   Stainless steel is used for various applications due to its excellent corrosion resistance, but it is generally known that the corrosion resistance of the weld heat affected zone deteriorates for products manufactured by welding. This is considered to be because the passive film responsible for the corrosion resistance of stainless steel is destroyed by oxidation of the weld heat affected zone. As countermeasures, a method of reducing the oxidation of the welding heat-affected zone using a sealing gas such as Ar gas during welding, or removing the oxide film formed on the welding heat-affected zone after welding by polishing, pickling, etc. Corrosion resistance is improved by restoring the film.

予め鋼板に生成させた酸化皮膜によって再加熱時の酸化を抑制する方法はこれまでにも提案されており、例えば、特許文献1では表層にSiが濃化し、下層にAlが濃化した二相構造の酸化皮膜が提案されている。その他にも、特許文献2では(Al+Si)/(Mn+Cr+Fe)>0.1、特許文献3では(Al+Si+Cr)/Fe≧0.6の組成をもつ酸化皮膜が提案されている。特許文献4では原子比率でAl≧35%,Ti≧8%,Si≦8%とすることで耐銹性が改善されるとしている。特許文献5〜7ではAlを濃化させた皮膜が提案されている。   A method for suppressing oxidation at the time of reheating with an oxide film previously formed on a steel sheet has been proposed. For example, in Patent Document 1, Si is concentrated in the surface layer and Al is concentrated in the lower layer. Structured oxide films have been proposed. In addition, Patent Document 2 proposes an oxide film having a composition of (Al + Si) / (Mn + Cr + Fe)> 0.1 and Patent Document 3 has a composition of (Al + Si + Cr) /Fe≧0.6. According to Patent Document 4, the weather resistance is improved by setting Al ≧ 35%, Ti ≧ 8%, and Si ≦ 8% in the atomic ratio. Patent Documents 5 to 7 propose a film in which Al is concentrated.

特開2003−213378JP2003-213378 特開2002−275592JP2002-275592 特開平8−295999JP-A-8-295999 特開平7−180001JP-A-7-180001 特開平6−041695JP-A-6-041695 特開平4−002075JP-A-4-002075 特開平5−271880JP-A-5-271880

特許文献1〜3ではAlおよびSiさらにはCrを含む酸化皮膜を有し、特許文献4ではAlおよびTiを含みSiを低減した酸化皮膜を有することを特徴とするが、本発明ではAl単独の濃化を目的としており、さらに皮膜の厚みと欠陥にも言及する。その理由は、特許文献1,3では250〜350℃程度の加熱環境での耐酸化性の改善を図るものであって、耐食性には言及していないのに対して、本発明は溶接熱影響部を対象とし、500℃を超えるより高温環境での表面改質とその後の耐食性改善を目的としていることにある。特許文献2は光輝焼鈍時、すなわち水素と窒素の混合ガス中での過剰な酸化を抑制することを目的としており、本発明では溶接など大気中での加熱を想定した表面改質を目的としていることにある。特許文献4では生成した皮膜が再加熱されない環境での耐食性を評価しているのに対して、本名発明は加熱環境に再度置かれた後の耐食性の改善を目的としているところにある。   Patent Documents 1 to 3 have an oxide film containing Al and Si and further Cr, and Patent Document 4 is characterized by having an oxide film containing Al and Ti and reduced Si. It is intended for thickening and also refers to film thickness and defects. The reason is that Patent Documents 1 and 3 are intended to improve the oxidation resistance in a heating environment of about 250 to 350 ° C. and do not mention the corrosion resistance. The purpose is to modify the surface in a higher temperature environment exceeding 500 ° C. and improve the corrosion resistance thereafter. Patent Document 2 aims to suppress excessive oxidation during bright annealing, that is, in a mixed gas of hydrogen and nitrogen, and the present invention aims at surface modification assuming heating in the atmosphere such as welding. There is. Patent Document 4 evaluates the corrosion resistance in an environment where the generated coating is not reheated, whereas the present invention is intended to improve the corrosion resistance after being placed in the heating environment again.

特許文献5,7は酸化皮膜中にAlを濃化させる点では本発明と同じであるが、皮膜中へのAlの濃化にTiを利用している点が本発明と異なり、皮膜厚みにも言及していない。この理由は、特許文献5では使用環境が500℃までであることと、特許文献7では再加熱されない環境での耐食性を評価していることにあると考える。   Patent Documents 5 and 7 are the same as the present invention in that Al is concentrated in the oxide film. However, unlike the present invention, the film thickness is different from that of the present invention in that Ti is used for the concentration of Al in the film. Also not mentioned. The reason for this is considered that Patent Document 5 evaluates the corrosion resistance in an environment where the use environment is up to 500 ° C. and Patent Document 7 does not reheat.

特許文献6も皮膜中にAlを濃化させる点では本発明と同じであるが、皮膜へAlを濃化するためには素材のAl含有量が0.5質量%以上必要であるとしている。また、得られた皮膜厚みは2nm程度であるとされており、本発明の酸化皮膜よりも薄い。この理由は、特許文献7では皮膜改質した鋼材を1200℃の高温で再加熱した際の酸増量を測定し、耐酸化性のみを評価しているのに対し、本発明では再加熱後の耐食性を向上することを目的として再加熱後の皮膜組成,皮膜厚み,皮膜の欠陥まで制御していることに起因すると推察される。結果的に本発明は皮膜組成だけでなく皮膜厚みと皮膜の欠陥を減少することが目的達成の必須条件であるという新たな知見に基づき、特許文献6よりも厚い皮膜を生成して改質する点が異なる。さらに、特許文献6では皮膜改質を実施するための光輝焼鈍において雰囲気ガスの組成には言及しておらず、本発明ではガス組成や露点をより厳格に制御している点が製造方法として異なり、皮膜の厚みや、皮膜成分など特許文献6で開示されていない部分において異なっているものと考える。   Patent Document 6 is the same as the present invention in that Al is concentrated in the film, but it is said that the Al content of the material needs to be 0.5 mass% or more in order to concentrate Al in the film. Further, the obtained film thickness is supposed to be about 2 nm, which is thinner than the oxide film of the present invention. The reason for this is that Patent Document 7 measures the acid increase when re-heating the film-modified steel material at a high temperature of 1200 ° C., and evaluates only the oxidation resistance. It is assumed that the film composition, film thickness, and film defects after reheating are controlled for the purpose of improving the corrosion resistance. As a result, the present invention generates and modifies a film thicker than Patent Document 6 based on the new finding that reducing not only the film composition but also the film thickness and film defects are essential conditions for achieving the object. The point is different. Furthermore, Patent Document 6 does not mention the composition of the atmospheric gas in the bright annealing for carrying out the film modification, and the present invention differs from the manufacturing method in that the gas composition and the dew point are more strictly controlled. The thickness of the film and the film component, etc. are considered to be different in parts not disclosed in Patent Document 6.

これら既知の知見と本発明の違いをまとめると、酸化皮膜の組成を制御するだけでなく、酸化皮膜の厚みを増し、さらに酸化皮膜の欠陥を低減する必要があることを本発明で新たに提案することにある。そのため、目的の酸化皮膜を得るための熱処理条件についても厳格に制御した。   Summarizing the differences between these known findings and the present invention, the present invention newly proposes that it is necessary not only to control the composition of the oxide film, but also to increase the thickness of the oxide film and further reduce defects in the oxide film. There is to do. Therefore, the heat treatment conditions for obtaining the target oxide film were also strictly controlled.

本発明のステンレス鋼では、その目的を達成するため、窒素と水素の混合ガス雰囲気中での熱処理により生成された酸化皮膜を有するフェライト系ステンレス鋼であって、酸化皮膜の厚みが15nm以上、酸化皮膜中のAlの濃度がAl,Si,Mn,Cr,Feの原子比率において50原子%以上であるとともに、(1)式で定義する皮膜の欠陥率が3.0%以下であることを特徴とする。
ステンレス鋼としては0.05質量%以上のAlを含有することを特徴とする。
このような表面特性を有するステンレス鋼は、水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気中で、温度1000〜1050℃,均熱時間5min以上、または均熱時間が5min未満の場合は600℃〜到達温度までの昇温速度が(2)式を満足し,雰囲気ガスの露点が−60〜−50℃の条件で仕上げ光輝焼鈍することで得られる。
In order to achieve the object, the stainless steel of the present invention is a ferritic stainless steel having an oxide film formed by a heat treatment in a mixed gas atmosphere of nitrogen and hydrogen, and the oxide film has a thickness of 15 nm or more. The concentration of Al in the film is 50 atomic% or more in the atomic ratio of Al, Si, Mn, Cr, and Fe, and the defect rate of the film defined by the formula (1) is 3.0% or less. And
Stainless steel is characterized by containing 0.05% by mass or more of Al.
Stainless steel having such surface characteristics has a temperature of 1000 to 1050 ° C., a soaking time of 5 min or more, or a soaking time of less than 5 min in a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume. In this case, the temperature rise rate from 600 ° C. to the ultimate temperature satisfies the formula (2), and the finish bright annealing is performed under the condition that the dew point of the atmospheric gas is −60 to −50 ° C.

請求項1に記載の発明は、
窒素と水素の混合ガス雰囲気中の熱処理により生成された酸化皮膜を有するフェライト系ステンレス鋼であって、酸化皮膜の厚みが15nm以上、酸化皮膜中のAlの濃度がAl,Si,Mn,Cr,Feの原子比率において50原子%以上であるとともに、(1)式で定義する酸化皮膜の欠陥率が3.0%以下であることを特徴とする溶接部熱影響部の耐食性が改善されたステンレス鋼板である。
硫酸:1mol/L,チオシアン酸カリウム:0.01mol/L,液温30℃の水溶液中で、10mV/minの条件でアノード分極し、250mVにおけるアノード電流密度から(1)式で算出される値を皮膜欠陥率とする。
皮膜欠陥率=A/B×100(%) ・・・(1)
A:評価材のアノード電流密度,B:酸洗仕上げ材のアノード電流密度
The invention described in claim 1
A ferritic stainless steel having an oxide film formed by heat treatment in a mixed gas atmosphere of nitrogen and hydrogen, the oxide film having a thickness of 15 nm or more, and the concentration of Al in the oxide film is Al, Si, Mn, Cr, Stainless steel with improved corrosion resistance in the heat affected zone of the weld zone, wherein the atomic ratio of Fe is 50 atomic% or more and the defect rate of the oxide film defined by the formula (1) is 3.0% or less. It is a steel plate.
Sulfuric acid: 1 mol / L, potassium thiocyanate: 0.01 mol / L, anodic polarization in an aqueous solution at a liquid temperature of 30 ° C. under the condition of 10 mV / min, and a value calculated from the anodic current density at 250 mV by the formula (1) Is the film defect rate.
Defect rate of film = A / B × 100 (%) (1)
A: Anode current density of evaluation material, B: Anode current density of pickling finish

請求項2に記載の発明は、
C:0.02質量%以下、Si:1.0質量%以下、Mn:0.5質量%以下、P:0.05質量%以下、S:0.005質量%以下、Ni:0.5質量%以下、Cr:16〜24質量%、Al:0.05〜1.0質量%、Nb:0.1〜0.5質量%以下、Ti:0.1質量%以下、N:0.02質量%以下、Mo:2.0質量%以下を含有し、残部がFeおよび不可避的不純物からなる請求項1のフェライト単相系ステンレス鋼板である。
The invention described in claim 2
C: 0.02 mass% or less, Si: 1.0 mass% or less, Mn: 0.5 mass% or less, P: 0.05 mass% or less, S: 0.005 mass% or less, Ni: 0.5 % By mass, Cr: 16-24% by mass, Al: 0.05-1.0% by mass, Nb: 0.1-0.5% by mass or less, Ti: 0.1% by mass or less, N: 0.00%. The ferritic single-phase stainless steel sheet according to claim 1, comprising 02 mass% or less, Mo: 2.0 mass% or less, and the balance being Fe and inevitable impurities.

請求項3に記載の発明は、
水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気中で、温度1000〜1050℃,均熱時間5min以上で雰囲気ガスの露点を−60〜−50℃の条件で熱処理することを特徴とする、請求項1または請求項2に記載のフェライト単相系ステンレス鋼板の製造方法である。
The invention according to claim 3
A heat treatment is performed in a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume under conditions of a temperature of 1000 to 1050 ° C. and a soaking time of 5 min or more under a condition of −60 to −50 ° C. dew point of the atmosphere gas. It is a manufacturing method of the ferrite single phase type stainless steel plate of Claim 1 or Claim 2.

請求項4に記載の発明は、
水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気中で、温度1000〜1050℃,均熱時間5min未満で600℃から到達温度までの平均昇温速度が(2)式を満足し,雰囲気ガスの露点を−60〜−50℃の条件で熱処理することを特徴とする請求項1または請求項2に記載のフェライト単相系ステンレス鋼板の製造方法である。
V≦0.2×T ・・・(2)
V:昇温速度(℃/min),T:到達温度(℃)
The invention according to claim 4
In a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume, the average rate of temperature increase from 600 ° C. to the ultimate temperature is satisfied when the temperature is 1000 to 1050 ° C. and the soaking time is less than 5 minutes. The method for producing a ferritic single-phase stainless steel sheet according to claim 1 or 2, wherein the dew point of the atmospheric gas is heat-treated at a temperature of -60 to -50 ° C.
V ≦ 0.2 × T (2)
V: heating rate (° C / min), T: ultimate temperature (° C)

本発明に従えば、溶接熱影響部などの大気中で500℃を越える高温で再加熱された部位の耐食性が著しく改善される。その結果、溶接時のArガスシールや溶接後の溶接熱影響部の酸化皮膜の酸洗浄が不要となる。さらに、これまで溶接熱影響部の耐食性を確保するためだけに、Cr,Moなどの耐食性を改善する合金元素をより多く含む鋼種を選択していた場合、それら元素を低減したより安価な鋼種の選択も可能となり、溶接部を有しかつ耐食性が要求される製品の製造コスト低減に貢献できる。   According to the present invention, the corrosion resistance of the portion reheated at a high temperature exceeding 500 ° C. in the atmosphere such as the weld heat affected zone is remarkably improved. As a result, the Ar gas seal at the time of welding and the acid cleaning of the oxide film at the weld heat affected zone after welding are not required. Furthermore, in the past, in order to ensure the corrosion resistance of the weld heat-affected zone, when steel grades containing more alloy elements that improve corrosion resistance such as Cr and Mo have been selected, the cheaper steel grades with reduced such elements Selection is also possible, which can contribute to reducing the manufacturing cost of products that have welds and that require corrosion resistance.

溶接前の酸化皮膜の厚み、酸化皮膜の欠陥率および酸化皮膜中のAl原子比率と溶接熱影響部の耐食性の関係Relationship between the thickness of the oxide film before welding, the defect rate of the oxide film, the Al atomic ratio in the oxide film, and the corrosion resistance of the heat affected zone 皮膜に含まれる各元素の原子比率の深さ方向の変化の一例An example of the change in the depth direction of the atomic ratio of each element contained in the film 熱処理後の酸化皮膜の厚みと鋼中Al含有量の関係Relationship between thickness of oxide film after heat treatment and Al content in steel 熱処理後の酸化皮膜中のAl原子比率と鋼中Al含有量の関係Relationship between Al atomic ratio in oxide film after heat treatment and Al content in steel 熱処理後の皮膜厚みと焼鈍温度の関係Relationship between film thickness after annealing and annealing temperature 熱処理後の酸化皮膜厚みと昇温速度の関係Relationship between oxide film thickness after heat treatment and heating rate 熱処理時の到達温度と昇温速度を変化させて得られた鋼板の溶接後の耐食性評価結果Corrosion resistance evaluation results after welding of steel sheets obtained by changing the temperature reached during heat treatment and the heating rate 熱処理後の酸化皮膜厚みと熱処理における均熱時間の関係Relationship between oxide film thickness after heat treatment and soaking time in heat treatment 酸化皮膜の厚みと雰囲気ガスの露点の関係Relationship between oxide film thickness and atmospheric gas dew point 酸化皮膜の欠陥率と雰囲気ガスの露点の関係Relationship between defect rate of oxide film and dew point of atmospheric gas 酸化皮膜の厚みと熱処理時の雰囲気ガス組成の関係Relationship between oxide film thickness and atmospheric gas composition during heat treatment 皮膜の欠陥率と熱処理時の雰囲気ガス組成の関係Relationship between defect rate of coating and atmospheric gas composition during heat treatment 酸化皮膜の組成と熱処理時の雰囲気ガス組成の関係Relationship between oxide film composition and atmospheric gas composition during heat treatment

本発明者等は溶接熱影響部など大気中で加熱される部位のフェライト系ステンレス鋼板の皮膜を詳細に調査した結果、加熱によってステンレス鋼の耐食性を担う不動態皮膜が破壊され、特に500〜800℃に加熱された領域においてFeを主体とする酸化皮膜が生成し、塩水中での耐食試験の結果、Feを主体とする酸化皮膜が生成した領域に集中して孔食が発生することを見出した。
そこで、再加熱部の酸化皮膜中へのFeの生成を抑制する方法を詳しく検討した結果、溶接時に大気中再加熱される前に窒素と水素の混合比が60〜90体積%のガスからなる雰囲気中で、酸化皮膜の厚みが15nm以上、酸化皮膜中のAlの濃度がAl,Si,Mn,Cr,Feの原子比率において50原子%以上であるとともに、(1)式で定義する皮膜の欠陥率が3.0%以下である酸化皮膜を予め付与すれば、大気中での再加熱部の酸化皮膜はAlとCrを主とした皮膜組成へ改質され、Feの生成が抑制されることを見出した。
As a result of detailed investigation of the film of the ferritic stainless steel sheet at the site heated in the atmosphere such as the weld heat affected zone, the present inventors destroyed the passive film responsible for the corrosion resistance of the stainless steel by heating, particularly 500 to 800. An oxide film mainly composed of Fe 2 O 3 is formed in a region heated to 0 ° C., and as a result of the corrosion resistance test in salt water, the pitting corrosion is concentrated on the region where the oxide film mainly composed of Fe 2 O 3 is formed. Found that occurs.
Then, as a result of examining in detail the method of suppressing the formation of Fe 2 O 3 in the oxide film of the reheated part, the mixing ratio of nitrogen and hydrogen is 60 to 90% by volume before being reheated in the atmosphere during welding. In an atmosphere composed of gas, the thickness of the oxide film is 15 nm or more, and the concentration of Al in the oxide film is 50 atomic% or more in the atomic ratio of Al, Si, Mn, Cr, Fe, and is defined by the formula (1) If an oxide film with a defect rate of 3.0% or less is applied in advance, the oxide film in the reheated part in the atmosphere is modified to a film composition mainly composed of Al 2 O 3 and Cr 2 O 3 And the generation of Fe 2 O 3 was found to be suppressed.

以下に本発明範囲を決定した理由を述べる。図1から図13のデータ採取に用いた素材を表1に示す。図2から図13のデータ採取には表1の試料No.5を用いた。   The reason for determining the scope of the present invention will be described below. Table 1 shows materials used for data collection in FIGS. For data collection in FIGS. 5 was used.

Figure 2011190523
Figure 2011190523

図1には溶接前の酸化皮膜の厚み、酸化皮膜の欠陥率および酸化皮膜中のAl原子比率と溶接熱影響部の耐食性の関係を示す。溶接にはTIGパルス溶接機を用いて、板厚1.0mm×幅75mm×長さ175mmの鋼板の幅中央に、鋼板と電極との距離1mm、溶接速度300mm/min、周波数10Hzにおいて裏面のビード幅が4mmになるように溶接電流を調整し、Arバックシールを行わずに行って裏面を観察面とした。溶接後に試験片の幅中央に溶接ビードが納まるように幅50mm×長さ55mmの試験片を2枚切り出し、80℃に保持した1000ppmCl,10ppmCu2+水溶液750ccに20h浸漬した後、溶接部熱影響部を目視観察して孔食の有無で耐食性を評価した。図1を見ると、厚み15nm以上、欠陥率が3.0%以下のAlを主体とする組成の酸化スケールを付与すれば、溶接熱影響部の発銹が抑制さることが分かる。 FIG. 1 shows the relationship between the thickness of the oxide film before welding, the defect rate of the oxide film, the Al atomic ratio in the oxide film, and the corrosion resistance of the weld heat affected zone. For welding, a TIG pulse welder was used, and a bead on the back surface at a distance of 1 mm between the steel plate and the electrode, a welding speed of 300 mm / min, and a frequency of 10 Hz in the width center of the steel plate having a thickness of 1.0 mm × width 75 mm × length 175 mm The welding current was adjusted so that the width was 4 mm, and the back surface was used as the observation surface without performing Ar back sealing. After welding, two test pieces each having a width of 50 mm and a length of 55 mm were cut out so that the weld bead fits in the center of the width of the test piece, immersed in 750 cc of 1000 ppm Cl , 10 ppm Cu 2+ aqueous solution kept at 80 ° C. The portion was visually observed to evaluate the corrosion resistance based on the presence or absence of pitting corrosion. Referring to FIG. 1, it can be seen that if an oxide scale having a composition mainly composed of Al having a thickness of 15 nm or more and a defect rate of 3.0% or less is provided, the occurrence of welding heat affected zone is suppressed.

酸化皮膜組成の分析および皮膜厚みの測定はX線光電子分光法(XPS)により行った。図2に皮膜に含まれる各元素の原子比率の深さ方向の変化の一例を示す。各元素の原子比率はXPSによる各元素のスペクトルの積分面積に基づいた半定量分析値により算出した値である。皮膜厚みはXPS装置のArイオンによるスパッタリング機能を利用して測定した。具体的には、スパッタリングによって酸素の原子比率が表面と比較して1/2となる位置を酸化皮膜とメタルの界面と定義し、鋼板上に皮膜厚みが既知のSiO皮膜を有する標準サンプルを用いてスパッタリング時間と深さの関係を算出し、スパッタリング時間を皮膜厚みに換算した。さらに、酸化皮膜中のAl濃度は皮膜表面で高く、メタルとの界面に近いほど低くなる傾向が認められたため、酸化皮膜中のAl濃度は、表面から2.5nm深さまで濃度と酸素の原子比率から求めたメタルとの界面から皮膜側へ2.5nmの深さの位置の濃度との平均値とした。このとき、Alの濃度は酸素および他の微量検出元素を除いた、Al,Si,Mn,Cr,Feの原子比率として求めた。 The analysis of the oxide film composition and the measurement of the film thickness were performed by X-ray photoelectron spectroscopy (XPS). FIG. 2 shows an example of the change in the depth direction of the atomic ratio of each element contained in the film. The atomic ratio of each element is a value calculated by a semi-quantitative analysis value based on the integral area of the spectrum of each element by XPS. The film thickness was measured using the sputtering function by Ar ions of the XPS apparatus. Specifically, the position where the atomic ratio of oxygen is 1/2 compared to the surface by sputtering is defined as the interface between the oxide film and the metal, and a standard sample having a SiO 2 film with a known film thickness on the steel sheet is prepared. Using this, the relationship between the sputtering time and the depth was calculated, and the sputtering time was converted into the film thickness. Furthermore, the Al concentration in the oxide film was high on the surface of the film, and it was observed that the Al concentration in the oxide film tended to decrease as it was closer to the interface with the metal. It was set as the average value with the density | concentration of the position of the depth of 2.5 nm from the interface with the metal calculated | required from the film side. At this time, the Al concentration was determined as an atomic ratio of Al, Si, Mn, Cr, and Fe excluding oxygen and other trace detection elements.

大気中での加熱時に本発明によるAl主体の酸化皮膜がFeの生成を抑制する理由は、加熱時に鋼板表面に供給される酸素がAl主体の酸化皮膜によって遮断され、鋼板表面に達する酸素量が極めて低くなり、酸化の進行が抑制されると共に、鋼板表面まで到達した一部の酸素も低酸素ポテンシャル領域でFeよりも安定となるAlやCrの酸化物として成長するものと考える。また、15nmに満たない皮膜厚みでは酸素遮断効果が不足するものと考える。さらに、十分な皮膜厚みが得られても皮膜に欠陥が多い場合も酸素を遮断する効果が不足するものと考える。 The reason why the Al-based oxide film according to the present invention suppresses the formation of Fe 2 O 3 during heating in the atmosphere is that oxygen supplied to the steel sheet surface during heating is blocked by the Al-based oxide film and reaches the steel sheet surface. It is considered that the amount of oxygen is extremely low, the progress of oxidation is suppressed, and part of the oxygen reaching the steel plate surface also grows as an oxide of Al or Cr that is more stable than Fe in the low oxygen potential region. Further, it is considered that the oxygen barrier effect is insufficient when the film thickness is less than 15 nm. Further, even if a sufficient film thickness is obtained, it is considered that the effect of blocking oxygen is insufficient even when the film has many defects.

図3には熱処理後の酸化皮膜の厚みと鋼中Al含有量の関係、図4には熱処理後の酸化皮膜中のAl原子比率と鋼中Al含有量の関係を示す。鋼中Al量の増大にともない、酸化皮膜の厚みと酸化皮膜中のAl原子比率は増大し、鋼中のAl含有量は多い方が望ましいことが分かるが、0.05質量%以上の添加ではその効果は小さい。一方、過剰のAlを添加すると、鋼材が硬化し加工性の劣化や製造コストの増大が懸念されるためその上限を1.0%とした。   FIG. 3 shows the relationship between the thickness of the oxide film after heat treatment and the Al content in the steel, and FIG. 4 shows the relationship between the Al atomic ratio in the oxide film after heat treatment and the Al content in the steel. As the Al content in the steel increases, the thickness of the oxide film and the Al atomic ratio in the oxide film increase, and it is clear that a higher Al content in the steel is desirable. The effect is small. On the other hand, when an excessive amount of Al is added, the steel material is hardened, and there is a concern about deterioration of workability and an increase in manufacturing cost, so the upper limit was made 1.0%.

次に、Al以外の素材の成分限定理由について述べる。
C:0.02質量%以下
Cは炭化物を形成して耐食性を劣化する元素であるため、その上限を0.02質量%とした。
Next, the reasons for limiting the components of materials other than Al will be described.
C: 0.02 mass% or less Since C is an element that forms carbides and deteriorates corrosion resistance, the upper limit is set to 0.02 mass%.

Si:0.2〜1.0質量%
Siはフェライト組織を安定化する。本発明の熱処理においてフェライト単相組織を維持するために0.2質量%以上の添加を行っても良い。しかしながら、本発明鋼の成分の中ではSiはAlに次いで酸化され易い元素であるため過剰の添加は本発明で提案するAl主体の酸化皮膜の形成を妨げるとともに、素材を硬質化して加工性を劣化するためその上限を1.0質量%とした。
Si: 0.2-1.0 mass%
Si stabilizes the ferrite structure. In order to maintain the ferrite single phase structure in the heat treatment of the present invention, 0.2% by mass or more may be added. However, among the components of the steel of the present invention, Si is an element that is easily oxidized next to Al. Therefore, excessive addition prevents the formation of an Al-based oxide film proposed in the present invention and hardens the material to improve workability. In order to deteriorate, the upper limit was made 1.0 mass%.

Mn:0.5質量%以下
Mnはフェライト組織の安定化を阻害するとともに、硫化物を形成し耐食性を劣化するためその上限を0.5質量%とした。
Mn: 0.5% by mass or less Mn inhibits the stabilization of the ferrite structure and forms sulfides and deteriorates the corrosion resistance, so the upper limit was made 0.5% by mass.

P:0.05質量%以下
Pは燐化物を形成して耐食性を劣化する元素であるため、その上限を0.05質量%とした。
S:0.005質量%以下
Sは硫化物を形成して耐食性を劣化する元素であるため、その上限を0.005質量%とした。
P: 0.05% by mass or less P is an element that forms a phosphide and deteriorates the corrosion resistance, so the upper limit was made 0.05% by mass.
S: 0.005% by mass or less Since S is an element that forms sulfides and deteriorates corrosion resistance, the upper limit is set to 0.005% by mass.

Ni:0.5質量%以下
Niはフェライト単相組織の安定化を阻害するためその上限を0.5質量%とした。
Cr:16〜24質量%
Crは耐食性を向上するための必須元素であるとともに、フェライト組織を安定化する効果をもつ。その効果を得るため16質量%以上の添加とした。一方で過剰のコストの上昇を招くためその上限を24質量%とした。
Ni: 0.5% by mass or less Ni has an upper limit of 0.5% by mass because it inhibits the stabilization of the ferrite single-phase structure.
Cr: 16 to 24% by mass
Cr is an essential element for improving corrosion resistance and has an effect of stabilizing the ferrite structure. In order to acquire the effect, it was set as addition of 16 mass% or more. On the other hand, the upper limit was set to 24% by mass in order to cause an excessive increase in cost.

Ti:0.1質量%以下
Tiは耐食性を改善するとともにフェライト組織の安定化に有効な元素であるが、ステンレス鋼に通常見られる添加元素の中ではAlとともに容易に酸化する元素であり、本発明で提案する酸化皮膜の形成を妨げる。そのため0.1質量%以下に規制した。
Ti: 0.1% by mass or less Ti is an element that improves corrosion resistance and is effective for stabilizing the ferrite structure, but among the additive elements normally found in stainless steel, it is an element that easily oxidizes with Al. This prevents the formation of the oxide film proposed in the invention. Therefore, it was regulated to 0.1 mass% or less.

N:0.02質量%以下
Nは窒化物を形成して耐食性を劣化、あるいは鋼材を硬化して加工性を劣化するため、その上限を0.02質量%とした。
N: 0.02% by mass or less N has an upper limit of 0.02% by mass because N forms nitrides and deteriorates corrosion resistance, or hardens steel and deteriorates workability.

Mo:2.0質量%以下
Moは耐食性の向上のため必要に応じて添加される元素であり、過剰な加工性の低下、コストの上昇を招くためその上限を2.0質量%とした。
Mo: 2.0% by mass or less Mo is an element added as necessary to improve the corrosion resistance. The upper limit is set to 2.0% by mass in order to cause excessive workability reduction and cost increase.

本発明の特徴であるAl主体の酸化皮膜の製造方法については、通常の溶製,熱間圧延,熱延板焼鈍,冷間圧延を経て製造された鋼板を以下の熱処理条件で仕上げることを特徴とする。図5には熱処理後の皮膜厚みと焼鈍温度の関係を示す。均熱時間は0minとし、目標温度へ到達後に直ちに空冷却した。冷却速度は600℃まで約90s、600℃から200℃まで約400sであり、昇温から到達温度に達して冷却後200℃まで炉内雰囲気を維持した。   The method for producing an Al-based oxide film, which is a feature of the present invention, is characterized by finishing a steel plate produced through normal melting, hot rolling, hot-rolled sheet annealing, and cold rolling under the following heat treatment conditions. And FIG. 5 shows the relationship between the film thickness after the heat treatment and the annealing temperature. The soaking time was 0 min, and air cooling was performed immediately after reaching the target temperature. The cooling rate was about 90 s to 600 ° C. and about 400 s from 600 ° C. to 200 ° C. The temperature in the furnace reached the ultimate temperature, and the furnace atmosphere was maintained up to 200 ° C. after cooling.

図5によれば熱処理温度が高いほど酸化皮膜の厚みは増大するが、過熱時の昇温速度にも影響される。昇温速度の影響は後述するが、熱処理時の到達温度が1000℃に満たない場合、工業的に用いられる連続光輝焼鈍炉などの均熱時間の短い熱処理炉では10.0nmを超える皮膜厚みが得られ難いと考えられる。一方、1050℃を越える高温では熱処理にかかる費用が増大するとともに結晶粒の過剰な粗大化を招き加工性の劣化が懸念されるため、1000〜1050℃を適正範囲とした。なお、図5には溶接後の耐食性も合せて示すが、発銹が認められたものは全て皮膜厚みが薄いことが分かる。また、900℃で焼鈍したものは酸化皮膜の欠陥率も大きいことを確認している。   According to FIG. 5, the higher the heat treatment temperature, the greater the thickness of the oxide film, but it is also affected by the rate of temperature rise during overheating. Although the effect of the heating rate will be described later, when the temperature reached during the heat treatment is less than 1000 ° C., the heat treatment furnace with a short soaking time such as a continuous bright annealing furnace used industrially has a film thickness exceeding 10.0 nm. It is considered difficult to obtain. On the other hand, at a high temperature exceeding 1050 ° C., the cost for the heat treatment increases, and excessive coarsening of crystal grains is caused. FIG. 5 also shows the corrosion resistance after welding, but it can be seen that all of the films with rusting are thin. Moreover, what was annealed at 900 degreeC has confirmed that the defect rate of an oxide film is also large.

図6に熱処理後の酸化皮膜厚みと昇温速度の関係について示す。発明者らは熱処理温度が同じでも本発明のようにナノメートルレベルの厚みの酸化皮膜を制御しようとする場合、目標温度に到達するまでの昇温過程も考慮する必要があり、特に600℃から到達温度までの平均昇温速度の影響が大きいことを見出した。図6によれば昇温速度が小さいほど酸化皮膜の厚みが増大し、熱処理温度毎に適正な昇温速度範囲があることがわかる。図7に熱処理時の到達温度と昇温速度を変化させて得られた鋼板の溶接後の耐食性評価結果を示す。図7に斜線で示す特許請求範囲が(2)式で示した条件となる。   FIG. 6 shows the relationship between the thickness of the oxide film after heat treatment and the rate of temperature rise. When the inventors intend to control an oxide film having a thickness of nanometer level as in the present invention even if the heat treatment temperature is the same, it is necessary to consider the temperature rising process until the target temperature is reached. It was found that the influence of the average heating rate up to the ultimate temperature is large. According to FIG. 6, it can be seen that the smaller the temperature increase rate, the greater the thickness of the oxide film, and there is an appropriate temperature increase rate range for each heat treatment temperature. FIG. 7 shows the corrosion resistance evaluation results after welding of the steel sheets obtained by changing the ultimate temperature and the heating rate during the heat treatment. The claims indicated by hatching in FIG. 7 are the conditions indicated by equation (2).

図8には熱処理後の酸化皮膜厚みと熱処理における均熱時間の関係について示す。均熱時間が長いほど酸化皮膜の厚みは増大し、均熱時間が5minに達すると昇温速度の影響は小さく、15nm前後の酸化皮膜厚みが得られることが分かる。したがって、均熱を5min以上とする場合については、昇温速度の制限をなくした。   FIG. 8 shows the relationship between the oxide film thickness after the heat treatment and the soaking time in the heat treatment. It can be seen that the longer the soaking time, the greater the thickness of the oxide film. When the soaking time reaches 5 minutes, the effect of the heating rate is small, and an oxide film thickness of around 15 nm can be obtained. Therefore, in the case where the soaking is 5 min or more, the temperature rise rate is not limited.

図9に酸化皮膜の厚みと雰囲気ガスの露点の関係を示す。露点が高いほど酸化皮膜の厚みは増大した。露点−40℃においては昇温速度が本発明範囲より速くても目標とする15nmの皮膜厚みが得られた。しかしながら、溶接後の耐食試験では発銹が認められた。
この理由を明確にするため、以下の方法で酸化皮膜の欠陥量を評価した。すなわち、硫酸:1mol/L,チオシアン酸カリウム:0.01mol/L,液温30℃の水溶液中で、10mV/minの条件で得たアノード分極曲線から電位250mVにおける電流密度を得た。本発明の皮膜は主に絶縁性を有するAlからなるため、皮膜に欠陥がない場合にはアノード電流が低くなる。
FIG. 9 shows the relationship between the thickness of the oxide film and the dew point of the atmospheric gas. The higher the dew point, the greater the thickness of the oxide film. At a dew point of −40 ° C., a target film thickness of 15 nm was obtained even if the rate of temperature increase was faster than the range of the present invention. However, rusting was observed in the corrosion resistance test after welding.
In order to clarify this reason, the defect amount of the oxide film was evaluated by the following method. That is, a current density at a potential of 250 mV was obtained from an anodic polarization curve obtained in an aqueous solution of sulfuric acid: 1 mol / L, potassium thiocyanate: 0.01 mol / L, and a liquid temperature of 30 ° C. under the condition of 10 mV / min. Since the film of the present invention is mainly composed of Al 2 O 3 having insulating properties, the anode current is lowered when the film is free of defects.

なお、予備実験として一旦本発明の皮膜を付与した後に研磨(SiC研磨紙#400)により皮膜の一部を剥離し、素材露出面積とアノード電流値の相関をとった結果、皮膜の一部を剥離したサンプルのアノード電流値は、原点と皮膜を元々付与していない素材露出面積率100%のサンプル(酸洗仕上げ材)の電流値を結んだ直線上に乗り、皮膜露出面積とアノード電流値に1次の相関があることを把握している。図10に酸化皮膜の欠陥率と雰囲気ガスの露点の関係を示す。図10によれば、露点−40℃で得られた皮膜には欠陥が多いことが分かった。一方、−60℃より乾湿側の露点は工業的に維持することが難しく製造コストを増大するだけである。そのため熱処理時の雰囲気ガスの露点の適正範囲を−60〜−50℃とした。   As a preliminary experiment, after the coating of the present invention was once applied, a part of the coating was peeled off by polishing (SiC polishing paper # 400), and as a result of correlating the material exposed area and the anode current value, a part of the coating was obtained. The anode current value of the peeled sample rides on the straight line connecting the current value of the sample (pickling finish material) of the material exposed area rate 100% with no origin and coating originally applied, and the coating exposed area and anode current value Have a first-order correlation. FIG. 10 shows the relationship between the defect rate of the oxide film and the dew point of the atmospheric gas. According to FIG. 10, it was found that the film obtained at a dew point of −40 ° C. had many defects. On the other hand, the dew point on the wet and dry side from −60 ° C. is difficult to maintain industrially and only increases the production cost. Therefore, the appropriate range of the dew point of the atmospheric gas during the heat treatment is set to −60 to −50 ° C.

図11には酸化皮膜の厚みと熱処理時の雰囲気ガス組成の関係を示す。酸化皮膜の厚みに及ぼす雰囲気ガス組成の影響は小さいが、100%水素ガス雰囲気では15nm以上の酸化皮膜厚みを得られても、溶接後の耐食試験で発銹が認められる場合があった。図12に示す皮膜の欠陥率と熱処理時の雰囲気ガス組成の関係を見ると、100%水素ガス雰囲気を用いると酸化皮膜に欠陥が多くなることが分かった。なお、均熱時間を10nmとして皮膜厚みを十分に厚くした場合、酸化皮膜の欠陥率も低下し溶接後の耐食試験で発銹は認められなかった。一方、100%窒素ガス雰囲気では、図13に示す酸化皮膜の組成と熱処理時の雰囲気ガス組成の関係から分かるように、熱処理後の皮膜中のAl濃度が低下し、本発明が目的とする酸化皮膜組成が得られない。   FIG. 11 shows the relationship between the thickness of the oxide film and the atmospheric gas composition during heat treatment. Although the influence of the atmospheric gas composition on the thickness of the oxide film is small, even if an oxide film thickness of 15 nm or more can be obtained in a 100% hydrogen gas atmosphere, igniting may be observed in the corrosion resistance test after welding. Looking at the relationship between the defect rate of the film shown in FIG. 12 and the atmosphere gas composition during the heat treatment, it was found that the oxide film has many defects when a 100% hydrogen gas atmosphere is used. In addition, when the film thickness was sufficiently increased by setting the soaking time to 10 nm, the defect rate of the oxide film also decreased, and no igniting was observed in the corrosion resistance test after welding. On the other hand, in a 100% nitrogen gas atmosphere, as can be seen from the relationship between the composition of the oxide film shown in FIG. 13 and the atmosphere gas composition during the heat treatment, the Al concentration in the film after the heat treatment decreases, and the oxidation targeted by the present invention is achieved. The film composition cannot be obtained.

なお、Al濃度が減少する代わりにCr濃度が増大することを確認している。本発明では易酸化性のAlを主体とする酸化皮膜を予め付与することで、その後に溶接熱影響部のように大気中で高温にさらされた際に、その酸化皮膜が維持されて大気中の酸素が鋼板表面へ触れることを抑制し、耐食性劣化原因となる鉄の酸化を抑制できるものと考えている。そのため、欠陥が少なくAl主体の酸化皮膜を得るために適正雰囲気ガス組成は水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気とした。   It has been confirmed that the Cr concentration increases instead of the Al concentration decreasing. In the present invention, by providing an oxide film mainly composed of easily oxidizable Al in advance, the oxide film is maintained in the atmosphere when exposed to a high temperature in the atmosphere like a weld heat affected zone. It is considered that the oxygen can be prevented from touching the surface of the steel sheet, and the oxidation of iron, which causes corrosion resistance deterioration, can be suppressed. Therefore, in order to obtain an Al-based oxide film with few defects, the proper atmosphere gas composition is a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume.

先に表1に示したフェライト系ステンレス鋼板を、通常の溶製,熱間圧延,熱延板焼鈍,冷間圧延を経て製造し、最終工程で表2に示す条件で焼鈍した。その鋼板を、TIGパルス溶接機を用いて、板厚1.0mm×幅75mm×長さ175mmの鋼板の幅中央に、鋼板と電極との距離1mm、溶接速度300mm/min、周波数10Hzにおいて裏面のビード幅が4mmになるように溶接電流を調整し、Arバックシールを行わずに溶接し、耐食試験に供した。
耐食試験は、試験片の幅中央に溶接ビードが納まるように幅50mm×長さ55mmの試験片を2枚切り出し、80℃に保持した1000ppmCl,10ppmCu2+水溶液750ccに20h浸漬した後、溶接部熱影響部を目視観察し、孔食の有無で評価した。
The ferritic stainless steel plate previously shown in Table 1 was manufactured through normal melting, hot rolling, hot rolled sheet annealing, and cold rolling, and annealed under the conditions shown in Table 2 in the final step. Using a TIG pulse welding machine, the steel plate was placed at the center of the width of the steel plate having a thickness of 1.0 mm × width of 75 mm × length of 175 mm. The welding current was adjusted so that the bead width was 4 mm, welding was performed without performing the Ar back seal, and the sample was subjected to a corrosion resistance test.
In the corrosion resistance test, two test pieces each having a width of 50 mm and a length of 55 mm were cut out so that the weld bead fits in the center of the test piece, immersed in 750 cc of 1000 ppm Cl , 10 ppm Cu 2+ aqueous solution kept at 80 ° C. The heat-affected zone was visually observed and evaluated by the presence or absence of pitting corrosion.

各元素の原子比率はXPSによる各元素のスペクトルの積分面積に基づいた半定量分析値により算出した値である。皮膜厚みはXPS装置のArイオンによるスパッタリング機能を利用して測定した。具体的には、スパッタリングによって酸素の原子比率が表面と比較して1/2となる位置を酸化皮膜とメタルの界面と定義し、鋼板上に皮膜厚みが既知のSiO皮膜を有する標準サンプルを用いてスパッタリング時間と深さの関係を算出し、スパッタリング時間を皮膜厚みに換算した。さらに、酸化皮膜中のAl濃度は皮膜表面で高く、メタルとの界面に近いほど低くなる傾向が認められたため、酸化皮膜中のAl濃度は、表面から2.5nm深さまで濃度と酸素の原子比率から求めたメタルとの界面から皮膜側へ2.5nmの深さの位置の濃度との平均値とした。このとき、Alの濃度は酸素および他の微量検出元素を除いた、Al,Si,Mn,Cr,Feの原子比率として求めた。 The atomic ratio of each element is a value calculated by a semi-quantitative analysis value based on the integral area of the spectrum of each element by XPS. The film thickness was measured using the sputtering function by Ar ions of the XPS apparatus. Specifically, the position where the atomic ratio of oxygen is 1/2 compared to the surface by sputtering is defined as the interface between the oxide film and the metal, and a standard sample having a SiO 2 film with a known film thickness on the steel sheet is prepared. Using this, the relationship between the sputtering time and the depth was calculated, and the sputtering time was converted into the film thickness. Furthermore, the Al concentration in the oxide film was high on the surface of the film, and it was observed that the Al concentration in the oxide film tended to decrease as it was closer to the interface with the metal. It was set as the average value with the density | concentration of the position of the depth of 2.5 nm from the interface with the metal calculated | required from the film side. At this time, the Al concentration was determined as an atomic ratio of Al, Si, Mn, Cr, and Fe excluding oxygen and other trace detection elements.

皮膜欠陥は、硫酸:1mol,チオシアン酸カリウム:0.01mol,液温30℃の水溶液中で、10mV/minの条件で得たアノード分極曲線から電位250mVにおける電流密度を求め、酸洗仕上げ材(2D)の電流密度を基準に次式にて皮膜欠陥率を求めた。
皮膜欠陥率=A/B×100(%) ・・・(1)
A:評価材のアノード電流密度,B:研磨仕上げ材のアノード電流密度
表2には鋼板表面の酸化皮膜組成、酸化皮膜厚み、酸化皮膜の欠陥率および溶接後の耐食試験結果を合せて示す。
耐食試験結果は発銹ありを○、発銹なしを×とした。この結果より、皮膜欠陥が溶接後の耐食性を大きく左右していることがわかる。
Film defects were determined by determining the current density at an electric potential of 250 mV from an anodic polarization curve obtained in an aqueous solution of sulfuric acid: 1 mol, potassium thiocyanate: 0.01 mol, and liquid temperature of 30 ° C. under the condition of 10 mV / min. Based on the current density of 2D), the film defect rate was determined by the following equation.
Defect rate of film = A / B × 100 (%) (1)
A: Anode current density of evaluation material, B: Anode current density of polished finish material Table 2 also shows the oxide film composition, oxide film thickness, oxide film defect rate on the steel sheet surface, and corrosion resistance test results after welding.
In the corrosion resistance test results, ◯ indicates that there was wrinkling, and X indicates that there was no wrinkling. From this result, it can be seen that the film defects greatly influence the corrosion resistance after welding.

Figure 2011190523
Figure 2011190523

本発明によれば、溶接熱影響部の耐食性に優れたステンレス鋼を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the stainless steel excellent in the corrosion resistance of a welding heat affected zone can be provided.

Claims (4)

窒素と水素の混合ガス雰囲気中の熱処理により生成された酸化皮膜を有するフェライト系ステンレス鋼であって、酸化皮膜の厚みが15nm以上、酸化皮膜中のAlの濃度がAl,Si,Mn,Cr,Feの原子比率において50原子%以上であるとともに、(1)式で定義する酸化皮膜の欠陥率が3.0%以下であることを特徴とする溶接部熱影響部の耐食性が改善されたステンレス鋼板。
硫酸:1mol/L,チオシアン酸カリウム:0.01mol/L,液温30℃の水溶液中で、10mV/minの条件でアノード分極し、250mVにおけるアノード電流密度から(1)式で算出される値を皮膜欠陥率とする。
皮膜欠陥率=A/B×100(%) ・・・(1)
A:評価材のアノード電流密度,B:酸洗仕上げ材のアノード電流密度
A ferritic stainless steel having an oxide film formed by heat treatment in a mixed gas atmosphere of nitrogen and hydrogen, the oxide film having a thickness of 15 nm or more, and the concentration of Al in the oxide film is Al, Si, Mn, Cr, Stainless steel with improved corrosion resistance in the heat affected zone of the weld zone, wherein the atomic ratio of Fe is 50 atomic% or more and the defect rate of the oxide film defined by the formula (1) is 3.0% or less. steel sheet.
Sulfuric acid: 1 mol / L, potassium thiocyanate: 0.01 mol / L, anodic polarization in an aqueous solution at a liquid temperature of 30 ° C. under the condition of 10 mV / min, and a value calculated from the anodic current density at 250 mV by the formula (1) Is the film defect rate.
Defect rate of film = A / B × 100 (%) (1)
A: Anode current density of evaluation material, B: Anode current density of pickling finish
C:0.02質量%以下、Si:1.0質量%以下、Mn:0.5質量%以下、P:0.05質量%以下、S:0.005質量%以下、Ni:0.5質量%以下、Cr:16〜24質量%、Al:0.05〜1.0質量%、Nb:0.1〜0.5質量%以下、Ti:0.1質量%以下、N:0.02質量%以下、Mo:2.0質量%以下を含有し、残部がFeおよび不可避的不純物からなる組成を有する、請求項1のフェライト単相系ステンレス鋼板。   C: 0.02 mass% or less, Si: 1.0 mass% or less, Mn: 0.5 mass% or less, P: 0.05 mass% or less, S: 0.005 mass% or less, Ni: 0.5 % By mass, Cr: 16-24% by mass, Al: 0.05-1.0% by mass, Nb: 0.1-0.5% by mass or less, Ti: 0.1% by mass or less, N: 0.00%. The ferritic single-phase stainless steel sheet according to claim 1, which has a composition containing not more than 02% by mass, Mo: not more than 2.0% by mass, and the balance consisting of Fe and inevitable impurities. 水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気中で、温度1000〜1050℃,均熱時間5min以上で雰囲気ガスの露点を−60〜−50℃の条件で熱処理することを特徴とする、請求項1または請求項2に記載のフェライト単相系ステンレス鋼板の製造方法。   A heat treatment is performed in a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume under conditions of a temperature of 1000 to 1050 ° C. and a soaking time of 5 min or more under a condition of −60 to −50 ° C. dew point of the atmosphere gas. A method for producing a ferritic single-phase stainless steel sheet according to claim 1 or 2. 水素比率60〜90体積%からなる水素と窒素の混合ガス雰囲気中で、温度1000〜1050℃,均熱時間5min未満で600℃から到達温度までの平均昇温速度が(2)式を満足し,雰囲気ガスの露点を−60〜−50℃の条件で熱処理することを特徴とする請求項1または請求項2に記載のフェライト単相系ステンレス鋼板の製造方法。
V≦0.2×T ・・・(2)
V:昇温速度(℃/min),T:到達温度(℃)
In a mixed gas atmosphere of hydrogen and nitrogen having a hydrogen ratio of 60 to 90% by volume, the average rate of temperature increase from 600 ° C. to the ultimate temperature is satisfied when the temperature is 1000 to 1050 ° C. and the soaking time is less than 5 minutes. The method for producing a ferritic single-phase stainless steel sheet according to claim 1, wherein the dew point of the atmospheric gas is heat-treated at −60 to −50 ° C.
V ≦ 0.2 × T (2)
V: heating rate (° C / min), T: ultimate temperature (° C)
JP2010060161A 2010-03-17 2010-03-17 Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone Withdrawn JP2011190523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010060161A JP2011190523A (en) 2010-03-17 2010-03-17 Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010060161A JP2011190523A (en) 2010-03-17 2010-03-17 Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone

Publications (1)

Publication Number Publication Date
JP2011190523A true JP2011190523A (en) 2011-09-29

Family

ID=44795735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010060161A Withdrawn JP2011190523A (en) 2010-03-17 2010-03-17 Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP2011190523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089502A (en) * 2016-01-12 2018-08-08 제이에프이 스틸 가부시키가이샤 Stainless steel plate having Ni and O-containing coating on its surface and method for manufacturing the same
JP2019152668A (en) * 2018-03-05 2019-09-12 株式会社神戸製鋼所 Film thickness measurement method for oxide film
KR102164085B1 (en) * 2019-05-13 2020-10-12 주식회사 포스코 A gas tungsten arc welding method with improved welding speed and a workpiece thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180089502A (en) * 2016-01-12 2018-08-08 제이에프이 스틸 가부시키가이샤 Stainless steel plate having Ni and O-containing coating on its surface and method for manufacturing the same
KR102101109B1 (en) 2016-01-12 2020-04-14 제이에프이 스틸 가부시키가이샤 Stainless steel sheet having Ni and O-containing coating on the surface and method for manufacturing the same
US10988853B2 (en) 2016-01-12 2021-04-27 Jfe Steel Corporation Stainless steel sheet including Ni and O-containing coating on surface and method for producing stainless steel sheet
JP2019152668A (en) * 2018-03-05 2019-09-12 株式会社神戸製鋼所 Film thickness measurement method for oxide film
JP7148438B2 (en) 2018-03-05 2022-10-05 株式会社神戸製鋼所 Oxide film thickness measurement method
KR102164085B1 (en) * 2019-05-13 2020-10-12 주식회사 포스코 A gas tungsten arc welding method with improved welding speed and a workpiece thereof

Similar Documents

Publication Publication Date Title
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
TWI653346B (en) Black ferrous iron-based stainless steel plate
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6037882B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
TWI499678B (en) Fat iron type stainless steel and its manufacturing method
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP6376218B2 (en) Austenitic stainless steel sheet that is difficult to diffuse and bond
JP6783342B2 (en) Austenitic stainless steel and its manufacturing method
JP5777387B2 (en) Bright annealing method for duplex stainless steel
JP2015140442A (en) Steel material excellent in hydrogen induced cracking resistance and production method therefor
JP2011190523A (en) Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone
JP5935792B2 (en) Ferritic stainless steel
JP5343035B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
JP2018168461A (en) Duplex stainless steel weld structure for oxidizable fluid environment, and duplex stainless steel for duplex stainless steel weld structure for oxidizable fluid environment
JP5018257B2 (en) Ferritic stainless steel sheet excellent in abrasiveness and corrosion resistance and method for producing the same
JP2022041426A (en) Austenitic stainless steel sheet, and method for producing the same
JP6390594B2 (en) Ferritic stainless steel
WO2018147149A1 (en) Ferritic stainless steel sheet
JP2008266697A (en) Pickling method and manufacturing method for stainless steel material
JP5128366B2 (en) Method for producing Si-containing hot-rolled steel sheet having excellent surface properties
JP2016089213A (en) SURFACE TREATMENT METHOD OF Fe-Cr-Ni-BASED ALLOY MATERIAL EXCELLENT IN PROCESSABILITY AND CORROSION RESISTANCE
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP4170193B2 (en) Stainless steel plate with less heat generation and method for producing the same
JP5691643B2 (en) Hot rolled steel sheet for oil country tubular goods and method for producing hot rolled steel sheet for oil country tubular goods
JP2019178392A (en) Black stainless steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604