JP2011188509A - Radio transmitter and radio transmission method - Google Patents
Radio transmitter and radio transmission method Download PDFInfo
- Publication number
- JP2011188509A JP2011188509A JP2011091854A JP2011091854A JP2011188509A JP 2011188509 A JP2011188509 A JP 2011188509A JP 2011091854 A JP2011091854 A JP 2011091854A JP 2011091854 A JP2011091854 A JP 2011091854A JP 2011188509 A JP2011188509 A JP 2011188509A
- Authority
- JP
- Japan
- Prior art keywords
- wireless transmission
- modulation
- circuit
- signal
- working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
本発明は、複数の系統を使用しデータ列信号を伝送する無線伝送装置及び無線伝送方法に関する。 The present invention relates to a wireless transmission apparatus and a wireless transmission method for transmitting a data string signal using a plurality of systems.
この種の無線伝送装置は、例えば、特許文献1に記載されている。
This type of wireless transmission device is described in
図4は、特許文献1の無線伝送システムを示すブロック図である。
FIG. 4 is a block diagram showing the wireless transmission system of
特許文献1に記載された無線伝送システムは、無線伝送装置D1と無線伝送装置D2との間でデータ伝送を行なう。無線伝送装置D1は、送受信器D3と変調回路D5、復調回路D7、変調器制御回路D11、インタフェース回路D9で構成される。無線伝送装置D2は、送受信器D4と変調回路D6、復調回路D8、変調方式制御回路D12、遅延回路D13、インタフェース回路D10で構成される。
The wireless transmission system described in
無線伝送装置D2の復調回路D8は、無線伝送路の無線回線品質が変化した場合、変調方式制御回路D12に回線品質信号d101を出力する。変調方式制御回路D12は、前記回線品質信号d101に基づき変調方式を決定し、変調方式指示信号d102を変調回路D6から送受信器D4経由で対向する無線伝送装置D1の復調回路D7へ伝送する。 The demodulation circuit D8 of the wireless transmission device D2 outputs a line quality signal d101 to the modulation scheme control circuit D12 when the wireless line quality of the wireless transmission path changes. The modulation system control circuit D12 determines the modulation system based on the channel quality signal d101, and transmits the modulation system instruction signal d102 from the modulation circuit D6 to the demodulation circuit D7 of the opposite radio transmission apparatus D1 via the transceiver D4.
無線伝送装置D1の復調回路D7は、変調方式指示信号d104を変調器制御回路D11に送信し、変調器制御信号d105に基づき、変調回路D5において変調方式を切り替える。また、遅延回路D13は、前記変調器制御信号d105により変調回路D5の変調方式切り替えが完了するまでの間、復調回路D8への復調器制御信号d103を遅延させる。 The demodulation circuit D7 of the wireless transmission device D1 transmits the modulation method instruction signal d104 to the modulator control circuit D11, and switches the modulation method in the modulation circuit D5 based on the modulator control signal d105. Further, the delay circuit D13 delays the demodulator control signal d103 to the demodulation circuit D8 until the modulation system switching of the modulation circuit D5 is completed by the modulator control signal d105.
即ち、特許文献1には、無線伝送路の回線品質を監視し、変調方式を適時切り替え、無線伝送路の回線状態に応じた変調方式でデータ伝送する無線伝送装置が記載されている。この技術を用いれば、無線伝送路の回線状態に応じた変調方式で伝送可能となり、限られた伝送路帯域を有効利用することができる。
That is,
しかしながら、特許文献1に記載された無線伝送システムにおいても、変調方式を切り替えるプロセスの中で伝送データの瞬断が発生することを見出し得る。これは、送信側の変調方式を切り替えるタイミングと受信側の変調方式切り替えるタイミングとが必ずしも一致しないためである。
However, even in the wireless transmission system described in
本発明の目的は、上記課題を解決し、無線伝送路の伝送路状態に応じ、変調方式を切り替えるプロセスでの伝送データの損失を無くする無線伝送装置を提供することにある。 An object of the present invention is to provide a wireless transmission apparatus that solves the above-described problems and eliminates transmission data loss in a process of switching a modulation scheme in accordance with the transmission path state of the wireless transmission path.
本発明に係る無線伝送装置は、無線通信を用いてデータ列信号を伝送する現用系統及び予備系統を有する無線伝送装置において、前記現用系統及び前記予備系統の無線伝送路の通信環境を監視して通信環境の状態を系統毎に識別する監視手段と、前記監視手段の系統毎の識別結果を用いて、変調・復調方式を選択する変復調方式選択手段と、前記監視手段の系統毎の識別結果を用いて、前記現用系統及び前記予備系統を切り替える切替信号を生成する切替信号生成手段とを有することを特徴とする。 A wireless transmission device according to the present invention monitors a communication environment of a wireless transmission path of the working system and the standby system in a wireless transmission device having a working system and a standby system that transmits a data string signal using wireless communication. The monitoring means for identifying the state of the communication environment for each system, the modulation / demodulation method selecting means for selecting the modulation / demodulation method using the identification result for each system of the monitoring means, and the identification result for each system of the monitoring means And a switching signal generating means for generating a switching signal for switching between the working system and the standby system.
また、本発明に係る無線伝送装置は、無線通信を用いてデータ列信号を伝送する現用系統及び予備系統を有する無線伝送装置において、基準信号となる第1のパルス列、及び、前記第1のパルス列より繰返し周波数の少ない第2のパルス列を生成する基準信号生成回路を備え、前記第1のパルス列に同期させ送信するデータ列信号を前記現用系統及び前記予備系統のフレーム多重信号として多重すると共に、前記第2のパルス列に同期させて、前記現用系統及び前記予備系統のフレーム多重信号をフレーム同期させることとしてもよい。 The wireless transmission device according to the present invention includes a first pulse train serving as a reference signal in the wireless transmission device having a working system and a standby system for transmitting a data train signal using wireless communication, and the first pulse train. A reference signal generating circuit for generating a second pulse train having a smaller repetition frequency, and multiplexing a data train signal to be transmitted in synchronization with the first pulse train as a frame multiplexed signal of the working system and the standby system, The frame multiplexed signals of the working system and the standby system may be synchronized with the second pulse train.
本発明によれば、無線伝送路の伝送路状態に応じ、変調方式を切り替えるプロセスでの伝送データの損失を無くする無線伝送装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the wireless transmission apparatus which eliminates the loss of the transmission data in the process which switches a modulation system according to the transmission-line state of a wireless transmission path can be provided.
本発明の実施の一形態を図1ないし図3に基づいて説明する。 An embodiment of the present invention will be described with reference to FIGS.
図1は、実施の一形態の無線伝送システムを示すブロック図である。図1において、無線伝送装置A100と無線伝送装置B200は同一装置である。本実施の一形態の説明では、無線伝送装置A100をPDH(Plesiochronous Digital Hierachy)信号の送信側(入力側)とし、無線伝送装置B200を受信側(出力側)とする。また、無線伝送装置A100で送信系の構成等を説明し、無線伝送装置B200で受信系の説明を行なう。 FIG. 1 is a block diagram illustrating a wireless transmission system according to an embodiment. In FIG. 1, a wireless transmission device A100 and a wireless transmission device B200 are the same device. In the description of the present embodiment, the wireless transmission device A100 is a PDH (Plesiochronous Digital Hierachy) signal transmission side (input side), and the wireless transmission device B200 is a reception side (output side). The configuration of the transmission system and the like will be described with the wireless transmission device A100, and the reception system will be described with the wireless transmission device B200.
無線伝送装置A100は、送信系回路として、基準フレーム生成回路A1、スタッフ回路A2、現用系フレーム多重回路A3、予備系フレーム多重回路A4、現用系変調回路A5、予備系変調回路A6を有する。 The wireless transmission device A100 includes a reference frame generation circuit A1, a stuff circuit A2, an active frame multiplexing circuit A3, a standby frame multiplexing circuit A4, an active modulation circuit A5, and a standby modulation circuit A6 as transmission circuits.
基準フレーム生成回路A1(基準信号生成回路)は、後述する現用無線フレーム多重信号a004と予備無線フレーム多重信号a005の生成基準となる基準クロック(第1のパルス列)と基準フレームパルスa002(第2のパルス列)を生成し、スタッフ回路A2、現用系フレーム多重回路A3及び予備系フレーム多重回路A4に出力する。 The reference frame generation circuit A1 (reference signal generation circuit) is configured to generate a reference clock (first pulse train) and a reference frame pulse a002 (second output), which are generation references for a working radio frame multiplexed signal a004 and a backup radio frame multiplexed signal a005, which will be described later. Pulse train) is generated and output to the stuff circuit A2, the active system frame multiplexing circuit A3 and the standby system frame multiplexing circuit A4.
スタッフ回路A2は、外部から入力されるn本(nは自然数)の受信PDHデータ列信号a001を前記基準クロックと基準フレームパルスa002に対してスタッフ同期化処理し、n本のスタッフ同期データ列a003を現用系フレーム多重回路A3と予備系フレーム多重回路A4とに出力する。 The stuff circuit A2 performs stuff synchronization processing on n (n is a natural number) received PDH data string signals a001 inputted from the outside with respect to the reference clock and the reference frame pulse a002, and n stuff synchronization data strings a003. Are output to the active frame multiplexing circuit A3 and the standby frame multiplexing circuit A4.
現用系フレーム多重回路A3は、基準クロックと基準フレームパルスa002と送信系回路である現用系フレーム同期回路A10の送信する現用変調方式制御信号a016に従い、スタッフ回路A2から入力されるn本のスタッフ同期データ列a003と変調方式制御情報とを変調方式に応じて多重して現用無線フレーム多重信号a004として出力する。 The active frame multiplex circuit A3 has n stuff synchronizations input from the stuff circuit A2 in accordance with the reference clock, the reference frame pulse a002, and the active modulation scheme control signal a016 transmitted by the active frame synchronization circuit A10 which is a transmission system circuit. The data string a003 and the modulation scheme control information are multiplexed according to the modulation scheme and output as a working radio frame multiplexed signal a004.
現用系変調回路A5は、現用系フレーム多重回路A3から入力される現用無線フレーム多重信号a004に対して、現用変調方式制御信号a016によって指示された変調方式を用いて変調を行い、現用無線送信信号a006を無線伝送路C30に送出する。 The working modulation circuit A5 modulates the working radio frame multiplexed signal a004 input from the working frame multiplexing circuit A3 by using the modulation method indicated by the working modulation method control signal a016, and the working radio transmission signal a006 is sent to the wireless transmission path C30.
予備系フレーム多重回路A4は、基準クロックと基準フレームパルスa002と送信系回路である予備系フレーム同期回路A11の送信する予備変調方式制御信号a017に従い、スタッフ回路A2から入力されるn本のスタッフ同期データ列a003と変調方式制御情報とを変調方式に応じて多重して予備無線フレーム多重信号a005として出力する。尚、無線フレーム多重信号のフレーム周期は、現用系及び予備系共に同一周期を使用する。 The spare frame multiplex circuit A4 has n stuff synchronizations input from the stuff circuit A2 in accordance with the reference clock, the reference frame pulse a002, and the spare modulation scheme control signal a017 transmitted by the spare frame synchronization circuit A11 which is a transmission circuit. The data string a003 and the modulation scheme control information are multiplexed according to the modulation scheme and output as a spare radio frame multiplexed signal a005. The frame period of the radio frame multiplexed signal uses the same period for both the active system and the standby system.
予備系変調回路A6は、予備系フレーム多重回路A4から入力される予備無線フレーム多重信号a005に対して、予備変調方式制御信号a017によって指示された変調方式を用いて変調を行い、予備無線送信信号a007を無線伝送路C31に送出する。 The backup modulation circuit A6 modulates the backup radio frame multiplexed signal a005 input from the backup frame multiplexing circuit A4 using the modulation scheme indicated by the backup modulation scheme control signal a017, and performs backup radio transmission signal. a007 is sent to the wireless transmission path C31.
無線伝送装置A100は、受信系回路として、受信監視回路A7、現用系復調回路A8、予備系復調回路A9、現用系フレーム同期回路A10、予備系フレーム同期回路A11、無瞬断切替回路A12及びデスタッフ回路A13を有する。無線伝送装置A100の受信系回路は、後述する無線伝送装置B200の受信系回路と同一の構成であるため、無線伝送装置B200の説明をもって、記載を省略する。 The radio transmission apparatus A100 includes a reception monitoring circuit A7, an active demodulation circuit A8, a standby demodulation circuit A9, an active frame synchronization circuit A10, a standby frame synchronization circuit A11, an uninterruptible switching circuit A12, and a reception system circuit. It has a stuff circuit A13. Since the reception system circuit of the wireless transmission device A100 has the same configuration as the reception system circuit of the wireless transmission device B200, which will be described later, description thereof is omitted in the description of the wireless transmission device B200.
無線伝送装置B200は、送信系回路として、基準フレーム生成回路B1、スタッフ回路B2、現用系フレーム多重回路B3、予備系フレーム多重回路B4、現用系変調回路B5及び予備系変調回路B6を有する。無線伝送装置B200の送信系回路は、無線伝送装置A100の送信系回路と同一の構成であるため説明を省略する。 The radio transmission apparatus B200 includes a reference frame generation circuit B1, a stuff circuit B2, an active frame multiplexing circuit B3, a standby frame multiplexing circuit B4, an active modulation circuit B5, and a standby modulation circuit B6 as transmission circuits. Since the transmission system circuit of the wireless transmission device B200 has the same configuration as the transmission system circuit of the wireless transmission device A100, the description thereof is omitted.
無線伝送装置B200は、受信系回路として、受信監視回路B7、現用系復調回路B8、予備系復調回路B9、現用系フレーム同期回路B10、予備系フレーム同期回路B11、無瞬断切替回路B12及びデスタッフ回路B13を有する。 The radio transmission apparatus B200 includes a reception monitoring circuit B7, an active demodulation circuit B8, a standby demodulation circuit B9, an active frame synchronization circuit B10, a standby frame synchronization circuit B11, an uninterruptible switching circuit B12, and a reception system circuit. It has a stuff circuit B13.
現用系復調回路B8は、無線伝送装置A100から無線伝送路C30を経由して入力された現用無線受信信号b008の受信レベルを計測し、現用受信レベルモニタ信号b011を受信監視回路B7に出力する。同じく、受信監視回路B7から入力される現用復調方式制御信号b012に従がって現用系の復調方式を切り替え、現用復調信号b010を現用系フレーム同期回路B10に出力する。 The working demodulation circuit B8 measures the reception level of the working radio reception signal b008 input from the radio transmission apparatus A100 via the radio transmission path C30, and outputs the working reception level monitor signal b011 to the reception monitoring circuit B7. Similarly, the current demodulation method is switched according to the current demodulation method control signal b012 input from the reception monitoring circuit B7, and the current demodulation signal b010 is output to the current frame synchronization circuit B10.
現用系フレーム同期回路B10は、前記現用復調信号b010の無線フレーム同期検出を行い、現用無線フレームデータ列b019を無瞬断切替回路B12に出力する。また、現用系フレーム同期回路B10は、無線伝送装置A100の現用系フレーム多重回路A3によって現用無線フレーム多重信号a004に多重された変調方式制御情報を抽出し、現用変調方式制御信号b016を現用系フレーム多重回路B3及び現用系変調回路B5に出力する。 The working frame synchronization circuit B10 detects the radio frame synchronization of the working demodulated signal b010 and outputs the working radio frame data string b019 to the uninterruptible switching circuit B12. Also, the working frame synchronization circuit B10 extracts the modulation scheme control information multiplexed on the working radio frame multiplexed signal a004 by the working frame multiplexing circuit A3 of the radio transmission apparatus A100, and uses the working modulation scheme control signal b016 as the working frame. The data is output to the multiplexing circuit B3 and the working modulation circuit B5.
予備系復調回路B9と予備系フレーム同期回路B11は、現用系復調回路B8、現用系フレーム同期回路B10と同一構造である為、説明を省略する。 Since the standby demodulation circuit B9 and the standby frame synchronization circuit B11 have the same structure as the active demodulation circuit B8 and the active frame synchronization circuit B10, description thereof is omitted.
受信監視回路B7は、現用受信モニタ信号b011と予備受信モニタ信号b014から無線伝送路C30及び無線伝送路C31の回線状態を判別し、現用復調方式制御信号b012を現用系復調回路B8と現用系フレーム多重回路B3へ、予備復調方式制御信号b015を予備系復調回路B9と予備系フレーム多重回路B4へ出力する。また、受信監視回路B7は、切替制御信号a018を無瞬断切替回路B12に出力する。 The reception monitoring circuit B7 discriminates the line states of the radio transmission path C30 and the radio transmission path C31 from the current reception monitor signal b011 and the standby reception monitor signal b014, and the current demodulation system control signal b012 is used as the current demodulation circuit B8 and the current system frame. The spare demodulation system control signal b015 is output to the multiplexer B3 to the spare demodulator B9 and the spare frame multiplexer B4. The reception monitoring circuit B7 outputs a switching control signal a018 to the uninterruptible switching circuit B12.
無瞬断切替回路B12は、入力されるフレーム間の位相差を揃えるメモリを具備し、切替制御信号b018に従い、現用無線フレームデータ列b019と予備無線フレームデータ列b020との回線を切り替え、切り替え後の無線フレームデータを無線フレームデータ列b021としてデスタッフ回路B13に出力する。 The uninterruptible switching circuit B12 includes a memory for aligning the phase difference between input frames, switches the line between the active radio frame data string b019 and the backup radio frame data string b020 in accordance with the switching control signal b018, and after switching The radio frame data is output to the destuff circuit B13 as a radio frame data string b021.
デスタッフ回路B13は、無線フレームデータ列b021からデスタッフ処理により送信PDHデータ列信号b022を抽出して外部に出力する。 The destuffing circuit B13 extracts the transmission PDH data string signal b022 from the radio frame data string b021 by the destuffing process and outputs it to the outside.
このような構成によって、本実施の一形態の無線伝送システムは、無線伝送路の伝送路状態に応じ、変調方式を切り替えるプロセスでの伝送データの損失を減少できる。 With such a configuration, the wireless transmission system according to the present embodiment can reduce transmission data loss in the process of switching the modulation scheme according to the transmission path state of the wireless transmission path.
次に、無線伝送システムの動作を図1及び図2を用いて説明する。 Next, the operation of the wireless transmission system will be described with reference to FIGS.
本動作説明では、外部から入力される受信PDHデータ列信号a001を4本(n=4)とし、変調方式がQPSK(Quadrature Phase Shift Keying)ならば前記4本の受信PDHデータ列信号のうち2本分の受信PDHデータ列信号を伝送し、16QAM(Quadrature Amplitude Modulation)ならば4本すべての受信PDHデータ列信号を伝送するものとして説明する。また、本無線伝送システムの構成では各変調方式でのシンボル周波数を同一周波数とする。よって16QAMでの無線伝送容量は、QPSKでの無線伝送容量の2倍となる。 In this description of operation, if four (n = 4) received PDH data string signals a001 are input from the outside and the modulation method is QPSK (Quadrature Phase Shift Keying), two of the four received PDH data string signals are included. In the following description, it is assumed that all the received PDH data string signals are transmitted, and if four QPDs (Quadrature Amplitude Modulation) are transmitted, all four received PDH data string signals are transmitted. In the configuration of this wireless transmission system, the symbol frequency in each modulation method is the same frequency. Therefore, the radio transmission capacity in 16QAM is twice the radio transmission capacity in QPSK.
また、動作説明中に記載される無線フレーム多重信号である現用無線フレーム多重信号a004及び予備無線フレーム多重信号a005は、図2のタイミングチャートで示すようにオーバヘッド領域とペイロード領域で構成される。 Also, the working radio frame multiplexed signal a004 and the backup radio frame multiplexed signal a005, which are radio frame multiplexed signals described in the description of the operation, are composed of an overhead area and a payload area as shown in the timing chart of FIG.
図2は、本実施の一形態の動作説明に用いるタイミングチャートである。 FIG. 2 is a timing chart used for explaining the operation of this embodiment.
無線フレーム多重信号は、基準クロックの周波数と基準フレームパルスとに同期し、変調方式に関わらず同期タイミングも同一である。 The radio frame multiplexed signal is synchronized with the frequency of the reference clock and the reference frame pulse, and the synchronization timing is the same regardless of the modulation method.
無線フレーム多重信号のオーバヘッド領域には、フレーム同期確立のためのフレームビットや対向局への警報転送ビットをアサインする。ペイロード領域には、QPSKの場合前記4本のスタッフ同期データ列のうち2本を、16QAMの場合4本すべてのスタッフ同期データ列を基準フレームパルスの位相に合わせて時分割多重する。 In the overhead area of the radio frame multiplexed signal, a frame bit for establishing frame synchronization and an alarm transfer bit to the opposite station are assigned. In the payload area, two of the four stuff synchronization data sequences in the case of QPSK and all four stuff synchronization data sequences in the case of 16QAM are time-division multiplexed in accordance with the phase of the reference frame pulse.
無線伝送装置A100と無線伝送装置B200とから成る無線伝送システムは、変調方式に関わらず同期した無線フレーム多重信号を用い、以下の様に動作する。尚、説明を明瞭とするため、各部の詳細な動作の説明は省略する。 The wireless transmission system including the wireless transmission device A100 and the wireless transmission device B200 operates as follows using a synchronized wireless frame multiplexed signal regardless of the modulation method. For the sake of clarity, the detailed operation of each part is omitted.
無線伝送装置A100の基準フレーム生成回路A1は、現用無線フレーム多重信号a004及び予備無線フレーム多重信号a005の基準となる基準クロックと基準フレームパルスa002を生成し、スタッフ回路A2、現用系フレーム多重回路A3及び予備系フレーム多重回路A4へ出力する。 The reference frame generation circuit A1 of the wireless transmission device A100 generates a reference clock and a reference frame pulse a002 that serve as a reference for the working radio frame multiplexed signal a004 and the standby radio frame multiplexed signal a005, and the stuff circuit A2 and working system frame multiplexing circuit A3. And output to the standby frame multiplexing circuit A4.
前記スタッフ回路A2は、外部から入力される4本の受信PDHデータ列信号a001を基準クロックに対してスタッフ処理し、スタッフ処理後の4本のスタッフ同期データ列a003を現用系フレーム多重回路A3および予備系フレーム多重回路A4へ出力する。 The stuff circuit A2 stuffs four received PDH data string signals a001 inputted from the outside with respect to a reference clock, and stuffs the four stuff synchronization data strings a003 after stuff processing into the working frame multiplexing circuit A3 and Output to the spare frame multiplexing circuit A4.
現用系無線フレーム多重回路A3は、前記基準クロックと基準フレームパルスa002に従い、スタッフ同期データ列a003を現用無線フレーム多重信号a004に生成する。尚、変調方式は、後述する変調方式制御信号によって指定される。 The working radio frame multiplexing circuit A3 generates a stuff synchronization data string a003 as a working radio frame multiplexed signal a004 according to the reference clock and the reference frame pulse a002. The modulation scheme is specified by a modulation scheme control signal described later.
現用系変調回路A5は、後述する現用変調方式制御信号a016で指定された変調方式で現用無線フレーム多重信号a004に変調し、現用無線信号a006を無線伝送路C30へ送出する。 The working modulation circuit A5 modulates the working radio frame multiplexed signal a004 to the working radio frame multiplexed signal a004 by a modulation method designated by a working modulation method control signal a016 described later, and sends the working radio signal a006 to the radio transmission line C30.
予備系無線フレーム多重回路A4及び予備系変調回路A6の動作は、現用系フレーム多重回路A3及び現用系変調回路A5と同一動作のため、説明を省略する。 Since the operations of the standby radio frame multiplexing circuit A4 and the standby modulation circuit A6 are the same as those of the active frame multiplexing circuit A3 and the active modulation circuit A5, the description thereof is omitted.
無線伝送路C30及びC31は、現用系及び予備系の無線信号を伝搬する。尚、無線伝送路は、フェージング等の影響によって、無線信号に時間的、空間的影響を与える。 The radio transmission paths C30 and C31 propagate the active and standby radio signals. The wireless transmission path has a temporal and spatial influence on the wireless signal due to the influence of fading or the like.
無線伝送装置B200の現用系復調回路B8は、伝送路C30を介して現用無線受信信号b008を受信すると共に、受信レベルをモニタリングし、現用受信レベルモニタ信号b011を受信監視回路B7へ出力する。 The working demodulation circuit B8 of the wireless transmission device B200 receives the working radio reception signal b008 via the transmission line C30, monitors the reception level, and outputs the working reception level monitor signal b011 to the reception monitoring circuit B7.
受信監視回路B7は、現用受信レベルモニタ信号b011を用いて現用系の変調方式を識別し、復調方式を定め、現用復調方式制御信号b012として現用系復調回路B8へ出力する。 The reception monitoring circuit B7 uses the working reception level monitor signal b011 to identify the working modulation system, determines the demodulation system, and outputs it to the working demodulation circuit B8 as the working demodulation system control signal b012.
現用系復調回路B8は、現用復調方式制御信号b012を識別し、受信監視回路B7で決定した現用系の復調方式に従って現用無線受信信号b008の復調を行い、現用復調信号b010を現用系フレーム同期回路B10へ出力する。 The working demodulation circuit B8 identifies the working demodulation system control signal b012, demodulates the working radio reception signal b008 according to the working demodulation method determined by the reception monitoring circuit B7, and uses the working demodulation signal b010 as the working frame synchronization circuit. Output to B10.
現用系フレーム同期回路B10は、現用復調信号b010の無線フレーム同期検出を行い、フレーム同期を確立し、現用無線フレームデータ列b019を無瞬断切替回路B12へ出力する。同時的に、現用系フレーム同期回路B10は、無線伝送装置A100の現用系フレーム多重回路A3によって現用無線フレーム多重信号a004に多重された変調方式制御情報を抽出し、現用変調方式制御信号b016を現用系フレーム多重回路B3及び現用系変調回路B5へ出力する。 The working frame synchronization circuit B10 detects the radio frame synchronization of the working demodulated signal b010, establishes frame synchronization, and outputs the working radio frame data string b019 to the uninterruptible switching circuit B12. At the same time, the working frame synchronization circuit B10 extracts the modulation scheme control information multiplexed on the working radio frame multiplexed signal a004 by the working frame multiplexing circuit A3 of the radio transmission apparatus A100, and uses the working modulation scheme control signal b016. The data is output to the system frame multiplexing circuit B3 and the working system modulation circuit B5.
予備系復調回路B9及び予備系フレーム同期回路B11の動作は、現用系復調回路B8及び現用系フレーム同期回路B10と同一動作のため、説明を省略する。 Since the operations of the standby demodulation circuit B9 and the standby frame synchronization circuit B11 are the same as those of the current demodulation circuit B8 and the current frame synchronization circuit B10, description thereof will be omitted.
無瞬断切替回路B12は、現用無線フレームデータ列b019と予備無線フレームデータ列b020を受信し、内蔵するメモリを用いて両無線フレームデータ列を同一タイミングに揃える。更に、無瞬断切替回路B12は、受信監視回路B7から入力される切替制御信号b018に従い現用無線フレームデータ列b019と予備無線フレームデータ列b020の一方を選択し、無線フレームデータ列b021としてデスタッフ回路B13へ出力する。 The uninterruptible switching circuit B12 receives the working radio frame data sequence b019 and the backup radio frame data sequence b020, and aligns both radio frame data sequences at the same timing using a built-in memory. Further, the uninterruptible switching circuit B12 selects one of the current radio frame data sequence b019 and the backup radio frame data sequence b020 in accordance with the switching control signal b018 input from the reception monitoring circuit B7, and destuffs it as the radio frame data sequence b021. Output to circuit B13.
デスタッフ回路B13は、選択した現用系もしくは予備系の変調・復調方式に従い、無線フレームデータ列b021から2本もしくは4本のスタッフ同期データ列を抽出し、デスタッフ処理を行って2本もしくは4本の送信PDHデータ列信号b201を外部へ出力する。尚、変調・復調方式が、QPSKの場合は2本、16QAMの場合は4本のPDHデータ列信号を伝送する。 The destuff circuit B13 extracts two or four stuff synchronization data sequences from the radio frame data sequence b021 in accordance with the selected active or standby modulation / demodulation method, performs destuffing processing, and performs two or four stuffing data sequences. The transmission PDH data string signal b201 is output to the outside. When the modulation / demodulation method is QPSK, two PDH data string signals are transmitted, and when it is 16 QAM, four PDH data string signals are transmitted.
次に、変調方式の切り替え動作と無瞬断切替回路B12の切り替え動作(選択動作)について詳細に説明する。尚、現用系と予備系の切り替え及び各々の変調方式の切り替えを行う受信レベルの閾値をT1とする。 Next, the switching operation of the modulation system and the switching operation (selection operation) of the uninterruptible switching circuit B12 will be described in detail. Note that the threshold of the reception level for switching between the active system and the standby system and switching of each modulation method is T1.
受信監視回路B7は、無線伝送路C30と無線伝送路C31の受信レベルを監視し、受信レベルが良い(通信環境が良い)か否か判別する。受信監視回路B7は、現用系と予備系の両方の通信環境から適切な変調方式を選択し、現用系復調回路B8及び予備系復調回路B9に夫々選択した適切な変調方式を通知すると共に、無瞬断切替回路B12に選択結果を通知する。また、現用系より予備系の通信環境が良い場合には、無瞬断切替回路B12に、切替制御信号b018を用いて、予備系を用いることを通知する。更に、現用系フレーム多重回路B3及び予備系フレーム多重回路B4に夫々選択した変調方式を通知する。 The reception monitoring circuit B7 monitors the reception levels of the wireless transmission path C30 and the wireless transmission path C31 and determines whether the reception level is good (communication environment is good). The reception monitoring circuit B7 selects an appropriate modulation method from both the active and standby communication environments, notifies the active demodulation circuit B8 and the standby demodulation circuit B9 of the selected appropriate modulation method, The selection result is notified to the instantaneous interruption switching circuit B12. Further, when the communication environment of the standby system is better than that of the active system, the instantaneous interruption switching circuit B12 is notified of the use of the standby system by using the switching control signal b018. Furthermore, the selected modulation scheme is notified to the working frame multiplexing circuit B3 and the standby frame multiplexing circuit B4.
具体的には、受信監視回路B7は、無線伝送路C30とC31の通信環境を現用受信レベルモニタ信号b011と予備受信レベルモニタ信号b014を用いて識別し、閾値T1よりも高い場合に16QAMの変調方式を選択し、閾値T1よりも低い場合にはQPSKを選択し、選択結果を現用系復調回路B8に現用復調方式制御信号b012を用いて通知し、予備系復調回路B9に予備復調方式制御信号b015を用いて通知する。同時的に、無瞬断切替回路B12に、通信状態が良い系の選択結果を切替制御信号b018として通知する。更に、現用系フレーム多重回路B3及び予備系フレーム多重回路B4に夫々選択した変調方式を通知する。 Specifically, the reception monitoring circuit B7 identifies the communication environment of the wireless transmission paths C30 and C31 using the current reception level monitor signal b011 and the standby reception level monitor signal b014, and if the reception environment is higher than the threshold value T1, 16QAM modulation is performed. QPSK is selected when it is lower than the threshold value T1, the selection result is notified to the active demodulation circuit B8 using the active demodulation control signal b012, and the standby demodulation control signal is sent to the standby demodulation circuit B9. Notification is made using b015. Simultaneously, the uninterruptible switching circuit B12 is notified of a selection result of a system having a good communication state as a switching control signal b018. Furthermore, the selected modulation scheme is notified to the working frame multiplexing circuit B3 and the standby frame multiplexing circuit B4.
現用系復調回路B8は、受信監視回路B7から通知された変調・復調方式に従い、受信した現用無線受信信号b008を復調処理し、現用復調信号b010として現用系フレーム同期回路B10に出力する。 The working demodulation circuit B8 demodulates the received working radio reception signal b008 in accordance with the modulation / demodulation method notified from the reception monitoring circuit B7, and outputs it to the working frame synchronization circuit B10 as the working demodulation signal b010.
予備系復調回路B9は、受信監視回路B7から通知された変調・復調方式に従い、受信した予備無線受信信号b009を復調処理し、予備復調信号b013として予備系フレーム同期回路B11に出力する。 The standby demodulation circuit B9 demodulates the received standby radio reception signal b009 according to the modulation / demodulation method notified from the reception monitoring circuit B7, and outputs it to the backup frame synchronization circuit B11 as the backup demodulation signal b013.
現用系フレーム同期回路B10は、現用復調信号b010の同期検出を行い、現用無線フレームデータ列b019を無瞬断切替回路B12へ出力するすると共に、現用復調信号b010に多重されている変調方式制御情報を抽出し、現用変調方式制御信号b016として現用系フレーム多重回路B3及び現用系変調回路B5へ出力する。 The working frame synchronization circuit B10 detects the synchronization of the working demodulated signal b010, outputs the working radio frame data string b019 to the uninterruptible switching circuit B12, and also modulates the modulation scheme control information multiplexed on the working demodulated signal b010. And is output to the working frame multiplexing circuit B3 and the working modulation circuit B5 as the working modulation system control signal b016.
予備系フレーム同期回路B11は、予備復調信号b013の同期検出を行い、予備無線フレームデータ列b020を無瞬断切替回路B12へ出力するすると共に、予備復調信号b013に多重されている変調方式制御情報を抽出し、現用変調方式制御信号b017として予備系フレーム多重回路B4及び予備系変調回路B6へ出力する。 The spare frame synchronization circuit B11 detects the synchronization of the spare demodulated signal b013, outputs the spare radio frame data string b020 to the uninterruptible switching circuit B12, and also modulates the modulation scheme control information multiplexed on the spare demodulated signal b013. And is output to the backup frame multiplexing circuit B4 and the backup modulation circuit B6 as the current modulation scheme control signal b017.
無瞬断切替回路B12は、現用無線フレームデータ列b019と予備無線フレームデータ列b020とのフレーム間の位相差を揃え、切替制御信号b018に従い、現用無線フレームデータ列b019と予備無線フレームデータ列b020との回線を切り替えると共に、切り替え後の無線フレームデータを無線フレームデータ列b021としてデスタッフ回路B13へ出力する。 The uninterruptible switching circuit B12 aligns the phase differences between the active radio frame data sequence b019 and the backup radio frame data sequence b020, and, according to the switching control signal b018, the active radio frame data sequence b019 and the backup radio frame data sequence b020. And the switched radio frame data are output to the destuff circuit B13 as a radio frame data string b021.
ここで、現用無線フレームデータ列b019と予備無線フレームデータ列b020とのフレーム間の位相差を揃えることによって、切替制御信号b018で指示された系等に切り替える時に、位相差によって発生する瞬断を防止できる。 Here, by aligning the phase difference between frames of the active radio frame data sequence b019 and the backup radio frame data sequence b020, when switching to the system or the like indicated by the switching control signal b018, instantaneous interruption caused by the phase difference is prevented. Can be prevented.
一方、現用系フレーム多重回路B3は、受信監視回路B7から通知された変調・復調方式を、現用系無線フレーム多重信号b004に変調方式制御情報として多重する。 On the other hand, the working frame multiplexing circuit B3 multiplexes the modulation / demodulation method notified from the reception monitoring circuit B7 into the working radio frame multiplexed signal b004 as modulation method control information.
予備系フレーム多重回路B4は、受信監視回路B7から通知された変調・復調方式を、生成する予備系無線フレーム多重信号b005に変調方式制御情報として多重する。 The backup frame multiplexing circuit B4 multiplexes the modulation / demodulation method notified from the reception monitoring circuit B7 as modulation method control information to the generated standby radio frame multiplexed signal b005.
夫々の系統の変調方式制御情報が多重された無線フレーム多重信号(b004、b005)は、現用系変調回路B5と予備系変調回路B6とで変調処理され、無線伝送路(C30、C31)を経由して無線伝送装置A100に伝送される。 The radio frame multiplexed signals (b004, b005) on which the modulation system control information of each system is multiplexed are modulated by the active modulation circuit B5 and the standby modulation circuit B6, and pass through the radio transmission paths (C30, C31). And transmitted to the wireless transmission device A100.
無線伝送装置A100の復調回路(A8、A9)は、夫々の系統の変調方式制御情報が多重された無線受信信号(a008、a009)を受信し、復調処理し、復調信号(a010、a013)としてフレーム同期回路(A10、A11)に通知する。 The demodulation circuits (A8, A9) of the wireless transmission device A100 receive the radio reception signals (a008, a009) multiplexed with the modulation system control information of the respective systems, demodulate them, and use them as demodulated signals (a010, a013). The frame synchronization circuit (A10, A11) is notified.
フレーム同期回路(A10、A11)は、復調信号(a010、a013)から無線伝送装置A100の夫々の系統で用いる変調方式の情報を取得し、変調方式制御信号(a016、a017)を出力し、無線伝送装置A100から無線伝送装置B200への無線通信に用いる夫々の系統の変復調方式を指定する。 The frame synchronization circuit (A10, A11) acquires modulation scheme information used in each system of the wireless transmission device A100 from the demodulated signal (a010, a013), outputs a modulation scheme control signal (a016, a017), and wirelessly The modulation / demodulation method of each system used for wireless communication from the transmission apparatus A100 to the wireless transmission apparatus B200 is designated.
このように動作することで、系統の切り替えを無瞬断で切替可能とし、更に、前記無瞬断切り替えを実施後に夫々の変調方式を切り替えも可能とできる。 By operating in this way, switching of the system can be switched without instantaneous interruption, and further, each modulation method can be switched after the instantaneous switching is performed.
即ち、無線伝送路を介して受信した現用系統と予備系統の受信信号を、夫々基準クロックパルスを用いて同期処理し、基準クロックパルスを用いて同期処理した現用系統と予備系統の受信信号を夫々基準フレームパルスを用いて同期処理し、基準フレームパルスを用いて同期処理した現用系統及び予備系統の受信信号間で系統を切り替え可能とすることで、無線伝送路の伝送路状態に応じ、変調方式を切り替え時に、非同期又は同期崩れによって発生する伝送データの損失を防止できる。 That is, the received signals of the active system and the standby system received via the wireless transmission path are synchronized using the reference clock pulse, respectively, and the received signals of the active system and the standby system are processed using the reference clock pulse, respectively. Modulation method according to the transmission path state of the wireless transmission path by enabling the system to be switched between the received signal of the active system and the standby system that is synchronized using the reference frame pulse and synchronized using the reference frame pulse. It is possible to prevent loss of transmission data that occurs due to asynchronous or loss of synchronization at the time of switching.
具体的には、無線変調方式の切り替えを行なう際に、無線伝送装置間を伝送する複数のPDHデータ列信号を喪失しない効果がある。これは、選択系(現用系)と非選択系(予備系)の無線伝送路を夫々別に変調方式の切り替え行い、また、各変調方式に対して無線フレームデータ列のフレーム周期(シンボル周期)を同一周期とし、更に、ペイロード領域に多重するスタッフ処理後のスタッフ同期データ列のデータ位相を同位相にする為である。 Specifically, there is an effect that a plurality of PDH data string signals transmitted between wireless transmission apparatuses are not lost when switching between wireless modulation systems. This is because the modulation system is switched separately for the radio transmission path of the selection system (working system) and the non-selection system (standby system), and the frame period (symbol period) of the radio frame data string is set for each modulation system. This is because the data period of the stuff synchronization data sequence after the stuff process multiplexed in the payload area is set to the same phase.
また、適時処理を行う為、データ遅延量を抑制できる。これは、送信側で変調方式の種類を変更しても、現用系および予備系の無線フレーム多重信号のフレーム先頭位置を同一に揃え、且つ、ペイロード領域に多重するスタッフ処理後のPDHデータ列信号のデータ位相(シンボル周期)の先頭位置を揃え、受信側での現用系の伝送路と予備系の伝送路の伝送遅延差を吸収するメモリを利用して変調方式の切り替えを行なう為である。 Further, since the timely processing is performed, the data delay amount can be suppressed. This is because, even if the type of modulation system is changed on the transmission side, the PDH data string signal after the stuffing process in which the frame start positions of the active and standby radio frame multiplexed signals are made the same and multiplexed in the payload area This is because the modulation system is switched using a memory that aligns the start positions of the data phases (symbol periods) of the data and absorbs the transmission delay difference between the active transmission line and the standby transmission line on the receiving side.
尚、現用系及び予備系の変調方式の切り替えは、現在選択していない系等を優先することが望ましい。 Note that it is desirable to prioritize the system that is not currently selected for switching between the active and standby modulation methods.
現在選択していない系等を優先する動作を例示すれば、現用系の変復調方式をQPSKにした後に16QAMの伝送方式となっている予備系の無線伝送路C31の伝送路状態が劣化した場合には、無瞬断切替回路B12は予備無線フレームデータ列b019から現用無線フレームデータ列b020に切り替える。 As an example of an operation that gives priority to a system that is not currently selected, when the transmission path state of the standby radio transmission path C31, which is a 16QAM transmission system, is changed to QPSK after the active modulation / demodulation system is changed to QPSK, The uninterruptible switching circuit B12 switches from the standby radio frame data string b019 to the working radio frame data string b020.
予備系は16QAMの伝送方式となっており、基準クロックが4クロックの間に4本分の送信PDHデータ列信号を伝送し、現用系はQPSKの伝送方式で2本分のPDHデータ列信号を伝送している。図2に示すタイミングチャートのように、スタッフ処理後の2本のスタッフ同期データ列CH1、CH2は、基準フレームパルスに同期して同位相にアサインされており、異なる伝送路及び異なる変調方式でも、発生するフレーム間の位相差は無い。これは、無瞬断切替回路B12の位相差を揃えるメモリの効果である。また、フレーム間の位相差が無い為、現用系と予備系の無瞬断切り替えが可能となる。 The standby system has a 16QAM transmission method, and transmits four transmission PDH data string signals while the reference clock is four clocks. The active system transmits two PDH data string signals by the QPSK transmission method. Is transmitting. As shown in the timing chart of FIG. 2, the two stuff synchronization data strings CH1 and CH2 after the stuff process are assigned to the same phase in synchronization with the reference frame pulse, and even in different transmission paths and different modulation schemes, There is no phase difference between the generated frames. This is an effect of the memory that aligns the phase differences of the uninterruptible switching circuit B12. In addition, since there is no phase difference between frames, it is possible to switch between the active system and the standby system without interruption.
前記無線フレームデータ列の切り替え後、予備系の変復調方式を現用系と同様の動作で16QAMからQPSKに変更することで現用系、予備系ともにQPSKの変調方式となる。 After the radio frame data sequence is switched, the working modulation system is changed from 16QAM to QPSK by the same operation as the working system, so that both the working system and the working system become the QPSK modulation system.
伝送路の受信レベルが改善した場合、選択していない系の変調方式をQPSKから16QAMの変調方式に切り替えた後、無瞬断切替回路B12において選択系を切り替える。これによって、PDHデータ列信号の伝送本数は2本から4本に増え、且つ、QPSKの変調方式で通していた2本のPDHデータ列信号を瞬断することなく伝送することが可能となる。 When the reception level of the transmission path is improved, the modulation system of the system that has not been selected is switched from QPSK to 16QAM, and then the selection system is switched in the uninterruptible switching circuit B12. As a result, the number of transmissions of the PDH data string signal is increased from two to four, and the two PDH data string signals passed through the QPSK modulation method can be transmitted without being interrupted.
尚、上記実施の一形態では、16QAMとQPSKの変調方式切り替えを行なう無線伝送装置を説明したが、本発明は、32QAM以上の多値変調方式に対しても適用可能である。 In the above embodiment, a radio transmission apparatus that switches between 16QAM and QPSK modulation schemes has been described. However, the present invention is also applicable to multi-level modulation schemes of 32QAM or higher.
また、3種類以上の変調方式間での切り替えにおいても一定本数のPDHデータ列信号を瞬断させることなく変調方式を切り替えることが可能である。 Further, even when switching between three or more types of modulation schemes, the modulation schemes can be switched without instantaneously interrupting a certain number of PDH data string signals.
図3は、各変調方式の同期タイミングを例示するタイミングチャートである。 FIG. 3 is a timing chart illustrating the synchronization timing of each modulation method.
各変調方式に対してシンボル周波数(シンボル周期)を一定とした場合、16QAMはQPSKの2倍の伝送容量となる。同じく、32QAMはQPSKに対して2.5倍、64QAMは3倍、128QAMは3.5倍、256QAMは4倍の伝送容量となる。 If the symbol frequency (symbol period) is constant for each modulation scheme, 16QAM has a transmission capacity twice that of QPSK. Similarly, the transmission capacity of 32QAM is 2.5 times that of QPSK, 64QAM is 3 times, 128QAM is 3.5 times, and 256QAM is 4 times the transmission capacity.
変調方式をQPSKとし、2本のPDHデータ列信号を伝送するフレーム多重信号を生成する場合(図3に例示)、16QAMは4本、32QAMは5本、64QAMは6本、128QAMは7本、256QAMは8本のPDHデータ列信号をアサインすることが可能となる。 When the modulation method is QPSK and a frame multiplexed signal for transmitting two PDH data string signals is generated (illustrated in FIG. 3), four 16QAM, five 32QAM, six 64QAM, seven 128QAM, 256QAM can assign eight PDH data string signals.
前記した様に、現用系と予備系の変調方式が異なる場合、スタッフ処理後のスタッフ同期データ列を基準フレームパルスに対して同位相にアサインすることにより、現用系伝送路と予備系伝送路のフレーム位相を一致させる。現用系伝送路と予備系伝送路のフレーム位相を一致させることによって、現用系と予備系の切り替えを行うことでPDHデータ列信号の瞬断を防ぐことが可能となる。 As described above, when the modulation schemes of the active system and the standby system are different, by assigning the stuff synchronization data string after the stuff processing to the same phase with respect to the reference frame pulse, the active system transmission line and the standby system transmission line Match the frame phase. By matching the frame phases of the active transmission line and the standby transmission line, it is possible to prevent instantaneous interruption of the PDH data string signal by switching between the active system and the standby system.
このようにして、系統切替時にフレームデータ列に多重されている各スタッフ同期データ列の連続性を保証する。 In this way, the continuity of each stuff synchronization data sequence multiplexed in the frame data sequence at the time of system switching is ensured.
更に、変調方式切り替え制御実行中の系を選択しないことで各スタッフ同期データ列の連続性を保証することにより、現用系、予備系切り替え時と変調方式切り替え時に発生するPDHデータ列伝送の瞬断を防ぐ。 Further, by ensuring the continuity of each stuff synchronization data string by not selecting the system that is executing the modulation system switching control, the instantaneous interruption of the PDH data string transmission that occurs at the time of switching between the active system and the standby system and at the time of switching the modulation system prevent.
尚、前記した実施の一形態では、現用系を一系統、予備系を一系統としたが、現用系、予備系とも一系統に限る必要は無い。現用系を複数系統とし、予備系を一系統としても良いし、現用系を複数系統として予備系も複数系統としても良い。このときも、同様な構成及び動作を行なうことで、系統切替え時の瞬断を防ぐことが可能となる。 In the above-described embodiment, the active system is one system and the standby system is one system. However, the active system and the standby system are not necessarily limited to one system. The active system may be a plurality of systems and the standby system may be a single system, or the active system may be a plurality of systems and the standby system may be a plurality of systems. Also at this time, by performing the same configuration and operation, it is possible to prevent instantaneous interruption at the time of system switching.
100 無線伝送装置A
200 無線伝送装置B
A1、B1 基準フレーム生成回路
A2、B2 スタッフ回路
A3、B3 現用系フレーム多重回路
A4、B4 予備系フレーム多重回路
A5、B5 現用系変調回路
A6、B6 予備系変調回路
A7、B7 受信監視回路
A8、B8 現用系復調回路
A9、B9 予備系復調回路
A10、B10 現用系フレーム同期回路
A11、B11 予備系フレーム同期回路
A12、B12 無瞬断切替回路
A13、B13 デスタッフ回路
C30、C31 無線伝送路
100 Wireless transmission device A
200 Wireless transmission device B
A1, B1 Reference frame generation circuit A2, B2 Stuff circuit A3, B3 Active frame multiplexing circuit A4, B4 Standby frame multiplexing circuit A5, B5 Active modulation circuit A6, B6 Standby modulation circuit A7, B7 Reception monitoring circuit A8, B8 Active demodulation circuit A9, B9 Standby demodulation circuit A10, B10 Active frame synchronization circuit A11, B11 Standby frame synchronization circuit A12, B12 Uninterruptible switching circuit A13, B13 Destuff circuit C30, C31 Wireless transmission path
Claims (11)
前記無線伝送装置は、
前記現用系統及び前記予備系統の無線伝送路の通信環境を監視して通信環境の状態を系統毎に識別して監視し、
前記監視による系統毎の識別結果に基づいて、変調・復調方式を選択し、
前記監視による系統毎の識別結果に基づいて、前記現用系統及び前記予備系統を切り替える切替信号を生成し、
前記切替信号に基づき、現用系統及び予備系統を切り替える
ことを特徴とする無線伝送方法。 A wireless transmission method for transmitting a data string signal by switching a system used in a wireless transmission device having an active system and a standby system,
The wireless transmission device is:
Monitor the communication environment of the wireless transmission path of the working system and the standby system to identify and monitor the state of the communication environment for each system,
Based on the identification result for each system by the monitoring, select a modulation / demodulation method,
Based on the identification result for each system by the monitoring, to generate a switching signal for switching the working system and the standby system,
A wireless transmission method characterized in that a working system and a standby system are switched based on the switching signal.
前記現用系統及び前記予備系統の夫々で選択した変調・復調方式を、対向する無線伝送装置に送信し、
前記対向する無線伝送装置で、選択した変調・復調方式に従い変調させて前記現用系統及び前記予備系統の夫々のデータ列信号の変調・復調方式を設定する
ことを特徴とする無線伝送方法。 The wireless transmission method according to claim 1,
The modulation / demodulation method selected in each of the working system and the backup system is transmitted to the opposing wireless transmission device,
A radio transmission method characterized in that the opposite radio transmission apparatus performs modulation according to a selected modulation / demodulation method to set the modulation / demodulation method of each data string signal of the working system and the backup system.
前記現用系統と予備系統毎に、復調した受信信号列のスタートビットを基準フレームに同期処理し、
前記同期処理した、現用系統の信号列と予備系統の信号列との信号列間の位相差を揃える処理を行う
ことを特徴とする特徴とする無線伝送方法。 The wireless transmission method according to claim 1 or 2,
For each of the working system and the standby system, the start bit of the demodulated received signal sequence is synchronized with the reference frame,
A wireless transmission method characterized by performing a process of aligning the phase difference between the signal trains of the signal train of the active system and the signal train of the standby system that have been subjected to the synchronization process.
前記現用系統及び前記予備系統の無線伝送路の通信環境を監視して通信環境の状態を系統毎に識別する監視手段と、
前記監視手段の系統毎の識別結果を用いて、変調・復調方式を選択する変復調方式選択手段と、
前記監視手段の系統毎の識別結果を用いて、前記現用系統及び前記予備系統を切り替える切替信号を生成する切替信号生成手段と
を有することを特徴とする無線伝送装置。 In a wireless transmission device having a working system and a standby system for transmitting a data string signal using wireless communication,
Monitoring means for monitoring the communication environment of the wireless transmission path of the working system and the standby system and identifying the state of the communication environment for each system;
Modulation / demodulation method selection means for selecting a modulation / demodulation method using the identification result for each system of the monitoring means,
A radio transmission apparatus comprising: a switching signal generating unit configured to generate a switching signal for switching between the active system and the standby system using the identification result of each system of the monitoring unit.
前記変復調方式選択手段で選択した変調・復調方式を、対向する無線伝送装置に送信する手段を有することを特徴とする無線伝送装置。 The wireless transmission device according to claim 4,
A wireless transmission device comprising means for transmitting the modulation / demodulation method selected by the modulation / demodulation method selection means to an opposing wireless transmission device.
前記現用系統と予備系統毎に、前記変復調方式選択手段からの変復調方式の選択結果を用いて、復調を行なう復調手段と、
前記現用系統と予備系統毎に、前記復調手段で復調した信号列のスタートビットを、基準フレームに同期させる同期手段と、
前記同期手段で同期された、現用系統の信号列と予備系統の信号列との信号列間の位相差を揃える手段と
を有することを特徴とする無線伝送装置。 The wireless transmission device according to claim 4 or 5,
Demodulating means for performing demodulation using the selection result of the modulation / demodulation system from the modulation / demodulation system selection means for each of the working system and the standby system;
Synchronizing means for synchronizing the start bit of the signal sequence demodulated by the demodulating means with a reference frame for each of the working system and the standby system,
A wireless transmission apparatus comprising: means for equalizing a phase difference between the signal trains of the active system signal train and the standby system signal train, synchronized by the synchronization means.
前記監視手段で監視する系統毎の通信環境の状態に応じ、シンボル周波数が同一の変調方式から、通信環境の状態に適した変調方式を選択することを特徴とする無線伝送装置。 The wireless transmission device according to any one of claims 4 to 6,
A radio transmission apparatus, wherein a modulation scheme suitable for a communication environment state is selected from modulation schemes having the same symbol frequency in accordance with a communication environment state for each system monitored by the monitoring means.
無線伝送装置を介して伝送させる信号列がPDH(Plesiochronous Digital Hierachy)信号であることを特徴とする無線伝送装置。 The wireless transmission device according to any one of claims 4 to 7,
A radio transmission apparatus characterized in that a signal sequence transmitted through the radio transmission apparatus is a PDH (Plesiochronous Digital Hierachy) signal.
前記変復調方式選択手段は、3種類以上の変復調方式を選択可能とすることを特徴とする無線伝送装置。 A wireless transmission device according to any one of claims 4 to 8,
The modulation / demodulation method selection means can select three or more modulation / demodulation methods.
無線伝送装置間で用いられる変復調方式は、256QAM(Quadrature Amplitude Modulation)、128QAM、64QAM、32QAM、16QAM、QPSK(Quadrature Phase Shift Keying)の何れか又は組み合わせであることを特徴とする無線伝送装置。 The wireless transmission device according to any one of claims 4 to 9,
A wireless transmission apparatus characterized in that a modulation / demodulation method used between wireless transmission apparatuses is any one or a combination of 256 QAM (Quadrature Amplitude Modulation), 128 QAM, 64 QAM, 32 QAM, 16 QAM, and QPSK (Quadrature Phase Shift Keying).
現用系統と予備系統の一方又は両方を複数回線化した構成であることを特徴とする無線伝送装置。 The wireless transmission device according to any one of claims 4 to 10,
A wireless transmission apparatus having a configuration in which one or both of an active system and a standby system are formed into a plurality of lines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091854A JP5305048B2 (en) | 2011-04-18 | 2011-04-18 | Wireless transmission apparatus and wireless transmission method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011091854A JP5305048B2 (en) | 2011-04-18 | 2011-04-18 | Wireless transmission apparatus and wireless transmission method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008035553A Division JP5293925B2 (en) | 2008-02-18 | 2008-02-18 | Wireless transmission apparatus and wireless transmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011188509A true JP2011188509A (en) | 2011-09-22 |
JP5305048B2 JP5305048B2 (en) | 2013-10-02 |
Family
ID=44794181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011091854A Expired - Fee Related JP5305048B2 (en) | 2011-04-18 | 2011-04-18 | Wireless transmission apparatus and wireless transmission method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5305048B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7580103B2 (en) | 2020-06-15 | 2024-11-11 | 北陽電機株式会社 | Data transmission device and data transmission method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247142A (en) * | 1985-04-25 | 1986-11-04 | Nec Corp | Digital transmission line switching system |
JPH0338128A (en) * | 1989-07-05 | 1991-02-19 | Fujitsu Ltd | Hitless switching method |
JP2004015253A (en) * | 2002-06-05 | 2004-01-15 | Nec Corp | Digital transmission system and digital transmission method used for the same |
JP2007201971A (en) * | 2006-01-30 | 2007-08-09 | Hitachi Kokusai Electric Inc | Radio communication system |
-
2011
- 2011-04-18 JP JP2011091854A patent/JP5305048B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61247142A (en) * | 1985-04-25 | 1986-11-04 | Nec Corp | Digital transmission line switching system |
JPH0338128A (en) * | 1989-07-05 | 1991-02-19 | Fujitsu Ltd | Hitless switching method |
JP2004015253A (en) * | 2002-06-05 | 2004-01-15 | Nec Corp | Digital transmission system and digital transmission method used for the same |
JP2007201971A (en) * | 2006-01-30 | 2007-08-09 | Hitachi Kokusai Electric Inc | Radio communication system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7580103B2 (en) | 2020-06-15 | 2024-11-11 | 北陽電機株式会社 | Data transmission device and data transmission method |
Also Published As
Publication number | Publication date |
---|---|
JP5305048B2 (en) | 2013-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080037409A1 (en) | Wireless transmitting station and wireless receiving station | |
JPWO2009022391A1 (en) | Transmitting apparatus, receiving apparatus, and communication method | |
JP5293925B2 (en) | Wireless transmission apparatus and wireless transmission method | |
JP4361699B2 (en) | Handset time synchronization for wireless telephone base stations | |
JP2008092375A (en) | Mobile station apparatus and base station apparatus | |
US20120327983A1 (en) | Transmitter apparatus, transmission method and transmission system | |
JP2012217134A (en) | Wireless device, wireless controller, and synchronization establishment method | |
CN104025701A (en) | Method and device for switching clocks, and distributed indoor system using repeater as relay | |
JP5305048B2 (en) | Wireless transmission apparatus and wireless transmission method | |
JP5532055B2 (en) | Wireless communication apparatus, wireless communication system, and wireless communication method | |
JP6635918B2 (en) | Wireless base station, master station device, slave station device, and control method | |
CN103716106A (en) | Clock synchronization method, system and apparatus | |
JP2004015253A (en) | Digital transmission system and digital transmission method used for the same | |
JP5586538B2 (en) | Wireless transmission device | |
JP2010177906A (en) | Conversion apparatus | |
JP5423007B2 (en) | Wireless communication apparatus and communication method | |
WO2013098984A1 (en) | Base station, wireless terminal, wireless communication system, and wireless communication method | |
JP5423807B2 (en) | Wireless communication system, wireless communication apparatus, and wireless communication method | |
US9509536B2 (en) | Communication apparatus, circuit for communication apparatus, and communication method | |
JP2005223835A (en) | Modulation mode switchable communication apparatus and switching method | |
JP3717896B2 (en) | Synchronization control method and modem | |
JP5776193B2 (en) | Wireless network system, wireless network transmission method, and wireless receiver | |
JP3485993B2 (en) | Wireless device and switching method in wireless device | |
JP2005184737A (en) | Frame pulse transmission circuit, device clock supplying circuit, data transmission device and frame pulse supplying method | |
JP4088242B2 (en) | Variable speed modulator, variable speed demodulator, and modem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130611 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |