[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011185800A - Radiographic image photographing apparatus and radiographic image photographing system - Google Patents

Radiographic image photographing apparatus and radiographic image photographing system Download PDF

Info

Publication number
JP2011185800A
JP2011185800A JP2010052482A JP2010052482A JP2011185800A JP 2011185800 A JP2011185800 A JP 2011185800A JP 2010052482 A JP2010052482 A JP 2010052482A JP 2010052482 A JP2010052482 A JP 2010052482A JP 2011185800 A JP2011185800 A JP 2011185800A
Authority
JP
Japan
Prior art keywords
radiation
data
radiation detection
detection element
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052482A
Other languages
Japanese (ja)
Inventor
Hideaki Tajima
英明 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2010052482A priority Critical patent/JP2011185800A/en
Publication of JP2011185800A publication Critical patent/JP2011185800A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiographic image photographing apparatus capable of generating a radiation image without contrast based on acquired image data. <P>SOLUTION: Concerning a radiation detection element 7 connected to a scanning line 5 other than a scanning line 5 to which a voltage for data reading out is applied during irradiation of a radiation, a control device 22 of this radiographic image photographing apparatus 1 selects data D read out in the first place after finish of irradiation of the radiation among each data D read out from the radiation detection element 7. Concerning a radiation detection element 7 connected to the scanning line 5 to which the voltage for data reading out is applied during irradiation of the radiation, the control device 22 selects and adds data D read out during irradiation of the radiation and data D read out in the next frame among each data D read out from the radiation detection element 7, and generates a radiation image p based on the selected data D and the selected and added data D. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、攟射線画像撮圱装眮および攟射線画像撮圱システムに係り、特に攟射線の照射䞭にも読み出し凊理を行う攟射線画像撮圱装眮およびそれを甚いた攟射線画像撮圱システムに関する。   The present invention relates to a radiographic image capturing apparatus and a radiographic image capturing system, and more particularly to a radiographic image capturing apparatus that performs readout processing even during radiation irradiation and a radiographic image capturing system using the same.

照射された線等の攟射線の線量に応じお怜出玠子で電荷を発生させお電気信号に倉換するいわゆる盎接型の攟射線画像撮圱装眮や、照射された攟射線をシンチレヌタ等で可芖光等の他の波長の電磁波に倉換した埌、倉換され照射された電磁波の゚ネルギヌに応じおフォトダむオヌド等の光電倉換玠子で電荷を発生させお電気信号に倉換するいわゆる間接型の攟射線画像撮圱装眮が皮々開発されおいる。なお、本発明では、盎接型の攟射線画像撮圱装眮における怜出玠子や、間接型の攟射線画像撮圱装眮における光電倉換玠子を、あわせお攟射線怜出玠子ずいう。   A so-called direct type radiographic imaging device that generates electric charges by a detection element in accordance with the dose of irradiated radiation such as X-rays and converts it into an electrical signal, or other radiation such as visible light with a scintillator or the like. Various types of so-called indirect radiographic imaging devices have been developed that convert charges into electromagnetic signals after they have been converted into electromagnetic waves of a wavelength, and then generated by photoelectric conversion elements such as photodiodes in accordance with the energy of the converted and irradiated electromagnetic waves. Yes. In the present invention, the detection element in the direct type radiographic imaging apparatus and the photoelectric conversion element in the indirect type radiographic imaging apparatus are collectively referred to as a radiation detection element.

このタむプの攟射線画像撮圱装眮はFlat Panel Detectorずしお知られおおり、埓来は支持台或いはブッキヌ装眮ず䞀䜓的に圢成されおいたが䟋えば特蚱文献参照、近幎、攟射線怜出玠子等をハりゞングに収玍した可搬型の攟射線画像撮圱装眮が開発され、実甚化されおいる䟋えば特蚱文献、参照。   This type of radiographic imaging apparatus is known as an FPD (Flat Panel Detector), and conventionally formed integrally with a support base (or a bucky apparatus) (see, for example, Patent Document 1). A portable radiographic imaging device in which an element or the like is housed in a housing has been developed and put into practical use (see, for example, Patent Documents 2 and 3).

このような攟射線画像撮圱装眮では、䟋えば埌述する図や図に瀺すように、通垞、攟射線怜出玠子が怜出郚䞊に二次元状マトリクス状に配列され、各攟射線怜出玠子にそれぞれ薄膜トランゞスタThin Film Transistor。以䞋、ずいう。で圢成されたスむッチ手段が蚭けられおいる。そしお、攟射線画像撮圱前、すなわち攟射線画像撮圱装眮に攟射線発生装眮から攟射線が照射される前に、のオンオフを適宜制埡しながら、各攟射線怜出玠子内に残存する䜙分な電荷を攟出されるリセット凊理が行われるように構成される堎合が倚い。   In such a radiographic imaging apparatus, for example, as shown in FIGS. 3 and 7 to be described later, the radiation detection elements 7 are usually arranged in a two-dimensional form (matrix) on the detection unit P, and each radiation detection element 7 is arranged. Further, switch means each formed of a thin film transistor (hereinafter referred to as TFT) 8 is provided. Then, before the radiation image is taken, that is, before the radiation image taking device is irradiated with radiation from the radiation generating device, excessive charge remaining in each radiation detecting element 7 is released while appropriately controlling the on / off of the TFT 8. In many cases, the reset process is performed.

そしお、各攟射線怜出玠子のリセット凊理が終了した埌、走査駆動手段のゲヌトドラむバから各走査線を介しおにオフ電圧を印加しお党をオフ状態ずした状態で攟射線発生装眮から攟射線画像撮圱装眮に攟射線を照射するず、攟射線の線量に応じた電荷が各攟射線怜出玠子内で発生しお、各攟射線怜出玠子内に蓄積される。   Then, after the reset processing of each radiation detection element 7 is completed, radiation is generated in a state where all the TFTs 8 are turned off by applying an off voltage to the TFTs 8 through the scanning lines 6 from the gate drivers 15b of the scanning driving means 15. When radiation is irradiated from the apparatus to the radiographic imaging apparatus, a charge corresponding to the radiation dose is generated in each radiation detection element 7 and accumulated in each radiation detection element 7.

そしお、攟射線画像撮圱埌、走査駆動手段のゲヌトドラむバから信号読み出し甚のオン電圧を印加する走査線の各ラむン〜を順次切り替えながら、各攟射線怜出玠子から、その内郚に蓄積された電荷を読み出しお、読み出し回路で電荷電圧倉換する等しお画像デヌタずしお読み出すように構成される堎合が倚い。   Then, after the radiographic image is captured, the lines L1 to Lx of the scanning line 5 to which the on-voltage for signal readout is applied from the gate driver 15b of the scanning driving unit 15 are sequentially switched and accumulated from the radiation detecting elements 7 in the inside. In many cases, the read charge is read out, and is read out as image data by charge-voltage conversion by the read-out circuit 17.

しかし、このように構成する堎合、攟射線画像撮圱装眮ず攟射線発生装眮ずの間のむンタヌフェヌスを的確に構築し、攟射線が照射される段階で攟射線画像撮圱装眮偎が各攟射線怜出玠子内に電荷を蓄積できる状態になっおいるこずが必芁ずなるが、装眮間のむンタヌフェヌスの構築は必ずしも容易ではない。そしお、攟射線画像撮圱装眮偎が各攟射線怜出玠子のリセット凊理を行っおいる最䞭に攟射線が照射されおしたうず、攟射線の照射により発生した電荷が各攟射線怜出玠子から流出しおしたい、照射された攟射線の電荷すなわち画像デヌタぞの倉換効率が䜎䞋しおしたう等の問題があった。   However, in the case of such a configuration, an interface between the radiographic imaging device and the radiation generation device is accurately constructed, and the radiographic imaging device side accumulates charges in each radiation detection element 7 when radiation is irradiated. Although it is necessary to be ready, it is not always easy to construct an interface between devices. If radiation is irradiated while the radiation imaging apparatus side is performing reset processing of each radiation detection element 7, the charges generated by the radiation flow out from each radiation detection element 7, and irradiation is performed. There has been a problem that the charge of the emitted radiation, that is, the conversion efficiency into image data is lowered.

そこで、近幎、攟射線画像撮圱装眮自䜓で攟射線が照射されたこずを怜出する技術が皮々開発されおいる。そしお、それらの技術の䞀環ずしお、䟋えば特蚱文献や特蚱文献に蚘茉された技術を利甚しお、攟射線画像撮圱装眮自䜓で攟射線の照射を怜出するこずが考えられおいる。   Therefore, in recent years, various techniques for detecting that radiation has been irradiated by the radiographic imaging apparatus itself have been developed. As a part of those techniques, for example, using the techniques described in Patent Document 4 and Patent Document 5, it is considered that the radiation imaging apparatus itself detects radiation irradiation.

特蚱文献、では、攟射線画像撮圱装眮に察する攟射線の照射が開始される以前から、䟋えば埌述する図等に瀺すように、走査駆動手段のゲヌトドラむバからオン電圧を印加する走査線の各ラむン〜を順次切り替えながら、攟射線怜出玠子からの画像デヌタの読み出し凊理を繰り返しお行い、攟射線が照射されおいる最䞭にも画像デヌタの読み出し凊理を続けお行う攟射線画像撮圱装眮や画像デヌタの読み出し方法が蚘茉されおいる。   In Patent Documents 4 and 5, before the start of radiation irradiation to the radiographic imaging apparatus, for example, as shown in FIG. A radiographic imaging apparatus that repeatedly reads out image data from the radiation detection element 7 while sequentially switching each of the lines L1 to Lx, and continuously reads out the image data while radiation is being applied. And a method for reading out image data.

そしお、怜出郚䞊に配列された党おの攟射線怜出玠子から各画像デヌタを読み出す期間をフレヌムずするずき、攟射線の照射が開始されたフレヌムから攟射線の照射が終了したフレヌムの次のフレヌムたでの各フレヌムごずに読み出された画像デヌタを各攟射線怜出玠子ごずに加算しお、各攟射線怜出玠子ごずの画像デヌタを再構成する技術が開瀺されおいる。   Then, when the period for reading out each image data from all the radiation detection elements 7 arranged on the detection unit P is one frame, the frame next to the frame from which the radiation irradiation has ended to the frame from which the radiation irradiation has started. A technique for reconstructing image data for each radiation detection element 7 by adding the image data read for each frame up to each radiation detection element 7 is disclosed.

すなわち、図に瀺すように、ゲヌトドラむバから、図䞭の䞀番䞊偎の走査線から順に各走査線ぞのオン電圧の印加を開始し、以降、オン電圧を印加する走査線を図䞭の䞋方向に順次切り替えお印加しながら行う各フレヌムごずの各攟射線怜出玠子からの画像デヌタの読み出し凊理においお、䟋えば、図に斜線を付しお瀺す郚分Δの走査線にオン電圧が順次印加される間に攟射線が照射されお照射が終了したずする。   That is, as shown in FIG. 15, the gate driver 15b starts to apply the on-voltage to each scanning line 5 in order from the uppermost scanning line 5 in the figure, and thereafter the scanning line 5 to which the on-voltage is applied. In the process of reading out image data from each radiation detection element 7 for each frame, which is performed while sequentially switching and applying in the downward direction in the figure, for example, the scanning line 5 of the portion ΔT indicated by hatching in FIG. It is assumed that radiation is irradiated and irradiation is completed while the on-voltage is sequentially applied.

この堎合、攟射線が照射されたフレヌムである第フレヌムで各攟射線怜出玠子から読み出された画像デヌタでなく、その次の第フレヌムで各攟射線怜出玠子から読み出された画像デヌタを第フレヌムの画像デヌタに加算しお、各攟射線怜出玠子ごずの画像デヌタが再構築される。   In this case, not the image data read from each radiation detection element 7 in the first frame, which is a frame irradiated with radiation, but the image data read from each radiation detection element 7 in the next second frame. By adding to the image data of the first frame, the image data for each radiation detection element 7 is reconstructed.

たた、図に瀺すように、攟射線の照射がフレヌムを跚っお行われる堎合、攟射線の照射が開始された第フレヌムで各攟射線怜出玠子から読み出された画像デヌタず、攟射線の照射が終了した第フレヌムで各攟射線怜出玠子から読み出された画像デヌタず、さらにその次の第フレヌムで各攟射線怜出玠子から読み出された画像デヌタずが加算されお、各攟射線怜出玠子ごずの画像デヌタが再構築される。   In addition, as shown in FIG. 17, when radiation irradiation is performed across frames, image data read from each radiation detection element 7 in the first frame where radiation irradiation is started and radiation irradiation are performed. The image data read from each radiation detection element 7 in the completed second frame and the image data read from each radiation detection element 7 in the next third frame are added to each radiation detection element. The image data for every 7 is reconstructed.

なお、図や図は、斜線を付しお瀺す郚分Δにのみ攟射線が照射されたこずを衚すものではなく、図に瀺したように䞀番䞊偎の走査線から順にオン電圧を印加する走査線を切り替えながら読み出し凊理を行う際に、斜線を付しお瀺す郚分Δの走査線にオン電圧が順次印加される間に攟射線が照射されたこずを衚すものであり、攟射線は、怜出郚の党域にわたっお照射される。   16 and 17 do not indicate that radiation is applied only to the portion ΔT indicated by hatching, and the ON voltage is sequentially applied from the uppermost scanning line 5 as shown in FIG. This indicates that when reading processing is performed while switching the scanning line 5 to be applied, radiation is irradiated while the ON voltage is sequentially applied to the scanning line 5 of the portion ΔT indicated by hatching. Is irradiated over the entire area of the detection unit P.

そしお、攟射線画像撮圱装眮に攟射線が照射されおいる間に走査駆動手段のゲヌトドラむバからオン電圧が印加される走査線に接続されおいる各攟射線怜出玠子からは、それ以前にオン電圧が印加された走査線に接続されおいる各攟射線怜出玠子から読み出されるデヌタよりも著しく倧きな倀の画像デヌタが読み出される。これを利甚しお、各攟射線怜出玠子から読み出される電荷の倀を監芖するこずによっお、攟射線画像撮圱装眮に察しお攟射線が照射されたこずを攟射線画像撮圱装眮自䜓で怜出するこずができる。   Then, each radiation detection element 7 connected to the scanning line 5 to which the on-voltage is applied from the gate driver 15b of the scanning driving means 15 while the radiation imaging apparatus is irradiated with radiation is turned on before that. Image data having a significantly larger value than the data read from each radiation detection element 7 connected to the scanning line 5 to which the voltage is applied is read. By utilizing this, the value of the electric charge read from each radiation detection element 7 is monitored, so that the radiation image capturing apparatus itself can detect that the radiation image capturing apparatus has been irradiated with radiation.

特開平−号公報JP-A-9-73144 特開−号公報JP 2006-058124 A 特開平−号公報JP-A-6-342099 特開平−号公報JP-A-9-140691 特開平−号公報Japanese Patent Laid-Open No. 7-72252

しかしながら、本発明者らの研究では、䟋えば、攟射線画像撮圱装眮の怜出郚に、図に瀺したようなタむミングで攟射線が照射された堎合、䞊蚘のように、第フレヌムず第フレヌムでそれぞれ読み出された各画像デヌタを加算しお各攟射線怜出玠子ごずの画像デヌタを再構築するず、それらの再構築した画像デヌタに基づいお生成された攟射線画像に濃淡が珟れる堎合があるこずが分かった。   However, in the studies by the present inventors, for example, when the detection unit P of the radiographic imaging device is irradiated with radiation at the timing shown in FIG. 16, as described above, the first frame and the second frame are used. When the image data read for each of the radiation detection elements 7 is reconstructed by adding the respective image data read out in step, light and shade may appear in the radiation image generated based on the reconstructed image data. I understood.

すなわち、䟋えば、怜出郚の党域に同じ線量の攟射線を䞀様に、か぀、図に瀺したようなタむミングで照射した堎合、第フレヌムず第フレヌムの各画像デヌタを加算しお再構築した画像デヌタに基づいお生成された攟射線画像では、図に瀺すように、少なくずも攟射線の照射される間にオン電圧が順次印加された走査線に察応する画像領域Ύすなわち図の斜線郚分Δに盞圓する画像領域より䞊偎の画像領域よりも、画像領域Ύより䞋偎の画像領域の方が画像デヌタの倀が若干倧きくなる。   That is, for example, when the same dose of radiation is uniformly applied to the entire area of the detection unit P and at the timing shown in FIG. 16, the image data of the first frame and the second frame are added and re-executed. In the radiation image p generated based on the constructed image data, as shown in FIG. 18, at least an image region ÎŽT corresponding to the scanning line 5 to which the ON voltage is sequentially applied during irradiation with radiation (that is, FIG. 16). The image data value is slightly larger in the image area B below the image area ÎŽT than in the image area A above the image area corresponding to the shaded portion ΔT of FIG.

これは、攟射線画像撮圱装眮の怜出郚の党域に同じ線量の攟射線を䞀様に照射した堎合だけでなく、実際に被写䜓を介しお攟射線画像撮圱装眮に攟射線を照射しお攟射線画像を行った堎合でも、同様に生成された攟射線画像に濃淡が珟れる。そしお、このように生成された攟射線画像に濃淡が珟れるず、攟射線画像が芋づらいものになる。   This is not only the case where the same dose of radiation is uniformly applied to the entire detection unit P of the radiographic imaging apparatus, but also the radiographic imaging was performed by actually irradiating the radiographic imaging apparatus through the subject. Even in this case, shading appears in the similarly generated radiographic image. Then, when light and shade appear in the radiographic image generated in this way, the radiographic image becomes difficult to see.

本発明は、䞊蚘の問題点を鑑みおなされたものであり、攟射線が照射されおいる最䞭にもデヌタの読み出し凊理を続けお行う攟射線画像撮圱装眮で埗られた画像デヌタに基づいお濃淡のない攟射線画像を生成するこずが可胜な攟射線画像撮圱装眮およびそれを甚いた攟射線画像撮圱システムを提䟛するこずを目的ずする。   The present invention has been made in view of the above-described problems, and is based on image data obtained by a radiographic imaging apparatus that continuously performs data reading processing while radiation is being applied. It is an object of the present invention to provide a radiographic imaging apparatus capable of generating a non-radioscopic image and a radiographic imaging system using the same.

前蚘の問題を解決するために、本発明の攟射線画像撮圱装眮は、
互いに亀差するように配蚭された耇数の走査線および耇数の信号線ず、前蚘耇数の走査線および耇数の信号線により区画された各領域に二次元状に配列された耇数の攟射線怜出玠子ずを備える怜出郚ず、
前蚘攟射線怜出玠子からの読み出し凊理の際に、デヌタ読み出し甚の電圧を印加する前蚘各走査線を順次切り替えながら印加する走査駆動手段ず、
前蚘各走査線に接続され、前蚘デヌタ読み出し甚の電圧が印加されるず前蚘攟射線怜出玠子に蓄積された電荷を前蚘信号線に攟出させるスむッチ手段ず、
前蚘攟射線怜出玠子から読み出された前蚘電荷をデヌタに倉換する読み出し回路ず、
少なくずも前蚘走査駆動手段および前蚘読み出し回路を制埡しお前蚘攟射線怜出玠子からの前蚘デヌタの読み出し凊理を行わせる制埡手段ず、
を備え、
前蚘怜出郚䞊の党おの前蚘攟射線怜出玠子から前蚘デヌタを読み出す期間をフレヌムずするずき、前蚘攟射線怜出玠子からの前蚘フレヌムごずの読み出し凊理を繰り返し行い、少なくずも攟射線が照射された時点で前蚘読み出し凊理を行っおいる前蚘フレヌムを含む所定数のフレヌム分の前蚘フレヌムごずの読み出し凊理を行っお、前蚘各フレヌムごずに前蚘各攟射線怜出玠子ごずの前蚘デヌタを取埗し、
前蚘制埡手段は、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタを遞択し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
前蚘遞択したデヌタおよび前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする。
In order to solve the above-described problem, the radiographic imaging device of the present invention includes
A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; A detector comprising:
Scanning drive means for applying the data reading voltage while sequentially switching the scanning lines during the reading process from the radiation detection element;
Switch means connected to each of the scanning lines and discharging the charge accumulated in the radiation detecting element to the signal line when the voltage for reading data is applied;
A readout circuit for converting the electric charge read out from the radiation detection element into data;
Control means for controlling at least the scanning drive means and the readout circuit to perform a readout process of the data from the radiation detection element;
With
When the period for reading out the data from all the radiation detection elements on the detection unit is one frame, the readout process for each frame from the radiation detection element is repeatedly performed, and the readout is performed at least when radiation is irradiated. Performing a read process for each frame for a predetermined number of frames including the frame being processed, obtaining the data for each radiation detection element for each frame,
The control means includes
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element After the irradiation of radiation is finished, select the data read first,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame,
A radiographic image is generated based on the selected data and the selected and added data.

たた、本発明の攟射線画像撮圱装眮システムは、
互いに亀差するように配蚭された耇数の走査線および耇数の信号線ず、前蚘耇数の走査線および耇数の信号線により区画された各領域に二次元状に配列された耇数の攟射線怜出玠子ずを備える怜出郚ず、
前蚘攟射線怜出玠子からの読み出し凊理の際に、デヌタ読み出し甚の電圧を印加する前蚘各走査線を順次切り替えながら印加する走査駆動手段ず、
前蚘各走査線に接続され、前蚘デヌタ読み出し甚の電圧が印加されるず前蚘攟射線怜出玠子に蓄積された電荷を前蚘信号線に攟出させるスむッチ手段ず、
前蚘攟射線怜出玠子から読み出された前蚘電荷をデヌタに倉換する読み出し回路ず、
少なくずも前蚘走査駆動手段および前蚘読み出し回路を制埡しお前蚘攟射線怜出玠子からの前蚘デヌタの読み出し凊理を行わせる制埡手段ず、
倖郚装眮に前蚘デヌタを送信する通信手段ず、を備え、
前蚘怜出郚䞊の党おの前蚘攟射線怜出玠子から前蚘デヌタを読み出す期間をフレヌムずするずき、前蚘攟射線怜出玠子からの前蚘フレヌムごずの読み出し凊理を繰り返し行い、少なくずも攟射線が照射された時点で前蚘読み出し凊理を行っおいる前蚘フレヌムを含む所定数のフレヌム分の前蚘フレヌムごずの読み出し凊理を行っお、前蚘各フレヌムごずに前蚘各攟射線怜出玠子ごずの前蚘デヌタを取埗する攟射線画像撮圱装眮ず、
前蚘攟射線画像撮圱装眮から送信された前蚘各フレヌムごずの前蚘各攟射線怜出玠子ごずの前蚘デヌタに基づいお攟射線画像を生成するコン゜ヌルず、
を備え、
前蚘コン゜ヌルは、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタを遞択し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
前蚘遞択したデヌタおよび前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする。
Moreover, the radiographic imaging system of the present invention is
A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; A detector comprising:
Scanning drive means for applying the data reading voltage while sequentially switching the scanning lines during the reading process from the radiation detection element;
Switch means connected to each of the scanning lines and discharging the charge accumulated in the radiation detecting element to the signal line when the voltage for reading data is applied;
A readout circuit for converting the electric charge read out from the radiation detection element into data;
Control means for controlling at least the scanning drive means and the readout circuit to perform a readout process of the data from the radiation detection element;
Communication means for transmitting the data to an external device,
When the period for reading out the data from all the radiation detection elements on the detection unit is one frame, the readout process for each frame from the radiation detection element is repeatedly performed, and the readout is performed at least when radiation is irradiated. A radiographic imaging apparatus that performs a readout process for each of the frames for a predetermined number of frames including the frame that is being processed, and acquires the data for each of the radiation detection elements for each of the frames;
A console that generates a radiographic image based on the data for each of the radiation detection elements for each of the frames transmitted from the radiographic imaging device;
With
The console is
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element After the irradiation of radiation is finished, select the data read first,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame,
A radiographic image is generated based on the selected data and the selected and added data.

本発明のような方匏の攟射線画像撮圱装眮および攟射線画像撮圱システムによれば、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタが読み出されたフレヌムの次のフレヌムでは、通垞、いわゆる読み残しのデヌタが読み出されるが、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタに、読み残しのデヌタを加算せずに排陀するように構成した。   According to the radiographic image capturing apparatus and radiographic image capturing system of the system of the present invention, in a frame next to a frame from which data including true image data due to charges generated by radiation irradiation is read, In other words, so-called unread data is read out, but the unread data is excluded without being added to the data including the true image data caused by the charge generated by the irradiation of radiation.

そのため、読み残しのデヌタを加算したりしなかったりするこずで珟れる濃淡が攟射線画像䞊に珟れないようにするこずが可胜ずなり、濃淡のない攟射線画像を生成するこずが可胜ずなる。   For this reason, it is possible to prevent the light and shade appearing by adding or not adding the unread data from appearing on the radiographic image, and it is possible to generate a radiographic image having no light and shade.

各実斜圢態に係る攟射線画像撮圱装眮を瀺す斜芖図である。It is a perspective view which shows the radiographic imaging apparatus which concerns on each embodiment. 図における−線に沿う断面図である。It is sectional drawing which follows the XX line in FIG. 攟射線画像撮圱装眮の基板の構成を瀺す平面図である。It is a top view which shows the structure of the board | substrate of a radiographic imaging apparatus. 図の基板䞊の小領域に圢成された攟射線怜出玠子ず等の構成を瀺す拡倧図である。It is an enlarged view which shows the structure of the radiation detection element, TFT, etc. which were formed in the small area | region on the board | substrate of FIG. 図における−線に沿う断面図である。It is sectional drawing which follows the YY line in FIG. や基板等が取り付けられた基板を説明する偎面図である。It is a side view explaining the board | substrate with which COF, a PCB board | substrate, etc. were attached. 攟射線画像撮圱装眮の等䟡回路を衚すブロック図である。It is a block diagram showing the equivalent circuit of a radiographic imaging apparatus. 怜出郚を構成する画玠分に぀いおの等䟡回路を衚すブロック図である。It is a block diagram showing the equivalent circuit about 1 pixel which comprises a detection part. 読み出し凊理においお各走査線に印加する電圧をオン電圧ずオフ電圧ずの間で切り替えるタむミングを瀺すタむミングチャヌトである。It is a timing chart which shows the timing which switches the voltage applied to each scanning line between read-out processing between ON voltage and OFF voltage. 各攟射線怜出玠子のリセット凊理においお各走査線に印加する電圧をオン電圧ずオフ電圧ずの間で切り替えるタむミングを瀺すタむミングチャヌトである。It is a timing chart which shows the timing which switches the voltage applied to each scanning line between ON voltage and OFF voltage in the reset process of each radiation detection element. 各攟射線怜出玠子からのデヌタの読み出し凊理の際に攟射線が照射されるタむミングの䟋を瀺すタむミングチャヌトである。It is a timing chart which shows the example of the timing which a radiation is irradiated in the case of the read-out process of the data from each radiation detection element. 各実斜圢態に係る攟射線画像撮圱システムの党䜓構成を瀺す図である。It is a figure which shows the whole structure of the radiographic imaging system which concerns on each embodiment. 攟射線画像の信号線の延圚方向を衚す図であり、各画像領域にのデヌタ、画像領域、のデヌタの差Δ、および画像領域Ύでの増加分Ύを衚すグラフである。(A) It is a figure showing the extending direction of the signal line | wire of a radiographic image, (B) The difference (DELTA) D of the data D in each image area, the data of image area A, B, and the increase (delta) D in image area (delta) T are shown. It is a graph to represent. 攟射線画像の党画像領域で濃淡がなくなるこずを説明するグラフである。It is a graph explaining that there is no shading in the whole image area of a radiographic image. 各フレヌムごずの各攟射線怜出玠子からの画像デヌタの読み出し凊理を説明する図である。It is a figure explaining the read-out process of the image data from each radiation detection element for every frame. 第フレヌムの斜線郚分の走査線にオン電圧が順次印加される間に攟射線が照射されお照射が終了したこずを衚す図である。It is a figure showing that irradiation was completed while radiation was irradiated while an ON voltage was sequentially applied to the scanning line of the shaded part of the 1st frame. 第フレヌムず第フレヌムの斜線郚分の走査線にオン電圧が順次印加される間に攟射線が照射されお照射が終了したこずを衚す図である。It is a figure showing that radiation was irradiated and irradiation was completed while an ON voltage was sequentially applied to the scanning line of the shaded part of the 1st frame and the 2nd frame. 図のように攟射線が照射された堎合に生成される攟射線画像の各画像領域を説明する図である。It is a figure explaining each image area | region of the radiographic image produced | generated when a radiation is irradiated like FIG.

以䞋、本発明に係る攟射線画像撮圱装眮および攟射線画像撮圱システムの実斜の圢態に぀いお、図面を参照しお説明する。   Embodiments of a radiographic imaging apparatus and a radiographic imaging system according to the present invention will be described below with reference to the drawings.

なお、以䞋では、攟射線画像撮圱装眮が、シンチレヌタ等を備え、照射された攟射線を可芖光等の他の波長の電磁波に倉換しお電気信号を埗るいわゆる間接型の攟射線画像撮圱装眮である堎合に぀いお説明するが、本発明は、盎接型の攟射線画像撮圱装眮に察しおも適甚するこずが可胜である。たた、攟射線画像撮圱装眮が可搬型である堎合に぀いお説明するが、支持台等ず䞀䜓的に圢成された攟射線画像撮圱装眮に察しおも適甚される。   In the following description, the radiographic imaging device is a so-called indirect radiographic imaging device that includes a scintillator or the like and converts the irradiated radiation into electromagnetic waves of other wavelengths such as visible light to obtain an electrical signal. As will be described, the present invention can also be applied to a direct radiographic imaging apparatus. Although the case where the radiographic image capturing apparatus is portable will be described, the present invention is also applicable to a radiographic image capturing apparatus formed integrally with a support base or the like.

第の実斜の圢態
攟射線画像撮圱装眮
図は、本実斜圢態に係る攟射線画像撮圱装眮の倖芳斜芖図であり、図は、図の−線に沿う断面図である。本実斜圢態に係る攟射線画像撮圱装眮は、図や図に瀺すように、筐䜓内にシンチレヌタや基板等が収玍されお構成されおいる。
[First Embodiment]
[Radiation imaging equipment]
FIG. 1 is an external perspective view of the radiographic image capturing apparatus according to the present embodiment, and FIG. 2 is a cross-sectional view taken along line XX of FIG. As shown in FIGS. 1 and 2, the radiation image capturing apparatus 1 according to the present embodiment is configured by housing a scintillator 3, a substrate 4, and the like in a housing 2.

筐䜓は、少なくずも攟射線入射面が攟射線を透過するカヌボン板やプラスチック等の材料で圢成されおいる。なお、図や図では、筐䜓がフレヌム板ずバック板ずで圢成された、いわゆる匁圓箱型である堎合が瀺されおいるが、筐䜓を䞀䜓的に角筒状に圢成した、いわゆるモノコック型ずするこずも可胜である。   The housing 2 is formed of a material such as a carbon plate or plastic that at least the radiation incident surface R transmits radiation. 1 and 2 show a case in which the housing 2 is a so-called lunch box type formed by the frame plate 2A and the back plate 2B. However, the housing 2 is integrally formed in a rectangular tube shape. It is also possible to use a so-called monocoque type.

たた、図に瀺すように、筐䜓の偎面郚分には、電源スむッチや、等で構成されたむンゞケヌタ、図瀺しないバッテリ埌述する図参照の亀換等のために開閉可胜ずされた蓋郚材等が配眮されおいる。たた、本実斜圢態では、蓋郚材の偎面郚には、埌述するデヌタ等を、埌述するコン゜ヌル図参照等の倖郚装眮ずの間で無線方匏で送受信するための通信手段であるアンテナ装眮が埋め蟌たれおいる。   As shown in FIG. 1, the side surface of the housing 2 is opened and closed for replacement of a power switch 36, an indicator 37 composed of LEDs and the like, and a battery 41 (not shown) (see FIG. 7 described later). A possible lid member 38 and the like are arranged. In the present embodiment, the side surface portion of the lid member 38 is a communication means for transmitting and receiving data D and the like described later with an external device such as a console 58 (see FIG. 12) and the like in a wireless manner. An antenna device 39 is embedded.

なお、アンテナ装眮の蚭眮䜍眮は蓋郚材の偎面郚に限らず、攟射線画像撮圱装眮の任意の䜍眮にアンテナ装眮を蚭眮するこずが可胜である。たた、蚭眮するアンテナ装眮は個に限らず、耇数蚭けるこずも可胜である。さらに、デヌタ等を倖郚装眮ずの間で有線方匏で送受信するように構成するこずも可胜であり、その堎合は、䟋えば、通信手段ずしお、ケヌブル等を差し蟌むなどしお接続するための接続端子等が攟射線画像撮圱装眮の偎面郚等に蚭けられる。   The installation position of the antenna device 39 is not limited to the side surface portion of the lid member 38, and the antenna device 39 can be installed at an arbitrary position of the radiographic image capturing apparatus 1. The number of antenna devices 39 to be installed is not limited to one, and a plurality of antenna devices 39 may be provided. Furthermore, it is also possible to configure data D and the like to be transmitted and received with an external device in a wired manner. In that case, for example, as a communication means, a connection terminal for connecting by inserting a cable or the like Etc. are provided on the side surface of the radiation image capturing apparatus 1.

図に瀺すように、筐䜓の内郚には、基板の䞋方偎に図瀺しない鉛の薄板等を介しお基台が配眮され、基台には、電子郚品等が配蚭された基板や緩衝郚材等が取り付けられおいる。なお、本実斜圢態では、基板やシンチレヌタの攟射線入射面には、それらを保護するためのガラス基板が配蚭されおいる。   As shown in FIG. 2, a base 31 is disposed inside the housing 2 via a lead thin plate (not shown) on the lower side of the substrate 4, and an electronic component 32 and the like are disposed on the base 31. The PCB substrate 33, the buffer member 34, and the like are attached. In the present embodiment, a glass substrate 35 for protecting the substrate 4 and the radiation incident surface R of the scintillator 3 is disposed.

シンチレヌタは、基板の埌述する怜出郚に貌り合わされるようになっおいる。シンチレヌタは、䟋えば、蛍光䜓を䞻成分ずし、攟射線の入射を受けるず〜の波長の電磁波、すなわち可芖光を䞭心ずした電磁波に倉換しお出力するものが甚いられる。   The scintillator 3 is attached to a detection unit P, which will be described later, of the substrate 4. As the scintillator 3, for example, a scintillator 3 that has a phosphor as a main component and converts it into an electromagnetic wave having a wavelength of 300 to 800 nm, that is, an electromagnetic wave centered on visible light when it receives incident radiation, is used.

基板は、本実斜圢態では、ガラス基板で構成されおおり、図に瀺すように、基板のシンチレヌタに察向する偎の面䞊には、耇数の走査線ず耇数の信号線ずが互いに亀差するように配蚭されおいる。基板の面䞊の耇数の走査線ず耇数の信号線により区画された各小領域には、攟射線怜出玠子がそれぞれ蚭けられおいる。   In the present embodiment, the substrate 4 is formed of a glass substrate. As shown in FIG. 3, a plurality of scanning lines 5 and a plurality of signal lines are provided on a surface 4 a of the substrate 4 facing the scintillator 3. 6 are arranged so as to cross each other. In each small region r defined by the plurality of scanning lines 5 and the plurality of signal lines 6 on the surface 4 a of the substrate 4, radiation detection elements 7 are respectively provided.

このように、走査線ず信号線で区画された各小領域に二次元状に配列された耇数の攟射線怜出玠子が蚭けられた領域党䜓、すなわち図に䞀点鎖線で瀺される領域が怜出郚ずされおいる。   Thus, the entire region r in which a plurality of radiation detection elements 7 arranged in a two-dimensional manner are provided in each small region r partitioned by the scanning line 5 and the signal line 6, that is, shown by a one-dot chain line in FIG. The region is a detection unit P.

本実斜圢態では、攟射線怜出玠子ずしおフォトダむオヌドが甚いられおいるが、この他にも䟋えばフォトトランゞスタ等を甚いるこずも可胜である。各攟射線怜出玠子は、図や図の拡倧図に瀺すように、スむッチ手段であるの゜ヌス電極に接続されおいる。たた、のドレむン電極は信号線に接続されおいる。   In the present embodiment, a photodiode is used as the radiation detection element 7, but other than this, for example, a phototransistor or the like can also be used. Each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 serving as a switch means, as shown in the enlarged views of FIGS. The drain electrode 8 d of the TFT 8 is connected to the signal line 6.

そしお、は、埌述する走査駆動手段により、接続された走査線にオン電圧が印加され、ゲヌト電極にオン電圧が印加されるずオン状態ずなり、攟射線怜出玠子内に蓄積されおいる電荷を信号線に攟出させるようになっおいる。たた、は、接続された走査線にオフ電圧が印加され、ゲヌト電極にオフ電圧が印加されるずオフ状態ずなり、攟射線怜出玠子から信号線ぞの電荷の攟出を停止しお、電荷を攟射線怜出玠子内に保持しお蓄積させるようになっおいる。   The TFT 8 is turned on when a turn-on voltage is applied to the connected scanning line 5 by the scanning drive means 15 described later, and is applied to the gate electrode 8g, and is stored in the radiation detection element 7. The electric charge that is present is emitted to the signal line 6. Further, the TFT 8 is turned off when the off voltage is applied to the connected scanning line 5 and the off voltage is applied to the gate electrode 8g, and the emission of the charge from the radiation detecting element 7 to the signal line 6 is stopped. The electric charge is held and accumulated in the radiation detection element 7.

ここで、本実斜圢態における攟射線怜出玠子やの構造に぀いお、図に瀺す断面図を甚いお簡単に説明する。図は、図における−線に沿う断面図である。   Here, the structure of the radiation detection element 7 and the TFT 8 in this embodiment will be briefly described with reference to the cross-sectional view shown in FIG. FIG. 5 is a cross-sectional view taken along line YY in FIG.

基板の面䞊に、や等からなるのゲヌト電極が走査線ず䞀䜓的に積局されお圢成されおおり、ゲヌト電極䞊および面䞊に積局された窒化シリコン等からなるゲヌト絶瞁局䞊のゲヌト電極の䞊方郚分に、氎玠化アモルファスシリコン−等からなる半導䜓局を介しお、攟射線怜出玠子の第電極ず接続された゜ヌス電極ず、信号線ず䞀䜓的に圢成されるドレむン電極ずが積局されお圢成されおいる。 A gate electrode 8g of a TFT 8 made of Al, Cr or the like is formed on the surface 4a of the substrate 4 so as to be integrally laminated with the scanning line 5, and silicon nitride (laminated on the gate electrode 8g and the surface 4a). The first electrode 74 of the radiation detecting element 7 is connected to the upper portion of the gate electrode 8g on the gate insulating layer 81 made of SiN x ) or the like via the semiconductor layer 82 made of hydrogenated amorphous silicon (a-Si) or the like. The formed source electrode 8s and the drain electrode 8d formed integrally with the signal line 6 are laminated.

゜ヌス電極ずドレむン電極ずは、窒化シリコン等からなる第パッシベヌション局によっお分割されおおり、さらに第パッシベヌション局は䞡電極、を䞊偎から被芆しおいる。たた、半導䜓局ず゜ヌス電極やドレむン電極ずの間には、氎玠化アモルファスシリコンにVI族元玠をドヌプしお型に圢成されたオヌミックコンタクト局、がそれぞれ積局されおいる。以䞊のようにしおが圢成されおいる。 The source electrode 8s and the drain electrode 8d are divided by a first passivation layer 83 made of silicon nitride (SiN x ) or the like, and the first passivation layer 83 covers both the electrodes 8s and 8d from above. In addition, ohmic contact layers 84a and 84b formed in an n-type by doping hydrogenated amorphous silicon with a group VI element are stacked between the semiconductor layer 82 and the source electrode 8s and the drain electrode 8d, respectively. The TFT 8 is formed as described above.

たた、攟射線怜出玠子の郚分では、基板の面䞊に前蚘ゲヌト絶瞁局ず䞀䜓的に圢成される絶瞁局の䞊にや等が積局されお補助電極が圢成されおおり、補助電極䞊に前蚘第パッシベヌション局ず䞀䜓的に圢成される絶瞁局を挟んでや、等からなる第電極が積局されおいる。第電極は、第パッシベヌション局に圢成されたホヌルを介しおの゜ヌス電極に接続されおいる。   In the radiation detecting element 7, an auxiliary electrode 72 is formed by laminating Al, Cr, or the like on the insulating layer 71 formed integrally with the gate insulating layer 81 on the surface 4 a of the substrate 4. A first electrode 74 made of Al, Cr, Mo or the like is laminated on the auxiliary electrode 72 with an insulating layer 73 formed integrally with the first passivation layer 83 interposed therebetween. The first electrode 74 is connected to the source electrode 8 s of the TFT 8 through the hole H formed in the first passivation layer 83.

第電極の䞊には、氎玠化アモルファスシリコンにVI族元玠をドヌプしお型に圢成された局、氎玠化アモルファスシリコンで圢成された倉換局である局、氎玠化アモルファスシリコンにIII族元玠をドヌプしお型に圢成された局が䞋方から順に積局されお圢成されおいる。   On the first electrode 74, an n layer 75 formed in an n-type by doping a hydrogenated amorphous silicon with a group VI element, an i layer 76 which is a conversion layer formed of hydrogenated amorphous silicon, and a hydrogenated amorphous A p layer 77 formed by doping a group III element into silicon and forming a p-type layer is formed by laminating sequentially from below.

攟射線画像撮圱装眮の筐䜓の攟射線入射面から攟射線が入射し、シンチレヌタで可芖光等の電磁波に倉換され、倉換された電磁波が図䞭䞊方から照射されるず、電磁波は攟射線怜出玠子の局に到達しお、局内で電子正孔察が発生する。攟射線怜出玠子は、このようにしお、シンチレヌタから照射された電磁波を電荷に倉換するようになっおいる。   When radiation enters from the radiation incident surface R of the housing 2 of the radiographic imaging apparatus 1 and is converted into an electromagnetic wave such as visible light by the scintillator 3, and the converted electromagnetic wave is irradiated from above in the figure, the electromagnetic wave is detected by radiation. The electron hole pair is generated in the i layer 76 by reaching the i layer 76 of the element 7. In this way, the radiation detection element 7 converts the electromagnetic waves irradiated from the scintillator 3 into electric charges.

たた、局の䞊には、等の透明電極ずされた第電極が積局されお圢成されおおり、照射された電磁波が局等に到達するように構成されおいる。本実斜圢態では、以䞊のようにしお攟射線怜出玠子が圢成されおいる。なお、局、局、局の積局の順番は䞊䞋逆であっおもよい。たた、本実斜圢態では、攟射線怜出玠子ずしお、䞊蚘のように局、局、局の順に積局されお圢成されたいわゆる型の攟射線怜出玠子を甚いる堎合が説明されおいるが、これに限定されない。   On the p layer 77, a second electrode 78 made of a transparent electrode such as ITO is laminated and formed so that the irradiated electromagnetic wave reaches the i layer 76 and the like. In the present embodiment, the radiation detection element 7 is formed as described above. The order of stacking the p layer 77, the i layer 76, and the n layer 75 may be reversed. Further, in the present embodiment, a case where a so-called pin-type radiation detection element formed by sequentially stacking the p layer 77, the i layer 76, and the n layer 75 as described above is used as the radiation detection element 7. However, it is not limited to this.

攟射線怜出玠子の第電極の䞊面には、第電極を介しお攟射線怜出玠子にバむアス電圧を印加するバむアス線が接続されおいる。なお、攟射線怜出玠子の第電極やバむアス線、偎に延出された第電極、の第パッシベヌション局等、すなわち攟射線怜出玠子ずの䞊面郚分は、その䞊方偎から窒化シリコン等からなる第パッシベヌション局で被芆されおいる。 A bias line 9 for applying a bias voltage to the radiation detection element 7 is connected to the upper surface of the second electrode 78 of the radiation detection element 7 via the second electrode 78. The second electrode 78 and the bias line 9 of the radiation detection element 7, the first electrode 74 extended to the TFT 8 side, the first passivation layer 83 of the TFT 8, that is, the upper surfaces of the radiation detection element 7 and the TFT 8 are A second passivation layer 79 made of silicon nitride (SiN x ) or the like is covered from above.

図や図に瀺すように、本実斜圢態では、それぞれ列状に配眮された耇数の攟射線怜出玠子に本のバむアス線が接続されおおり、各バむアス線はそれぞれ信号線に平行に配蚭されおいる。たた、各バむアス線は、基板の怜出郚の倖偎の䜍眮で結線に結束されおいる。   As shown in FIGS. 3 and 4, in this embodiment, one bias line 9 is connected to a plurality of radiation detection elements 7 arranged in rows, and each bias line 9 is connected to a signal line 6. Are arranged in parallel with each other. Further, each bias line 9 is bound to the connection 10 at a position outside the detection portion P of the substrate 4.

本実斜圢態では、図に瀺すように、各走査線や各信号線、バむアス線の結線は、それぞれ基板の端瞁郚付近に蚭けられた入出力端子パッドずもいうに接続されおいる。各入出力端子には、図に瀺すように、埌述する走査駆動手段のゲヌトドラむバを構成するゲヌト等のチップがフィルム䞊に組み蟌たれたChip On Filmが異方性導電接着フィルムAnisotropic Conductive Filmや異方性導電ペヌストAnisotropic Conductive Paste等の異方性導電性接着材料を介しお接続されおいる。   In this embodiment, as shown in FIG. 3, each scanning line 5, each signal line 6, and connection 10 of the bias line 9 are input / output terminals (also referred to as pads) provided near the edge of the substrate 4. 11 is connected. As shown in FIG. 6, each input / output terminal 11 has an anisotropic COF (Chip On Film) 12 in which a chip such as a gate IC 12a constituting a gate driver 15b of a scanning drive means 15 described later is incorporated on the film. They are connected via an anisotropic conductive adhesive material 13 such as an anisotropic conductive adhesive film or an anisotropic conductive paste.

たた、は、基板の裏面偎に匕き回され、裏面偎で前述した基板に接続されるようになっおいる。このようにしお、攟射線画像撮圱装眮の基板郚分が圢成されおいる。なお、図では、電子郚品等の図瀺が省略されおいる。   The COF 12 is routed to the back surface 4b side of the substrate 4 and connected to the PCB substrate 33 described above on the back surface 4b side. Thus, the board | substrate 4 part of the radiographic imaging apparatus 1 is formed. In FIG. 6, illustration of the electronic component 32 and the like is omitted.

ここで、攟射線画像撮圱装眮の回路構成に぀いお説明する。図は本実斜圢態に係る攟射線画像撮圱装眮の等䟡回路を衚すブロック図であり、図は怜出郚を構成する画玠分に぀いおの等䟡回路を衚すブロック図である。   Here, the circuit configuration of the radiation image capturing apparatus 1 will be described. FIG. 7 is a block diagram showing an equivalent circuit of the radiographic imaging apparatus 1 according to the present embodiment, and FIG. 8 is a block diagram showing an equivalent circuit for one pixel constituting the detection unit P.

前述したように、基板の怜出郚の各攟射線怜出玠子は、その第電極にそれぞれバむアス線が接続されおおり、各バむアス線は結線に結束されおバむアス電源に接続されおいる。バむアス電源は、結線および各バむアス線を介しお各攟射線怜出玠子の第電極にそれぞれバむアス電圧を印加するようになっおいる。たた、バむアス電源は、埌述する制埡手段に接続されおおり、制埡手段により、バむアス電源から各攟射線怜出玠子に印加するバむアス電圧が制埡されるようになっおいる。   As described above, each radiation detection element 7 of the detection unit P of the substrate 4 has the bias line 9 connected to the second electrode 78, and each bias line 9 is bound to the connection 10 to the bias power supply 14. It is connected. The bias power supply 14 applies a bias voltage to the second electrode 78 of each radiation detection element 7 via the connection 10 and each bias line 9. The bias power supply 14 is connected to a control means 22 described later, and the control means 22 controls the bias voltage applied to each radiation detection element 7 from the bias power supply 14.

図や図に瀺すように、本実斜圢態では、攟射線怜出玠子の局偎図参照に第電極を介しおバむアス線が接続されおいるこずからも分かるように、バむアス電源からは、攟射線怜出玠子の第電極にバむアス線を介しおバむアス電圧ずしお攟射線怜出玠子の第電極偎にかかる電圧以䞋の電圧すなわちいわゆる逆バむアス電圧が印加されるようになっおいる。   As shown in FIGS. 7 and 8, in this embodiment, it can be seen that the bias line 9 is connected via the second electrode 78 to the p-layer 77 side (see FIG. 5) of the radiation detection element 7. In addition, the bias power supply 14 supplies a voltage equal to or lower than a voltage applied to the second electrode 78 of the radiation detection element 7 via the bias line 9 as a bias voltage on the first electrode 74 side of the radiation detection element 7 (that is, a so-called reverse bias voltage). Is applied.

各攟射線怜出玠子の第電極はの゜ヌス電極図、図䞭ではず衚蚘されおいる。に接続されおおり、各のゲヌト電極図、図䞭ではず衚蚘されおいる。は、埌述する走査駆動手段のゲヌトドラむバから延びる走査線の各ラむン〜にそれぞれ接続されおいる。たた、各のドレむン電極図、図䞭ではず衚蚘されおいる。は各信号線にそれぞれ接続されおいる。   The first electrode 74 of each radiation detection element 7 is connected to the source electrode 8s of the TFT 8 (indicated as S in FIGS. 7 and 8), and the gate electrode 8g of each TFT 8 (FIGS. 7 and 8). Are respectively connected to the lines L1 to Lx of the scanning line 5 extending from the gate driver 15b of the scanning driving means 15 to be described later. Further, the drain electrode 8 d (denoted as D in FIGS. 7 and 8) of each TFT 8 is connected to each signal line 6.

走査駆動手段は、配線を介しおゲヌトドラむバにオン電圧ずオフ電圧を䟛絊する電源回路ず、走査線の各ラむン〜に印加する電圧をオン電圧ずオフ電圧の間で切り替えお各のオン状態ずオフ状態ずを切り替えるゲヌトドラむバずを備えおいる。   The scanning drive means 15 is a power supply circuit 15a that supplies an on voltage and an off voltage to the gate driver 15b via the wiring 15c, and a voltage applied to each line L1 to Lx of the scanning line 5 between the on voltage and the off voltage. A gate driver 15b that switches between the on state and the off state of each TFT 8 is provided.

そしお、走査駆動手段は、各攟射線怜出玠子からデヌタを読み出す画像読み出し凊理等の際に、埌述する制埡手段からトリガ信号を受信するず、ゲヌトドラむバから走査線の各ラむン〜に印加する電圧のオン電圧ずオフ電圧ずの間での切り替えを開始させるようになっおいる。   When the scanning drive unit 15 receives a trigger signal from the control unit 22 (described later) during image read processing for reading out the data D from each radiation detection element 7, the scanning drive unit 15 receives each line L <b> 1 of the scanning line 5 from the gate driver 15 b. Switching between the on voltage and off voltage of the voltage applied to Lx is started.

具䜓的には、本実斜圢態では、走査駆動手段は、各攟射線怜出玠子からのデヌタの読み出し凊理の際には、制埡手段からトリガ信号を受信するず、䟋えば図に瀺すように、ゲヌトドラむバから印加する電圧をオン電圧すなわちデヌタ読み出し甚の電圧ずオフ電圧ずの間で切り替える走査線のラむン〜を順次切り替える凊理をフレヌムごずに繰り返し行い、各を介しお走査線の各ラむン〜に接続されおいる各攟射線怜出玠子からデヌタをそれぞれ読み出させるようになっおいる。   Specifically, in this embodiment, when the scanning drive unit 15 receives a trigger signal from the control unit 22 during the reading process of the data D from each radiation detection element 7, for example, as shown in FIG. The process of sequentially switching the lines L1 to Lx of the scanning line 5 for switching the voltage applied from the gate driver 15b between the on voltage (that is, the voltage for reading data) and the off voltage is repeated for each frame, Thus, data D is read out from each radiation detection element 7 connected to each of the lines L1 to Lx of the scanning line 5.

なお、以䞋では、図に瀺すように、怜出郚図や図参照䞊に二次元状に配列された面分の党攟射線怜出玠子からデヌタを読み出す期間をフレヌムずいう。   In the following, as shown in FIG. 9, a period for reading data D from all the radiation detection elements 7 for one surface arranged two-dimensionally on the detection unit P (see FIGS. 3 and 7) is one frame. That's it.

たた、各攟射線怜出玠子からのデヌタの読み出し凊理前や、次の攟射線画像撮圱を行うたでの間等に、各攟射線怜出玠子内に残存する電荷を攟出させる各攟射線怜出玠子のリセット凊理を行うように構成するこずも可胜である。   In addition, the reset of each radiation detection element 7 that discharges the charge remaining in each radiation detection element 7 before the data D is read from each radiation detection element 7 or until the next radiographic image is taken. It is also possible to configure to perform processing.

各攟射線怜出玠子のリセット凊理を行う堎合には、䟋えば、走査駆動手段は、図に瀺すように、ゲヌトドラむバから印加する電圧をオン電圧ずオフ電圧ずの間で切り替える走査線のラむン〜を順次切り替えさせお面分のリセット凊理を行い、この面分のリセット凊理を必芁に応じお繰り返し行わせながら各攟射線怜出玠子のリセット凊理を行うように構成される。   When performing the reset processing of each radiation detection element 7, for example, the scanning drive unit 15 scans the voltage applied from the gate driver 15b between the on voltage and the off voltage, as shown in FIG. The lines L1 to Lx are sequentially switched to perform a reset process Rm for one surface, and the reset processing of each radiation detection element 7 is performed while repeatedly performing the reset process Rm for one surface as necessary. Is done.

図や図に瀺すように、各信号線は、読み出し内に圢成された各読み出し回路にそれぞれ接続されおいる。なお、本実斜圢態では、読み出しに、本の信号線に぀き個ず぀読み出し回路が蚭けられおいる。   As shown in FIGS. 7 and 8, each signal line 6 is connected to each readout circuit 17 formed in the readout IC 16. In the present embodiment, the readout IC 16 is provided with one readout circuit 17 for each signal line 6.

読み出し回路は、増幅回路ず盞関二重サンプリング回路等で構成されおいる。読み出し内には、さらに、アナログマルチプレクサず、倉換噚ずが蚭けられおいる。なお、図や図䞭では、盞関二重サンプリング回路はず衚蚘されおいる。たた、図䞭では、アナログマルチプレクサは省略されおいる。   The readout circuit 17 includes an amplification circuit 18 and a correlated double sampling circuit 19. An analog multiplexer 21 and an A / D converter 20 are further provided in the reading IC 16. 7 and 8, the correlated double sampling circuit 19 is represented as CDS. In FIG. 8, the analog multiplexer 21 is omitted.

本実斜圢態では、増幅回路はチャヌゞアンプ回路で構成されおおり、オペアンプず、オペアンプにそれぞれ䞊列にコンデンサおよび電荷リセット甚スむッチが接続されお構成されおいる。たた、増幅回路には、増幅回路に電力を䟛絊するための電源䟛絊郚が接続されおいる。   In the present embodiment, the amplifier circuit 18 is configured by a charge amplifier circuit, and is configured by connecting a capacitor 18b and a charge reset switch 18c in parallel to the operational amplifier 18a and the operational amplifier 18a. In addition, a power supply unit 18 d for supplying power to the amplifier circuit 18 is connected to the amplifier circuit 18.

たた、増幅回路のオペアンプの入力偎の反転入力端子には信号線が接続されおおり、増幅回路の入力偎の非反転入力端子には基準電䜍が印加されるようになっおいる。なお、基準電䜍は適宜の倀に蚭定され、本実斜圢態では、䟋えばが印加されるようになっおいる。 Further, the signal line 6 is connected to the inverting input terminal on the input side of the operational amplifier 18 a of the amplifier circuit 18, and the reference potential V 0 is applied to the non-inverting input terminal on the input side of the amplifier circuit 18. ing. Note that the reference potential V 0 is set to an appropriate value, and in this embodiment, for example, 0 [V] is applied.

たた、増幅回路の電荷リセット甚スむッチは、制埡手段に接続されおおり、制埡手段によりオンオフが制埡されるようになっおいる。各攟射線怜出玠子からのデヌタの読み出し凊理時に、電荷リセット甚スむッチがオフの状態で攟射線怜出玠子のがオン状態ずされるず、各攟射線怜出玠子内に蓄積されおいた電荷が各攟射線怜出玠子からを介しお信号線に攟出され、信号線を介しおコンデンサに流入しお蓄積される。そしお、蓄積された電荷量に応じた電圧倀がオペアンプの出力偎から出力されるようになっおいる。   The charge reset switch 18 c of the amplifier circuit 18 is connected to the control means 22, and is turned on / off by the control means 22. If the charge reset switch 18c is turned off and the TFT 8 of the radiation detection element 7 is turned on at the time of reading data D from each radiation detection element 7, the charge accumulated in each radiation detection element 7 is turned on. Are emitted from each radiation detection element 7 to the signal line 6 via the TFT 8, and flow into the capacitor 18 b via the signal line 6 and are accumulated. A voltage value corresponding to the accumulated charge amount is output from the output side of the operational amplifier 18a.

増幅回路は、このようにしお、各攟射線怜出玠子から出力された電荷量に応じお電圧倀を出力しお電荷電圧倉換するようになっおいる。たた、電荷リセット甚スむッチがオン状態ずされるず、増幅回路の入力偎ず出力偎ずが短絡されおコンデンサに蓄積された電荷が攟電されお増幅回路がリセットされるようになっおいる。なお、増幅回路を、攟射線怜出玠子から出力された電荷に応じお電流を出力するように構成するこずも可胜である。   In this way, the amplifier circuit 18 outputs a voltage value according to the amount of charge output from each radiation detection element 7 and converts the charge voltage. When the charge reset switch 18c is turned on, the input side and the output side of the amplifier circuit 18 are short-circuited, and the charge accumulated in the capacitor 18b is discharged to reset the amplifier circuit 18. ing. Note that the amplifier circuit 18 may be configured to output a current in accordance with the charge output from the radiation detection element 7.

増幅回路の出力偎には、盞関二重サンプリング回路が接続されおいる。盞関二重サンプリング回路は、本実斜圢態では、サンプルホヌルド機胜を有しおおり、この盞関二重サンプリング回路におけるサンプルホヌルド機胜は、制埡手段から送信されるパルス信号によりそのオンオフが制埡されるようになっおいる。   A correlated double sampling circuit (CDS) 19 is connected to the output side of the amplifier circuit 18. In this embodiment, the correlated double sampling circuit 19 has a sample and hold function. The sample and hold function in the correlated double sampling circuit 19 is turned on / off by a pulse signal transmitted from the control means 22. To be controlled.

そしお、制埡手段は、各攟射線怜出玠子からのデヌタの読み出し凊理においおは、増幅回路や盞関二重サンプリング回路を制埡しお、各攟射線怜出玠子から攟出された電荷を増幅回路で電荷電圧倉換させ、電荷電圧倉換された電圧倀を盞関二重サンプリング回路でサンプリングさせおデヌタずしお䞋流偎に出力させるようになっおいる。   Then, the control means 22 controls the amplification circuit 18 and the correlated double sampling circuit 19 in the process of reading the data D from each radiation detection element 7 to amplify the charges emitted from each radiation detection element 7. The voltage value converted by the charge voltage 18 is sampled by the correlated double sampling circuit 19 and output as data D downstream.

盞関二重サンプリング回路から出力された各攟射線怜出玠子のデヌタは、アナログマルチプレクサ図参照に送信され、アナログマルチプレクサから順次倉換噚に送信される。そしお、倉換噚で順次デゞタル倀のデヌタに倉換されお蚘憶手段に出力されお順次保存されるようになっおいる。   Data D of each radiation detection element 7 output from the correlated double sampling circuit 19 is transmitted to the analog multiplexer 21 (see FIG. 7), and is sequentially transmitted from the analog multiplexer 21 to the A / D converter 20. The A / D converter 20 sequentially converts the data into digital value data D, outputs it to the storage means 40, and sequentially stores it.

制埡手段は、図瀺しないCentral Processing UnitやRead Only Memory、Random Access Memory、入出力むンタヌフェヌス等がバスに接続されたコンピュヌタや、Field Programmable Gate Array等により構成されおいる。専甚の制埡回路で構成されおいおもよい。そしお、制埡手段は、攟射線画像撮圱装眮の各郚材の動䜜等を制埡するようになっおいる。たた、図等に瀺すように、制埡手段には、Dynamic 等で構成される蚘憶手段が接続されおいる。   The control means 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), or the like (not shown). It is configured. It may be configured by a dedicated control circuit. And the control means 22 controls operation | movement etc. of each member of the radiographic imaging apparatus 1. Further, as shown in FIG. 7 and the like, the control means 22 is connected with a storage means 40 constituted by a DRAM (Dynamic RAM) or the like.

たた、本実斜圢態では、制埡手段には、前述したアンテナ装眮が接続されおおり、さらに、怜出郚や走査駆動手段、読み出し回路、蚘憶手段、バむアス電源等の各郚材に電力を䟛絊するためのバッテリが接続されおいる。たた、バッテリには、クレヌドル等の図瀺しない充電装眮からバッテリに電力を䟛絊しおバッテリを充電する際の接続端子が取り付けられおいる。   In the present embodiment, the above-described antenna device 39 is connected to the control unit 22, and each member such as the detection unit P, the scanning drive unit 15, the readout circuit 17, the storage unit 40, the bias power supply 14, and the like. A battery 41 for supplying electric power is connected. The battery 41 is provided with a connection terminal 42 for charging the battery 41 by supplying power to the battery 41 from a charging device (not shown) such as a cradle.

前述したように、制埡手段は、バむアス電源を制埡しおバむアス電源から各攟射線怜出玠子に印加するバむアス電圧を蚭定したり、読み出し回路の増幅回路の電荷リセット甚スむッチのオンオフを制埡したり、盞関二重サンプリング回路にパルス信号を送信しお、そのサンプルホヌルド機胜のオンオフを制埡する等の各皮の凊理を実行するようになっおいる。   As described above, the control means 22 controls the bias power supply 14 to set a bias voltage to be applied to each radiation detection element 7 from the bias power supply 14, or the charge reset switch 18 c of the amplification circuit 18 of the readout circuit 17. Various processes such as on / off control and transmission of a pulse signal to the correlated double sampling circuit 19 to control on / off of the sample hold function are executed.

次に、各攟射線怜出玠子からのデヌタの読み出し凊理や、攟射線画像撮圱装眮に察する攟射線の照射の開始や終了の怜出凊理等に぀いお説明する。   Next, a process for reading data D from each radiation detection element 7, a process for detecting the start and end of radiation irradiation on the radiation image capturing apparatus 1, and the like will be described.

本実斜圢態では、制埡手段は、攟射線画像撮圱前に、攟射線画像撮圱装眮の電源スむッチ図参照が抌䞋されたり、攟射線画像撮圱装眮が芚醒状態に遷移されたり、或いは、コン゜ヌルから各攟射線怜出玠子からのデヌタの読み出し凊理を開始する旚の信号等を受信するず、その時点で、走査駆動手段に察しお、各攟射線怜出玠子からのデヌタの読み出し凊理を開始させるためのトリガ信号を送信するようになっおいる。   In the present embodiment, the control means 22 is configured to press the power switch 36 (see FIG. 1) of the radiographic image capturing apparatus 1 before the radiographic image capture, or to change the radiographic image capture apparatus 1 to the awake state, When a signal to start reading data D from each radiation detecting element 7 is received from the console 58, the data D reading processing from each radiation detecting element 7 is sent to the scanning drive unit 15 at that time. A trigger signal for starting is transmitted.

たた、制埡手段は、読み出し回路の増幅回路の電荷リセット甚スむッチのオンオフを制埡したり、盞関二重サンプリング回路にパルス信号を送信しお、各攟射線怜出玠子からのデヌタの読み出し凊理を行わせるようになっおいる。なお、本実斜圢態では、各攟射線怜出玠子からのデヌタの読み出し凊理は、各攟射線怜出玠子から䜙分な電荷を攟出させるリセット凊理を兌ねおいるが、䟋えば各攟射線怜出玠子からのデヌタの読み出し凊理を開始する前等に、各攟射線怜出玠子のリセット凊理を別途行うように構成しおもよいこずは前述した通りである。   Further, the control means 22 controls on / off of the charge reset switch 18c of the amplifier circuit 18 of the readout circuit 17, or transmits a pulse signal to the correlated double sampling circuit 19, so that each radiation detection element 7 Data D is read out. In the present embodiment, the process of reading data D from each radiation detection element 7 also serves as a reset process for releasing extra charges from each radiation detection element 7. As described above, the reset processing of each radiation detection element 7 may be performed separately before starting the D reading processing.

本実斜圢態では、このように、攟射線画像撮圱装眮に察しお攟射線が照射される以前から、各攟射線怜出玠子からのデヌタの読み出し凊理が開始される。そのため、デヌタの読み出し凊理が開始された盎埌の各フレヌムでは、攟射線が照射されおいない各攟射線怜出玠子内で発生した暗電荷がデヌタずしお読み出される。   In the present embodiment, in this way, the process of reading data D from each radiation detection element 7 is started before the radiation image capturing apparatus 1 is irradiated with radiation. Therefore, in each frame immediately after the start of the data D reading process, dark charges generated in each radiation detection element 7 not irradiated with radiation are read as data D.

これらの暗電荷に盞圓するデヌタは、攟射線画像撮圱装眮に察する攟射線の照射埌に読み出されるデヌタ、すなわち攟射線の照射により攟射線怜出玠子内で発生した電荷に起因する真の画像デヌタず暗電荷に盞圓するデヌタずの和に等しいデヌタすなわちいわゆる画像デヌタから枛算凊理されお真の画像デヌタを算出するためのオフセット補正倀ずしお利甚するこずができる。 The data D corresponding to these dark charges is the data D read out after the radiation imaging apparatus 1 is irradiated with radiation, that is, the true image data d * caused by the charges generated in the radiation detecting element 7 by the radiation irradiation. It can be used as an offset correction value O for calculating true image data d * after being subtracted from data D (that is, so-called image data) equal to the sum of the data corresponding to dark charges.

そのため、本実斜圢態では、制埡手段は、デヌタの読み出し凊理が開始された盎埌の各フレヌムごずに各攟射線怜出玠子から読み出される各デヌタを、䜙分なデヌタずしお廃棄するのではなく、オフセット補正倀ずしおそれぞれフレヌムごずに蚘憶手段に保存させるようになっおいる。   Therefore, in the present embodiment, the control unit 22 does not discard each data D read from each radiation detection element 7 for each frame immediately after the data D reading process is started as extra data D. The offset correction value O is stored in the storage means 40 for each frame.

しかし、各攟射線怜出玠子からのデヌタの読み出し凊理が開始されお以降のフレヌムごずのオフセット補正倀を党お保存する必芁はない。たた、蚘憶手段の蚘憶容量等の制玄もある。そのため、本実斜圢態では、蚘憶手段にデヌタを保存するフレヌム数が予め蚭定されおいる。   However, it is not necessary to save all the offset correction values O for each frame after the reading process of the data D from each radiation detection element 7 is started. There are also restrictions such as the storage capacity of the storage means 40. Therefore, in this embodiment, the number of frames for storing the data D in the storage unit 40 is set in advance.

そしお、制埡手段は、䞊蚘のように各攟射線怜出玠子からのデヌタの読み出し凊理を繰り返しお、予め蚭定されたフレヌム数のフレヌム分の各攟射線怜出玠子のデヌタこの堎合はオフセット補正倀が蚘憶手段に保存されるず、それ以降の各フレヌムのデヌタに぀いおは、最初にデヌタを保存したフレヌムから順に、過去のフレヌムのデヌタ䞊に順次䞊曞き保存しおいくようになっおいる。   And the control means 22 repeats the reading process of the data D from each radiation detection element 7 as mentioned above, and the data D (in this case offset) of each radiation detection element 7 for the frame number set beforehand. When the correction value O) is stored in the storage unit 40, the data D of each subsequent frame is sequentially overwritten on the data D of the past frame in order from the frame in which the data D is first stored. It is like that.

䞀方、制埡手段は、䞊蚘のようにしお各攟射線怜出玠子からデヌタを読み出しお蚘憶手段に保存させるず同時に、読み出されたデヌタの倀に基づいお攟射線画像撮圱装眮に察する攟射線の照射の開始や終了を怜出するようになっおいる。   On the other hand, the control means 22 reads out the data D from each radiation detection element 7 as described above and saves it in the storage means 40, and at the same time, based on the value of the read data D, the radiation for the radiographic imaging apparatus 1 The start and end of irradiation are detected.

図に瀺したタむミングで、走査駆動手段のゲヌトドラむバから走査線の各ラむン〜にオン電圧を印加しながら各攟射線怜出玠子からのデヌタの読み出し凊理を行っおいる際に、回目のフレヌムにおいお、䟋えば図に瀺すようなタむミングで攟射線が照射されたものずする。   At the timing shown in FIG. 9, when the data D is read from each radiation detection element 7 while the on-voltage is applied to each line L1 to Lx of the scanning line 5 from the gate driver 15b of the scanning drive unit 15. In addition, it is assumed that radiation is irradiated at the timing as shown in FIG. 11 in the m-th frame, for example.

なお、図では、斜線を付した期間が、攟射線が照射された期間を衚す。たた、図に瀺した走査線のラむン〜の各ラむンが、䟋えば図に瀺した斜線郚分Δの走査線、すなわち攟射線が照射されおいる間にオン電圧が順次印加されおいた走査線の各ラむンに盞圓する。   In FIG. 11, the hatched period represents the period during which radiation was irradiated. In addition, the on-voltage is sequentially applied to each of the lines La to Lb of the scanning line 5 shown in FIG. 11 while, for example, the scanning line 5 of the hatched portion ΔT shown in FIG. This corresponds to each line of the scanning line 5.

図に瀺したような堎合、回目のフレヌムでは、走査線のラむン〜a-1にそれぞれオン電圧が印加されお、走査線の各ラむン〜a-1にを介しお接続されおいる各攟射線怜出玠子からそれぞれ読み出されたデヌタは、攟射線が照射される前に読み出された暗電荷に起因するデヌタである。   In the case as shown in FIG. 11, in the m-th frame, the on-voltage is applied to the lines L1 to La-1 of the scanning line 5, and the lines L1 to La-1 of the scanning line 5 are applied to the lines L1 to La-1 via the TFT8. The data D read from each connected radiation detection element 7 is data resulting from the dark charges read before the radiation is irradiated.

そのため、これらのデヌタは、䞋蚘衚に瀺すように、−回目のフレヌム以前のフレヌムの堎合すなわちデヌタがオフセット補正倀の堎合ず同様に、デヌタ自䜓の倀ずしおは小さい倀䞋蚘衚ではになる。なお、䞋蚘衚に蚘茉された数倀は、デヌタが〜−すなわちの倀をずり埗るように構成した堎合の数倀である。たた、䞋蚘衚に蚘茉された数倀は、その数倀前埌の倀をずるこず衚す数倀であり、代衚的な倀を瀺したものである。 Therefore, as shown in Table 1 below, these data D have the same value as the data D itself as in the case of the frame before the m-1th frame (that is, when the data D is the offset correction value O). It becomes a small value (5 in Table 1 below). In addition, the numerical value described in following Table 1 is a numerical value at the time of comprising so that the data D can take the value of 0-2 < 16 > -1 (namely, 65535). Moreover, the numerical value described in the following Table 1 is a numerical value representing a value before and after the numerical value, and represents a representative value.

Figure 2011185800
Figure 2011185800

䞀方、図に瀺すように、回目のフレヌムの走査線のラむンでは、攟射線が照射され始めたため、走査線のラむンに接続されおいる各攟射線怜出玠子から、暗電荷に起因するデヌタずは明らかに異なる、より倧きな倀のデヌタ䞊蚘衚ではが読み出される。   On the other hand, as shown in FIG. 11, since radiation has begun to be applied to the line La of the scanning line 5 in the m-th frame, each radiation detection element 7 connected to the line La of the scanning line 5 generates dark charges. A larger value of data D (1000 in Table 1 above) that is clearly different from the originating data is read out.

そしお、攟射線が照射されおいる間にオン電圧が順次印加された走査線の各ラむン〜では、走査線のラむン〜に接続されおいる各攟射線怜出玠子から読み出されるデヌタが、攟射線の照射開始からの経過時間に応じお次第に倧きな倀になる䞊蚘衚では〜。   And in each line La-Lb of the scanning line 5 to which the ON voltage was sequentially applied while the radiation was irradiated, data read from each radiation detection element 7 connected to the lines La-Lb of the scanning line 5 D gradually becomes larger depending on the elapsed time from the start of radiation irradiation (1000 to 29000 in Table 1).

そこで、䟋えば、䞊蚘のようにしお読み出し回路で各攟射線怜出玠子から読み出された個々のデヌタの倀を制埡手段で監芖しお、読み出されたデヌタが䟋えば予め蚭定された閟倀を越えた時点で攟射線の照射が開始されたず刀断するように構成するこずが可胜である。この堎合、䞊蚘衚のような堎合、閟倀は䟋えばに蚭定される。   Therefore, for example, the value of the individual data D read from each radiation detection element 7 by the reading circuit 17 as described above is monitored by the control means 22, and the read data D is set in advance, for example. It can be configured to determine that radiation irradiation has started when the threshold value is exceeded. In this case, in the case of Table 1 above, the threshold is set to 500, for example.

たた、このように構成した堎合、攟射線が照射されおいないにもかかわらず倧きなデヌタを出力する異垞な攟射線怜出玠子があった堎合や、デヌタに生じるゆらぎがたたたた倧きな倀になった堎合に、誀っお攟射線の照射が開始されたず刀断しおしたう虞れがある。   Further, in the case of such a configuration, when there is an abnormal radiation detection element 7 that outputs large data D even when radiation is not irradiated, or when a fluctuation that occurs in the data D happens to be a large value In addition, there is a risk that it may be determined that radiation has been started by mistake.

そのため、䟋えば、䞊蚘のようにしお読み出し回路で読み出された、走査線のラむンに接続されおいる各攟射線怜出玠子から読み出された各デヌタの積算倀Σ(n)を、走査線の各ラむンごずに算出し、走査線の各ラむンごずの各デヌタの積算倀Σ(n)が䟋えば予め蚭定された閟倀を越えた時点で攟射線の照射が開始されたず刀断するように構成するこずが可胜である。   Therefore, for example, the integrated value ΣD (n) of each data D read from each radiation detection element 7 connected to the line Ln of the scanning line 5 read by the readout circuit 17 as described above. The calculation is performed for each line Ln of the scanning line 5, and radiation irradiation is started when the integrated value ΣD (n) of each data D for each line Ln of the scanning line 5 exceeds, for example, a preset threshold value. It can be configured to determine that

この堎合、走査線の本のラむンに接続されおいる攟射線怜出玠子の数が䟋えば個であったずするず、攟射線が照射される前の−回目のフレヌムで、走査線の圓該ラむンに接続されおいる各攟射線怜出玠子から読み出される各デヌタは、䞊蚘衚から前埌の倀であるため、その堎合の積算倀Σ(n)は前埌の倀になる。たた、回目のフレヌムでも、攟射線の照射が開始される前の走査線の各ラむン〜a-1に接続されおいる各攟射線怜出玠子では各デヌタは前埌の倀であり、走査線の各ラむン〜a-1ごずの各デヌタの積算倀Σ(1)〜Σ(a-1)はそれぞれ前埌の倀になる。   In this case, if the number of radiation detection elements 7 connected to one line Ln of the scanning line 5 is, for example, 1000, the scanning line 5 in the (m−1) th frame before the radiation is irradiated. Since each data D read from each radiation detecting element 7 connected to the line Ln is a value around 5 from Table 1, the integrated value ΣD (n) in that case is a value around 5000. . In the m-th frame, each data D has a value of about 5 in each radiation detection element 7 connected to each line L1 to La-1 of the scanning line 5 before radiation irradiation is started. The integrated values ΣD (1) to ΣD (a-1) of each data for each line L1 to La-1 of the scanning line 5 are values around 5000, respectively.

それに察しお、回目のフレヌムで攟射線の照射が開始された時点で読み出し凊理が行われた走査線の各ラむンに接続されおいる各攟射線怜出玠子では、各デヌタの倀が前埌の倀に増加し、走査線のラむンの各デヌタの積算倀Σ(a)は䞇前埌の倀に急増する。   On the other hand, in each radiation detection element 7 connected to each line La of the scanning line 5 that has been read out when radiation irradiation is started in the m-th frame, the value of each data is around 1000. The integrated value ΣD (a) of each data of the line La of the scanning line 5 rapidly increases to a value around 1 million.

そのため、この堎合、閟倀はより倧きく䞇以䞋の倀、すなわち䟋えば䞇に蚭定される。   Therefore, in this case, the threshold value is set to a value greater than 5000 and 1 million or less, that is, for example, 100,000.

たた、怜出郚䞊に二次元状に配列された党おの攟射線怜出玠子から読み出されたデヌタの合蚈倀Σ(m)を各フレヌムごずに算出し、各フレヌムごずの各デヌタの合蚈倀Σ(m)が䟋えば予め蚭定された閟倀を越えた時点で攟射線の照射が開始されたず刀断するように構成するこずが可胜である。   Further, a total value ΣD (m) of the data D read from all the radiation detection elements 7 arranged in a two-dimensional manner on the detection unit P is calculated for each frame, and each data D for each frame is calculated. For example, it may be determined that radiation irradiation has started when the total value ΣD (m) exceeds a preset threshold.

この堎合、怜出郚䞊に配列された攟射線怜出玠子の数が䟋えば䞇個であったずするず、攟射線が照射される前の−回目のフレヌムで、各攟射線怜出玠子から読み出される各デヌタは䞊蚘衚から前埌の倀であるため、その堎合のフレヌムごずの合蚈倀Σ(m)は䞇前埌の倀になる。そのため、この堎合、閟倀は䟋えば䞇に蚭定される。   In this case, if the number of radiation detection elements 7 arranged on the detection unit P is, for example, 1 million, it is read out from each radiation detection element 7 in the (m−1) th frame before the radiation is irradiated. Since each data D has a value of about 5 from Table 1, the total value ΣD (m) for each frame in that case is a value of about 5 million. Therefore, in this case, the threshold is set to 10 million, for example.

なお、䞊蚘の堎合、積算倀ず合蚈倀は積算合蚈する範囲が異なるものの、各デヌタの総和を意味し、同じ意味内容を有するものであるが、それらを区別するため、以䞋、積算倀および合蚈倀ず蚀い分ける。   In the above case, although the integrated value and the total value are different in the range to be integrated (summed), it means the total sum of each data D and have the same meaning content. In other words, the value and the total value.

そしお、本実斜圢態では、制埡手段は、蚭定された刀断凊理においお䞊蚘の各条件が満たされた堎合、すなわち䞊蚘の各基準では、読み出された個々のデヌタや、走査線の各ラむンごずの各デヌタの積算倀Σ(n)、或いは各フレヌムごずの各デヌタの合蚈倀Σ(m)が閟倀を越えた堎合に、攟射線の照射が開始されたず刀断するようになっおいる。   In the present embodiment, the control unit 22 determines that each of the read data D and each of the scanning lines 5 is satisfied when each of the above conditions is satisfied in the set determination process, that is, in each of the above criteria. When the integrated value ΣD (n) of each data D for each line Ln or the total value ΣD (m) of each data D for each frame exceeds a threshold value, it is determined that radiation irradiation has started. ing.

埓っお、䞊蚘衚の䟋の堎合、制埡手段は、−回目のフレヌムでは、いずれの刀断凊理の堎合でも䞊蚘の条件が満たされないため、攟射線の照射が開始されたずは刀断しないが、回目のフレヌムでは、いずれの刀断凊理の堎合でも䞊蚘の条件が満たされるため、攟射線の照射が開始されたず刀断する。   Therefore, in the case of the example in Table 1 above, the control unit 22 does not determine that radiation irradiation has started since the above condition is not satisfied in any determination process in the (m-1) th frame. In the m-th frame, since the above condition is satisfied in any of the determination processes, it is determined that radiation irradiation has started.

なお、䞊蚘の各刀断凊理における閟倀を、䞊蚘のように予め蚭定しおおくように構成しおもよく、たた、䟋えば、各攟射線怜出玠子からのデヌタの読み出し凊理が開始された初期段階すなわち攟射線画像撮圱装眮に攟射線が照射されおいないこずが確実な時点で、各攟射線怜出玠子からのデヌタこの堎合はオフセット補正倀や各デヌタの積算倀や合蚈倀を取埗し、或いは、数フレヌム分の各デヌタや積算倀、合蚈倀を取埗しおそれらの各平均倀を算出しお、それらの倀に所定倀を加算しお䞊乗せする等しお、攟射線画像撮圱ごずに閟倀を蚭定するように構成するこずも可胜である。   In addition, the threshold value in each of the above determination processes may be set in advance as described above, and, for example, an initial stage when the process of reading data D from each radiation detection element 7 is started. That is, at the time when it is certain that the radiation imaging apparatus 1 is not irradiated with radiation, the data D from each radiation detection element 7 (in this case, the offset correction value O), the integrated value or the total value of each data D Or by acquiring each data D, integrated value, and total value for several frames, calculating their respective average values, adding a predetermined value to these values, and adding the radiation, etc. It is also possible to configure so that a threshold value is set for each image shooting.

たた、䟋えば、各攟射線怜出玠子から読み出されたデヌタを蚘憶手段に保存する際に、それらのデヌタを図瀺しないヒストグラムに投祚し、ヒストグラムの床数の分垃に基づいお攟射線画像撮圱装眮に察しお攟射線の照射が開始されたか吊かを刀断するように構成するこずも可胜である。   Further, for example, when the data D read from each radiation detection element 7 is stored in the storage unit 40, the data D is voted on a histogram (not shown), and the radiation image capturing apparatus is based on the frequency distribution of the histogram. 1 may be configured to determine whether or not radiation irradiation has started.

すなわち、攟射線の照射が開始される前のフレヌムでは、各攟射線怜出玠子からは暗電荷に起因する、倀が小さいデヌタが読み出されるため、ヒストグラム䞊で小さい倀のデヌタに察応する階玚の床数が倧きくなるが、攟射線の照射が開始されたフレヌムでは、各攟射線怜出玠子からのデヌタに攟射線の照射により発生した電荷に起因するデヌタが加算されお比范的倧きな倀のデヌタが読み出されるため、ヒストグラム䞊では倧きな倀のデヌタに察応する階玚の床数が増える。   That is, in the frame before the start of radiation irradiation, the data D having a small value due to the dark charge is read from each radiation detecting element 7, so that the class corresponding to the data D having the small value on the histogram is read out. Although the frequency increases, in a frame where radiation irradiation is started, data D resulting from the radiation generated by the radiation irradiation is added to the data D from each radiation detection element 7, and data D having a relatively large value is read out. Therefore, the frequency of the class corresponding to the large value data D increases on the histogram.

そこで、䟋えば、ヒストグラム䞊の倧きなデヌタに察応する範囲の階玚の床数を監芖し、その範囲の床数の合蚈倀が閟倀を越えた堎合に、圓該フレヌムから攟射線の照射が開始されたず刀断するように構成するこずも可胜である。   Therefore, for example, the frequency of the class in the range corresponding to the large data D on the histogram is monitored, and when the total value of the frequency in the range exceeds the threshold, it is determined that radiation irradiation has started from the frame. It is also possible to configure.

なお、この堎合も、前述したように、攟射線が照射されおいないにもかかわらず倧きなデヌタを出力する異垞な攟射線怜出玠子があったり、デヌタに生じるゆらぎがたたたた倧きな倀になる堎合があるため、攟射線の照射が開始される前のフレヌムでも、ヒストグラム䞊の倧きなデヌタに察応する䞊蚘範囲の階玚の床数がにならない堎合がある。   In this case, as described above, there is a case where there is an abnormal radiation detection element 7 that outputs large data D even when radiation is not irradiated, or fluctuations that occur in the data D happen to have a large value. Therefore, even in the frame before the start of radiation irradiation, the frequency of the class in the above range corresponding to the large data D on the histogram may not be zero.

そのため、この堎合も、䞊蚘の閟倀ずしおでない倀を予め蚭定しおおくように構成しおもよく、たた、䟋えば、各攟射線怜出玠子からのデヌタの読み出し凊理が開始された初期段階でのフレヌム或いは数フレヌムで各デヌタをヒストグラムに投祚した堎合に埗られる䞊蚘範囲の階玚の床数或いは数フレヌム分の床数の平均倀を算出し、その床数或いは平均倀に所定の倀を加算しお䞊乗せした倀を閟倀ずしお蚭定する等しお、攟射線画像撮圱ごずに閟倀を蚭定するように構成するこずも可胜である。   Therefore, in this case as well, a value other than 0 may be set in advance as the threshold value. For example, at the initial stage when the process of reading data D from each radiation detection element 7 is started. The frequency of the class in the above range (or the average value of frequencies for several frames) obtained when each data D is voted on the histogram in one frame (or several frames) is calculated, and the frequency (or average value) is calculated. It is also possible to configure so that a threshold value is set for each radiographic image capturing, for example, by setting a value obtained by adding a predetermined value and adding it as a threshold value.

本実斜圢態では、制埡手段は、䟋えば図に瀺したように、回目のフレヌムで攟射線の照射が開始されたず刀断するず、のメモリ等に圓該フレヌムのフレヌム番号を蚘憶させるようになっおいる。   In this embodiment, for example, as shown in FIG. 11, when the control unit 22 determines that radiation irradiation has started in the m-th frame, the control unit 22 stores the frame number m of the frame in the CPU memory or the like. It has become.

たた、本実斜圢態では、制埡手段は、同様にしお、読み出された個々のデヌタや、走査線の各ラむンごずの各デヌタの積算倀Σ(n)、或いは各フレヌムごずの各デヌタの合蚈倀Σ(m)に基づいお、攟射線の照射が終了したず刀断するようになっおいる。   In the present embodiment, the control means 22 similarly reads the individual data D read out, the integrated value ΣD (n) of each data D for each line Ln of the scanning line 5, or for each frame. On the basis of the total value ΣD (m) of each data D, it is determined that the irradiation of radiation has ended.

具䜓的には、制埡手段は、䟋えば䞊蚘の各刀断凊理ず同様に、個々のデヌタや積算倀Σ(n)、合蚈倀Σ(m)が、䞊蚘のように蚭定された閟倀以䞋になった堎合に、攟射線の照射が終了したず刀断する。   Specifically, the control means 22 makes the individual data D, the integrated value ΣD (n), and the total value ΣD (m) equal to or less than the threshold values set as described above, for example, in the same manner as the above-described determination processes. When it becomes, it is judged that the irradiation of radiation has been completed.

その際、図から分かるように、実際の攟射線の照射は回目のフレヌムで終了しおいるが、䞊蚘衚から分かるように、攟射線の照射が終了した埌にオン電圧が印加された走査線のラむンb+1以降の各ラむンに接続されおいる各攟射線怜出玠子から読み出されたデヌタは、前埌の倀が読み出されおおり、この段階では、制埡手段は、攟射線の照射が終了したずは刀断しない。   At this time, as can be seen from FIG. 11, the actual radiation irradiation is completed in the m-th frame, but as can be seen from Table 1 above, the scanning line to which the ON voltage is applied after the radiation irradiation is completed. As for the data D read from each radiation detection element 7 connected to each line L after the 5th line Lb + 1, a value of around 30000 is read. At this stage, the control means 22 It is not judged that the irradiation has ended.

そしお、各攟射線怜出玠子から読み出された個々のデヌタの倀に基づいお刀断するように構成されおいる堎合には、䞊蚘衚から分かるように、回目のフレヌムで走査線のラむンb+1に接続されおいる各攟射線怜出玠子から読み出された個々のデヌタが前埌の倀になり閟倀以䞋になるため、制埡手段は、この時点で攟射線の照射が終了したず刀断する。   When the determination is made based on the value of the individual data D read from each radiation detection element 7, as can be seen from Table 1 above, the scan line 5 is detected in the (m + 1) th frame. Since the individual data D read from each radiation detection element 7 connected to the line Lb + 1 becomes a value around 30 and falls below the threshold value, the control means 22 finishes the radiation irradiation at this point. Judge.

たた、走査線の各ラむンごずの各デヌタの積算倀Σ(n)に基づいお刀断するように構成されおいる堎合には、䞊蚘衚から分かるように、回目のフレヌムで走査線のラむンb+1に接続されおいる各攟射線怜出玠子から読み出された個々のデヌタが前埌の倀になり、積算倀Σ(b)が前埌の倀になる。そのため、閟倀以䞋の倀になり、制埡手段は、この時点で攟射線の照射が終了したず刀断する。   Further, in the case where the determination is made based on the integrated value ΣD (n) of each data D for each line Ln of the scanning line 5, as can be seen from Table 1, the scan is performed in the (m + 1) th frame. The individual data D read from each radiation detection element 7 connected to the line Lb + 1 of the line 5 becomes a value around 30, and the integrated value ΣD (b) becomes a value around 30000. Therefore, the value is equal to or less than the threshold value, and the control unit 22 determines that the radiation irradiation has been completed at this point.

䞀方、各フレヌムごずの各デヌタの合蚈倀Σ(m)に基づいお刀断するように構成されおいる堎合には、䞊蚘衚から分かるように、回目のフレヌムの合蚈倀Σ(m)も回目のフレヌムの合蚈倀Σ(m+1)も、いずれも䞊蚘の閟倀を越えるため、制埡手段は、回目のフレヌムの読み出し凊理が終了した時点では、攟射線の照射が終了したずは刀断しない。   On the other hand, when the determination is made based on the total value ΣD (m) of each data D for each frame, as can be seen from Table 1, the total value ΣD (m) of the mth frame. Since the total value ΣD (m + 1) of the (m + 1) th frame also exceeds the above threshold value, the control means 22 indicates that the radiation irradiation has ended at the time when the reading process of the (m + 1) th frame is completed. Does not judge.

しかし、回目の合蚈倀Σ(m+2)は閟倀以䞋の倀になる。そのため、制埡手段は、各フレヌムごずの各デヌタの合蚈倀Σ(m)に基づいお刀断するように構成されおいる堎合には、䟋えば、フレヌムごずの各デヌタの合蚈倀Σ(m)が閟倀以䞋の倀になったフレヌム䞊蚘の堎合は回目のフレヌムの぀の前のフレヌムすなわち回目のフレヌムで攟射線の照射が終了したず刀断するように構成される。   However, the total value ΣD (m + 2) for the (m + 2) th time is a value equal to or smaller than the threshold value. Therefore, when the control unit 22 is configured to make a determination based on the total value ΣD (m) of each data D for each frame, for example, the total value ΣD (m ) Is equal to or less than the threshold (in the above case, the m + 2th frame), it is determined that the radiation irradiation has been completed in the previous frame (that is, the m + 1th frame).

制埡手段は、以䞊のようにしお攟射線の照射が終了したず刀断するず、そのフレヌム、すなわち䞊蚘の䟋では回目のフレヌムのフレヌム番号をのメモリ等に蚘憶させるようになっおいる。   When the control means 22 determines that the irradiation of radiation has been completed as described above, the frame, that is, the frame number m + 1 of the m + 1th frame in the above example is stored in the memory of the CPU or the like.

そしお、本実斜圢態では、制埡手段は、回目のフレヌム、すなわち攟射線の照射が開始されたず刀断したフレヌムを含む回分のフレヌムの読み出し凊理を終了した時点で、走査駆動手段に察しおトリガ信号を送信しお、ゲヌトドラむバからの走査線の各ラむン〜ぞのオン電圧の印加を停止させお、各攟射線怜出玠子からのデヌタの読み出し凊理を終了させるようになっおいる。   In the present embodiment, the control means 22 applies the scan driving means 15 to the scan driving means 15 at the time when the reading process of the m + 2th frame, that is, the three frames including the frame determined to have started the radiation irradiation, is completed. The trigger signal is transmitted to stop the application of the on-voltage from the gate driver 15b to each of the lines L1 to Lx of the scanning line 5, and the data D reading process from each radiation detection element 7 is terminated. ing.

埌述するように、走査線の各ラむン〜a-1に接続されおいる各攟射線怜出玠子においお、攟射線の照射により圓該各攟射線怜出玠子内で発生した電荷に起因する真の画像デヌタは、䞊蚘衚や図から分かるように、回目のフレヌムで読み出されおいる。 As will be described later, in each radiation detection element 7 connected to each line L1 to La-1 of the scanning line 5, true image data resulting from the charge generated in each radiation detection element 7 due to radiation irradiation. As can be seen from Table 1 and FIG. 11, d * is read in the (m + 1) th frame.

たた、走査線の各ラむンb+1〜に接続されおいる各攟射線怜出玠子では、攟射線の照射により圓該各攟射線怜出玠子内で発生した電荷に起因する真の画像デヌタは、䞊蚘衚や図から分かるように、回目のフレヌムで読み出されおいる。 Further, in each radiation detection element 7 connected to each line Lb + 1 to Lx of the scanning line 5, the true image data d * resulting from the electric charge generated in each radiation detection element 7 due to radiation irradiation is As can be seen from Table 1 and FIG. 11, the data is read out in the mth frame.

さらに、走査線の各ラむン〜に接続されおいる各攟射線怜出玠子においお、攟射線の照射により圓該各攟射線怜出玠子内で発生した電荷に起因する真の画像デヌタは、䞊蚘衚や図から分かるように、回目のフレヌムず回目のフレヌムずで分割されお読み出される。 Further, in each radiation detection element 7 connected to each line La to Lb of the scanning line 5, the true image data d * resulting from the charges generated in each radiation detection element 7 due to radiation irradiation is the above-mentioned As can be seen from Table 1 and FIG. 11, the data is divided and read out in the m-th frame and the m + 1-th frame.

たた、前述したように、攟射線画像撮圱装眮に察する攟射線の照射開始前の䟋えば−回目のフレヌム等で各攟射線怜出玠子から読み出されたデヌタは、オフセット補正倀ずしお利甚するこずができる。   Further, as described above, the data D read from each radiation detection element 7 in, for example, the (m-1) th frame before the start of radiation irradiation to the radiation image capturing apparatus 1 is used as the offset correction value O. Can do.

そのため、本実斜圢態では、制埡手段は、䞊蚘のようにしお、各攟射線怜出玠子からのデヌタの読み出し凊理を終了させるず、埌述する本実斜圢態におけるデヌタの遞択凊理等をコン゜ヌルで行う堎合には、攟射線の照射の開始を怜出した回目のフレヌムの぀前のフレヌムである−回目のフレヌムから、攟射線の照射の終了を怜出した回目たでの各フレヌムの各攟射線怜出玠子ごずの各デヌタを、通信手段であるアンテナ装眮図や図等参照を介しおコン゜ヌルに送信するようになっおいる。   Therefore, in the present embodiment, when the control unit 22 finishes the reading process of the data D from each radiation detection element 7 as described above, the control unit 22 performs the data D selection process and the like in the present embodiment to be described later. In the case of the above, each of the frames from the (m−1) th frame which is the frame immediately before the mth frame where the start of radiation irradiation is detected to the (m + 1) th frame where the end of radiation irradiation is detected. Each data D for each radiation detection element 7 is transmitted to the console 58 via an antenna device 39 (see FIG. 1 and FIG. 7 and the like) which is a communication means.

なお、−回目のフレヌムで読み出されたデヌタを各攟射線怜出玠子ごずのオフセットデヌタずする代わりに、䟋えば、攟射線の照射が開始された時点で読み出し凊理が行われおいた回目のフレヌムより前の数フレヌム分の攟射線怜出玠子ごずのデヌタの平均倀を算出する等しお、その平均倀等を攟射線怜出玠子ごずのオフセット補正倀ずするように構成するこずも可胜である。   In addition, instead of using the data D read in the (m-1) th frame as the offset data O for each radiation detection element 7, for example, the readout process was performed when radiation irradiation was started. An average value of the data D for each radiation detection element for several frames before the second frame is calculated, and the average value or the like is set as an offset correction value O for each radiation detection element 7. Is possible.

そしお、その堎合は、このフレヌム分の各攟射線怜出玠子ごずのオフセット補正倀の各デヌタず、回目および回目の各フレヌムの各攟射線怜出玠子ごずの各デヌタが送信される。   In this case, the data of the offset correction value O for each radiation detection element 7 for one frame and the data D for each radiation detection element of the m-th and m + 1-th frames are transmitted.

なお、本実斜圢態におけるデヌタの遞択凊理や、真の画像デヌタの算出、攟射線画像の生成凊理等に぀いおは、攟射線画像撮圱システムの構成に぀いお説明した埌で説明する。 Note that the selection process of data D, the calculation of true image data d * , the generation process of a radiographic image, and the like in this embodiment will be described after the configuration of the radiographic image capturing system 50 is described.

攟射線画像撮圱システム
図は、本実斜圢態に係る攟射線画像撮圱システムの党䜓構成を瀺す図である。攟射線画像撮圱システムは、図に瀺すように、䟋えば、攟射線を照射しお図瀺しない患者の䞀郚である被写䜓患者の撮圱察象郚䜍の撮圱を行う撮圱宀ず、攟射線技垫等の操䜜者が被写䜓に照射する攟射線開始の制埡等の皮々の操䜜を行う前宀、およびそれらの倖郚に配眮される。
[Radiation imaging system]
FIG. 12 is a diagram showing an overall configuration of the radiographic image capturing system according to the present embodiment. As shown in FIG. 12, the radiographic imaging system 50 includes, for example, an imaging room R1 that irradiates radiation and images a subject (part of a patient to be imaged) that is a part of a patient (not shown), and a radiographer or the like. The anterior chamber R2 where the operator performs various operations such as control of the start of radiation applied to the subject, and the outside thereof are arranged.

撮圱宀には、前述した攟射線画像撮圱装眮を装填可胜なブッキヌ装眮や、被写䜓に照射する攟射線を発生させる図瀺しない線管球を備える攟射線源やそれをコントロヌルする攟射線発生装眮、攟射線画像撮圱装眮ず攟射線発生装眮やコン゜ヌルずが無線通信する際にこれらの通信を䞭継する無線アンテナを備えた基地局等が蚭けられおいる。   In the radiographing room R1, a bucky device 51 that can be loaded with the radiographic imaging device 1 described above, a radiation source 52 that includes an X-ray tube (not shown) that generates radiation to irradiate a subject, and a radiation generation device 55 that controls the radiation source In addition, when the radiographic image capturing apparatus 1 and the radiation generating apparatus 55 and the console 58 communicate wirelessly, a base station 54 provided with a wireless antenna 53 that relays these communications is provided.

なお、図では、可搬型の攟射線画像撮圱装眮をブッキヌ装眮のカセッテ保持郚に装填しお甚いる堎合が瀺されおいるが、前述したように、攟射線画像撮圱装眮はブッキヌ装眮や支持台等ず䞀䜓的に圢成されたものであっおもよい。たた、前述したように、攟射線画像撮圱装眮ず倖郚装眮ずの通信をケヌブル等のケヌブルを介しお行う堎合には、図に瀺したように、それらのケヌブルを基地局に接続するように構成し、ケヌブルや基地局を介しお有線通信でデヌタ等の情報を送受信できるように構成するこずも可胜である。   12 shows the case where the portable radiographic imaging device 1 is used by being loaded into the cassette holding part 51a of the bucky device 51. However, as described above, the radiographic imaging device 1 is the bucky device 51. Or may be formed integrally with a support base or the like. Further, as described above, when communication between the radiographic imaging device 1 and an external device is performed via a cable such as a LAN cable, these cables are connected to the base station 54 as shown in FIG. It is also possible to configure such that information such as data can be transmitted / received by wired communication via a cable or the base station 54.

たた、基地局は、攟射線発生装眮やコン゜ヌルず接続されおおり、基地局には、攟射線画像撮圱装眮やコン゜ヌル等の間で情報を送信する際の通信甚の信号等を、攟射線発生装眮ずの間で情報を送信する際の信号に倉換し、その逆の倉換も行う図瀺しない倉換噚が内蔵されおいる。   The base station 54 is connected to the radiation generating device 55 and the console 58, and signals for LAN communication when transmitting information between the radiographic image capturing device 1 and the console 58 are transmitted to the base station 54. Is converted into a signal for transmitting information to and from the radiation generating device 55, and a converter (not shown) that performs the reverse conversion is incorporated.

前宀には、本実斜圢態では、攟射線発生装眮の操䜜卓が蚭けられおおり、操䜜卓には、攟射線技垫等の操䜜者が操䜜しお攟射線発生装眮に察しお攟射線の照射開始等を指瀺するための曝射スむッチが蚭けられおいる。そしお、攟射線発生装眮は、攟射線技垫等の操䜜者により曝射スむッチが操䜜されお操䜜卓から信号が送信されおくるず、攟射線源を起動させたり、攟射線源から攟射線を照射させるようになっおいる。   In the present embodiment, the front room R2 is provided with an operation console 57 for the radiation generating device 55. The operation console 57 is operated by an operator such as a radiologist to transmit radiation to the radiation generating device 55. An exposure switch 56 for instructing the start of irradiation is provided. The radiation generating device 55 activates the radiation source 52 or emits radiation from the radiation source 52 when the exposure switch 56 is operated by an operator such as a radiologist and a signal is transmitted from the console 57. It is supposed to let you.

攟射線発生装眮は、このほか、指定されたブッキヌ装眮に装填された攟射線画像撮圱装眮に察しお攟射線を適切に照射できるように攟射線源を所定の䜍眮に移動させたり、その攟射方向を調敎したり、攟射線画像撮圱装眮の所定の領域内に攟射線が照射されるように図瀺しない絞りを調敎したり、或いは、適切な線量の攟射線が照射されるように攟射線源を調敎する等の皮々の制埡を攟射線源に察しお行うようになっおいる。なお、これらの凊理を、攟射線技垫等の操䜜者が手動で行うように構成しおもよい。   In addition to this, the radiation generating device 55 moves the radiation source 52 to a predetermined position so that the radiation image capturing device 1 loaded in the designated bucky device 51 can be appropriately irradiated with radiation, or the radiation direction thereof. Adjusting a diaphragm (not shown) so that radiation is irradiated within a predetermined region of the radiographic imaging apparatus 1, or adjusting the radiation source 52 so that an appropriate dose of radiation is irradiated Various controls such as these are performed on the radiation source 52. In addition, you may comprise so that operators, such as a radiographer, may perform these processes manually.

たた、攟射線発生装眮は、攟射線源からの攟射線の照射開始から所定の時間が経過した時点で、攟射線源の線管球を停止させる等しお、攟射線源からの攟射線の照射を停止させるようになっおいる。   In addition, the radiation generator 55 irradiates the radiation from the radiation source 52 by, for example, stopping the X-ray tube of the radiation source 52 when a predetermined time has elapsed from the start of radiation irradiation from the radiation source 52. Is supposed to stop.

攟射線画像撮圱装眮の構成等に぀いおは前述した通りであるが、本実斜圢態では、攟射線画像撮圱装眮は、䞊蚘のようにブッキヌ装眮に装填されお甚いられる堎合もあるが、ブッキヌ装眮には装填されず、いわば単独の状態で甚いるこずもできるようになっおいる。   The configuration and the like of the radiographic image capturing apparatus 1 are as described above. In the present embodiment, the radiographic image capturing apparatus 1 may be mounted and used in the bucky device 51 as described above. In other words, it can be used alone.

すなわち、攟射線画像撮圱装眮を単独の状態で䟋えば撮圱宀内に蚭けられたベッドや図に瀺すように臥䜍撮圱甚のブッキヌ装眮等の䞊面偎に配眮しおその攟射線入射面図参照䞊に被写䜓である患者の手等を茉眮したり、或いは、䟋えばベッドの䞊に暪臥した患者の腰や足等ずベッドずの間に差し蟌んだりしお甚いるこずもできるようになっおいる。この堎合、䟋えばポヌタブルの攟射線源等から、被写䜓を介しお攟射線画像撮圱装眮に攟射線を照射しお攟射線画像撮圱が行われる。   That is, the radiation image capturing apparatus 1 is arranged in a single state, for example, on the upper surface side of a bed provided in the capturing room R1 or a bucky apparatus 51B for the supine position capturing as shown in FIG. (See FIG. 1) The patient's hand, which is the subject, can be placed on the top, or the patient's waist, legs, etc. lying on the bed can be inserted between the bed and the bed. It has become. In this case, for example, radiation image capturing is performed by irradiating the radiation image capturing apparatus 1 with radiation from a portable radiation source 52B or the like via a subject.

䞀方、本実斜圢態では、コンピュヌタ等で構成されたコン゜ヌルが、撮圱宀や前宀の倖偎に蚭けられおいる。コン゜ヌルには、Cathode Ray TubeやLiquid Crystal Display等を備えお構成される衚瀺郚が蚭けられおいる。たた、コン゜ヌルには、Hard Disk Drive等で構成された蚘憶手段が接続、或いは内蔵されおいる。   On the other hand, in the present embodiment, a console 58 constituted by a computer or the like is provided outside the photographing room R1 and the front room R2. The console 58 is provided with a display unit 58a configured with a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or the like. In addition, the console 58 is connected to or includes a storage means 59 composed of an HDD (Hard Disk Drive) or the like.

なお、コン゜ヌルを䟋えば前宀等に蚭けるように構成するこずも可胜である。たた、コン゜ヌルに、䟋えば、攟射線画像撮圱装眮の状態を芚醒wake up状態ずスリヌプsleep状態ずの間で遷移させる機胜を持たせたり、或いは、攟射線技垫等の操䜜者が撮圱宀で行う攟射線画像撮圱の内容を衚す撮圱オヌダ情報を䜜成したり遞択したりするこずを可胜ずする機胜を持たせたりするように構成するこずも可胜であり、適宜に構成される。   It is also possible to configure the console 58 so as to be provided, for example, in the front chamber R2. Further, for example, the console 58 has a function of changing the state of the radiographic imaging device 1 between a wake-up state and a sleep state, or an operator such as a radiographer takes an image. It may be configured to have a function that enables creation or selection of imaging order information representing the contents of radiographic imaging performed in the room R1, and the configuration is appropriately configured.

デヌタの遞択等の凊理に぀いお
以䞋、䞊蚘のようにしお埗られた各デヌタに察する凊理を行う攟射線画像撮圱装眮の制埡手段やコン゜ヌルにおける、本実斜圢態に係るデヌタの遞択等の凊理に぀いお説明する。たた、本実斜圢態に係る攟射線画像撮圱装眮や攟射線画像撮圱システムの䜜甚に぀いおあわせお説明する。
[About processing such as selection of data D]
Hereinafter, processing such as selection of data D according to the present embodiment in the control means 22 and the console 58 of the radiographic imaging apparatus 1 that performs processing on each data D obtained as described above will be described. The operation of the radiographic image capturing apparatus 1 and the radiographic image capturing system 50 according to the present embodiment will be described together.

なお、以䞋では、回目のフレヌムや回目のフレヌムで読み出された各攟射線怜出玠子ごずのデヌタをそれぞれ(m)、(m+1)ず衚す。   In the following, the data D for each radiation detection element 7 read out in the m-th frame and the m + 1-th frame is represented as D (m) and D (m + 1), respectively.

前述したように、埓来の手法に埓っお、回目のフレヌムで読み出された各デヌタ(m)ず回目のフレヌムで読み出された各デヌタ(m+1)なお、ずもにオフセット補正倀が枛算されおいるものずする。を加算しお、各攟射線怜出玠子ごずのデヌタを再構築するず、再構築したデヌタに基づく攟射線画像では、図に瀺したように、少なくずも攟射線の照射される間にオン電圧が順次印加された走査線に察応する画像領域Ύより䞊偎の画像領域よりも、画像領域Ύより䞋偎の画像領域の方がデヌタの倀が若干倧きくなり、攟射線画像䞊に濃淡が珟れる堎合がある。   As described above, according to the conventional method, each data D (m) read in the m-th frame and each data D (m + 1) read in the m + 1-th frame (both are offset correction values). O is subtracted), and the data D for each radiation detection element 7 is reconstructed, the radiation image p based on the reconstructed data is at least as shown in FIG. The image value slightly lower in the image area B below the image area ÎŽT than in the image area A above the image area ÎŽT corresponding to the scanning line 5 to which the ON voltage is sequentially applied during irradiation of radiation. In some cases, it becomes larger and shading appears on the radiation image p.

このように濃淡が珟れる原因は、䞊蚘の衚に瀺された䟋では、以䞋のように考えられる。   The reason for the appearance of light and shade is considered as follows in the example shown in Table 1 above.

すなわち、図の攟射線画像の画像領域に盞圓する各攟射線怜出玠子、すなわち、回目のフレヌムで攟射線の照射が開始される前にオン電圧が印加された走査線のラむン〜a-1に接続されおいる各攟射線怜出玠子では、回目のフレヌムでは、暗電荷に起因するデヌタ(m)すなわち倀が前埌のオフセット補正倀ず同等のデヌタ(m)が読み出され、回目のフレヌムでは、攟射線の照射により発生した電荷に起因する真の画像デヌタを含む前埌の倧きな倀のデヌタ(m+1)が読み出される。 That is, each of the radiation detection elements 7 corresponding to the image region A of the radiation image p in FIG. 18, that is, the lines L1 to L1 of the scanning line 5 to which the on-voltage is applied before radiation irradiation is started in the m-th frame. In each radiation detection element 7 connected to La-1, in the m-th frame, data D (m) resulting from dark charge, that is, data D (m) equivalent to the offset correction value O having a value of around 5, is obtained. In the (m + 1) th frame, data D (m + 1) having a large value of about 30000 including the true image data d * resulting from the charge generated by the radiation irradiation is read out.

それに察しお、図の攟射線画像の画像領域に盞圓する各攟射線怜出玠子、すなわち、回目のフレヌムで攟射線の照射が終了した埌でオン電圧が印加された走査線のラむンb+1〜に接続されおいる各攟射線怜出玠子では、回目のフレヌムでは、攟射線の照射により発生した電荷に起因する真の画像デヌタを含む前埌の倧きな倀のデヌタ(m)が読み出される。 On the other hand, each radiation detection element 7 corresponding to the image region B of the radiation image p in FIG. 18, that is, the line Lb of the scanning line 5 to which the on-voltage is applied after the radiation irradiation is completed in the m-th frame. In each of the radiation detection elements 7 connected to +1 to Lx, a large value of data D (m around 30000 including the true image data d * caused by the charges generated by radiation irradiation is obtained in the m-th frame. ) Is read out.

そしお、回目のフレヌムでは、回目のフレヌムで各攟射線怜出玠子から読み出し切れなかった電荷に起因するいわゆる読み残しのデヌタず暗電荷に起因するオフセット補正倀盞圓のデヌタずの和ずしお倀が前埌のデヌタ(m+1)が読み出される。   In the (m + 1) th frame, a value is obtained as the sum of so-called unread data resulting from the charges that cannot be read out from each radiation detection element 7 in the mth frame and data corresponding to the offset correction value O caused by the dark charges. The data D (m + 1) of around 30 is read out.

぀たり、図の攟射線画像の画像領域に盞圓する各攟射線怜出玠子から読み出されるデヌタすなわち(m)(m+1)は、回目のフレヌムで各攟射線怜出玠子から読み出し切れなかった電荷に起因する読み残しのデヌタに盞圓する前埌のデヌタ分だけ、図の攟射線画像の画像領域に盞圓する各攟射線怜出玠子から読み出されるデヌタよりも倧きくなる。これが、攟射線画像における画像領域ず画像領域ずの濃淡ずなっお芖認されるのである。   That is, data D (that is, D (m) + D (m + 1)) read from each radiation detection element 7 corresponding to the image region B of the radiation image p in FIG. 18 is larger than the data D read from each radiation detection element 7 corresponding to the image area B of the radiographic image p of FIG. 18 by about 25 data corresponding to the unread data due to the charge that could not be completely read out. . This is visually recognized as the density of the image area A and the image area B in the radiation image p.

そこで、本実斜圢態では、最終的な攟射線画像を生成するに際し、走査線のラむン〜a-1に接続されおいる各攟射線怜出玠子では、攟射線の照射により発生した電荷に起因する真の画像デヌタが含たれおいる回目のフレヌムで読み出されたデヌタ(m+1)を遞択しお甚い、回目のフレヌムで読み出されたデヌタ(m)は䜿わない。 Therefore, in the present embodiment, when the final radiation image is generated, each radiation detection element 7 connected to the lines L1 to La-1 of the scanning line 5 is true due to the charge generated by the radiation irradiation. The data D (m + 1) read in the (m + 1) th frame including the image data d * is selected and used, and the data D (m) read in the mth frame is not used.

たた、走査線のラむンb+1〜に接続されおいる各攟射線怜出玠子では、攟射線の照射により発生した電荷に起因する真の画像デヌタを含たれおいる回目のフレヌムで読み出されたデヌタ(m)を遞択しお甚い、回目のフレヌムで読み出されたデヌタ(m+1)は䜿わないように構成される。 Further, in each of the radiation detection elements 7 connected to the lines Lb + 1 to Lx of the scanning line 5, the m-th frame including the true image data d * resulting from the charge generated by the radiation irradiation. The read data D (m) is selected and used, and the data D (m + 1) read in the (m + 1) th frame is not used.

遞択されお甚いられるこれらのデヌタは、結局、少なくずも走査線のラむン〜a-1、b+1〜に接続されおいる各攟射線怜出玠子、すなわち攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜以倖の走査線に接続されおいる攟射線怜出玠子では、各フレヌムで読み出されたデヌタ(m)、(m+1)のうち、攟射線の照射が終了した埌、最初に読み出されたデヌタを遞択するこずになる。   These data D that are selected and used are eventually at least the radiation detection elements 7 connected to the lines L1 to La-1 and Lb + 1 to Lx of the scanning line 5, that is, while the radiation is being applied. In the radiation detection elements connected to the scanning lines 5 other than the respective lines La to Lb of the scanning line 5 to which the ON voltage is applied, the data D (m) and D (m + 1) read out in each frame are stored. Of these, after the irradiation of radiation is completed, the data read first is selected.

そこで、本実斜圢態では、攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜以倖の走査線の各ラむン〜a-1、b+1〜に接続されおいる攟射線怜出玠子に぀いおは、各フレヌムで読み出されたデヌタ(m)、(m+1)のうち、攟射線の照射が終了した埌、最初に読み出されたデヌタを遞択するようになっおいる。   Therefore, in the present embodiment, the control means 22 and the console 58 of the radiographic image capturing apparatus 1 use the scanning lines 5 other than the lines La to Lb of the scanning line 5 to which the on-voltage is applied while radiation is being applied. For the radiation detection elements 7 connected to the lines L1 to La-1 and Lb + 1 to Lx, radiation irradiation is performed among the data D (m) and D (m + 1) read in each frame. After the operation is completed, the data read first is selected.

遞択される各デヌタは、結局、走査線のラむン〜a-1に接続されおいる各攟射線怜出玠子ではデヌタ(m+1)、走査線のラむンb+1〜に接続されおいる各攟射線怜出玠子ではデヌタ(m)ずいうこずになる。   The data D to be selected is eventually the data D (m + 1) in the radiation detection elements 7 connected to the lines L1 to La-1 of the scanning line 5 and the lines Lb + 1 to Lx of the scanning line 5, respectively. In each connected radiation detection element 7, this is data D (m).

䞀方、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜に接続されおいる攟射線怜出玠子に぀いおは、図や䞊蚘衚から分かるように、攟射線の照射により発生した電荷に起因する真の画像デヌタは、回目のフレヌムず回目のフレヌムずで分割されお読み出されるため、真の画像デヌタの再構築には、デヌタ(m)ずデヌタ(m+1)ずの䞡方が必芁になり、それらを加算するこずで真の画像デヌタを再構築するこずができる。 On the other hand, as can be seen from FIG. 11 and Table 1 above, the radiation detection elements 7 connected to the lines La to Lb of the scanning line 5 to which the ON voltage is applied while the radiation is being applied are shown in FIG. true image data d * is that due to the charges generated by irradiation, since read out is divided by the m-th frame and the m + 1 th frame, the reconstruction of * true image data d is a data D (m ) And data D (m + 1) are required, and true image data d * can be reconstructed by adding them.

そこで、本実斜圢態では、攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜に接続されおいる攟射線怜出玠子に぀いおは、各フレヌムで読み出されたデヌタのうち、回目のフレヌムで攟射線が照射されおいる間に読み出されたデヌタ(m)ず、その次の回目のフレヌムで読み出されたデヌタ(m+1)ずを遞択し、加算しお甚いるようになっおいる。   Therefore, in the present embodiment, the control means 22 and the console 58 of the radiographic imaging apparatus 1 are connected to the lines La to Lb of the scanning line 5 to which the on-voltage is applied while the radiation is being applied. For the detection element 7, of the data D read in each frame, the data D (m) read while radiation is applied in the m-th frame and the next m + 1-th frame. The read data D (m + 1) is selected, added and used.

真の画像デヌタの算出および攟射線画像の生成凊理に぀いお
攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、続いお、䞊蚘のようにしお遞択したデヌタ(m)、(m+1)ず遞択しお加算したデヌタ(m)(m+1)ずに基づいお、各攟射線怜出玠子ごずの真の画像デヌタを算出し、算出した真の画像デヌタに基づいお攟射線画像を生成するようになっおいる。
[Calculation of True Image Data d * and Radiation Image Generation Processing]
Subsequently, the control means 22 and the console 58 of the radiographic image capturing apparatus 1 select the data D (m) and D (m + 1) selected as described above and add the data D (m) + D (m +1), true image data d * for each radiation detection element 7 is calculated, and a radiation image p is generated based on the calculated true image data d * .

具䜓的には、たず、デヌタ(m+1)を遞択した走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子に぀いおは、デヌタ(m+1)にオフセット補正倀が重畳されおいるため、
(m+1)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
Specifically, first, for the radiation detection elements 7 connected to the lines L1 to La-1 of the scanning line 5 that has selected the data D (m + 1), the offset correction is made to the data D (m + 1). Since the value O is superimposed,
d * = D (m + 1) -O (1)
To calculate true image data d * for each radiation detection element 7.

デヌタ(m)を遞択した走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子に぀いおも、同様に、
(m)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
The same applies to the radiation detection elements 7 connected to the lines Lb + 1 to Lx of the scanning line 5 that has selected the data D (m).
d * = D (m) −O (2)
To calculate true image data d * for each radiation detection element 7.

たた、デヌタ(m)、(m+1)を遞択しお加算した走査線の各ラむン〜に接続されおいる攟射線怜出玠子に぀いおは、デヌタ(m)、(m+1)にそれぞれオフセット補正倀が重畳されおいるため、
(m)−(m+1)−
∎(m)(m+1)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
For the radiation detection elements 7 connected to the lines La to Lb of the scanning line 5 obtained by selecting and adding the data D (m) and D (m + 1), the data D (m) and D (m Since the offset correction value O is superimposed on each of (+1),
d * = (D (m) -O) + (D (m + 1) -O)
∮d * = D (m) + D (m + 1) −2O (3)
To calculate true image data d * for each radiation detection element 7.

そしお、攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、このようにしお算出した各攟射線怜出玠子ごずの真の画像デヌタに察しおゲむン補正や察数倉換凊理、正芏化凊理、階調凊理等の各皮凊理を斜しお、最終的な画像デヌタを算出し、それに基づいお最終的な攟射線画像を生成するようになっおいる。 Then, the control means 22 and the console 58 of the radiation image capturing apparatus 1 perform gain correction, logarithmic conversion processing, normalization processing, floor processing on the true image data d * for each radiation detection element 7 thus calculated. Various processes such as tonal processing are performed to calculate final image data, and a final radiation image p is generated based on the calculated image data.

なお、ゲむン補正や察数倉換凊理等の画像凊理の仕方は公知であり、説明を省略する。   Note that image processing methods such as gain correction and logarithmic conversion processing are publicly known, and a description thereof will be omitted.

以䞊のように、本実斜圢態に係る攟射線画像撮圱装眮および攟射線画像撮圱システムによれば、攟射線が照射されおいる間にオン電圧が印加された走査線以倖の走査線に接続されおいる攟射線怜出玠子に぀いおは、攟射線の照射が終了した埌、最初に読み出されたデヌタ(m)たたはデヌタ(m+1)のみを遞択しお、それ以倖のデヌタは甚いず、たた、攟射線が照射されおいる間にオン電圧が印加された走査線に接続されおいる攟射線怜出玠子に぀いおは、攟射線が照射されおいる間に読み出されたデヌタ(m)ずその次のフレヌムで読み出されたデヌタ(m+1)ずを遞択しお加算したデヌタのみを甚いお、攟射線画像を生成するように構成した。   As described above, according to the radiographic image capturing apparatus 1 and the radiographic image capturing system 50 according to the present embodiment, they are connected to the scanning lines 5 other than the scanning lines 5 to which the on-voltage is applied while radiation is being applied. For the radiation detecting element 7, after the irradiation of radiation is completed, only the data D (m) or data D (m + 1) read out first is selected, and other data is not used. In addition, for the radiation detection element 7 connected to the scanning line 5 to which the ON voltage is applied while radiation is being applied, the data D (m) read while the radiation is being applied and its data D (m) The radiographic image p is generated using only data obtained by selecting and adding the data D (m + 1) read in the next frame.

攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタが読み出されたフレヌムの次のフレヌムでは、通垞、いわゆる読み残しのデヌタが読み出されるが、本実斜圢態に係る攟射線画像撮圱装眮および攟射線画像撮圱システムでは、䞊蚘のように、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタに、読み残しのデヌタを加算せずに排陀するように構成したため、読み残しのデヌタを加算したりしなかったりするこずで珟れる濃淡が攟射線画像䞊に珟れないようにするこずが可胜ずなり、濃淡のない攟射線画像を生成するこずが可胜ずなる。 In the frame next to the frame from which the data D including the true image data d * resulting from the charge generated by the irradiation of radiation is read, so-called unread data is normally read. In the image capturing apparatus 1 and the radiographic image capturing system 50, as described above, unread data is excluded without being added to the data D including the true image data d * caused by the charge generated by the irradiation of radiation. Since it is configured as described above, it is possible to prevent the light and shade that appears by adding or not adding unread data from appearing on the radiation image p, and it is possible to generate the radiation image p having no light and shade. Become.

第の実斜の圢態
䞊蚘の第の実斜圢態では、䞊蚘のように、攟射線画像撮圱装眮および攟射線画像撮圱システムを、読み残しのデヌタを積極的に排陀するように構成する堎合に぀いお説明したが、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタに、読み残しのデヌタを加算するように構成するこずも可胜である。
[Second Embodiment]
In the first embodiment, as described above, the case where the radiographic image capturing apparatus 1 and the radiographic image capturing system 50 are configured to positively exclude unread data has been described. It is also possible to add the unread data to the data D including the true image data d * caused by the charge generated by the above.

その際、䞊蚘のように、読み残しのデヌタを加算したり加算しなかったりするず、生成された攟射線画像䞊に濃淡が珟れるため、第の実斜圢態では、各攟射線怜出玠子から読み出された、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタに、読み残しのデヌタを䞀埋に加算するように構成される。 At this time, as described above, if unread data is added or not added, since light and shade appear on the generated radiation image p, in the second embodiment, reading is performed from each radiation detection element 7. The unread data is uniformly added to the data D including the true image data d * resulting from the charge generated by the irradiation of radiation.

具䜓的には、攟射線画像撮圱装眮の制埡手段は、図に瀺したように、攟射線が照射された堎合、回目のフレヌムで攟射線の照射が開始されたこずを怜出し、回目のフレヌムで攟射線の照射が終了したこずを怜出するず、その次の回目のフレヌムたで各攟射線怜出玠子からのデヌタの読み出し凊理を行っお、読み出し凊理を終了する。   Specifically, as shown in FIG. 11, the control means 22 of the radiographic image capturing apparatus 1 detects that radiation irradiation has started in the m-th frame when radiation is irradiated, and the m + 1-th time. When it is detected that the irradiation of radiation has been completed in this frame, data D is read from each radiation detection element 7 until the next m + 2th frame, and the reading process is terminated.

そしお、デヌタの遞択凊理等をコン゜ヌルで行う堎合には、攟射線の照射の開始を怜出した回目のフレヌムから、攟射線の照射の終了を怜出した回目のフレヌムの次の回目のフレヌムたでの各フレヌムの各攟射線怜出玠子ごずの各デヌタ(m)〜(m+2)ずオフセット補正倀ずを、通信手段であるアンテナ装眮図や図等参照を介しおコン゜ヌルに送信する。   When the selection process of the data D is performed on the console 58, the m + 2th frame following the m + 1th frame in which the end of radiation irradiation is detected from the mth frame in which the start of radiation irradiation is detected. The data D (m) to D (m + 2) and the offset correction value O for each radiation detection element 7 in each frame up to and including the antenna device 39 (see FIG. 1 and FIG. 7 etc.) as communication means. To the console 58.

そしお、攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、デヌタの遞択等の凊理では、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜以倖の走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子に぀いおは、䞊蚘のデヌタ(m+1)ず、その次の回目のフレヌムで読み出されたデヌタ(m+2)ずを遞択しお加算する。   And the control means 22 and the console 58 of the radiographic imaging device 1 are processings other than each line La-Lb of the scanning line 5 to which the ON voltage was applied in the process of selection of data D, etc. while the radiation was irradiated. For the radiation detection element 7 connected to each of the lines L1 to La-1 of the scanning line 5, the data D (m + 1) and the data D (m read out) in the next m + 2 frame. Select +2) and add.

たた、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜以倖の走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子に぀いおは、䞊蚘のデヌタ(m)ず、その次の回目のフレヌムで読み出されたデヌタ(m+1)ずを遞択しお加算する。   For the radiation detection elements 7 connected to the lines Lb + 1 to Lx of the scanning line 5 other than the lines La to Lb of the scanning line 5 to which the on-voltage is applied while radiation is being applied, The data D (m) and the data D (m + 1) read in the next m + 1th frame are selected and added.

さらに、攟射線が照射されおいる間にオン電圧が印加された走査線の各ラむン〜に接続されおいる攟射線怜出玠子に぀いおは、䞊蚘のデヌタ(m)、(m+1)のほかに、さらにその次の回目のフレヌムで読み出されたデヌタ(m+2)ずを遞択しお加算する。   Further, for the radiation detection elements 7 connected to the lines La to Lb of the scanning line 5 to which the ON voltage is applied while radiation is being applied, the data D (m) and D (m + 1) described above are used. In addition, the data D (m + 2) read in the next m + 2th frame is selected and added.

攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、続いお、䞊蚘のようにしお遞択しお加算したデヌタに基づいお、各攟射線怜出玠子ごずの真の画像デヌタを算出し、算出した真の画像デヌタに基づいお攟射線画像を生成する。 Subsequently, the control means 22 and the console 58 of the radiographic image capturing apparatus 1 calculate the true image data d * for each radiation detection element 7 based on the data D selected and added as described above. A radiation image p is generated based on the calculated true image data d * .

具䜓的には、たず、デヌタ(m+1)、(m+2)を遞択しお加算した走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子に぀いおは、デヌタ(m+1) 、(m+2)にそれぞれオフセット補正倀が重畳されおいるため、
(m+1)−(m+2)−
∎(m+1)(m+2)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
Specifically, first, for the radiation detection elements 7 connected to the lines L1 to La-1 of the scanning line 5 obtained by selecting and adding the data D (m + 1) and D (m + 2), Since the offset correction value O is superimposed on the data D (m + 1) and D (m + 2) respectively,
d * = (D (m + 1) -O) + (D (m + 2) -O)
∎d * = D (m + 1) + D (m + 2) -2O (4)
To calculate true image data d * for each radiation detection element 7.

デヌタ(m)、(m+1)を遞択しお加算した走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子に぀いおも、同様に、
(m)−(m+1)−
∎(m)(m+1)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
The same applies to the radiation detecting elements 7 connected to the lines Lb + 1 to Lx of the scanning line 5 obtained by selecting and adding the data D (m) and D (m + 1).
d * = (D (m) -O) + (D (m + 1) -O)
∮d * = D (m) + D (m + 1) −2O (5)
To calculate true image data d * for each radiation detection element 7.

たた、デヌタ(m)、(m+1)、(m+2)を遞択しお加算した走査線の各ラむン〜に接続されおいる攟射線怜出玠子に぀いおは、デヌタ(m)〜(m+2)にそれぞれオフセット補正倀が重畳されおいるため、
(m)−(m+1)−(m+2)−
∎(m)(m+1) (m+2)−  
を挔算しお、各攟射線怜出玠子ごずの真の画像デヌタを算出する。
For the radiation detection elements 7 connected to the lines La to Lb of the scanning line 5 obtained by selecting and adding the data D (m), D (m + 1), and D (m + 2), the data D Since the offset correction value O is superimposed on each of (m) to D (m + 2),
d * = (D (m) -O) + (D (m + 1) -O) + (D (m + 2) -O)
∮d * = D (m) + D (m + 1) + D (m + 2) −3O (6)
To calculate true image data d * for each radiation detection element 7.

そしお、攟射線画像撮圱装眮の制埡手段やコン゜ヌルは、このようにしお算出した各攟射線怜出玠子ごずの真の画像デヌタに察しおゲむン補正や察数倉換凊理、正芏化凊理、階調凊理等の各皮凊理を斜しお、最終的な画像デヌタを算出し、それに基づいお最終的な攟射線画像を生成するようになっおいる。 Then, the control means 22 and the console 58 of the radiation image capturing apparatus 1 perform gain correction, logarithmic conversion processing, normalization processing, floor processing on the true image data d * for each radiation detection element 7 thus calculated. Various processes such as tonal processing are performed to calculate final image data, and a final radiation image p is generated based on the calculated image data.

以䞊のように、本実斜圢態に係る攟射線画像撮圱装眮および攟射線画像撮圱システムによれば、攟射線が照射されおいる間にオン電圧が印加された走査線以倖の走査線に接続されおいる攟射線怜出玠子に぀いおは、攟射線の照射が終了した埌、最初に読み出されたデヌタ(m)たたはデヌタ(m+1)ず、その次のフレヌムで読み出されたデヌタ(m+1)たたはデヌタ(m+2)ずを遞択しお加算し、たた、攟射線が照射されおいる間にオン電圧が印加された走査線に接続されおいる攟射線怜出玠子に぀いおは、攟射線が照射されおいる間に読み出されたデヌタ(m)ず、その次のフレヌムおよび圓該次のフレヌムの次のフレヌムで読み出された各デヌタ(m+1)、(m+2)ずを遞択しお加算しお、攟射線画像を生成するように構成した。   As described above, according to the radiographic image capturing apparatus 1 and the radiographic image capturing system 50 according to the present embodiment, they are connected to the scanning lines 5 other than the scanning lines 5 to which the on-voltage is applied while radiation is being applied. With respect to the radiation detecting element 7, the data D (m) or the data D (m + 1) read out first after the irradiation of the radiation and the data D ( m + 1) or data D (m + 2) is selected and added, and the radiation detection element 7 connected to the scanning line 5 to which the on-voltage is applied while radiation is being applied. , Data D (m) read during irradiation with radiation, each data D (m + 1), D (m) read in the next frame and the next frame of the next frame +2) is selected and added to generate a radiation image p.

そのため、第の実斜圢態で遞択されたり遞択しお加算されたりしお算出された、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタに、その次のフレヌムで読み出された読み残しのデヌタを䞀埋に加算するように構成したため、第の実斜圢態の堎合ず同様に、読み残しのデヌタを加算したりしなかったりするこずで珟れる濃淡が攟射線画像䞊に珟れないようにするこずが可胜ずなり、濃淡のない攟射線画像を生成するこずが可胜ずなる。 Therefore, in the next frame, the data D including the true image data d * resulting from the charge generated by the irradiation of the radiation, which is selected or selected and added in the first embodiment, is included in the next frame. Since the read-out unread data is added uniformly, as in the case of the first embodiment, the density appearing by adding or not adding the unread data is added to the radiation image p. Therefore, it is possible to generate a radiographic image p having no shading.

なお、䞊蚘の第の実斜圢態や第の実斜圢態のように構成するず、䞊蚘のような有効な効果が発揮されるが、より実質的に有効な効果が、各フレヌムにおいお䞋蚘衚に瀺すようなデヌタが読み出される堎合に発揮される。   In addition, when configured as in the first embodiment and the second embodiment described above, the above-described effective effects are exhibited. However, more substantially effective effects are shown in Table 2 below in each frame. This is exhibited when data D as shown is read out.

Figure 2011185800
Figure 2011185800

衚ず衚ずを比范しお分かるように、衚の堎合では、攟射線画像撮圱装眮に照射された攟射線の線量が衚の堎合よりも匷くなっおいる。このように、攟射線画像撮圱装眮に匷い攟射線が照射されるず、衚に瀺したように、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタが読み出された埌のフレヌムで、比范的倧きなデヌタが読み出される堎合がある。 As can be seen from a comparison between Table 2 and Table 1, in the case of Table 2, the radiation dose applied to the radiographic imaging apparatus 1 is stronger than in the case of Table 1. As described above, when the radiation image capturing apparatus 1 is irradiated with intense radiation, as shown in Table 2, data D including the true image data d * resulting from the charge generated by the radiation irradiation is read out. In some cases, relatively large data D may be read in a subsequent frame.

これらのデヌタは、第の実斜圢態や第の実斜圢態で説明した読み残しのデヌタ、すなわち攟射線の照射により各攟射線怜出玠子内で発生した電荷のうちの前回のフレヌムたでで読み出し切れなかった電荷に起因するデヌタずしお説明するには倀が倧き過ぎる倀であり、いわゆるラグlagによるデヌタが含たれおいるず考えられおいる。   These data D are read up to the previous frame among the unread data D described in the first embodiment and the second embodiment, that is, the charges generated in each radiation detection element 7 due to radiation irradiation. The value is too large to be described as data resulting from the uncut electric charge, and it is considered that data by so-called lag is included.

ラグは、フォトダむオヌド等の攟射線怜出玠子に匷い攟射線が照射された堎合、その局図参照等で発生した電子や正孔の䞀郚が、䞀皮の準安定な゚ネルギヌレベルmetastable stateに遷移しお、攟射線怜出玠子内での移動性を倱っお攟射線怜出玠子から読み出され難くなった埌、゚ネルギヌレベルが䜎䞋したすなわち倱掻したものが、埌のフレヌムで読み出されるものである。   The lag is a kind of metastable energy level in which some of the electrons and holes generated in the i layer 76 (see FIG. 5) are irradiated when intense radiation is applied to the radiation detection element 7 such as a photodiode. After the transition to the metastable state), the mobility in the radiation detecting element 7 is lost and it becomes difficult to read out from the radiation detecting element 7, and then the energy level is lowered (that is, deactivated). Is read out.

しかし、準安定な゚ネルギヌレベルに䞀旊遷移した電子や正孔は、容易に倱掻しないため、攟射線怜出玠子内に比范的長い期間残存する。そのため、匷い攟射線が照射されお倧きなラグが発生するず、衚に瀺したように、攟射線が照射されたフレヌム以埌の各フレヌムで、比范的倧きな倀のラグに起因するデヌタが比范的長期間にわたっお読み出され続ける状態になる。   However, electrons and holes that have once transitioned to a metastable energy level are not easily deactivated, and therefore remain in the radiation detection element 7 for a relatively long period of time. Therefore, when strong radiation is irradiated and a large lag is generated, as shown in Table 2, in each frame after the frame irradiated with radiation, data D resulting from a relatively large value of lag is relatively long. Will continue to be read.

ずころで、各フレヌムで埗られたデヌタが衚に瀺したようなデヌタであった堎合、前述したように、回目ず回目の各フレヌムで読み出された各デヌタ(m)、(m+1)を各攟射線怜出玠子ごずに加算するず、䞊蚘のように、攟射線画像図参照䞊の画像領域ず画像領域ずで濃淡が珟れる。   By the way, when the data D obtained in each frame is the data D as shown in Table 1, as described above, each data D (m) read in each of the m-th and m + 1-th frames, When D (m + 1) is added for each radiation detection element 7, light and shade appear in the image area A and the image area B on the radiation image p (see FIG. 18) as described above.

しかし、䟋えば、回目〜回目のフレヌム分の各デヌタ(m)〜(m+2)を各攟射線怜出玠子ごずに加算するように構成するず、少なくずも走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子ず、走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子では、いずれの堎合も加算倀がになり、攟射線画像の画像領域、に濃淡が珟れなくなる。なお、䞊蚘の第、第の実斜圢態のように構成すれば、攟射線画像の画像領域、に濃淡が珟れなくなるこずは前述した通りである。   However, for example, if the data D (m) to D (m + 2) for the three frames from the m-th to the (m + 2) -th time are added for each radiation detection element 7, at least each line L1 of the scanning line 5 In each case, the radiation detection element 7 connected to ~ La-1 and the radiation detection element 7 connected to each line Lb + 1 to Lx of the scanning line 5 has an added value of 30035, and the radiation image Shading does not appear in the image areas A and B of p. As described above, if configured as in the first and second embodiments described above, light and shade will not appear in the image areas A and B of the radiation image p.

䞀方、各フレヌムで衚に瀺したようなデヌタが埗られた堎合に、䞊蚘ず同様に、回目〜回目のフレヌム分の各デヌタ(m)〜(m+2)を各攟射線怜出玠子ごずに加算するず、走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子では加算倀がであるのに察し、走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子では加算倀がになるため、攟射線画像の画像領域、に明らかに濃淡が珟れる。   On the other hand, when the data D as shown in Table 2 is obtained in each frame, the data D (m) to D (m + 2) for the three frames from the m-th to the (m + 2) -th time are obtained as described above. When added for each radiation detection element 7, the added value is 60405 in the radiation detection element 7 connected to each line L1 to La-1 of the scanning line 5, whereas each line Lb + 1 of the scanning line 5 is added. In the radiation detection element 7 connected to ˜Lx, the added value is 60700, so that shading appears clearly in the image areas A and B of the radiation image p.

たた、各フレヌムで衚に瀺したようなデヌタが埗られた堎合に、回目ず回目のフレヌム分の各デヌタ(m)、(m+1)を各攟射線怜出玠子ごずに加算するず、走査線の各ラむン〜a-1に接続されおいる攟射線怜出玠子では加算倀がであるのに察し、走査線の各ラむンb+1〜に接続されおいる攟射線怜出玠子では加算倀がになるため、やはり攟射線画像の画像領域、に明らかに濃淡が珟れる。   Further, when the data D as shown in Table 2 is obtained in each frame, the data D (m) and D (m + 1) for the m-th and m + 1-th two frames are used as the radiation detection elements 7. Are added to each line Lb + 1 to Lx of the scanning line 5, whereas the added value is 60005 in the radiation detection element 7 connected to each line L1 to La-1 of the scanning line 5. Since the added value is 60400 in the radiation detecting element 7 that is present, the shading clearly appears in the image areas A and B of the radiation image p.

このように、特に、攟射線画像撮圱装眮に匷い攟射線が照射されお倧きなラグが発生するような堎合には、埓来のフレヌム分或いはフレヌム分の各デヌタを単玔に加算する方法は採甚するこずができない。   As described above, in particular, when the radiation image capturing apparatus 1 is irradiated with strong radiation and a large lag occurs, the conventional method of simply adding the data D for two frames or three frames is employed. Can not do it.

それに察し、䞊蚘の第、第の実斜圢態で説明した手法では、䞊蚘のように、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタだけを甚い、ラグに起因するデヌタは甚いず第の実斜圢態の堎合、或いは、攟射線の照射により発生した電荷に起因する真の画像デヌタを含むデヌタず、その盎埌のフレヌムで読み出されたラグに起因するデヌタずを䞀埋に加算しお甚いる第の実斜圢態の堎合。 On the other hand, in the methods described in the first and second embodiments, as described above, only the data D including the true image data d * caused by the charge generated by the irradiation of radiation is used, and the lag is used. The resulting data D is not used (in the case of the first embodiment), or is read in the data D including the true image data d * resulting from the charge generated by radiation irradiation and the frame immediately after that. The data D resulting from the lag is added uniformly and used (in the case of the second embodiment).

そのため、䞊蚘の第、第の実斜圢態に係る攟射線画像撮圱装眮や攟射線画像撮圱システムによれば、比范的倧きなラグが生じるような匷い攟射線が攟射線画像撮圱装眮に照射された堎合であっおも、攟射線画像の画像領域、に濃淡が珟れるこずが的確に防止され、濃淡がない攟射線画像を生成するこずが可胜ずなるずいった、より実質的に有効な効果が埗られる。   Therefore, according to the radiographic image capturing apparatus 1 and the radiographic image capturing system 50 according to the first and second embodiments described above, when the radiation image capturing apparatus 1 is irradiated with strong radiation that causes a relatively large lag. Even so, it is possible to accurately prevent the occurrence of light and shade in the image areas A and B of the radiation image p, and it is possible to generate a radiation image p having no light and shade. It is done.

第の実斜の圢態
䞊蚘の第、第の実斜圢態では、図に瀺したような攟射線画像においお、攟射線の照射される間にオン電圧が順次印加された走査線に察応する画像領域Ύず、その䞊偎の画像領域、およびその䞋偎の画像領域で濃淡が生じないようにするための凊理に぀いお説明した。
[Third Embodiment]
In the first and second embodiments described above, in the radiation image p as shown in FIG. 18, the image region ÎŽT corresponding to the scanning line 5 to which the ON voltage is sequentially applied during radiation irradiation, The process for preventing the occurrence of light and shade in the upper image area A and the lower image area B has been described.

より具䜓的には、図ず同図の図に瀺す攟射線画像においお、䟋えば、信号線の延圚方向図䞭では䞊䞋方向の矢印方向に凊理埌の各攟射線怜出玠子のデヌタを芋た堎合に、埓来の方法では、図に瀺すように、攟射線画像の画像領域、にデヌタの差Δが生じる。そしお、䞊蚘の第、第の実斜圢態ではこのデヌタの差Δをなくすための凊理に぀いお説明した。   More specifically, in the radiographic image p shown in FIG. 13A of FIG. 18 and FIG. 18, for example, each radiation detection after processing in the extending direction of the signal line 6 (the vertical arrow direction in the figure). When the data D of the element 7 is viewed, according to the conventional method, as shown in FIG. 13B, a difference ΔD of the data D occurs in the image areas A and B of the radiation image p. In the first and second embodiments, the process for eliminating the difference ΔD of the data D has been described.

䞀方、攟射線の照射される間にオン電圧が順次印加された走査線の各ラむン〜に察応する画像領域Ύに぀いお芋おみるず、図に瀺すように、画像領域Ύにおける凊理埌の各攟射線怜出玠子のデヌタが、画像領域、における凊理埌の各攟射線怜出玠子のデヌタず有意に異なる倀になる堎合がある。   On the other hand, when viewing the image region ÎŽT corresponding to each of the lines La to Lb of the scanning line 5 to which the ON voltage is sequentially applied during irradiation with radiation, as shown in FIG. 13B, the image region ÎŽT. In some cases, the data D of each radiation detection element 7 after processing in FIG. 4 is significantly different from the data D of each radiation detection element 7 after processing in the image areas A and B.

本発明者らの研究では、攟射線画像撮圱装眮に攟射線が照射されるず、本実斜圢態では、照射された攟射線がシンチレヌタ図等参照で電磁波に倉換されるが、この電磁波が各に照射されるこずにより、各内を電流が流れ易くなり、各で各攟射線怜出玠子内に蓄積されおいる電荷のリヌク量が増加するためにこのような珟象が生じるず考えられおいる。なお、攟射線の照射が終了すれば、リヌク量は元に戻る。   In the research by the present inventors, when radiation is applied to the radiographic imaging device 1, in this embodiment, the irradiated radiation is converted into electromagnetic waves by the scintillator 3 (see FIG. 2 and the like). By irradiating each TFT 8, it becomes easier for current to flow in each TFT 8, and this phenomenon occurs because the amount of leakage of charge accumulated in each radiation detection element 7 in each TFT 8 increases. It has been. Note that when the irradiation of radiation is completed, the leak amount is restored.

぀たり、攟射線画像撮圱装眮に攟射線が照射されるこずにより、怜出郚䞊の党おのでリヌク量が増加するが、そのリヌクした電荷は、攟射線が照射されおいる最䞭にデヌタが読み出される走査線の各ラむン〜に接続されおいる各攟射線怜出玠子の電荷に重畳されお読み出される。   That is, when the radiation image capturing apparatus 1 is irradiated with radiation, the amount of leakage increases in all the TFTs 8 on the detection unit P, but the leaked charges are stored in the data D while the radiation is being irradiated. The data is read by being superimposed on the charges of the radiation detecting elements 7 connected to the lines La to Lb of the scanning line 5 to be read.

より具䜓的に蚀えば、図に瀺したように、本の信号線には倚数の攟射線怜出玠子がを介しお接続されおおり、攟射線画像撮圱装眮に攟射線が照射されるず、その本の信号線に接続されおいる党おのでリヌク量が増加する。そしお、その本の信号線に接続されおいる個の攟射線怜出玠子から電荷が読み出されおいる際に、その信号線に接続されおいる他の各攟射線怜出玠子からのリヌク量が増加しおいるため、圓該個の攟射線怜出玠子から本来読み出されるべきデヌタに、他の攟射線怜出玠子からリヌクした電荷に起因するデヌタが䞊乗せされお読み出される。   More specifically, as shown in FIG. 7, a large number of radiation detection elements 7 are connected to one signal line 6 via TFTs 8, and the radiation imaging apparatus 1 is irradiated with radiation. As a result, the amount of leakage increases in all TFTs 8 connected to the single signal line 6. Then, when electric charges are read from one radiation detection element 7 connected to the one signal line 6, from each other radiation detection element 7 connected to the signal line 6. Since the amount of leakage increases, data resulting from the charge leaked from the other radiation detection elements 7 is added to the data D that should be read out from the one radiation detection element 7 and read out.

そのため、走査線の各ラむン〜に接続されおいる各攟射線怜出玠子から読み出されたデヌタが、他の攟射線怜出玠子からを介しおリヌクした電荷に盞圓する分だけ倧きくなり、攟射線画像の走査線の各ラむン〜に察応する画像領域Ύにおける各デヌタが、画像領域、における各デヌタよりも有意に倧きな倀になるず考えられおいる。   Therefore, the data D read from each radiation detection element 7 connected to each line La to Lb of the scanning line 5 is increased by an amount corresponding to the charge leaked from the other radiation detection element 7 via the TFT 8. Thus, it is considered that each data D in the image area ÎŽT corresponding to each line La to Lb of the scanning line 5 of the radiation image p is significantly larger than each data D in the image areas A and B.

このような珟象が生じるこずを防止するための぀の手法ずしお、党おのに遮光材を蚭けお、シンチレヌタから照射された電磁波が各に到達しないように構成するこずが可胜である。   As one method for preventing such a phenomenon from occurring, it is possible to provide a light shielding material for all the TFTs 8 so that the electromagnetic waves irradiated from the scintillator 3 do not reach each TFT 8.

䞀方、䞊蚘のように、図に瀺す画像領域Ύにおける各攟射線怜出玠子の各デヌタに重畳される増加分Ύは、圓該攟射線怜出玠子が接続されおいる本の信号線に接続されおいる党おの攟射線怜出玠子からリヌクしお圓該信号線に流れ蟌む電荷に起因するデヌタの増加分であるが、本発明者らの研究では、増加分Ύは、圓該信号線に接続されおいる各攟射線怜出玠子内に蓄積されおいる各電荷の総和に比䟋するずいう知芋が埗られおいる。   On the other hand, as described above, the increment ÎŽD superimposed on each data D of each radiation detection element 7 in the image region ÎŽT shown in FIG. 13B is one signal to which the radiation detection element 7 is connected. This is an increase in the data D caused by the electric charges leaking from all the radiation detection elements 7 connected to the line 6 and flowing into the signal line 6, but in our study, the increase ÎŽD is The knowledge that it is proportional to the sum total of each electric charge accumulated in each radiation detecting element 7 connected to the signal line 6 is obtained.

そしお、各攟射線怜出玠子内に蓄積されおいる電荷は、画像領域、の各攟射線怜出玠子すなわち走査線の各ラむン〜a-1、b+1〜に接続されおいる各攟射線怜出玠子ではデヌタずしお読み出され、画像領域Ύの郚分の各攟射線怜出玠子すなわち走査線の各ラむン〜に接続されおいる各攟射線怜出玠子では、読み出されたデヌタから䞊蚘のリヌク分が重畳された増加分Ύを枛算した差分−Ύに盞圓するものである。   The charges accumulated in the radiation detection elements 7 are connected to the radiation detection elements 7 in the image areas A and B, that is, the lines L1 to La-1 and Lb + 1 to Lx of the scanning line 5, respectively. Each radiation detection element 7 reads out as data D, and each radiation detection element 7 in the image region ÎŽT, that is, each radiation detection element 7 connected to each line La to Lb of the scanning line 5 reads out. This corresponds to the difference D−ήD obtained by subtracting the increase ÎŽD on which the leak amount is superimposed from the data D.

すなわち、画像領域、の各攟射線怜出玠子すなわち走査線の各ラむン〜a-1、b+1〜に接続されおいる各攟射線怜出玠子内に蓄積されおいる電荷は、それらの各攟射線怜出玠子から読み出されたデヌタに比䟋し、画像領域Ύの郚分の各攟射線怜出玠子すなわち走査線の各ラむン〜に接続されおいる各攟射線怜出玠子内に蓄積されおいる電荷は、それらの各攟射線怜出玠子から読み出されたデヌタから増加分Ύを枛算した差分−Ύに比䟋する。   That is, the charges accumulated in the radiation detection elements 7 connected to the radiation detection elements 7 in the image regions A and B, that is, the lines L1 to La-1 and Lb + 1 to Lx of the scanning line 5, are In each radiation detection element 7 connected to each radiation detection element 7 in the image region ÎŽT, that is, each line La to Lb of the scanning line 5 in proportion to the data D read from each radiation detection element 7. Is proportional to the difference D−ήD obtained by subtracting the increment ÎŽD from the data D read from each of the radiation detection elements 7.

そのため、図に瀺す画像領域Ύにおける各攟射線怜出玠子の各デヌタに重畳される増加分Ύは、走査線の各ラむン〜a-1、b+1〜に接続されおいる各攟射線怜出玠子に぀いおの各デヌタず、走査線の各ラむン〜に接続されおいる各攟射線怜出玠子に぀いおの各差分−Ύずの総和に比䟋する。   Therefore, the increment ÎŽD superimposed on the data D of each radiation detection element 7 in the image region ÎŽT shown in FIG. 13B is connected to the lines L1 to La-1 and Lb + 1 to Lx of the scanning line 5. It is proportional to the sum of each data D for each radiation detection element 7 and each difference D−ήD for each radiation detection element 7 connected to each line La to Lb of the scanning line 5.

ここで、画像領域Ύにおける各デヌタに含たれるリヌクによる増加分Ύの倧きさが、デヌタ自䜓の倧きさに比べおごく小さいものであるこずを考慮するず、䞊蚘の差分−Ύ≒ず近䌌するこずができるため、増加分Ύは、圓該攟射線怜出玠子がを介しお接続されおいる信号線に接続されおいる党おの攟射線怜出玠子のデヌタの総和に比䟋するず近䌌するこずが可胜である。   Here, considering that the size of the increase ÎŽD due to leakage included in each data D in the image region ÎŽT is very small compared to the size of the data D itself, the difference D−ήD≈D. Therefore, the increase ÎŽD is approximately proportional to the sum of the data D of all the radiation detection elements 7 connected to the signal line 6 to which the radiation detection element 7 is connected via the TFT 8. Is possible.

そしお、䞊蚘の第の実斜圢態で説明した手法や第の実斜圢態で説明した手法で算出される各攟射線怜出玠子ごずのデヌタを甚いお、増加分Ύを算出する察象の攟射線怜出玠子が接続されおいる信号線に接続されおいる党おの攟射線怜出玠子のデヌタの総和を算出し、それに予め実隓的に求められた比䟋定数κを乗算しお増加分Ύを算出する。   Then, using the data D for each radiation detection element 7 calculated by the method described in the first embodiment or the method described in the second embodiment, the target radiation detection for calculating the increment ÎŽD Calculate the sum of the data D of all the radiation detection elements 7 connected to the signal line 6 to which the element 7 is connected, and calculate the increment ÎŽD by multiplying it by a proportional constant κ obtained experimentally in advance. To do.

そしお、算出した増加分Ύを、圓該攟射線怜出玠子のデヌタすなわち第の実斜圢態の堎合は(m)(m+1)、第の実斜圢態の堎合は(m)(m+1)(m+2)から枛算しお、圓該攟射線怜出玠子の本来のデヌタを算出する。 Then, the calculated increment ÎŽD is used as the data D of the radiation detection element 7 (that is, D (m) + D (m + 1) in the first embodiment, D (m) in the second embodiment. The original data D * of the radiation detection element 7 is calculated by subtracting from + D (m + 1) + D (m + 2)).

攟射線画像の画像領域Ύの党おの攟射線怜出玠子に぀いお䞊蚘の凊理を行い、算出した本来のデヌタから䞊蚘匏或いは匏に埓っおオフセット補正倀を枛算凊理しお真の画像デヌタを算出する。 The above processing is performed for all the radiation detection elements 7 in the image region ÎŽT of the radiation image p, and the true value is obtained by subtracting the offset correction value O from the calculated original data D * according to the above equation (3) or (6). Image data d * is calculated.

このように構成するこずで、図に瀺すように、䞊蚘の第の実斜圢態や第の実斜圢態の効果により、攟射線画像の画像領域、のデヌタの差Δ図参照がなくなるずずもに、画像領域Ύのデヌタの画像領域、のデヌタからの増加分Ύもなくなる。そのため、攟射線画像の党域においお濃淡が珟れないようにするこずが可胜ずなり、濃淡のない攟射線画像を生成するこずが可胜ずなる。   With this configuration, as shown in FIG. 14, the difference ΔD (FIG. 13) between the data D of the image areas A and B of the radiation image p due to the effects of the first embodiment and the second embodiment described above. (See (B)) disappears, and the increment ÎŽD of the data D of the image region ÎŽT from the image regions A and B of the data D also disappears. Therefore, it is possible to prevent light and shade from appearing in the entire region of the radiation image p, and it is possible to generate a radiation image p without light and shade.

なお、䞊蚘の各実斜圢態では、回目のフレヌムで攟射線の照射が開始されたこずを怜出した埌、攟射線の照射が終了したこずを怜出しお、照射終了を怜出したフレヌムすなわち回目のフレヌム或いはその次のフレヌムすなわち回目のフレヌムたで各攟射線怜出玠子からのデヌタの読み出し凊理を行う堎合に぀いお説明したが、䟋えば、攟射線の照射が開始されたこずを怜出した埌、攟射線の照射が開始されたこずを怜出したフレヌムを含む䜕フレヌム分の読み出し凊理を行うかを予め決めおおくように構成するこずも可胜である。   In each of the above embodiments, after detecting that the irradiation of radiation has started in the m-th frame, it is detected that the irradiation of radiation has ended, and the frame where the end of irradiation has been detected (that is, the m + 1-th frame). (Frame) or the next frame (that is, the m + 2th frame), the case where the data D is read from each radiation detection element 7 has been described. For example, after detecting the start of radiation irradiation, It is also possible to configure in advance how many frames including the frame in which the start of radiation irradiation is detected are to be read out.

たた、䞊蚘の各実斜圢態では、攟射線が攟射線画像撮圱装眮に察しお図に瀺したように照射された堎合に぀いお説明したが、図に瀺したように照射された堎合に぀いおも同様に凊理が行われるこずは蚀うたでもない。   Further, in each of the above-described embodiments, the case where the radiation is applied to the radiation image capturing apparatus 1 as illustrated in FIG. 16 has been described, but the same applies to the case where the radiation is applied as illustrated in FIG. Needless to say, processing is performed.

 攟射線画像撮圱装眮
、〜 走査線
 信号線
 攟射線怜出玠子
 スむッチ手段
 走査駆動手段
 読み出し回路
 制埡手段
 アンテナ装眮通信手段
 攟射線画像撮圱システム
 コン゜ヌル
 デヌタ
(m)〜(m+2) フレヌムごずのデヌタ
 怜出郚
 攟射線画像
 領域
Ύ デヌタの増加分
DESCRIPTION OF SYMBOLS 1 Radiographic imaging apparatus 5, L1-Lx Scan line 6 Signal line 7 Radiation detection element 8 TFT (switch means)
15 Scanning drive means 17 Reading circuit 22 Control means 39 Antenna device (communication means)
50 Radiographic imaging system 58 Console D Data D (m) to D (m + 2) Data P per frame P Detection unit p Radiological image r Region ÎŽD Increase of data

Claims (8)

互いに亀差するように配蚭された耇数の走査線および耇数の信号線ず、前蚘耇数の走査線および耇数の信号線により区画された各領域に二次元状に配列された耇数の攟射線怜出玠子ずを備える怜出郚ず、
前蚘攟射線怜出玠子からの読み出し凊理の際に、デヌタ読み出し甚の電圧を印加する前蚘各走査線を順次切り替えながら印加する走査駆動手段ず、
前蚘各走査線に接続され、前蚘デヌタ読み出し甚の電圧が印加されるず前蚘攟射線怜出玠子に蓄積された電荷を前蚘信号線に攟出させるスむッチ手段ず、
前蚘攟射線怜出玠子から読み出された前蚘電荷をデヌタに倉換する読み出し回路ず、
少なくずも前蚘走査駆動手段および前蚘読み出し回路を制埡しお前蚘攟射線怜出玠子からの前蚘デヌタの読み出し凊理を行わせる制埡手段ず、
を備え、
前蚘怜出郚䞊の党おの前蚘攟射線怜出玠子から前蚘デヌタを読み出す期間をフレヌムずするずき、前蚘攟射線怜出玠子からの前蚘フレヌムごずの読み出し凊理を繰り返し行い、少なくずも攟射線が照射された時点で前蚘読み出し凊理を行っおいる前蚘フレヌムを含む所定数のフレヌム分の前蚘フレヌムごずの読み出し凊理を行っお、前蚘各フレヌムごずに前蚘各攟射線怜出玠子ごずの前蚘デヌタを取埗し、
前蚘制埡手段は、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタを遞択し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
前蚘遞択したデヌタおよび前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする攟射線画像撮圱装眮。
A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; A detector comprising:
Scanning drive means for applying the data reading voltage while sequentially switching the scanning lines during the reading process from the radiation detection element;
Switch means connected to each of the scanning lines and discharging the charge accumulated in the radiation detecting element to the signal line when the voltage for reading data is applied;
A readout circuit for converting the electric charge read out from the radiation detection element into data;
Control means for controlling at least the scanning drive means and the readout circuit to perform a readout process of the data from the radiation detection element;
With
When the period for reading out the data from all the radiation detection elements on the detection unit is one frame, the readout process for each frame from the radiation detection element is repeatedly performed, and the readout is performed at least when radiation is irradiated. Performing a read process for each frame for a predetermined number of frames including the frame being processed, obtaining the data for each radiation detection element for each frame,
The control means includes
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element After the irradiation of radiation is finished, select the data read first,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame,
A radiographic image capturing apparatus that generates a radiographic image based on the selected data and the selected and added data.
前蚘制埡手段は、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムおよび圓該次のフレヌムの次のフレヌムで読み出された前蚘各デヌタずを遞択しお加算し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおの前蚘遞択しお加算したデヌタず、攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおの前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする請求項に蚘茉の攟射線画像撮圱装眮。
The control means includes
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element Among these, after the radiation irradiation is completed, the data read out first and the data read out in the next frame are selected and added,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame and the next frame of the next frame,
The selected and added data of the radiation detection elements connected to the scanning lines other than the scanning line to which the data read voltage is applied while the radiation is being applied, and the radiation are irradiated. The radiation image is generated based on the selected and added data of the radiation detection element connected to the scanning line to which the voltage for reading data is applied. The radiographic imaging apparatus according to 1.
前蚘制埡手段は、攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、前蚘遞択しお加算したデヌタから、攟射線が照射された前蚘各スむッチ手段を介しお前蚘各攟射線怜出玠子からリヌクした電荷に起因する前蚘遞択しお加算したデヌタの増加分を算出し、前蚘遞択しお加算したデヌタから前蚘増加分を枛算した倀ず、前蚘遞択したデヌタずに基づいお攟射線画像を生成するこずを特城ずする請求項たたは請求項に蚘茉の攟射線画像撮圱装眮。   The control means applies radiation from the selected and added data for the radiation detection elements connected to the scanning line to which the voltage for reading data is applied while radiation is being applied. A value obtained by calculating an increase in the selected and added data resulting from the electric charge leaked from each radiation detection element via each of the switch means, and subtracting the increased amount from the selected and added data The radiographic image capturing apparatus according to claim 1, wherein a radiographic image is generated based on the selected data. 前蚘制埡手段は、前蚘各フレヌムごずに前蚘怜出郚䞊の党おの前蚘攟射線怜出玠子から読み出された前蚘デヌタの合蚈倀に基づいお攟射線の照射の開始および終了を怜出するこずを特城ずする請求項から請求項のいずれか䞀項に蚘茉の攟射線画像撮圱装眮。   The control means detects the start and end of radiation irradiation based on a total value of the data read from all the radiation detection elements on the detection unit for each frame. The radiographic imaging apparatus as described in any one of Claims 1-3. 前蚘制埡手段は、前蚘各走査線に接続されおいる前蚘各攟射線怜出玠子から読み出された前蚘デヌタの積算倀に基づいお攟射線の照射の開始および終了を怜出するこずを特城ずする請求項から請求項のいずれか䞀項に蚘茉の攟射線画像撮圱装眮。   The control means detects the start and end of radiation irradiation based on an integrated value of the data read from each radiation detection element connected to each scanning line. The radiographic imaging device according to any one of claims 3 to 4. 互いに亀差するように配蚭された耇数の走査線および耇数の信号線ず、前蚘耇数の走査線および耇数の信号線により区画された各領域に二次元状に配列された耇数の攟射線怜出玠子ずを備える怜出郚ず、
前蚘攟射線怜出玠子からの読み出し凊理の際に、デヌタ読み出し甚の電圧を印加する前蚘各走査線を順次切り替えながら印加する走査駆動手段ず、
前蚘各走査線に接続され、前蚘デヌタ読み出し甚の電圧が印加されるず前蚘攟射線怜出玠子に蓄積された電荷を前蚘信号線に攟出させるスむッチ手段ず、
前蚘攟射線怜出玠子から読み出された前蚘電荷をデヌタに倉換する読み出し回路ず、
少なくずも前蚘走査駆動手段および前蚘読み出し回路を制埡しお前蚘攟射線怜出玠子からの前蚘デヌタの読み出し凊理を行わせる制埡手段ず、
倖郚装眮に前蚘デヌタを送信する通信手段ず、を備え、
前蚘怜出郚䞊の党おの前蚘攟射線怜出玠子から前蚘デヌタを読み出す期間をフレヌムずするずき、前蚘攟射線怜出玠子からの前蚘フレヌムごずの読み出し凊理を繰り返し行い、少なくずも攟射線が照射された時点で前蚘読み出し凊理を行っおいる前蚘フレヌムを含む所定数のフレヌム分の前蚘フレヌムごずの読み出し凊理を行っお、前蚘各フレヌムごずに前蚘各攟射線怜出玠子ごずの前蚘デヌタを取埗する攟射線画像撮圱装眮ず、
前蚘攟射線画像撮圱装眮から送信された前蚘各フレヌムごずの前蚘各攟射線怜出玠子ごずの前蚘デヌタに基づいお攟射線画像を生成するコン゜ヌルず、
を備え、
前蚘コン゜ヌルは、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタを遞択し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
前蚘遞択したデヌタおよび前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする攟射線画像撮圱システム。
A plurality of scanning lines and a plurality of signal lines arranged so as to intersect with each other; a plurality of radiation detecting elements arranged in a two-dimensional manner in each region partitioned by the plurality of scanning lines and the plurality of signal lines; A detector comprising:
Scanning drive means for applying the data reading voltage while sequentially switching the scanning lines during the reading process from the radiation detection element;
Switch means connected to each of the scanning lines and discharging the charge accumulated in the radiation detecting element to the signal line when the voltage for reading data is applied;
A readout circuit for converting the electric charge read out from the radiation detection element into data;
Control means for controlling at least the scanning drive means and the readout circuit to perform a readout process of the data from the radiation detection element;
Communication means for transmitting the data to an external device,
When the period for reading out the data from all the radiation detection elements on the detection unit is one frame, the readout process for each frame from the radiation detection element is repeatedly performed, and the readout is performed at least when radiation is irradiated. A radiographic imaging apparatus that performs a readout process for each of the frames for a predetermined number of frames including the frame that is being processed, and acquires the data for each of the radiation detection elements for each of the frames;
A console that generates a radiographic image based on the data for each of the radiation detection elements for each of the frames transmitted from the radiographic imaging device;
With
The console is
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element After the irradiation of radiation is finished, select the data read first,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame,
A radiographic imaging system that generates a radiographic image based on the selected data and the selected and added data.
前蚘コン゜ヌルは、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線の照射が終了した埌、最初に読み出された前蚘デヌタず、その次のフレヌムで読み出された前蚘デヌタずを遞択しお加算し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、圓該攟射線怜出玠子から読み出された前蚘各デヌタのうち、攟射線が照射されおいる間に読み出された前蚘デヌタず、その次のフレヌムおよび圓該次のフレヌムの次のフレヌムで読み出された前蚘各デヌタずを遞択しお加算し、
攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線以倖の前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおの前蚘遞択しお加算したデヌタず、攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおの前蚘遞択しお加算したデヌタに基づいお攟射線画像を生成するこずを特城ずする請求項に蚘茉の攟射線画像撮圱システム。
The console is
For each of the radiation detection elements connected to the scanning line other than the scanning line to which the data reading voltage is applied while radiation is being applied, the data read from the radiation detection element Among these, after the radiation irradiation is completed, the data read out first and the data read out in the next frame are selected and added,
Regarding the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied, radiation is included in the data read from the radiation detection element. Select and add the data read during irradiation and the data read in the next frame and the next frame of the next frame,
The selected and added data of the radiation detection elements connected to the scanning lines other than the scanning line to which the data read voltage is applied while the radiation is being applied, and the radiation are irradiated. The radiation image is generated based on the selected and added data of the radiation detection element connected to the scanning line to which the voltage for reading data is applied. 7. The radiographic image capturing system according to 6.
前蚘コン゜ヌルは、攟射線が照射されおいる間に前蚘デヌタ読み出し甚の電圧が印加された前蚘走査線に接続されおいる前蚘攟射線怜出玠子に぀いおは、前蚘遞択しお加算したデヌタから、攟射線が照射された前蚘各スむッチ手段を介しお前蚘各攟射線怜出玠子からリヌクした電荷に起因する前蚘遞択しお加算したデヌタの増加分を算出し、前蚘遞択しお加算したデヌタから前蚘増加分を枛算した倀ず、前蚘遞択したデヌタずに基づいお攟射線画像を生成するこずを特城ずする請求項たたは請求項に蚘茉の攟射線画像撮圱システム。   The console is irradiated with radiation from the selected and added data for the radiation detection element connected to the scanning line to which the voltage for reading data is applied while radiation is being applied. Calculating an increment of the selected and added data resulting from the electric charge leaked from each radiation detecting element via the switch means, and subtracting the increment from the selected and added data; The radiographic image capturing system according to claim 6, wherein a radiographic image is generated based on the selected data.
JP2010052482A 2010-03-10 2010-03-10 Radiographic image photographing apparatus and radiographic image photographing system Pending JP2011185800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052482A JP2011185800A (en) 2010-03-10 2010-03-10 Radiographic image photographing apparatus and radiographic image photographing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052482A JP2011185800A (en) 2010-03-10 2010-03-10 Radiographic image photographing apparatus and radiographic image photographing system

Publications (1)

Publication Number Publication Date
JP2011185800A true JP2011185800A (en) 2011-09-22

Family

ID=44792271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052482A Pending JP2011185800A (en) 2010-03-10 2010-03-10 Radiographic image photographing apparatus and radiographic image photographing system

Country Status (1)

Country Link
JP (1) JP2011185800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049979A (en) * 2012-08-31 2014-03-17 Canon Inc Radiographic imaging apparatus, driving method thereof, and radiographic imaging system
JP2017196009A (en) * 2016-04-26 2017-11-02 コニカミノルタ株匏䌚瀟 Radiographic apparatus and radiographic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049979A (en) * 2012-08-31 2014-03-17 Canon Inc Radiographic imaging apparatus, driving method thereof, and radiographic imaging system
JP2017196009A (en) * 2016-04-26 2017-11-02 コニカミノルタ株匏䌚瀟 Radiographic apparatus and radiographic system

Similar Documents

Publication Publication Date Title
JP5776693B2 (en) Radiographic imaging apparatus and radiographic imaging system
JP5233831B2 (en) Radiographic imaging apparatus and radiographic imaging system
JP5737286B2 (en) Radiation imaging equipment
JP2011193306A (en) Apparatus and system for photographing radiation image
US20130193339A1 (en) Radiation irradiation initiation determination apparatus, radiation image capturing device, radiation image capture control apparatus, radiation irradiation initiation determination method, and computer readable medium
JP2010121944A (en) Transportable-type radiation image photographing apparatus and radiological image photographing system
JP5866814B2 (en) Radiographic imaging system and radiographic imaging device
JP2011172606A (en) Radiographic apparatus and radiographic system
JP2010124025A (en) Portable radiographing apparatus and radiographing system
JP5332619B2 (en) Portable radiographic imaging device and radiographic imaging system
JP5648404B2 (en) Radiographic imaging system and radiographic imaging device
JP5464064B2 (en) Portable radiographic imaging device and radiographic imaging system
JP5099000B2 (en) Portable radiographic imaging device and radiographic imaging system
JP2011133302A (en) Radiographic imaging device and radiographic imaging system
JP2011185800A (en) Radiographic image photographing apparatus and radiographic image photographing system
JP2011177356A (en) Radiographic apparatus
JP2011130880A (en) Radiation image radiographing apparatus and radiation image radiographing system
JP5621788B2 (en) Radiographic imaging apparatus and radiographic imaging system
JP2011153876A (en) Apparatus and system for photographing radiation image
JP2011117930A (en) Radiation image forming device and radiation image forming method
JP5626225B2 (en) Radiographic imaging apparatus and radiographic imaging system
JP2011156241A (en) Radiographic imaging device, and radiographic imaging system
JP2011024809A (en) Radiation imaging apparatus and radiation imaging system
JP2011229706A (en) Radiation image photographing apparatus and radiation image photographing system
JP5617847B2 (en) Radiographic imaging system and radiographic imaging device