JP2011177242A - Method and device for manufacturing hydrogen-containing biocompatible solution - Google Patents
Method and device for manufacturing hydrogen-containing biocompatible solution Download PDFInfo
- Publication number
- JP2011177242A JP2011177242A JP2010042647A JP2010042647A JP2011177242A JP 2011177242 A JP2011177242 A JP 2011177242A JP 2010042647 A JP2010042647 A JP 2010042647A JP 2010042647 A JP2010042647 A JP 2010042647A JP 2011177242 A JP2011177242 A JP 2011177242A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- container
- concentration
- liquid
- biological application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Medical Preparation Storing Or Oral Administration Devices (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、水素含有生体適用液の製造方法及び製造装置に関するものである。 The present invention relates to a method and apparatus for producing a hydrogen-containing biological fluid.
医療用物質としての水素分子を生体内へ運搬する手段して、水素ガスの吸入、水素含有水の飲用、水素含有生体適用液の注射などが知られている。水素含有生体適用液の注射は、水素ガスを吸入する場合におけるような取扱い上の危険性もない、理想的な運搬手段として考えられる。 As means for transporting hydrogen molecules as a medical substance into a living body, inhalation of hydrogen gas, drinking of hydrogen-containing water, injection of a liquid containing a hydrogen-containing living body, and the like are known. Injection of a hydrogen-containing biological application liquid is considered as an ideal transportation means without the danger of handling as in the case of inhaling hydrogen gas.
しかしながら、生体機能の維持向上や疾病・疾患の予防または治療等を意図して生体に投与される水素含有生体適用液は、理化学的純度の保証や菌・微生物対策などの観点から、厳格な液質管理が要求される。そのため、製造工程を完了して生体適用液が封入された容器を開封すると、その液質保証性能が担保できないという問題があった。したがって、容器を開封することなく、容器の外側から水素を外挿する手段が望ましい。 However, a hydrogen-containing biological fluid that is administered to a living body for the purpose of maintaining and improving biological functions and preventing or treating diseases and disorders is a strict liquid from the viewpoint of ensuring physicochemical purity and combating bacteria and microorganisms. Quality control is required. Therefore, when the manufacturing process is completed and the container in which the biological application liquid is sealed is opened, there is a problem that the liquid quality guarantee performance cannot be guaranteed. Therefore, a means for extrapolating hydrogen from the outside of the container without opening the container is desirable.
本発明が解決しようとする課題は、水素を含有する経口生体適用液を、生体適用液が封入された容器を開封することなく製造できる製造方法及び製造装置を提供することである。 The problem to be solved by the present invention is to provide a production method and a production apparatus capable of producing an oral bioapplication liquid containing hydrogen without opening a container in which the bioapplication liquid is sealed.
本発明は、経口生体適用液が封入された、水素分子透過性を有する容器に、当該容器の外側から水素を含む気体または液体を接触させることにより、上記課題を解決する。 The present invention solves the above problems by bringing a gas or liquid containing hydrogen from the outside of the container into contact with a container having hydrogen molecule permeability, in which an oral biomedical solution is enclosed.
本発明によれば、既存の製造工程に手を加えることなく容易に、経口生体適用液に水素を含有させることができる。 ADVANTAGE OF THE INVENTION According to this invention, hydrogen can be easily contained in an oral living body applicable liquid, without modifying an existing manufacturing process.
以下、本発明の実施形態を説明する。図1〜図7は、本発明の実施の形態に係る水素含有生体適用液の製造装置を示す図であり、図1及び図2が第1の実施の形態、図3〜図7のそれぞれは他の実施の形態に係る水素含有生体適用液の製造装置を示す図である。
たとえば図2に示す例で説明すると、本例の製造装置は、輸液(点滴)バッグなどの容器2iに保持された生体適用液を、当該生体適用液を容器ごと収容可能である適宜な大きさの別容器2gに収容するとともに、水素分子を含有する液体または気体を該別容器2g(以下、水素貯蔵器)に供給する。水素貯蔵器2g内では、生体適用液の容器2iを介して生体適用液と水素貯蔵器2g中の水素分子は隔てられているが、時間の経過とともに、水素貯蔵器2g中の水素分子は徐々に生体適用液中へ透過する。
Embodiments of the present invention will be described below. FIGS. 1-7 is a figure which shows the manufacturing apparatus of the hydrogen containing biological application liquid which concerns on embodiment of this invention, FIG.1 and FIG.2 is 1st Embodiment and each of FIGS. It is a figure which shows the manufacturing apparatus of the hydrogen containing biological application liquid which concerns on other embodiment.
For example, referring to the example shown in FIG. 2, the manufacturing apparatus of this example has an appropriate size capable of storing the biological application liquid held in a
生体適用液の容器2g(図2)として相応しいのは、上述の輸液バッグや点滴バッグに用いられるポリエチレン、ポリプロピレン、ポリスチレン等を素材としたプラスチック容器であるが、水素を透過する容器(膜)であればこれに限るものではない。酸素ガスバリア性や水蒸気バリア性を特徴とする容器であっても、多くの場合、最小の分子である水素分子は問題なく透過できる。なお、生体適用液の容器は、水素を吸着/分離し透過させる(好ましくは選択的に透過させる)一方、一旦透過し生体適用液に含有されるようになった水素については液内に安定的に保持されるよう、水素の透過方向を非可逆的に制御する処理が施されているのであればさらに望ましい。また、点滴等において生体適用液の消費量を確認するためにも、内容物の水位を外側から確認できる程度以上の半透明または透明容器であることが望ましい。
A suitable container for
なお、既存の生体適用液に対して、容器の外側から水素分子を含有させることのできる本発明は、容器の内容物に手を加えることなく「非破壊的に(開封することなく)」水素分子を含有させることを特徴とする。すなわち、本発明は、基本的に、外界に対して閉じられて(又は密閉されて)おり使用時にはじめて開封されるか、一旦開封されたとしても本発明実施時には閉じられている容器に対して用いられることを特徴とする。 The present invention, which can contain hydrogen molecules from the outside of a container with respect to an existing biological application liquid, is “non-destructively (without opening)” hydrogen without modifying the contents of the container. It is characterized by containing molecules. That is, the present invention is basically a container that is closed (or sealed) to the outside world and opened for the first time during use, or even if it is once opened, it is closed when the present invention is implemented. It is used.
さらに、水素分子を含有させた生体適用液を容器ごと冷凍することで、水素分子の容器からの抜けを防止することができる。冷凍過程における水素分子の抜けを考慮すると、冷凍時間はできるだけ短い方が好ましく、具体的には、10時間以内に水素含有生体適用液の少なくとも80%容量が、それ以上に好ましくは5時間以内に水素含有生体適用液の少なくとも80%容量が、それ以上に好ましくは3時間以内に水素含有生体適用液の少なくとも80%容量が、それ以上に好ましくは1時間以内に少なくとも水素含有生体適用液の80%容量が、それ以上に好ましくは0.5時間以内に少なくとも水素含有生体適用液の80%容量が、凍らされることが望ましく、また、24時間後に一部又は全部を解凍した直後の水素含有生体適用液の溶存水素濃度が、少なくとも0.05ppm以上、好ましくは0.1ppm以上、好ましくは0.2ppm以上、それ以上に好ましくは0.3ppm以上、それ以上に好ましくは0.4ppm以上、それ以上に好ましくは0.5ppm以上、それ以上に好ましくは0.6ppm以上、それ以上に好ましくは0.7ppm以上、それ以上に好ましくは0.8ppm以上、それ以上に好ましくは0.9ppm以上、それ以上に好ましくは1.0ppm以上保持されていることが望ましい。 Furthermore, the biological application liquid containing hydrogen molecules can be frozen together with the container to prevent the hydrogen molecules from coming out of the container. Considering the loss of hydrogen molecules during the freezing process, the freezing time is preferably as short as possible. Specifically, at least 80% of the hydrogen-containing biological fluid is within 10 hours, more preferably within 5 hours. At least 80% volume of the hydrogen-containing bioapplication liquid, more preferably at least 80% volume of the hydrogen-containing bioapplication liquid within 3 hours, more preferably at least 80% of the hydrogen-containing bioapplication liquid within 1 hour. % Volume, more preferably at least 80% of the hydrogen-containing bioapplication fluid within 0.5 hours, should be frozen, and hydrogen content immediately after thawing part or all after 24 hours The concentration of dissolved hydrogen in the biological application liquid is preferably at least 0.05 ppm or more, preferably 0.1 ppm or more, preferably 0.2 ppm or more. 0.3 ppm or more, more preferably 0.4 ppm or more, more preferably 0.5 ppm or more, more preferably 0.6 ppm or more, more preferably 0.7 ppm or more. It is preferably 0.8 ppm or more, more preferably 0.9 ppm or more, more preferably 1.0 ppm or more.
一般的に、本発明の「水素貯蔵器」と「生体適用液の容器」は、貯蔵器または容器の水素透過性の高低によって分けられる。そして、水素貯蔵器として相応しいのは、水素透過性が高くない容器であり、生体適用液の容器として相応しいのは、水素透過性が高い容器であるととりあえずは言うことができる。ただし厳密には、上述のように、最小の分子である水素分子は時間をかければ多くの容器を透過し得るため、本発明の生体適用液の容器として相応しいのは、水素透過性が中程度〜高い容器である。ここで、水素透過性の中程度の容器とは、安定的にほぼ飽和濃度(水温20℃・1気圧で1.6ppm)を保つ、該容器内容積の20倍の体積の水素溶存水に、生理食塩液を満水またはほぼ満水に擁する該容器を5時間浸漬した際、該生理食塩液の溶存水素濃度が1ppb以上、好ましくは10ppb以上、特に好ましくは100ppb以上、0.8ppm未満になる容器であると言うことができる。生体適用液の容器が中程度以上の水素透過性を有するのであれば、本発明を用いて一定時間後には、該生体適用液は、望ましい溶存水素濃度に達せられ得ると見なすことができる。また、水素透過性の高い容器とは、生理食塩液を擁する該容器を5時間浸漬した際、該生理食塩液の溶存水素濃度が0.8ppm以上になる容器であると言うことができる。また、水素透過性の低い容器とは、生理食塩液を擁する該容器を5時間浸漬した際、該生理食塩液の溶存水素濃度が100ppb未満、好ましくは10ppb未満、特に好ましくは1ppb未満になる容器であると言うことができる。 In general, the “hydrogen reservoir” and “container for biological application liquid” of the present invention are divided according to the hydrogen permeability of the reservoir or container. A suitable hydrogen storage container is a container that does not have high hydrogen permeability, and a suitable container for a biological fluid is a container that has high hydrogen permeability. However, strictly speaking, as described above, the hydrogen molecule, which is the smallest molecule, can permeate many containers over a long period of time. ~ High container. Here, the hydrogen-permeable medium container stably maintains a saturated concentration (1.6 ppm at a water temperature of 20 ° C. and 1 atm.) In 20 times the volume of the hydrogen-dissolved water in the container. When the physiological saline solution is fully or substantially filled with water and immersed in the container for 5 hours, the dissolved hydrogen concentration of the physiological saline solution is 1 ppb or more, preferably 10 ppb or more, particularly preferably 100 ppb or more and less than 0.8 ppm. I can say that there is. If the bioappliance fluid container has moderate or higher hydrogen permeability, it can be considered that the bioappliance fluid can reach the desired dissolved hydrogen concentration after a certain time using the present invention. A container having high hydrogen permeability can be said to be a container in which the concentration of dissolved hydrogen in the physiological saline becomes 0.8 ppm or more when the container holding the physiological saline is immersed for 5 hours. A container having low hydrogen permeability means a container in which the concentration of dissolved hydrogen in the physiological saline is less than 100 ppb, preferably less than 10 ppb, and particularly preferably less than 1 ppb when the container containing the physiological saline is immersed for 5 hours. It can be said that.
生体適用液とは、注射、点滴、輸液などの用途に浸透圧調製された生理食塩水、水分、栄養、電解質補給等を行う注射用液や経口液、薬剤(プロスタグランジン等血管拡張剤や抗がん剤を含む)を溶解させられた注射用液や生理食塩液、液状薬剤、輸血に用いられる輸血製剤(輸血用血液)や自己血液、経腸液を含み、さらに臓器の保存のために調合された臓器保存液、がん免疫療法やワクチン療法等で用いられるリンパ球やワクチンを含んだ生体適用液、腹膜透析液、透析液、心筋保護薬などを含む、生体機能の維持向上や疾病・疾患の予防または治療等を意図して経口的または非経口的に生体に適用される液体全般を示す概念である。また、本明細書においては、生体適用液という語で生体の生体液または生体水そのものを指す場合もある。なお、生体適用液を注射する場合は、輸液バッグのような水素を透過する容器を用いて、該生体適用液に本発明の非破壊的な水素含有処理を行った後、バッグ口部に注射器を刺し、必要量をシリンジに吸い上げて用いればよい。 Biologically applied fluids include saline, water, nutrients, electrolyte replenishment for injections, infusions, infusions, fluids for injection, oral fluids, drugs (vasodilators such as prostaglandins, Injectable solution and physiological saline solution (including anticancer drugs), liquid drugs, transfusion preparations used for blood transfusion (blood for transfusion), autologous blood, enteral fluid, and for organ preservation Maintenance and improvement of biological functions and diseases including prepared organ preservation solution, biologically applied solution containing lymphocytes and vaccine used in cancer immunotherapy and vaccine therapy, peritoneal dialysis solution, dialysis solution, myocardial protective agent, etc. -It is a concept that indicates all liquids that are applied to living bodies orally or parenterally for the purpose of preventing or treating diseases. In the present specification, the term “biologically applied liquid” may refer to biological biological fluid or biological water itself. In the case of injecting a bioapplied solution, a non-destructive hydrogen-containing treatment of the present invention is performed on the bioapplied solution using a hydrogen-permeable container such as an infusion bag, and then a syringe is placed in the bag mouth. Can be used by sucking the required amount into a syringe.
水素貯蔵器とは、外部から器内に供給される水素、または貯蔵器自体が備える手段を通じて器内に供給される水素を一定時間保持することのできる容器全般を示す。水素の減衰分を考慮して水素を供給することも可能であるが、供給された水素をより長時間保持するためには、基本的にガス透過性が相対的に低い容器が望まれる。同様に、器内に供給された水素が大気中へ散逸することを防ぐため、開閉式の上蓋などにより必要に応じて器内を閉鎖又は密閉できるよう設計されていることが望ましい。また、水素の生体適用液への透過または浸透効率を高めるために、あるいは生体適用液の溶存水素濃度を選択するために、加圧(圧力調整)装置、冷却(温度調整)装置、水素濃度調整装置(あるいはそのための指示書)、浸漬/曝露時間調整装置(あるいはそのための指示書)が備えられていることが望ましい。なお、水素貯蔵器を加圧する場合は、1.0気圧以上、好ましくは1.2気圧以上、より好ましくは1.5気圧以上、特に好ましくは2.0気圧以上の圧を加えることが望ましい。 The hydrogen reservoir refers to all containers that can hold hydrogen supplied into the vessel from the outside or hydrogen supplied into the vessel through means provided in the reservoir itself for a certain period of time. Although it is possible to supply hydrogen in consideration of the decay of hydrogen, in order to keep the supplied hydrogen for a longer time, a container having a relatively low gas permeability is basically desired. Similarly, in order to prevent the hydrogen supplied into the vessel from being dissipated into the atmosphere, it is desirable that the inside of the vessel is designed to be closed or sealed as required by an openable top lid or the like. Also, in order to increase the permeation or penetration efficiency of hydrogen into the biological application liquid, or to select the dissolved hydrogen concentration of the biological application liquid, a pressurization (pressure adjustment) device, a cooling (temperature adjustment) device, a hydrogen concentration adjustment It is desirable to have a device (or instructions for it) and a dipping / exposure time adjustment device (or instructions for it). In the case of pressurizing the hydrogen reservoir, it is desirable to apply a pressure of 1.0 atm or higher, preferably 1.2 atm or higher, more preferably 1.5 atm or higher, and particularly preferably 2.0 atm or higher.
こうした水素貯蔵器は、容器サイズによる限定を受けるものではなく、減圧症の治療に一般に用いられる再圧室のように、水素分子が供給される部屋自体をひとつの水素貯蔵器とみなすこともできる。 Such a hydrogen reservoir is not limited by the size of the container, and a room to which hydrogen molecules are supplied can be regarded as one hydrogen reservoir, such as a repressure chamber generally used for treating decompression sickness. .
水素貯蔵器に供給される水素の運搬体として、「水素含有水」など水素分子を含有する液体、または「水素含有ガス」など水素分子を含有する気体、水素吸蔵合金など水素分子を含有する固体などがあるが、これに限るものでもなければ、液晶などその他あり得る中間的な相を除外するものではない。なお、本明細書において、「水素分子を含有する液体」のことを指す発明者等の意図にも係らず、単に「水素含有水」と記載されることがある。しかし、本発明の水素を含有させる液状の運搬体は水だけに限定されるものではないので、「水素含有水」は、文脈に応じて適宜、「水素分子を含有する液体」または「水素含有液」と読み換えられ得るものとする。 As a hydrogen carrier to be supplied to the hydrogen reservoir, a liquid containing hydrogen molecules such as “hydrogen-containing water”, a gas containing hydrogen molecules such as “hydrogen-containing gas”, or a solid containing hydrogen molecules such as a hydrogen storage alloy However, the present invention is not limited to this, and does not exclude other possible intermediate phases such as liquid crystal. In the present specification, the term “hydrogen-containing water” may be simply described regardless of the intentions of the inventors and the like indicating “a liquid containing hydrogen molecules”. However, since the liquid carrier containing hydrogen according to the present invention is not limited to water, “hydrogen-containing water” may be “liquid containing hydrogen molecules” or “hydrogen-containing” as appropriate depending on the context. It can be read as “liquid”.
ここで、「水素含有水」は、水素ガスを水にバブリングする、加圧下で水素ガスを水に溶解させる、水を電気分解する、化学反応(例えば、マグネシウムや亜鉛等水素よりイオン化傾向の高い金属と水による水素発生反応)により水中に水素を発生させるなどの手段を通じて製造されるが、これに限るものではない。水素含有水における溶存水素濃度は、少なくとも、水素を含有させられる対象となる生体適用液以上であるべきだが、作業の効率性などを考慮し、水温20℃・1気圧下で、0.01mg/L以上、それ以上に好ましくは0.05mg/L以上、それ以上に好ましくは0.1mg/L以上、それ以上に好ましくは1.0mg/L以上、それ以上に好ましくは飽和濃度、それ以上に好ましくは安定的に飽和濃度(ほぼ飽和濃度を少なくとも3時間以上維持)であることが望まれる。なお、こうした水素含有液は、安全面で配慮が要求される後述の水素含有ガスに比べて取扱い易いという利点がある。 Here, “hydrogen-containing water” means that hydrogen gas is bubbled into water, hydrogen gas is dissolved in water under pressure, water is electrolyzed, and a chemical reaction (for example, magnesium, zinc, etc. has a higher ionization tendency than hydrogen). It is produced through means such as generation of hydrogen in water by a metal and water hydrogen generation reaction), but is not limited thereto. The dissolved hydrogen concentration in the hydrogen-containing water should be at least equal to or higher than the biological application liquid that is to contain hydrogen, but considering the work efficiency, etc., at a water temperature of 20 ° C. and 1 atm, 0.01 mg / L or more, more preferably 0.05 mg / L or more, more preferably 0.1 mg / L or more, more preferably 1.0 mg / L or more, more preferably saturation concentration, more Preferably, it is desirable that the concentration is stably saturated (mainly saturated at least 3 hours or more). Such a hydrogen-containing liquid has an advantage that it is easier to handle than a hydrogen-containing gas described later, which requires safety considerations.
また、生体適用液の容器に安定的に高濃度(0.05mg/L以上)の水素を接触させておくために、水素貯蔵器は、器内に供給される水など液体に水素ガスを供給する装置を備えているか、器内に供給される水など液体を連続的に電解処理できる電解水生成装置を備えている(または水素貯蔵器自体がそうした電解水生成装置の一部(陰極室)である)ことが望ましい。図2に示す実施形態でいえば、水素貯蔵器2g内へ、電解槽ハウジング2dの陰極室にて生成された水素含有水を循環させることで実現できる。また図3及び図4に示す実施形態でいえば、電解槽ハウジング3d,4dの陰極室が水素貯蔵器そのものを構成する。
また、水素貯蔵器が、水素貯蔵器内の水素ガス濃度または溶存水素濃度を一定範囲に維持・管理することを目的とした装置を備えていることも望ましいことである。一例としては、溶存水素量測定器およびその計測信号に基づき、水素貯蔵器内の水素ガス濃度または溶存水素濃度が一定値以下になった場合に電解処理を開始(再開)する又は水素ガスを供給(再供給)することを特徴とする装置が考えられる。
また、水素貯蔵器が、生体適用液の浸漬時間を制御することを目的とした装置を備えていることも望ましいことである。一例としては、生体適用液に含有させたい溶存水素の目標値、および/または該生体適用液の容器特徴(材質、厚み、または水素透過性等)に応じて、タイマー時間をセットすることを特徴とする装置が考えられる。
また、水素貯蔵器が、生体適用液をサンプリングすることなく、レーザーや赤外線等を用いて、該生体適用液の溶存水素濃度を非破壊的にモニタリングする装置を備えていることは望ましいことである。
また、水素貯蔵器が、水素貯蔵器内の液温または気温を制御する装置を備えていることは望ましいことである。
In addition, in order to keep a high concentration (0.05 mg / L or more) of hydrogen in contact with the container for biological application liquid stably, the hydrogen reservoir supplies hydrogen gas to a liquid such as water supplied into the vessel. Or an electrolyzed water generating device capable of continuously electrolyzing a liquid such as water supplied into the vessel (or a part of such an electrolyzed water generating device (cathode chamber). It is desirable that In the embodiment shown in FIG. 2, it can be realized by circulating the hydrogen-containing water generated in the cathode chamber of the
It is also desirable that the hydrogen storage device is provided with an apparatus intended to maintain and manage the hydrogen gas concentration or dissolved hydrogen concentration in the hydrogen storage device within a certain range. As an example, based on the dissolved hydrogen amount measuring instrument and its measurement signal, when the hydrogen gas concentration or dissolved hydrogen concentration in the hydrogen reservoir falls below a certain value, the electrolytic treatment starts (restarts) or supplies hydrogen gas An apparatus characterized by (re-supply) is conceivable.
It is also desirable that the hydrogen reservoir is equipped with a device intended to control the immersion time of the biological application liquid. As an example, the timer time is set according to the target value of dissolved hydrogen to be contained in the biological application liquid and / or the container characteristics (material, thickness, hydrogen permeability, etc.) of the biological application liquid. A device can be considered.
In addition, it is desirable that the hydrogen storage device is provided with a device that non-destructively monitors the concentration of dissolved hydrogen in the biological application liquid using a laser, infrared rays, or the like without sampling the biological application liquid. .
In addition, it is desirable that the hydrogen storage device includes a device for controlling the liquid temperature or the air temperature in the hydrogen storage device.
また、生体に対する充分な効能効果を期すためにも、水素含有生体適用液の溶存水素(以下、DH)濃度は、気温20℃・1気圧下で、製造時、0.01mg/L以上、それ以上に好ましくは0.05mg/以上、それ以上に好ましくは0.1mg/以上、それ以上に好ましくは0.2mg/L以上、それ以上に好ましくは0.4mg/L以上、それ以上に好ましくは0.6mg/L以上、それ以上に好ましくは0.8mg/L以上、それ以上に好ましくは1.0mg/L以上であることが望ましい。 In addition, in order to achieve a sufficient efficacy effect on the living body, the dissolved hydrogen (hereinafter referred to as DH) concentration of the hydrogen-containing living body application liquid is 0.01 mg / L or more at the time of manufacture at a temperature of 20 ° C. and 1 atmosphere. More preferably 0.05 mg / L or more, more preferably 0.1 mg / L or more, more preferably 0.2 mg / L or more, more preferably 0.4 mg / L or more, more preferably It is desirable to be 0.6 mg / L or more, more preferably 0.8 mg / L or more, and even more preferably 1.0 mg / L or more.
水素含有生体適用液の適応領域となり得る疾病・疾患には、薬物や有害物質による肝障害、虚血性再灌流障害、動脈硬化などの循環器系疾患、胃潰瘍、胃粘膜障害などの消化器官系疾患、呼吸器系疾患、糖尿病の合併症(例えば高血圧、脳梗塞、心筋梗塞など)、腎疾患、白内障、皮膚疾患、各種炎症性疾患、神経疾患、癌、老化などの、フリーラジカルや過酸化脂質に起因する酸化ストレス性疾患が含まれ、特に虚血性再灌流障害等の急性酸化ストレスが係る疾患には適しているがこれらに限るものではない。
また、がん治療に伴う副作用の多くは活性酸素が関与しているが、水素含有生体適用液(または水素含有抗がん剤)を、がん治療中、またはその前後に患者に投与することにより、副作用を抑えながら治療を遂行することができる。
なお、水素分子の反応性を高めるために、必要に応じて、貴金属コロイド(白金やパラジウムなど)などの触媒を生体適用液に極微量添加してもよい。
Diseases / disorders that can be applied to hydrogen-containing biological fluids include liver damage caused by drugs and harmful substances, ischemic reperfusion injury, cardiovascular diseases such as arteriosclerosis, gastrointestinal diseases such as gastric ulcer and gastric mucosal injury , Respiratory diseases, diabetic complications (eg hypertension, cerebral infarction, myocardial infarction, etc.), renal diseases, cataracts, skin diseases, various inflammatory diseases, neurological diseases, cancer, aging, free radicals and lipid peroxides It is suitable for diseases involving acute oxidative stress, such as ischemic reperfusion injury, but is not limited thereto.
Many of the side effects associated with cancer treatment involve active oxygen, but a hydrogen-containing biological fluid (or hydrogen-containing anticancer agent) should be administered to patients during or before cancer treatment. Thus, treatment can be performed while suppressing side effects.
In order to enhance the reactivity of hydrogen molecules, a catalyst such as a noble metal colloid (platinum, palladium, etc.) may be added in a very small amount to the biological application liquid as necessary.
本発明は、既存の生体適用液が有する本来の効能に、新たな効能を付加することを目的に、生体適用液を擁する水素透過性のある非開封容器に、容器の外側から水素分子を接触させることを通じて、非破壊的に、生体適用液に水素分子を含有させることを特徴とする。 In order to add a new effect to the original effect of an existing biological application liquid, the present invention contacts a hydrogen permeable non-opened container holding the biological application liquid from the outside of the container. In other words, the biological application liquid contains hydrogen molecules in a non-destructive manner.
水素透過膜を介して気中の水素ガスを超純水に含有させる方法は、半導体基盤の表面洗浄などの技術分野で公知であったにもかかわらず、生体適用液を擁する水素透過性のある非開封容器に、容器の外側から水素ガスを接触させることを通じて、生体適用液に水素分子を含有させる方法は今まで考えられたことがなかった。その理由は、容器が水素透過性であるということは、水素が入りやすいこととともに、出やすいことも意味するため、「水素」透過性のある容器に収容された「水素」含有生体適用液は、少なくとも製品の有効期間のあいだ有効成分を安定的に保持しつつ、かつ、使用時には生体(ヒトの他、犬、猫、あるいは競争馬等の動物を含む)に一定量の有効成分を送り届けなければならないという要請を満たすことが出来ないことは自明であったからである。 Although the method of incorporating the hydrogen gas in the air through the hydrogen permeable membrane into the ultrapure water is known in the technical field such as the surface cleaning of the semiconductor substrate, it has hydrogen permeability with a living body application liquid. There has never been considered a method in which hydrogen molecules are contained in a biological application liquid by bringing hydrogen gas into contact with an unopened container from the outside of the container. The reason is that the fact that the container is permeable to hydrogen means that hydrogen easily enters and exits easily, so that the “hydrogen” -containing biological application liquid contained in the “hydrogen” -permeable container is In addition, a certain amount of the active ingredient must be delivered to the living body (including humans, animals such as dogs, cats, and competing horses) at the time of use while maintaining the active ingredient stably for at least the effective period of the product. It was obvious that it was not possible to satisfy the request.
事実、発明者等の観察では、水素を含有させた生体適用液は、容器の材質や厚み、または大気との接触面積等による変動はあるが、1時間におよそ20%〜30%以上の割合で、有効成分である水素分子を減衰させていく。すなわち、たとえ、水素分子を飽和濃度(20℃、1気圧で1.6ppm)にまで含有させた生体適用液であっても、24時間後には、およそ、その3654分の1〜169分の1である0.0004・・ppm〜0.009・・ppmの水素分子しか残存していない計算である。そして、いかなる医薬品であれ、これほどまでの減衰速度で有効成分を失っていく製剤形態であっては、実用に供することはできないと判断するのは当然である。 In fact, according to the observations by the inventors, the biological application liquid containing hydrogen varies depending on the material and thickness of the container, or the contact area with the atmosphere, but the rate is approximately 20% to 30% or more per hour. The hydrogen molecules that are the active ingredient are attenuated. That is, even if it is a biological application liquid containing hydrogen molecules up to a saturated concentration (1.6 ppm at 20 ° C. and 1 atm), about 24/1 to 1 / 169-169 This is a calculation in which only hydrogen molecules of 0.0004 ·· ppm to 0.009 ·· ppm remain. And it is natural to judge that any pharmaceutical product cannot be put to practical use in such a pharmaceutical form that loses the active ingredient at such a decay rate.
本発明は、水素を透過してしまう容器であっても、水素の減衰を事前に見込んで、医療の現場等で使用時に生体適用液に水素分子を含有させるのであれば、有効成分を減衰させながらも投与することは可能となり、ひいては、「水素を透過してしまうため、有効成分である水素分子が抜けてしまうというデメリット」を、「水素を透過してしまうため、理化学的純度と無菌性が保証されている市販の生体適用液を一切侵襲することなく、水素分子を生体適用液に含有させることができるというメリット」に変換することができるという発明者等の着想に基づいているのである。 Even if a container that permeates hydrogen, the present invention attenuates the active ingredient as long as hydrogen decay is anticipated in advance, and the biological application liquid contains hydrogen molecules at the time of use in the medical field. However, it is possible to administer the drug, and as a result, "permeate hydrogen, so that the hydrogen molecule that is the active ingredient escapes" is described as "permeate hydrogen, physicochemical purity and sterility. This is based on the idea of the inventors, etc., that it can be converted into a “merit that hydrogen molecules can be contained in the biologically applied liquid without invading any commercially available biologically applied liquid that is guaranteed by .
またそこから敷衍して、発明者等の着想は、医療の現場に限らず、例えば生体適用液の製造工場においても、製品のパッケージングが終了した工程の後工程において、本発明の非破壊的水素含有法を用いれば、既に市販されている全ての生体適用液に対して、それが本来的に有する効能や機能に加えて、水素分子に由来する新たな機能を追加的に付与することができるというところにまで及んでいる。製品出荷後の流通過程における水素分子の減衰は、上述のように、製品を冷凍して出荷するか、あるいは後述のように、生体適用液の容器を水素難透過性の外装袋でカバーする等の工夫を通じて解消できる。 In addition, the idea of the inventors etc. is not limited to the medical field, but, for example, in the manufacturing plant of the liquid for biological application, the non-destructive feature of the present invention can be used in the post-process after the product packaging is completed. If the hydrogen-containing method is used, in addition to the effects and functions inherently possessed by all biologically applied liquids already on the market, new functions derived from hydrogen molecules can be additionally provided. It extends to where it can be done. The decay of hydrogen molecules in the distribution process after product shipment is as described above, in which the product is frozen before shipment, or the biological fluid container is covered with a hydrogen-permeable outer bag as described later. It can be solved through ingenuity.
すなわち、本発明によれば、既存の製造工程に手を加えることなく容易に、生体適用液に水素を含有させることができる。言い換えれば、薬局方等の規格に基づき厳格な管理下で製造される内容物(生体適用液)に一切手を加えることなく、容器の外側から、水素という生体に安全なガスを極微量(1リットルあたり、数マイクログラム〜数ミリグラムオーダー)送り込むだけで、内容物本来の効能に新たな効能を付加することができる。
また、水素含有生体適用液を医療の現場等で使用時に調製する場合は、流通過程や保存期間における水素の浪費の心配がない。
さらに、既に水素分子を含有している生体適用液に対して、水素分子を補うことを目的に本発明を用いることができる。
That is, according to the present invention, hydrogen can be easily contained in the biological application liquid without modifying the existing manufacturing process. In other words, a very small amount of hydrogen-safe gas (1) from the outside of the container, without any modification to the contents (biologically applied liquid) manufactured under strict control based on the pharmacopoeia standards. Just by feeding in several micrograms to several milligrams per liter), a new effect can be added to the original effect of the contents.
In addition, when the hydrogen-containing biological application liquid is prepared at the time of use in the medical field or the like, there is no worry of wasting hydrogen during the distribution process or storage period.
Furthermore, the present invention can be used for the purpose of supplementing the biological application liquid already containing hydrogen molecules with hydrogen molecules.
以下、本発明の実施例を説明する。なお、本願において特に断りがない場合は、各種物性値を計測するのに用いた各種計器類は、pHメーター(温度計含む)が、株式会社堀場製作所製のpHメーター(本体の型式『D−13』、同プローブの型式『9620−10D』)であり、ORPメーターが、株式会社堀場製作所製のORPメーター(本体の型式『D−25』、同プローブの型式『9300−10D』)であり、ECメーターが、株式会社堀場製作所製のECメーター(本体の型式『D−24』、同プローブの型式『9382−10D』)であり、DOメーターが、株式会社堀場製作所製のDOメーター(本体の型式『D−2 5』、同プローブの型式『9520−10D』)であり、DHメーター(溶存水素計) が、東亜ディーケーケー株式会社製のDHメーター(本体型式『DHDI−1』、同電極(プローブ)型式、『HE−5321』、同中継器型式『DHM−F2』)である。 Examples of the present invention will be described below. Unless otherwise specified in the present application, various meters used for measuring various physical property values are pH meters (including thermometers) manufactured by HORIBA, Ltd. 13 ”, the probe type“ 9620-10D ”), and the ORP meter is an ORP meter manufactured by HORIBA, Ltd. (main body type“ D-25 ”, same probe type“ 9300-10D ”) The EC meter is an EC meter manufactured by HORIBA, Ltd. (main body model “D-24”, the same probe model “9382-10D”), and the DO meter is manufactured by HORIBA, Ltd. DH meter (dissolved hydrogen meter) is a DH meter (manufactured by Toa DK Corporation) (model “D-25”, model “9520-10D”). Integrated type "DHDI-1" is the same electrode (probe) Model, "HE-5321", the relay model "DHM-F2").
[実施例1]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、2L容量のポリプロピレン製の容器を使用した。この容器に、DH濃度1.2mg/Lの水素含有水を満たした後、生理食塩水の入った輸液バッグを浸漬させ容器上蓋を閉め放置した。水素含有水は1時間毎に同DH濃度の新しい水に交換した。5時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度及び電気伝導度(EC)を測定した。その際、水素含有水のDH濃度も測定した。なお水素含有生体適用液の製造装置の詳細については後述する。
生理食塩水のDH濃度は、0.6mg/L、ECは、1.2S/mであった。
水素含有水のDH濃度は、1.2mg/Lであった。
[Example 1]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 2 L polypropylene container was used as the hydrogen reservoir. This container was filled with hydrogen-containing water having a DH concentration of 1.2 mg / L, and then an infusion bag containing physiological saline was immersed therein, and the container was closed with the top lid closed. The hydrogen-containing water was replaced with fresh water having the same DH concentration every hour. After 5 hours, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration and electrical conductivity (EC) of physiological saline were measured. At that time, the DH concentration of hydrogen-containing water was also measured. The details of the apparatus for producing a hydrogen-containing biological fluid will be described later.
The DH concentration of physiological saline was 0.6 mg / L, and EC was 1.2 S / m.
The DH concentration of hydrogen-containing water was 1.2 mg / L.
[実施例2]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、2L容量のポリプロピレン製の容器を使用した。容器に、生理食塩水の入った輸液バッグを設置するとともに、ガス供給用の容器開口部よりチューブを通して、水素ガスを100mL/分の流速で通気させた。5時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度を測定した。
生理食塩水のDH濃度は、0.46mg/Lであった。
[Example 2]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 2 L polypropylene container was used as the hydrogen reservoir. An infusion bag containing physiological saline was placed in the container, and hydrogen gas was passed through the tube from the opening of the gas supply container at a flow rate of 100 mL / min. After 5 hours, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration of physiological saline was measured.
The DH concentration of physiological saline was 0.46 mg / L.
[実施例3]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、2L容量のポリプロピレン製の容器を使用した。この容器に、DH濃度0.9mg/Lの水素含有水を満たした後、生理食塩水の入った輸液バッグを浸漬させ容器上蓋を閉め放置した。1時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度を測定した。
生理食塩水のDH濃度は、0.18mg/Lであった。
[Example 3]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 2 L polypropylene container was used as the hydrogen reservoir. This container was filled with hydrogen-containing water having a DH concentration of 0.9 mg / L, and then an infusion bag containing physiological saline was immersed therein, and the container was closed with the top lid closed. After 1 hour, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration of physiological saline was measured.
The DH concentration of physiological saline was 0.18 mg / L.
[実施例4]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、電解水生成装置に接続された10L容量のポリプロピレン製の容器を使用した。
[Example 4]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 10 L capacity polypropylene container connected to the electrolyzed water generator was used as the hydrogen reservoir.
なお、この電解水生成装置は、先に出願しすでに公開され、この引用によって本願発明にその記載内容が取り込まれる再公表特許WO99/10286号に開示される電解槽および電解水生成装置である。すなわち、原水が導入される電解室と、前記電解室内と前記電解室外とのそれぞれに隔膜を挟んで設けられた少なくとも一対の電極板と、を有し、前記電解室外(開放系)の電極板が前記隔膜に接触または僅かな隙間を介して設けられており、前記電解室内に設けられた電極板を陰極とする一方で前記電解室外に設けられた電極板を陽極として両極間に電圧を印加する電源回路と、を備えた電解槽および電解水生成装置である。当該電解水生成装置の概要を図2(水素貯蔵器分離型)及び図3又は図4(水素貯蔵器一体型)に示す。 This electrolyzed water generating device is an electrolyzer and electrolyzed water generating device disclosed in the republished patent WO99 / 10286, which has been filed earlier and has already been published, and the contents of which are incorporated in this invention by this reference. That is, an electrolysis chamber into which raw water is introduced, and at least a pair of electrode plates provided with a diaphragm sandwiched between the electrolysis chamber and the outside of the electrolysis chamber, and an electrode plate outside the electrolysis chamber (open system) Is provided in contact with the diaphragm or through a slight gap, and the electrode plate provided in the electrolysis chamber is used as a cathode while the electrode plate provided outside the electrolysis chamber is used as an anode to apply a voltage between both electrodes. An electrolytic cell and an electrolyzed water generating device. The outline of the electrolyzed water generating apparatus is shown in FIG. 2 (hydrogen storage separated type) and FIG. 3 or FIG. 4 (hydrogen storage integrated type).
図2に示すように、電解水生成装置2dの入・出水口より伸びるホースを介して接続されたポリプロピレン製容器(水素貯蔵器)2gと電解水生成装置内を、水が間歇的に電解されながら循環することで、容器2g内の水は、安定的に飽和状態のDH濃度(20℃・1気圧下で、1.5〜1.6ppm)に保たれた。
As shown in FIG. 2, water is intermittently electrolyzed in a polypropylene container (hydrogen reservoir) 2g connected through a hose extending from the inlet / outlet of the electrolyzed
生理食塩水の入った輸液バッグを、上記容器2g内の水素含有水に浸漬し、容器上蓋を閉め放置した。5時間経過後に、容器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度、溶存酸素(DO)濃度、酸化還元電位(ORP)、及び電気伝導度(EC)を測定した。
生理食塩水のDH濃度は、0.8mg/L、DO濃度は、4.6mg/L、ORPは、−370mV、ECは、1.6S/mであった。
The infusion bag containing physiological saline was immersed in the hydrogen-containing water in 2 g of the container, and the container was closed with the lid on the container closed. After 5 hours, the infusion bag was taken out from the container and opened, and the DH concentration, dissolved oxygen (DO) concentration, redox potential (ORP), and electrical conductivity (EC) of physiological saline were measured.
The DH concentration of physiological saline was 0.8 mg / L, the DO concentration was 4.6 mg / L, the ORP was −370 mV, and the EC was 1.6 S / m.
上述の実施例1〜4では、水素貯蔵器内に1つの生体適用液が設置または浸漬させられたが、医療現場での実際的な使用を想定すると、1つの水素貯蔵器に複数の生体適用液をまとめて設置または浸漬できることが望まれる。しかしながら、個々の生体適用液に対して充分な量の水素を供給するためにも、一つの水素貯蔵器内にあまり多くの生体適用液が詰め込まれている状態は望ましくない。水素貯蔵器の容量は、実用性や処理効率などを考慮し、そこに設置または浸漬される生体適用液容量合計の1倍以上、好ましくは2倍以上、さらに好ましくは4倍以上であることが望ましい。 In the above-described Examples 1 to 4, one biological application liquid is installed or immersed in the hydrogen reservoir. However, assuming practical use in a medical field, a plurality of biological applications are applied to one hydrogen reservoir. It is desirable that the liquids can be installed or immersed together. However, in order to supply a sufficient amount of hydrogen to each biological application liquid, it is not desirable that a large amount of biological application liquid is packed in one hydrogen reservoir. The capacity of the hydrogen reservoir is at least 1 time, preferably at least 2 times, more preferably at least 4 times the total volume of the biological fluid to be installed or immersed therein, considering practicality and processing efficiency. desirable.
[実施例5]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を1つ、100mL容量の輸液バッグに入った市販の生理食塩水(マイラン製薬株式会社製、『日本薬局方生理食塩液 生食MP』)を2つ、の計3つを使用した。100mL生理食塩水のうち1つは、注射器を用いてバッグ口部よりヘッドスペースのエア抜き処理を行った。
[Example 5]
One commercially available physiological saline solution (Otsuka Pharmaceutical Co., Ltd., “Japanese Pharmacopoeia Saline Otsuka Raw Food Injection”) in a 500 mL volume infusion bag as a bio-applied solution, in a 100 mL volume infusion bag. Of two physiological saline (manufactured by Mylan Pharmaceutical Co., Ltd., “Japanese Pharmacopoeia Saline Saline MP”), a total of three. One of the 100 mL physiological saline was subjected to a head space air venting process from the bag mouth using a syringe.
水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、1.5〜1.6ppmのDH濃度に保たれた。水素含有水に3つの生理食塩水を浸漬し、容器上蓋を閉め放置した。5.5時間経過後に、容器から各生理食塩水を取りだし開封するとともに、それぞれのDH濃度を測定した。
生理食塩水(500mL)のDH濃度は、0.787mg/Lであった。
生理食塩水(100mL)のDH濃度は、0.34mg/Lであった。
生理食塩水(100mL、エア抜き)のDH濃度は、0.810mg/Lであった。
A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was kept at a DH concentration of 1.5 to 1.6 ppm. Three physiological saline solutions were immersed in hydrogen-containing water, and the container upper lid was closed and left standing. After 5.5 hours, each physiological saline was taken out from the container and opened, and each DH concentration was measured.
The DH concentration of physiological saline (500 mL) was 0.787 mg / L.
The DH concentration of physiological saline (100 mL) was 0.34 mg / L.
The DH concentration of physiological saline (100 mL, vented) was 0.810 mg / L.
本実施例には、生体適用液への水素含有処理に先立って、輸液バッグのヘッドスペースからエア抜きを行った例が含まれているが、こうした処理を行わない場合に比べて、多くの水素を含有させている。
すなわち、生体適用液の容器ヘッドスペースにおける空気や、生体適用液中に含まれる溶存ガス(溶存酸素)は、当該生体適用液への一定量以上の水素分子の含有を阻む要因であると考えられる。生体適用液へより多くの水素分子を含有させたい場合は、生体適用液の容器から余剰空気を抜くことにより、生体適用液中の溶存ガス(溶存酸素)を除去することが望ましい。
This example includes an example in which air is vented from the headspace of the infusion bag prior to the hydrogen-containing treatment in the biological application solution, but more hydrogen than in the case where such treatment is not performed. Is contained.
That is, the air in the container head space of the biological application liquid and the dissolved gas (dissolved oxygen) contained in the biological application liquid are thought to be factors that prevent the biological application liquid from containing a certain amount of hydrogen molecules. . When it is desired to contain more hydrogen molecules in the biological application liquid, it is desirable to remove the dissolved gas (dissolved oxygen) in the biological application liquid by removing excess air from the biological application liquid container.
本発明において、水素貯蔵器内の水素分子が気体として供給されるのであれ、液体として供給されるのであれ、生体適用液を水素分子へ接触させるに先立って、上記の手段や減圧などの手段を通じて、生体適用液の容器内のエアや溶存ガスを除去しておくことは望ましいことである。しかしそのなかでも、減圧などの手段を通じて、容器の外側から非破壊的に脱気することが最も望ましいことである。 In the present invention, whether the hydrogen molecule in the hydrogen reservoir is supplied as a gas or a liquid, prior to contacting the biological application liquid with the hydrogen molecule, the above means and means such as reduced pressure are used. It is desirable to remove the air and dissolved gas in the container for biological application liquid. However, among them, it is most desirable to deaerate non-destructively from the outside of the container through means such as decompression.
本発明の生体適用液への非破壊的水素含有処理は、生体適用液製造工場等の製造工程(主としてパッケージング後の工程)で実施されるほか、医療現場で、患者ごとの投与スケジュールに合わせて実施されることが想定される。その場合は、一度含有させた水素が容器を透過して再び抜け出ていくことを防止するため、投与開始予定時刻の直前に生体適用液への水素含有処理が終了するよう、看護担当部署の担当者などが先だって水素含有処理を開始しておくことが望ましい。この場合、看護担当者が、水素含有処理の諸条件(生体適用液の浸漬/曝露時間や、水素貯蔵器内のDH濃度/水素ガス混合濃度など)の調整を通じて、患者ごとに生体適用液へ含有させるDH濃度を選択・決定できることは大きなメリットである。 The non-destructive hydrogen-containing treatment for the biologically applicable liquid of the present invention is carried out in the manufacturing process (mainly the post-packaging process) of the biologically applicable liquid manufacturing factory, etc. To be implemented. In that case, in order to prevent hydrogen once contained through the container from escaping again, the department in charge of nursing should ensure that the treatment containing hydrogen in the biomedical solution ends immediately before the scheduled administration start time. It is desirable that the person etc. start the hydrogen-containing treatment first. In this case, the nursing staff adjusts the conditions for the hydrogen-containing treatment (such as the immersion / exposure time of the biologically applied liquid and the DH concentration / hydrogen gas mixed concentration in the hydrogen reservoir) to the biologically applied liquid for each patient. The ability to select and determine the DH concentration to be contained is a great merit.
ところで、生体適用液のDH濃度は、約0.01ppm、より好ましくは0.05ppm以上に達せられていることが望ましい。生体適用液のDH濃度が、約0.01ppmに達していれば、たとえば点滴時に、点滴開始までの準備時間や生体適用液が点滴チューブを通過する過程で減衰する水素分子の量を差し引いても、なお有効量である水素分子が血管到達時に確保されていると考えられるからである。 By the way, it is desirable that the DH concentration of the biological application liquid is about 0.01 ppm, more preferably 0.05 ppm or more. If the DH concentration of the biological application liquid reaches about 0.01 ppm, for example, at the time of infusion, even if the preparation time until the start of infusion or the amount of hydrogen molecules attenuated in the process of passing through the infusion tube is subtracted This is because an effective amount of hydrogen molecules is considered to be secured when the blood vessels reach.
発明者等は、プラスチック容器入り生体適用液を、ほぼ飽和濃度のDH濃度の水素含有水へ浸漬してからおよそ3時間のあいだに、生体適用液は急速に水素を溶存させつつ、当該水素含有水DH濃度のおよそ10〜40%のDH濃度に達する一方、その後は水素の溶存速度が比較的遅くなり、当該水素含有水のDH濃度に漸近していくことを確認した。 The inventors of the present invention applied the biological application liquid in a plastic container for about 3 hours after immersing it in hydrogen-containing water having a substantially saturated DH concentration, while the biological application liquid rapidly dissolved hydrogen, While reaching a DH concentration of approximately 10 to 40% of the water DH concentration, it was confirmed that the hydrogen dissolution rate thereafter became relatively slow and gradually approached the DH concentration of the hydrogen-containing water.
また、10時間を経過し、当該生体適用液のDH濃度が、当該水素含有水のDH濃度のおよそ60%〜90%に達した頃からは、水素の溶存速度は一層遅くなり、24時間を経過した後であっても当該水素含有水のDH濃度はほとんど変わらないことを確認した。 Also, after 10 hours have passed, when the DH concentration of the biological application liquid has reached approximately 60% to 90% of the DH concentration of the hydrogen-containing water, the hydrogen dissolution rate has become even slower, and 24 hours have passed. Even after the lapse of time, it was confirmed that the DH concentration of the hydrogen-containing water hardly changed.
したがって、その意味では、本発明における水素含有水DH濃度は、50.0ppb(0.05ppm/1)以上であることが好ましく、より好ましくは55.5ppb(0.05ppm/0.9)以上、それ以上に好ましくは62.5ppb(0.05ppm/0.8)以上、それ以上に好ましくは71.4ppb(0.05ppm/0.7)以上、それ以上に好ましくは83.3ppb(0.05ppm/0.6)以上であると言える。 Therefore, in that sense, the hydrogen-containing water DH concentration in the present invention is preferably 50.0 ppb (0.05 ppm / 1) or more, more preferably 55.5 ppb (0.05 ppm / 0.9) or more, More preferably 62.5 ppb (0.05 ppm / 0.8) or more, more preferably 71.4 ppb (0.05 ppm / 0.7) or more, more preferably 83.3 ppb (0.05 ppm) /0.6) or more.
ところで、治療のあいだ各患者に宛がわれるところの点滴(輸液)装置等に、水素含有生体適用液製造装置を周辺機器的に接続することもできる。この場合、患者は病院内を点滴(輸液)装置とともに移動することが想定されるため、装置に追加される機器類はできるだけ小さなものが好ましく、水素貯蔵器の容量も基本的には100または500mL容量の点滴(輸液)液1つを収容できる容量プラスアルファがあればよい。具体的には、前述の電解水生成装置や再公表特許WO99/10286号を参考に、そこに記載される電解槽を水素貯蔵器として利用することができる。上述の実施例4では、電解水生成装置の他にポリプロピレン製容器を使用し、生体適用液は、電解槽に接続された容器に浸漬させられたが、本例では電解水生成装置の電解槽そのものが水素(水素含有水)供給機能を備えた水素貯蔵器として使用されるため、生体適用液は電解槽そのものに浸漬させられることになる(図3及び図4参照)。 By the way, a hydrogen-containing biological application liquid production apparatus can also be connected to peripheral devices such as an infusion (infusion) apparatus that is addressed to each patient during treatment. In this case, since it is assumed that the patient moves in the hospital together with an infusion (infusion) device, the equipment added to the device is preferably as small as possible, and the capacity of the hydrogen reservoir is basically 100 or 500 mL. Any volume plus alpha that can accommodate one volume of infusion (infusion) solution is sufficient. Specifically, referring to the above-described electrolyzed water generating apparatus and the republished patent WO99 / 10286, the electrolytic cell described therein can be used as a hydrogen reservoir. In Example 4 described above, a polypropylene container was used in addition to the electrolyzed water generating apparatus, and the biological application liquid was immersed in a container connected to the electrolyzer, but in this example, the electrolyzer of the electrolyzed water generating apparatus. Since it itself is used as a hydrogen reservoir having a hydrogen (hydrogen-containing water) supply function, the biological application liquid is immersed in the electrolytic cell itself (see FIGS. 3 and 4).
点滴ライン以降の装置構成については基本的に特に変更する必要はないが、生体適用液が点滴ラインを通過する過程での水素分子の減衰を防ぐため、点滴ライン自体を、水素分子を含有する液体に浸漬させるか、水素分子を含有する気体に曝露させても良い。また、点滴装置に限らず、後述の透析装置を含むある種の(医療)機器を介して水素含有生体適用液を投与する場合であって、該水素含有生体適用液が生体に到達する過程で、水素分子が減衰することが想定される場合は、その過程において、該水素含有生体適用液が通過するライン等(水素分子を透過させることのできる場所)に、上記の方法などを用いて水素分子を接触させることを通じて、水素分子の減衰分を補完することは望ましいことである。 Basically, there is no need to change the device configuration after the infusion line, but in order to prevent hydrogen molecules from decaying in the process of passing through the infusion line, the infusion line itself is a liquid containing hydrogen molecules. Or may be exposed to a gas containing hydrogen molecules. Moreover, it is a case where a hydrogen-containing biological application liquid is administered via a certain kind of (medical) device including not only the drip device but also a dialysis apparatus, which will be described later, and the hydrogen-containing biological application liquid reaches the living body. When hydrogen molecules are expected to decay, in the process, hydrogen is applied to the line through which the hydrogen-containing biological application liquid passes (where hydrogen molecules can permeate) using the above method or the like. It is desirable to complement the decay of hydrogen molecules through contacting the molecules.
本例の場合、電解槽を介して生体適用液に水素を供給しながら点滴することも可能であるため、生体適用液への水素含有処理から実際に投与を開始するまでのタイムラグにおける容器から大気中への水素の散逸や点滴ラインでの水素の減衰を気にかける必要が少ない。 In the case of this example, it is also possible to infuse while supplying hydrogen to the biological application liquid via the electrolytic cell, so that the atmosphere from the container in the time lag from the hydrogen-containing treatment to the biological application liquid until the actual administration starts There is little need to worry about the dissipation of hydrogen into it or the attenuation of hydrogen in the drip line.
また、本発明は、以下のような構成をとることができる。すなわち、プラスチックバッグなど水素透過性が中程度または高い容器(以下、内容器)に入れられた生体適用液を内容器ごと、内容器よりも水素透過性の低いポータブルな水素貯蔵器(以下、外容器)に収容するとともに、外容器を、水素含有水など水素分子を含有する液体または気体で満たす。水素は、内容器の表面を透過し生体適用液に含有される一方、外容器に阻まれ、流通過程や保存期間においても、外界に散逸することが少ない。使用時には、外容器から生体適用液の入った内容器を取り出して使用するか、外容器と内容器をともに開封し、内容器を取り出さずにそのまま使用してもよい。通常、輸液バッグなどのプラスチック容器は、軽量で破損の可能性が少なく運搬や保管に都合が良い反面、薬液の変質や酸化劣化を防止するガスバリア性(酸素バリア性)は備えていないため、酸素による変質を受け易い薬液を使用する場合は、ガスバリア性を高められた外装袋で二次包装されるが、こうした既存の「バッグ―包装体」の組み合わせを適宜利用してもよい。 In addition, the present invention can take the following configurations. That is, a biological hydrogen storage solution (hereinafter referred to as “outside container”) that is placed in a medium or high hydrogen permeability container (hereinafter referred to as “inner container”) such as a plastic bag. And the outer container is filled with a liquid or gas containing hydrogen molecules such as hydrogen-containing water. While hydrogen permeates the surface of the inner container and is contained in the biological application liquid, it is blocked by the outer container, and is hardly dissipated to the outside world during the distribution process and storage period. At the time of use, the inner container containing the biological application liquid may be taken out from the outer container and used, or both the outer container and the inner container may be opened and used without taking out the inner container. In general, plastic containers such as infusion bags are lightweight and have a low possibility of breakage and are convenient for transportation and storage, but they do not have gas barrier properties (oxygen barrier properties) that prevent chemical deterioration and oxidative degradation. In the case of using a chemical solution that is susceptible to alteration due to the above, it is secondarily packaged in an outer bag having an improved gas barrier property, but such an existing “bag-packaging” combination may be used as appropriate.
また、本発明は、以下のような構成をとることができる。すなわち、上述の実施例4や点滴(輸液)装置の例に記載された、電解水生成装置に接続された水素貯蔵器や、電解槽として電解水生成装置の一部に組み込まれている水素貯蔵器、または上述の水素ガスを連続的に供給することのできる水素貯蔵器のように、外部から器内に供給される水素含有液、または貯蔵器自体が備える手段を通じて器内に供給される水素含有液のDH濃度を安定的に保持することのできる水素貯蔵器を有する第1の系が、水素を透過させることを特徴とする水素透過膜、好ましくはイオンも通さずにガスだけを通すガス透過膜、より好ましくは水素ガスだけを通す水素透過膜を介して、点滴液、透析液、輸血用血液など生体適用液を貯蔵するタンク、または生体適用液を流通させるパイプラインを有する第2の系に接続されて成る水素透過膜一体型水素含有生体適用液製造装置である。ここで第2の系は、系の外部と内部を分かつ境界の一部として水素透過膜を含みつつ閉鎖していることを特徴とする。水素透過膜は、以下で詳述される図5のように実際に境界の一部となっていることもあれば、図6のように閉鎖的なラインを介して第2の系と接続することで閉鎖的な系を形成していることもあるが、本願明細書では、ともに、水素透過膜を含みつつ閉鎖していると表現される。なお、ここで閉鎖しているとは、系外の物理的/化学的条件が系内に与える影響を限定的なものに止めるべく然るべき管理がなされていることを意味する。たとえば、生体適用液への菌・微生物のコンタミネーションを防ぐことを目的に非開封にされた容器や、老廃物の除去等を目的にダイアライザーへ導出された血液が、目的を果たした後に生体へ還流する回帰的なライン等は閉鎖しているとみなされる。本装置を用いれば、第1の系で製造された水素が、水素透過膜を介して第2の系の生体適用液に移行するが、水素を製造することを目的とする第1の系と、水素を生体適用液へ含有させることを目的とする第2の系が分離可能なシステムであるため、より厳格な衛生管理が要求される第2の系のみをクリーンルームに設置するなど柔軟な対応が取り易い。またここで、再公表特許WO99/10286号に記載される陽極隔膜接触型一槽式電解装置の陰極室側に水素透過膜を設けることで第1の系とし、該水素透過膜を介して、第1の系の陰極水中の水素ガスが第2の系の生体適用液へ移行することを特徴とするガス交換膜一体型電解槽を構成することもできる(図5参照)。 In addition, the present invention can take the following configurations. That is, the hydrogen storage connected to the electrolyzed water generating device described in Example 4 and the example of the infusion (infusion) device described above, or the hydrogen storage incorporated in a part of the electrolyzed water generating device as an electrolytic cell Hydrogen supplied into the vessel through a hydrogen-containing liquid supplied into the vessel from the outside, or means provided in the reservoir itself, such as a hydrogen vessel or a hydrogen reservoir capable of continuously supplying the hydrogen gas described above A hydrogen permeable membrane characterized in that the first system having a hydrogen reservoir capable of stably maintaining the DH concentration of the contained liquid allows hydrogen to pass therethrough, preferably a gas that passes only gas without passing ions. A second tank having a tank for storing a biologically applied liquid such as an infusion solution, a dialysate, or a blood for transfusion, or a pipeline for circulating the biologically applied liquid, through a permeable membrane, more preferably a hydrogen permeable membrane that allows only hydrogen gas to pass through. Contact with the system A hydrogen permeable membrane integrated hydrogen-containing biological applicable fluid producing device comprising a. Here, the second system is characterized in that it is closed while including the hydrogen permeable membrane as a part of the boundary between the outside and the inside of the system. The hydrogen permeable membrane may actually be a part of the boundary as shown in FIG. 5 described in detail below, or may be connected to the second system via a closed line as shown in FIG. In this specification, both are expressed as being closed while including the hydrogen permeable membrane. Here, the term “closed” means that appropriate management is performed to limit the influence of physical / chemical conditions outside the system on the system. For example, unopened containers for the purpose of preventing contamination of microorganisms and microorganisms in biological fluids, and blood that has been introduced to a dialyzer for the purpose of removing waste products, etc. A recursive line that circulates is considered closed. If this apparatus is used, the hydrogen produced in the first system is transferred to the biological application fluid of the second system through the hydrogen permeable membrane, and the first system intended to produce hydrogen Since the second system for the purpose of incorporating hydrogen into the biological application liquid is a separable system, only the second system requiring stricter hygiene management can be installed in a clean room. Is easy to take. Also, here, a first system is provided by providing a hydrogen permeable membrane on the cathode chamber side of the anode diaphragm contact type single tank electrolyzer described in the republished patent WO 99/10286, and through the hydrogen permeable membrane, A gas exchange membrane integrated electrolytic cell characterized in that hydrogen gas in the cathode water of the first system is transferred to the biological application liquid of the second system can also be configured (see FIG. 5).
また、第1の系に供給される水素分子の運搬体は、気体や液体などあらゆる相であり得る。またその製造方法も、水素ガスを適宜濃度でその他のガスに混合する、水素ガスを水にバブリングする、加圧下で水素ガスを水に溶解させる、水を電気分解する、化学反応(例えば、マグネシウムや亜鉛等水素よりイオン化傾向の高い金属と水による水素発生反応)により水中に水素を発生させるなどの方法を含むが、これに限るものではない。 Further, the carrier of hydrogen molecules supplied to the first system can be any phase such as gas or liquid. The production method also includes mixing hydrogen gas with other gas at an appropriate concentration, bubbling hydrogen gas into water, dissolving hydrogen gas in water under pressure, electrolyzing water, chemical reaction (for example, magnesium A method of generating hydrogen in water by a hydrogen generation reaction between a metal and water having a higher ionization tendency than hydrogen, such as zinc and zinc), but is not limited thereto.
またここで、第2の系において、生体適用液を流通させるパイプラインが生体に接続されており、生体より導出する(または導入されようとする)生体適用液(自己血液や自己体液などの生体液や生体水を含む)が、ラインを流通する過程で、必要に応じて老廃物など溶質の除去処理などを施されつつ、水素透過膜を介して、第1の系の水素を含有させるとともに、水素含有生体適用液として生体へ還流する(または導入される)ことを特徴とする、透析装置様の水素含有生体適用液の投与装置を構成することもできる。 Here, in the second system, a pipeline for circulating the biologically applied liquid is connected to the living body, and the biologically applied liquid (such as self-blood or self-body fluid) that is derived from (or is to be introduced to) the living body. (Including body fluids and biological water) in the course of flowing through the line, while removing solutes such as wastes as necessary, while containing hydrogen of the first system through the hydrogen permeable membrane In addition, a hydrogen-containing biologically-applied liquid administration device similar to a dialysis apparatus, which is refluxed (or introduced) into a living body as a hydrogen-containing biologically-applied liquid, can also be configured.
また、特に透析に本発明を用いることを考慮するならば、以下のような構成をとることができる。すなわち、多くの場合、透析施設では、患者の透析装置に供給される透析液は一元的に管理されている。すなわち、透析液は、水道水から精製水(RO水)を調製することを目的とする「水処理装置」、及び得られた精製水で透析液原液を薄めることを目的とする「透析液供給装置」を備えた施設内の専用設備において集約的に製造されている。したがって、水素含有透析液を製造することを検討する場合、こうした水処理装置または透析液供給装置において、一括して水素含有処理を行うことが最も効率的である。 Further, considering the use of the present invention for dialysis in particular, the following configuration can be adopted. That is, in many cases, in a dialysis facility, the dialysate supplied to the patient's dialysis machine is managed centrally. That is, the dialysate is a “water treatment apparatus” for the purpose of preparing purified water (RO water) from tap water, and the “dialysis solution supply” for the purpose of diluting the dialysate stock solution with the obtained purified water. Manufactured in a dedicated facility within the facility with "equipment". Therefore, when considering the production of a hydrogen-containing dialysate, it is most efficient to collectively perform the hydrogen-containing treatment in such a water treatment apparatus or dialysate supply apparatus.
しかし一方で、この場合、水素の投与を必要としない患者の透析液に対しても、無差別に、水素含有透析液が供給されてしまうという問題や、透析液供給装置から個々の患者の透析装置へ水素含有透析液が供給される過程において、水素が抜けてしまうという問題も想定されることを考慮すると、供給ラインを通じて透析液が透析装置に導入される手前、または透析装置の透析器(ダイアライザー)を通過する手前に、透析液に水素を含有させる装置を設けても良い。こうした装置として、例えば、上述の水素透過膜を用いた水素含有生体適用液製造装置を利用することができる。すなわち、第1の系を流れる安定的なDH濃度を有する水素含有液から、水素が、水素透過膜を介して第2の系を流れる透析液(供給ラインから透析装置へ供給されてくる透析液)に移行することを特徴とする装置を、水素含有透析液製造装置として利用することができる。また単に、上述の非破壊的な方法により水素含有させて得られた水素含有透析液を、透析装置手前の供給ラインまたはダイアライザーに流し込んでも良い。その後、水素含有透析液は、ダイアライザー内の中空糸膜など半透膜の周囲を流れつつ、膜を介して、浸透圧と拡散の原理に基づき、膜内を流れる患者血液と含有成分の濃度を均しくする過程において、一定量の水素を血液中へ移行させる。また、血液透析ではなく腹膜透析を行う場合は、製品パッケージに入れられた市販の腹膜透析液を、水素貯蔵器において、水素分子を含有する気体または液体に曝露または浸漬させるという方法をとることもできる。 On the other hand, however, in this case, the dialysis fluid of a patient who does not require the administration of hydrogen is indiscriminately supplied with the hydrogen-containing dialysis fluid, or the individual patient dialysis from the dialysis fluid supply device. In consideration of the possibility that hydrogen may escape during the process of supplying the hydrogen-containing dialysate to the device, the dialyzer (dialyzer (dialyzer) before the dialysate is introduced into the dialyzer through the supply line Before passing through the dialyzer), a device for allowing the dialysate to contain hydrogen may be provided. As such an apparatus, for example, a hydrogen-containing biological application liquid production apparatus using the above-described hydrogen permeable membrane can be used. That is, from a hydrogen-containing liquid having a stable DH concentration flowing through the first system, hydrogen is dialyzed from the hydrogen-permeable membrane through the second system (the dialysate supplied from the supply line to the dialyzer). ) Can be used as a hydrogen-containing dialysate production apparatus. Alternatively, the hydrogen-containing dialysate obtained by containing hydrogen by the above-described nondestructive method may be poured into a supply line or dialyzer before the dialyzer. After that, the hydrogen-containing dialysate flows around the semipermeable membrane such as the hollow fiber membrane in the dialyzer, and the concentration of the patient blood flowing through the membrane and the content of components through the membrane based on the principle of osmotic pressure and diffusion. In the process of equalization, a certain amount of hydrogen is transferred into the blood. When peritoneal dialysis is performed instead of hemodialysis, a commercially available peritoneal dialysis solution contained in a product package may be exposed to or immersed in a gas or liquid containing hydrogen molecules in a hydrogen reservoir. it can.
また、水素含有透析液が通過するダイアライザー内の中空糸膜など半透膜の一部又は全てを、白金やパラジウムなど水素触媒でコーティング等処理しておくことで、透析液中の水素分子が膜を介して患者血液へ移行する過程において、該水素触媒上で、水素分子の抗酸化力を血液中の酸化ストレスに対して直ちに発揮することができる。 In addition, hydrogen molecules in the dialysate can be treated by coating a part or all of a semipermeable membrane such as a hollow fiber membrane in a dialyzer through which hydrogen-containing dialysate passes with a hydrogen catalyst such as platinum or palladium. In the process of transferring to the patient's blood through the hydrogen catalyst, the antioxidant power of hydrogen molecules can be immediately exerted against the oxidative stress in the blood on the hydrogen catalyst.
また、本発明は、以下のような構成をとることができる。すなわち、上述の水素透過膜一体型水素含有生体適用液製造装置の応用例として、第1の系で製造された水素含有液に由来する水素を、水素透過能を有する水素透過膜を介して、第2の系の生体適用液へ移行させるに際し、当該水素透過膜をダイレクトに生体に接触させることを特徴とする水素含有生体適用液製造装置である。この場合、生体適用液とは、水素透過膜との接触を通じて、皮膚または粘膜を経て水素を含有させられるところの生体の生体液または生体水そのものを示す。具体的には、第1の系に接続されている水素透過膜を素材とするベルトなど皮膚(粘膜)接触体を、生体の適宜な部位に接触させることを通じて、皮膚接触体に移行した第1の系に由来する水素(必要に応じて、皮膚接触体内の液や水素吸蔵物質など適宜な運搬体に含有させられた水素)が、皮膚または粘膜を介して、生体液または生体水に含有させられることを特徴とする、水素含有生体液生成装置を構成することができる。 In addition, the present invention can take the following configurations. That is, as an application example of the hydrogen-permeable membrane-integrated hydrogen-containing biological application liquid production apparatus described above, hydrogen derived from the hydrogen-containing liquid produced in the first system is passed through a hydrogen-permeable membrane having hydrogen permeability. A hydrogen-containing bioapplied liquid production apparatus characterized by bringing the hydrogen permeable membrane into direct contact with a living body when transferring to a second system bioapplied liquid. In this case, the biological application liquid refers to biological liquid or biological water itself in which hydrogen is contained through the skin or mucous membrane through contact with the hydrogen permeable membrane. Specifically, the skin (mucosal) contact body such as a belt made of a hydrogen permeable membrane connected to the first system is brought into contact with an appropriate part of the living body, thereby moving to the skin contact body. Hydrogen derived from this system (if necessary, hydrogen contained in an appropriate carrier such as a liquid in the skin contact body or a hydrogen storage material) is contained in biological fluid or biological water via the skin or mucous membrane. Thus, a hydrogen-containing biological fluid generating device can be configured.
以下、上述の輸血製剤(輸血用血液)を含む血液製剤等、ヒト等生物由来の原材料から製造される生体適用液に本発明を用いる場合のメリットについて記載する。血液製剤は、通常、血液全てを有する全血製剤、赤血球、血漿、血小板等血液中の成分を遠心分離等によって物理的に分離した血液成分製剤、及び血漿中の成分、特にタンパク質を物理化学的に分離し精製した血漿分画製剤に分けられる。また、こうした血液製剤には、多くの場合、血液保存液 (CPD液)や赤血球保存用添加液(MAP液)等の保存液が含まれている。 Hereinafter, merits of using the present invention for biologically applied liquids manufactured from raw materials derived from organisms such as humans such as blood products including the above-mentioned blood transfusion products (blood for transfusion) will be described. Blood products usually include whole blood products containing all blood, blood component products obtained by physically separating blood components such as erythrocytes, plasma, and platelets by centrifugation, etc., and plasma components, particularly proteins, physicochemically. And separated into purified plasma fraction preparations. In many cases, such blood products contain a preservative solution such as a blood preservative solution (CPD solution) or a red blood cell preservative solution (MAP solution).
血液製剤に水素分子を含有させようとする場合、保存液に水素分子を含有させた後、全血、血液成分、又は血漿分画等と混合し製剤化する方法のほか、保存液を含む血液製剤に水素分子を含有させる方法がある。そして、保存液とともに、全血、血液成分、又は血漿分画に対しても水素分子を含有させることは望ましいことである。しかしながら、全血、血液成分、又は血漿分画、又はそれらを含有する血液製剤等の、生物由来の原材料、又は生物由来の原材料から製造される生体適用液に対して水素分子を直接的に含有させる場合、生理食塩液等に水素分子を含有させる場合以上のコンタミネーション防止への配慮が必要とされる。その意味で、製品パッケージの外側から水素分子を外挿する本発明の水素含有生体適用液の製造方法は、血液製剤等、生物由来の原材料から製造される生体適用液に対して特に好適に用いられると言える。さらに言えば、本発明のメリットを甘受し易いという意味で、製剤中に占める生物由来の原材料の割合が、10vol%以上、好ましくは50vol%以上、特に好ましくは80vol%以上、または5wt%以上、好ましくは45wt%以上、特に好ましくは75wt%以上の生体適用液に対して本発明の水素含有生体適用液の製造方法は、特に好適に用いられると言える。
また、こうした水素含有血液製剤は、生体へ輸血された際には酸化ストレス抑制を含む水素分子による薬効を目的に製造される他、水素分子の物理的・化学的な効果による血液製剤の有効期限延長、活性の強化、輸血に伴なう副作用の抑制等を目的に製造されても良い。また、一旦水素分子を飽和濃度にまで含有させられた水素含有生体適用液を、引き続き容器の外側から水素に接触させておくことは、水素の容器からの抜けを防止し、安定的に高い溶存水素濃度を維持できるという観点から望ましいことである。
When hydrogen molecules are to be included in blood products, in addition to the method in which hydrogen molecules are added to the preservation solution and then mixed with whole blood, blood components, or plasma fractions, etc., and blood containing the preservation solution There is a method of including hydrogen molecules in the preparation. And it is desirable to include hydrogen molecules in whole blood, blood components, or plasma fractions together with the preservation solution. However, it contains hydrogen molecules directly in biologically-applied raw materials such as whole blood, blood components, or plasma fractions, or blood products containing them, or biologically applied fluids produced from biologically-derived raw materials. In order to prevent contamination, it is necessary to consider the prevention of contamination more than when hydrogen molecules are contained in physiological saline or the like. In that sense, the method for producing a hydrogen-containing bioapplication liquid of the present invention in which hydrogen molecules are extrapolated from the outside of a product package is particularly preferably used for a bioapplication liquid produced from biological materials such as blood products. It can be said that. Furthermore, in the sense that it is easy to accept the merit of the present invention, the ratio of the raw material derived from the organism in the preparation is 10 vol% or more, preferably 50 vol% or more, particularly preferably 80 vol% or more, or 5 wt% or more, It can be said that the method for producing a hydrogen-containing bioapplication liquid of the present invention is particularly preferably used for a bioapplication liquid of preferably 45 wt% or more, particularly preferably 75 wt% or more.
In addition, these hydrogen-containing blood products are manufactured for the purpose of medicinal effects by hydrogen molecules including suppression of oxidative stress when transfused into a living body, and the expiration date of blood products due to the physical and chemical effects of hydrogen molecules It may be produced for the purpose of prolonging, enhancing activity, suppressing side effects associated with blood transfusion, and the like. In addition, if the hydrogen-containing biological application liquid once containing hydrogen molecules to a saturated concentration is kept in contact with hydrogen from the outside of the container, it prevents the hydrogen from coming out of the container and stably dissolves in a high concentration. This is desirable from the viewpoint of maintaining the hydrogen concentration.
以下、追加の実施例を記載する。
[実施例6]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、1.5L容量の浄水フィルター用ハウジングを使用した。水素貯蔵器に、生理食塩水の入った輸液バッグを設置するとともに、ガス供給用の容器開口部よりチューブを通して、100%水素ガスを100mL/分の流速で通気した。5時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度を測定した。
生理食塩水のDH濃度は、0.85mg/Lであった。
Additional examples are described below.
[Example 6]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 1.5 L capacity water purification filter housing was used as a hydrogen reservoir. An infusion bag containing physiological saline was installed in the hydrogen reservoir, and 100% hydrogen gas was passed through the tube from the gas supply container opening at a flow rate of 100 mL / min. After 5 hours, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration of physiological saline was measured.
The DH concentration of physiological saline was 0.85 mg / L.
[実施例7]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、1.5L容量の浄水フィルター用ハウジングを使用した。水素貯蔵器に、生理食塩水の入った輸液バッグを設置するとともに、ガス供給用の容器開口部よりチューブを通して、100%水素ガスを100mL/分の流速で通気した。15時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度を測定した。
生理食塩水のDH濃度は、1.18mg/Lであった。
[Example 7]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 1.5 L capacity water purification filter housing was used as a hydrogen reservoir. An infusion bag containing physiological saline was installed in the hydrogen reservoir, and 100% hydrogen gas was passed through the tube from the gas supply container opening at a flow rate of 100 mL / min. After 15 hours, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration of physiological saline was measured.
The DH concentration of physiological saline was 1.18 mg / L.
[実施例8]
生体適用液として、500mL容量の輸液バッグに入った市販の生理食塩水(大塚製薬株式会社製、『日本薬局方生理食塩液 大塚生食注』)を使用した。水素貯蔵器として、1.5L容量の浄水フィルター用ハウジングを使用した。水素貯蔵器に、生理食塩水の入った輸液バッグを設置するとともに、ガス供給用の容器開口部よりチューブを通して、50%水素ガスを100mL/分の流速で通気した。15時間経過後に、水素貯蔵器から輸液バッグを取りだし開封するとともに、生理食塩水のDH濃度を測定した。
生理食塩水のDH濃度は、0.59mg/Lであった。
[Example 8]
A commercially available physiological saline (Otsuka Pharmaceutical Co., Ltd., “Japan Pharmacopoeia physiological saline Otsuka raw food injection”) contained in an infusion bag having a capacity of 500 mL was used as a biological application solution. A 1.5 L capacity water purification filter housing was used as a hydrogen reservoir. An infusion bag containing physiological saline was installed in the hydrogen reservoir, and 50% hydrogen gas was passed through the tube from the gas supply container opening at a flow rate of 100 mL / min. After 15 hours, the infusion bag was taken out from the hydrogen reservoir and opened, and the DH concentration of physiological saline was measured.
The DH concentration of physiological saline was 0.59 mg / L.
[追加実施例の考察]
常温・常圧下で、100%水素ガス濃度の水素貯蔵器に維持された、500mL容量のプラスチック容器入りの生体適用液は、時間の経過とともに、水素分子を溶存させて行った。例えば、測定開始直後に0ppmであった生体適用液のDH濃度は、5時間経過後には0.85ppm程度(実施例6)となり、15時間経過後には1.18ppm程度となった(実施例7)。一方、水素貯蔵器中の水素ガス濃度が50%(100%の2分の1)である場合は、同じ15時間経過後であっても、生体適用液のDH濃度は、実施例7の半分である0.59ppmであった。
[Consideration of Additional Examples]
The biological application liquid in a plastic container with a capacity of 500 mL maintained in a hydrogen reservoir with a 100% hydrogen gas concentration at room temperature and normal pressure was obtained by dissolving hydrogen molecules over time. For example, the DH concentration of the biological application liquid that was 0 ppm immediately after the start of measurement became about 0.85 ppm after 5 hours (Example 6), and about 1.18 ppm after 15 hours (Example 7). ). On the other hand, when the hydrogen gas concentration in the hydrogen reservoir is 50% (half of 100%), the DH concentration of the biological application liquid is half that of Example 7 even after the same 15 hours have elapsed. It was 0.59 ppm which is.
このように、生体適用液中への水素分子の溶存量は雰囲気ガス中の水素ガス分圧に比例するため、20℃、1気圧における最終的な平衡状態においては、雰囲気ガスが水素100%(分圧760mmHG)ならば、生体適用液のDH濃度は1.6ppm(飽和水素濃度)で平衡となり、雰囲気ガスが水素3.125%(分圧23.75mmHG)ならば、生体適用液のDH濃度は0.05ppm(飽和水素濃度)で平衡となる。一方、容器を介して、雰囲気水素ガスが生体適用液中へ移行し平衡状態に達するまでには長時間を要するため、生体適用液を所定のDH濃度に導くためには、水素ガスは該DH濃度と平衡状態を保つ濃度(分圧)以上の濃度(分圧)であることが望ましい。すなわち、生体適用液のDH濃度を0.05ppmにするためには、雰囲気ガスは水素3.125%(分圧23.75mmHG)以上であることが望ましい。また、より高いDH濃度の生体適用液を得るために、雰囲気ガスは水素0.625%(分圧4.75mmHG)以上、それ以上に好ましくは3.125%(分圧23.75mmHG)以上、それ以上に好ましくは6.25%(分圧47.5mmHG)以上、それ以上に好ましくは25%(分圧190mmHG)以上、それ以上に好ましくは50%(分圧380mmHG)以上、それ以上に好ましくは75%(分圧570mmHG)以上、それ以上に好ましくは100%(分圧760mmHG)であることが望まれる。 Thus, since the dissolved amount of hydrogen molecules in the biological application liquid is proportional to the hydrogen gas partial pressure in the atmospheric gas, in the final equilibrium state at 20 ° C. and 1 atmosphere, the atmospheric gas is 100% hydrogen ( If the partial pressure is 760 mmHG), the DH concentration of the biologically applied liquid is equilibrated at 1.6 ppm (saturated hydrogen concentration), and if the atmospheric gas is 3.125% hydrogen (partial pressure 23.75 mmHG), the DH concentration of the biologically applied liquid is Becomes equilibrium at 0.05 ppm (saturated hydrogen concentration). On the other hand, since it takes a long time for the atmospheric hydrogen gas to move into the biological application liquid through the container and reach an equilibrium state, in order to bring the biological application liquid to a predetermined DH concentration, It is desirable that the concentration (partial pressure) be equal to or higher than the concentration (partial pressure) that maintains equilibrium with the concentration. That is, in order to make the DH concentration of the biological application liquid 0.05 ppm, it is desirable that the atmospheric gas is 3.125% hydrogen (partial pressure 23.75 mmHG) or more. Further, in order to obtain a biological application solution having a higher DH concentration, the atmospheric gas is 0.625% (partial pressure 4.75 mmHG) or more, more preferably 3.125% (partial pressure 23.75 mmHG) or more, More preferably 6.25% (partial pressure 47.5 mmHG) or more, more preferably 25% (partial pressure 190 mmHG) or more, more preferably 50% (partial pressure 380 mmHG) or more, more preferably Is 75% (partial pressure 570 mmHG) or more, more preferably 100% (partial pressure 760 mmHG).
また、水素貯蔵器が密閉容器である場合、生体適用液中への水素ガスの溶存とともに生体適用液容器から押し出された水素以外の溶存ガスが、密閉容器内の雰囲気ガスと置換されるため、雰囲気ガスを水素100%に保って置くことができない。したがって、雰囲気ガス中の水素を高濃度に保って置くためには、雰囲気ガスの一部を、爆発の危険性の少ない範囲で水素貯蔵器から排気しつつ、常に新たな水素ガスを供給し続けるような構造を有する水素貯蔵器を用いることが望まれる。 Further, when the hydrogen reservoir is a sealed container, dissolved gas other than hydrogen pushed out from the biologically applied liquid container with the dissolved hydrogen gas in the biologically applied liquid is replaced with the atmospheric gas in the sealed container, The atmosphere gas cannot be kept at 100% hydrogen. Therefore, in order to keep the hydrogen in the atmosphere gas at a high concentration, a part of the atmosphere gas is continuously exhausted from the hydrogen reservoir in a range where the risk of explosion is low, and new hydrogen gas is continuously supplied. It is desirable to use a hydrogen reservoir having such a structure.
また、水素貯蔵器への水素ガスの供給方法としては、大きく分けて、水素ガスボンベを用いる方法、電気分解により生成される水素ガスを用いる方法、化学反応により発生する水素ガスを用いる方法等があるが、ここでは例として、電気分解により生成される水素ガスを用いる方法に係わる実施形態を記載する。 The hydrogen gas supply method to the hydrogen reservoir is roughly divided into a method using a hydrogen gas cylinder, a method using hydrogen gas generated by electrolysis, a method using hydrogen gas generated by a chemical reaction, and the like. However, here, as an example, an embodiment related to a method using hydrogen gas generated by electrolysis will be described.
図6に示すように、再公表特許WO99/10286号に記載される陽極隔膜接触型一槽式電解装置6dにより生成される水素含有水を、水素透過膜6hを有する気液分離装置6jに通過させるとともに、分離した水素ガスを、任意の生体適用液バッグ6iを有する水素貯蔵器6nに供給することにより水素含有生体適用液を製造することができる。また別の例としては、図7に示すように、陽極隔膜接触型一槽式電解装置7dにより生成される水素含有水を別容器である水素貯蔵器7nに供給するとともに、水上置換の方法に従って適宜容器(水素透過性が高くない容器が好ましい)に水素ガスを回収することにより、該容器に設置された任意の生体適用液は水素分子を含有することができる。すなわち、陽極隔膜接触型一槽式電解装置と水上置換法を組み合わせることにより、気液分離膜装置や圧力・調整装置を必要とすることなく、比較的簡便に水素含有生体適用液を製造することができる。
以下、追加の実施例を記載する。
[実施例9]
生体適用液として、500mL容量のポリエチレンテレフタラート製容器に満水充填した生理食塩液を使用した。水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)に保たれた。水素含有水に生理食塩液を浸漬し、容器上蓋を閉め放置した。5時間経過後に、容器から生理食塩液を取りだし開封するとともに、そのDH濃度を測定した。
生理食塩液のDH濃度は、0.152mg/Lであった。
[実施例10]
生体適用液として、上記実施例9よりもやや肉厚の、500mL容量のポリエチレンテレフタラート製容器に満水充填した生理食塩液を使用した。水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)に保たれた。水素含有水に生理食塩液を浸漬し、容器上蓋を閉め放置した。5時間経過後に、容器から生理食塩液を取りだし開封するとともに、そのDH濃度を測定した。
生理食塩液のDH濃度は、0.115mg/Lであった。
[実施例11]
生体適用液として、500mL容量のアルミラミネート容器に満水充填した生理食塩液を使用した。水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)に保たれた。水素含有水に生理食塩液を浸漬し、容器上蓋を閉め放置した。5時間経過後に、容器から生理食塩液を取りだし開封するとともに、そのDH濃度を測定した。
生理食塩液のDH濃度は、0.006mg/Lであった。
[実施例12]
生体適用液として、500mL容量のアルミラミネート容器に満水充填した生理食塩液を使用した。水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)に保たれた。水素含有水に生理食塩液を浸漬し、容器上蓋を閉め放置した。20時間経過後に、容器から生理食塩液を取りだし開封するとともに、そのDH濃度を測定した。
生理食塩液のDH濃度は、0.016mg/Lであった。
[実施例13]
生体適用液として、血液保存液C液(成分(w/v%):クエン酸ナトリウム水和物 2.63、クエン酸水和物 0.327、ブドウ糖 2.32、リン酸二水素ナトリウム 0.251)28mlを含む200mL容量のポリ塩化ビニル容器「テルモ血液バッグCPD」(テルモ株式会社製)に採血した犬の静脈血液を使用した。水素貯蔵器として、実施例4と同じ電解水生成装置に接続された10L容量のポリプロピレン製の容器(図2参照)を使用した。上述したように、容器内の水素含有水は、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)に保たれた。水素含有水に血液バッグを浸漬し、容器上蓋を閉め放置した。5時間経過後に、容器から血液バッグを取りだし開封するとともに、そのDH濃度を、Unisense社製溶存水素測定装置(含・H2-N (Hydrogen Needle Sensor)、PA2000(2-Channel Picoammeter)、ADC-216(2-Channel A/D Converter))を用いて測定した。
血液のDH濃度は、0.85mg/Lであった。
[実施例14]
生体適用液として、上述の血液保存液C液28mlを含む200mL容量のポリ塩化ビニル容器「テルモ血液バッグCPD」(テルモ株式会社製)に採血した犬の静脈血液を使用した。水素貯蔵器として、1.5L容量の浄水フィルター用ハウジングを使用した。水素貯蔵器に、血液バッグを設置するとともに、ガス供給用の容器開口部よりチューブを通して、0.01MPaの圧力下で、100%水素ガスを100mL/分の流速で通気した。5時間経過後に、水素貯蔵器から血液バッグを取りだし開封するとともに、血液のDH濃度を、Unisense社製溶存水素測定装置(含・H2-N (Hydrogen Needle Sensor)、PA2000(2-Channel Picoammeter)、ADC-216(2-Channel A/D Converter))を用いて測定した。
血液のDH濃度は、0.87mg/Lであった。
以下、水素含有血液製剤のフリーラジカル消去反応を、フリーラジカル試薬であるdiphenylpicrylhydrazyl(DPPH)を用いて簡易的に測定した。
[実施例15]
ポリ塩化ビニル容器に入れられた上記の血液保存液C液に、実施例4に記載の装置を用いて水素分子を容器の外側から含有させ、DH濃度1.0ppmの水素含有血液保存液C液を得た。次に、この水素含有血液保存液C液で犬の静脈血液を1000倍に希釈することで得られた、水素含有血液製剤モデル溶液20ccに、触媒として5μgの白金コロイド(0.0005重量%の白金コロイド溶液を0.1g使用)を添加した後、0.625重量%のDPPHエタノール溶液(DPPH0.25g/エタノール40g)を約0.02gずつ滴下していき、その呈色変化を調べた。
水素含有血液製剤モデル溶液は、紫色を呈したDPPH7滴を琥珀色に変化させた。すなわち、875μg相当のDPPHを消去した。
1000倍に希釈された水素含有血液製剤モデル溶液では、血液に由来する赤色とDPPHに由来する琥珀色が混じり合ってしまい、8滴目以降の呈色反応については確認できなかったが、溶液をさらに希釈することで8滴目以降の呈色反応も確認できると考えられた。
[比較例1]
上記の血液保存液C液で犬の静脈血液を1000倍に希釈することで得られた、血液製剤モデル溶液20ccに、触媒として5μgの白金コロイド(0.0005重量%の白金コロイド溶液を0.1g使用)を添加した後、0.625重量%のDPPHエタノール溶液(DPPH0.25g/エタノール40g)を約0.02gずつ滴下していき、その呈色変化を調べた。
血液製剤モデル溶液は、紫色を呈したDPPHを琥珀色に全く変化させなかった。すなわち、DPPHを全く消去しなかった。
以下、水素透過性を有する内容器と、内容器よりも水素透過性の低いポータブルな水素貯蔵器の組み合わせからなる、水素含有血液製剤の実施形態を記載する。
[実施例16]
上述の血液保存液C液28mlを含む200mL容量のポリ塩化ビニル容器「テルモ血液バッグCPD」(テルモ株式会社製)に採血した犬の静脈血液を、その容器ごと、550mL容量のアルミパウチ容器に収容した後、ポリ塩化ビニル容器とアルミパウチ容器の間の空間を1.5ppmの溶存水素水で満たすとともに、アルミパウチ容器の開口部をヒートシールし24時間放置した。その後、アルミパウチ容器とポリ塩化ビニル容器を開封し、ポリ塩化ビニル容器中の血液製剤の溶存水素濃度を測定した。
測定には、Unisense社製溶存水素測定装置(含・H2-N (Hydrogen Needle Sensor)、PA2000(2-Channel Picoammeter)、ADC-216(2-Channel A/D Converter))を用いた。
血液製剤の溶存水素濃度は、600ppbであった。
[比較例2]
実施例13で製造した、製造時0.85mg/LのDH濃度であった水素含有血液製剤と同一ロットの水素含有血液製剤を、開封せずにそのまま24時間放置した。その後、ポリ塩化ビニル容器を開封し、ポリ塩化ビニル容器中の血液製剤の溶存水素濃度を測定した。
測定には、Unisense社製溶存水素測定装置(含・H2-N (Hydrogen Needle Sensor)、PA2000(2-Channel Picoammeter)、ADC-216(2-Channel A/D Converter))を用いた。
血液製剤の溶存水素濃度は、0ppbまたは検出限界以下であった。
As shown in FIG. 6, the hydrogen-containing water produced by the anode diaphragm contact-type one-
Additional examples are described below.
[Example 9]
As a biological application solution, a physiological saline solution filled with a 500 mL capacity polyethylene terephthalate container was used. A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was stably maintained at a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm). A physiological saline solution was immersed in hydrogen-containing water, and the upper lid of the container was closed and left standing. After 5 hours, the physiological saline solution was taken out from the container and opened, and its DH concentration was measured.
The DH concentration of the physiological saline was 0.152 mg / L.
[Example 10]
As the living body application liquid, a physiological saline solution filled with water in a 500 mL capacity polyethylene terephthalate container slightly thicker than Example 9 was used. A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was stably maintained at a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm). A physiological saline solution was immersed in hydrogen-containing water, and the upper lid of the container was closed and left standing. After 5 hours, the physiological saline solution was taken out from the container and opened, and its DH concentration was measured.
The DH concentration of the physiological saline was 0.115 mg / L.
[Example 11]
As a biological application solution, a physiological saline solution filled with a 500 mL capacity aluminum laminate container was used. A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was stably maintained at a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm). A physiological saline solution was immersed in hydrogen-containing water, and the upper lid of the container was closed and left standing. After 5 hours, the physiological saline solution was taken out from the container and opened, and its DH concentration was measured.
The DH concentration of the physiological saline was 0.006 mg / L.
[Example 12]
As a biological application solution, a physiological saline solution filled with a 500 mL capacity aluminum laminate container was used. A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was stably maintained at a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm). A physiological saline solution was immersed in hydrogen-containing water, and the upper lid of the container was closed and left standing. After 20 hours, the physiological saline solution was taken out from the container and opened, and its DH concentration was measured.
The DH concentration of the physiological saline was 0.016 mg / L.
[Example 13]
200 mL capacity containing 28 ml of blood preservation solution C (component (w / v%): sodium citrate hydrate 2.63, citric acid hydrate 0.327, glucose 2.32, sodium dihydrogen phosphate 0.251) The venous blood of a dog collected in a polyvinyl chloride container “Terumo Blood Bag CPD” (manufactured by Terumo Corporation) was used. A 10 L capacity polypropylene container (see FIG. 2) connected to the same electrolyzed water generator as in Example 4 was used as a hydrogen reservoir. As described above, the hydrogen-containing water in the container was stably maintained at a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm). The blood bag was immersed in hydrogen-containing water, and the container upper lid was closed and left standing. After 5 hours, the blood bag is removed from the container and opened, and the DH concentration is measured by Unisense's dissolved hydrogen measuring device (including H2-N (Hydrogen Needle Sensor), PA2000 (2-Channel Picoammeter), ADC-216. (2-Channel A / D Converter)).
The DH concentration of blood was 0.85 mg / L.
[Example 14]
As a living body application liquid, dog vein blood collected in a 200 mL capacity polyvinyl chloride container “Terumo Blood Bag CPD” (manufactured by Terumo Corporation) containing 28 ml of the above-mentioned blood preservation solution C was used. A 1.5 L capacity water purification filter housing was used as a hydrogen reservoir. A blood bag was installed in the hydrogen reservoir, and 100% hydrogen gas was aerated at a flow rate of 100 mL / min through the tube from the opening of the gas supply container under a pressure of 0.01 MPa. After 5 hours, the blood bag is removed from the hydrogen reservoir and opened, and the DH concentration in the blood is measured by Unisense's dissolved hydrogen measuring device (including H2-N (Hydrogen Needle Sensor), PA2000 (2-Channel Picoammeter), It was measured using ADC-216 (2-Channel A / D Converter).
The DH concentration of blood was 0.87 mg / L.
Hereinafter, the free radical scavenging reaction of the hydrogen-containing blood product was simply measured using diphenylpicrylhydrazyl (DPPH) which is a free radical reagent.
[Example 15]
Using the apparatus described in Example 4, hydrogen molecules are contained in the above blood preservation solution C contained in a polyvinyl chloride container from the outside of the container, and a hydrogen-containing blood preservation solution C having a DH concentration of 1.0 ppm. Got. Next, 5 μg of platinum colloid (0.0005 wt% of 0.0005 wt%) as a catalyst was added to 20 cc of a hydrogen-containing blood product model solution obtained by diluting dog vein blood 1000 times with this hydrogen-containing blood preservation solution C. After adding 0.1 g of a platinum colloid solution), about 0.02 g of a 0.625 wt% DPPH ethanol solution (DPPH 0.25 g / ethanol 40 g) was added dropwise, and the color change was examined.
In the hydrogen-containing blood product model solution, 7 drops of DPPH having a purple color were changed to amber. That is, DPPH corresponding to 875 μg was erased.
In the hydrogen-containing blood product model solution diluted 1000 times, the red color derived from blood and the amber color derived from DPPH were mixed, and the color reaction after the 8th drop could not be confirmed. It was considered that the color reaction after the 8th drop could be confirmed by further dilution.
[Comparative Example 1]
To 20 cc of the blood product model solution obtained by diluting the venous blood of the dog 1000 times with the above blood preservation solution C, 5 μg of platinum colloid (0.0005 wt% platinum colloid solution as a catalyst was added to 0.1 ml). 1 g) was added, and a 0.625 wt% DPPH ethanol solution (DPPH 0.25 g / ethanol 40 g) was dropped about 0.02 g at a time, and the color change was examined.
The blood product model solution did not change the purple-colored DPPH to amber at all. That is, DPPH was not erased at all.
Hereinafter, an embodiment of a hydrogen-containing blood product comprising a combination of an inner container having hydrogen permeability and a portable hydrogen reservoir having lower hydrogen permeability than the inner container will be described.
[Example 16]
The venous blood of a dog collected in a 200 mL polyvinyl chloride container “Terumo Blood Bag CPD” (manufactured by Terumo Corporation) containing 28 ml of the above-mentioned blood preservation solution C is housed in a 550 mL capacity aluminum pouch container. After that, the space between the polyvinyl chloride container and the aluminum pouch container was filled with 1.5 ppm of dissolved hydrogen water, and the opening of the aluminum pouch container was heat sealed and left for 24 hours. Thereafter, the aluminum pouch container and the polyvinyl chloride container were opened, and the dissolved hydrogen concentration of the blood product in the polyvinyl chloride container was measured.
For the measurement, a dissolved hydrogen measuring device (including H2-N (Hydrogen Needle Sensor), PA2000 (2-Channel Picoammeter), ADC-216 (2-Channel A / D Converter)) manufactured by Unisense was used.
The dissolved hydrogen concentration of the blood product was 600 ppb.
[Comparative Example 2]
The hydrogen-containing blood product of the same lot as the hydrogen-containing blood product produced in Example 13 and having a DH concentration of 0.85 mg / L at the time of manufacture was left as it was for 24 hours without opening. Thereafter, the polyvinyl chloride container was opened, and the dissolved hydrogen concentration of the blood product in the polyvinyl chloride container was measured.
For the measurement, a dissolved hydrogen measuring device (including H2-N (Hydrogen Needle Sensor), PA2000 (2-Channel Picoammeter), ADC-216 (2-Channel A / D Converter)) manufactured by Unisense was used.
The dissolved hydrogen concentration of the blood product was 0 ppb or below the detection limit.
Claims (2)
前記経口生体適用液が封入された前記容器に、該容器を開封することなく、当該容器の外側から水素分子を接触させる水素接触工程を有し、かつ、
前記水素分子透過性を有する容器を通じて、前記水素接触工程後に経口生体適用液に前記実質的に含有される溶存水素濃度は、気温20℃・1気圧下のとき、0.01mg/L以上であることを特徴とする水素を含有する経口生体適用液の製造方法。 A method for producing an oral bioapplication liquid containing hydrogen by substantially containing hydrogen molecules in an oral bioapplication liquid sealed in a hydrogen molecule-permeable container,
A hydrogen contact step in which hydrogen molecules are brought into contact from the outside of the container without opening the container in the container in which the oral bioapplication liquid is sealed; and
Through the container having hydrogen molecule permeability, the dissolved hydrogen concentration substantially contained in the oral biomedical solution after the hydrogen contact step is 0.01 mg / L or more at a temperature of 20 ° C. and 1 atm. A method for producing an oral bioapplication liquid containing hydrogen.
前記経口生体適用液が封入された前記容器を、該容器を開封することなく収容して、該容器の外側から該容器に水素分子を接触させる水素貯蔵器と、
前記水素貯蔵器に水素分子を供給する水素分子供給手段と、を備え、かつ、
前記水素分子透過性を有する容器を通じて、前記経口生体適用液に前記実質的に含有される溶存水素濃度は、気温20℃・1気圧下のとき、0.01mg/L以上であることを特徴とする水素を含有する経口生体適用液の製造装置。 An apparatus for producing an oral biological application liquid containing hydrogen by substantially containing hydrogen molecules in an oral biological application liquid sealed in a container having hydrogen molecule permeability,
A hydrogen reservoir that encloses the container filled with the oral biomedical solution without opening the container, and makes hydrogen molecules contact the container from the outside of the container;
A hydrogen molecule supply means for supplying hydrogen molecules to the hydrogen reservoir, and
The dissolved hydrogen concentration substantially contained in the oral biological fluid through the container having hydrogen molecule permeability is 0.01 mg / L or more at a temperature of 20 ° C. and 1 atm. An apparatus for producing an oral biological fluid containing hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042647A JP5266267B2 (en) | 2010-02-26 | 2010-02-26 | Method and apparatus for producing hydrogen-containing biological fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042647A JP5266267B2 (en) | 2010-02-26 | 2010-02-26 | Method and apparatus for producing hydrogen-containing biological fluid |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011177242A true JP2011177242A (en) | 2011-09-15 |
JP2011177242A5 JP2011177242A5 (en) | 2013-04-04 |
JP5266267B2 JP5266267B2 (en) | 2013-08-21 |
Family
ID=44689477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010042647A Expired - Fee Related JP5266267B2 (en) | 2010-02-26 | 2010-02-26 | Method and apparatus for producing hydrogen-containing biological fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5266267B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013119525A (en) * | 2011-12-06 | 2013-06-17 | New I Ten Rin Enterprise Co Ltd | Device for incorporating hydrogen ion into solution in container and method therefor |
WO2013157657A1 (en) * | 2012-04-20 | 2013-10-24 | 株式会社プロジェクトジャパン | Container with excellent airtightness and method for holding gas molecules or volatile components in container |
JP2014063146A (en) * | 2012-08-27 | 2014-04-10 | Takeo Nishi | Simulated medicine for injection simulator and manufacturing method |
JP2014118191A (en) * | 2012-12-18 | 2014-06-30 | Hikari Mirai:Kk | Method for dissolving hydrogen gas into object |
JP2014149232A (en) * | 2013-02-01 | 2014-08-21 | Suiso Kenko Igaku Labo Kk | Dissolved hydrogen detector and dissolved hydrogen detection method |
JP2014161605A (en) * | 2013-02-27 | 2014-09-08 | Nippon Torimu:Kk | Hydrogen addition device, and peritoneal dialyzer |
JP2015003871A (en) * | 2013-06-19 | 2015-01-08 | 扶桑薬品工業株式会社 | Oxidative stress inhibiting dialysis agent and method of preparing the same |
WO2015137247A1 (en) * | 2014-03-13 | 2015-09-17 | ナチュラン・インターナショナル有限会社 | Medical container |
WO2015137499A3 (en) * | 2014-03-13 | 2015-11-05 | MiZ株式会社 | Method for producing hydrogen-containing biological application solution, and exterior body therefor |
JP2018122938A (en) * | 2018-04-10 | 2018-08-09 | 株式会社光未来 | Method for dissolving hydrogen gas into object |
JP2020138130A (en) * | 2019-02-28 | 2020-09-03 | 岩谷産業株式会社 | Hydrogen dissolved solution production device and hydrogen dissolved solution production method |
WO2020179338A1 (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogen supplementation device and hydrogen supplementation method |
JP2020142208A (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogenation device, and determination method of degree-of-wear of hydrogen permeable membrane |
CN112601564A (en) * | 2018-09-21 | 2021-04-02 | 日本多宁股份有限公司 | Preparation device of peritoneal hydrogen-containing dialysate |
JP2022021279A (en) * | 2020-07-21 | 2022-02-02 | MiZ株式会社 | Compositions for preventing and/or ameliorating side effects of drug, symptoms associated with side effects of drug, and/or side effects associated with treatment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5940753B1 (en) * | 2016-03-07 | 2016-06-29 | 株式会社日本トリム | Equipment for producing hydrogen-containing peritoneal dialysis fluid |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129794A (en) * | 1997-07-08 | 1999-02-02 | Kurita Water Ind Ltd | Cleaning water for electronic material its reparation, and cleaning of electronic material |
WO1999010286A1 (en) * | 1997-08-27 | 1999-03-04 | Miz Co., Ltd. | Electrolytic cell and electrolyzed water generating device |
JP2002254078A (en) * | 2001-02-28 | 2002-09-10 | Nippon Torimu:Kk | Electrolytically-reduced water and method for producing the same |
JP2005126384A (en) * | 2003-10-24 | 2005-05-19 | Mizu Kk | Pharmacologically functional water and its use |
WO2005082384A1 (en) * | 2004-02-27 | 2005-09-09 | Nihon Trim Co., Ltd. | Artificial physiological salt solution and process for producing the same |
JP2007254435A (en) * | 2006-03-27 | 2007-10-04 | Takaoka Kasei Kogyo Kk | Anticancer functional water |
JP2007289267A (en) * | 2006-04-21 | 2007-11-08 | Nippon Torimu:Kk | Water for preparing dialysate, dialysate using the same, manufacturing method of dialysate, and dialyzer |
-
2010
- 2010-02-26 JP JP2010042647A patent/JP5266267B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1129794A (en) * | 1997-07-08 | 1999-02-02 | Kurita Water Ind Ltd | Cleaning water for electronic material its reparation, and cleaning of electronic material |
WO1999010286A1 (en) * | 1997-08-27 | 1999-03-04 | Miz Co., Ltd. | Electrolytic cell and electrolyzed water generating device |
JP2002254078A (en) * | 2001-02-28 | 2002-09-10 | Nippon Torimu:Kk | Electrolytically-reduced water and method for producing the same |
JP2005126384A (en) * | 2003-10-24 | 2005-05-19 | Mizu Kk | Pharmacologically functional water and its use |
WO2005082384A1 (en) * | 2004-02-27 | 2005-09-09 | Nihon Trim Co., Ltd. | Artificial physiological salt solution and process for producing the same |
JP2007254435A (en) * | 2006-03-27 | 2007-10-04 | Takaoka Kasei Kogyo Kk | Anticancer functional water |
JP2007289267A (en) * | 2006-04-21 | 2007-11-08 | Nippon Torimu:Kk | Water for preparing dialysate, dialysate using the same, manufacturing method of dialysate, and dialyzer |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013119525A (en) * | 2011-12-06 | 2013-06-17 | New I Ten Rin Enterprise Co Ltd | Device for incorporating hydrogen ion into solution in container and method therefor |
JPWO2013157657A1 (en) * | 2012-04-20 | 2015-12-21 | 株式会社ナノジェットジャパン | Container with excellent airtightness and method for retaining gas molecules or volatile components in the container |
WO2013157657A1 (en) * | 2012-04-20 | 2013-10-24 | 株式会社プロジェクトジャパン | Container with excellent airtightness and method for holding gas molecules or volatile components in container |
CN104245536A (en) * | 2012-04-20 | 2014-12-24 | 株式会社奈纳喷射日本 | Container with excellent airtightness and method for holding gas molecules or volatile components in container |
CN104245536B (en) * | 2012-04-20 | 2017-05-03 | 株式会社奈纳喷射日本 | Container with excellent airtightness and method for holding gas molecules or volatile components in container |
JP2017043415A (en) * | 2012-04-20 | 2017-03-02 | 株式会社ナノジェットジャパン | Container with excellent airtightness, and method for holding gas molecules or volatile components in container |
JP2014063146A (en) * | 2012-08-27 | 2014-04-10 | Takeo Nishi | Simulated medicine for injection simulator and manufacturing method |
JP2014118191A (en) * | 2012-12-18 | 2014-06-30 | Hikari Mirai:Kk | Method for dissolving hydrogen gas into object |
JP2014149232A (en) * | 2013-02-01 | 2014-08-21 | Suiso Kenko Igaku Labo Kk | Dissolved hydrogen detector and dissolved hydrogen detection method |
JP2014161605A (en) * | 2013-02-27 | 2014-09-08 | Nippon Torimu:Kk | Hydrogen addition device, and peritoneal dialyzer |
JP2015003871A (en) * | 2013-06-19 | 2015-01-08 | 扶桑薬品工業株式会社 | Oxidative stress inhibiting dialysis agent and method of preparing the same |
JPWO2015137499A1 (en) * | 2014-03-13 | 2017-04-06 | MiZ株式会社 | Method for producing hydrogen-containing biological fluid and exterior body therefor |
US10765603B2 (en) | 2014-03-13 | 2020-09-08 | Naturan International Co., Ltd. | Medical container |
CN105517528A (en) * | 2014-03-13 | 2016-04-20 | 纳秋兰国际有限会社 | Medical container |
JP5935954B2 (en) * | 2014-03-13 | 2016-06-15 | MiZ株式会社 | Method for producing hydrogen-containing biological fluid and exterior body therefor |
JP2016112562A (en) * | 2014-03-13 | 2016-06-23 | MiZ株式会社 | Production device of hydrogen-containing living body application liquid |
KR101653937B1 (en) | 2014-03-13 | 2016-09-02 | 미즈 가부시키가이샤 | Method for producing hydrogen-containing biological application solution, and exterior body therefor |
KR20150139632A (en) * | 2014-03-13 | 2015-12-11 | 미즈 가부시키가이샤 | Method for producing hydrogen-containing biological application solution, and exterior body therefor |
WO2015137499A3 (en) * | 2014-03-13 | 2015-11-05 | MiZ株式会社 | Method for producing hydrogen-containing biological application solution, and exterior body therefor |
US9636358B2 (en) | 2014-03-13 | 2017-05-02 | Miz Company Limited | Method and device for producing hydrogen containing fluid |
WO2015137247A1 (en) * | 2014-03-13 | 2015-09-17 | ナチュラン・インターナショナル有限会社 | Medical container |
CN105246492A (en) * | 2014-03-13 | 2016-01-13 | 水株式会社 | Method for producing hydrogen-containing biological application solution, and exterior body therefor |
CN105517528B (en) * | 2014-03-13 | 2019-07-19 | 纳秋兰国际有限会社 | Container for medical use |
JP2018122938A (en) * | 2018-04-10 | 2018-08-09 | 株式会社光未来 | Method for dissolving hydrogen gas into object |
CN112601564A (en) * | 2018-09-21 | 2021-04-02 | 日本多宁股份有限公司 | Preparation device of peritoneal hydrogen-containing dialysate |
JP7219894B2 (en) | 2019-02-28 | 2023-02-09 | 岩谷産業株式会社 | Hydrogen-dissolved liquid manufacturing device and hydrogen-dissolved liquid manufacturing method |
JP2020138130A (en) * | 2019-02-28 | 2020-09-03 | 岩谷産業株式会社 | Hydrogen dissolved solution production device and hydrogen dissolved solution production method |
JP2020142208A (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogenation device, and determination method of degree-of-wear of hydrogen permeable membrane |
JP2020142206A (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogen adding device and hydrogen adding method |
WO2020179340A1 (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogen adding device and method for determining degree of wear in hydrogen-permeable membrane |
JP7022088B2 (en) | 2019-03-07 | 2022-02-17 | 株式会社日本トリム | Hydrogenation equipment and hydrogenation method |
JP7037515B2 (en) | 2019-03-07 | 2022-03-16 | 株式会社日本トリム | Method for determining the degree of wear of hydrogen addition device and hydrogen permeable membrane |
WO2020179338A1 (en) * | 2019-03-07 | 2020-09-10 | 株式会社日本トリム | Hydrogen supplementation device and hydrogen supplementation method |
TWI837309B (en) * | 2019-03-07 | 2024-04-01 | 日商日本多寧股份有限公司 | Hydrogenation device and hydrogenation method |
JP2022021279A (en) * | 2020-07-21 | 2022-02-02 | MiZ株式会社 | Compositions for preventing and/or ameliorating side effects of drug, symptoms associated with side effects of drug, and/or side effects associated with treatment |
JP7019910B2 (en) | 2020-07-21 | 2022-02-16 | MiZ株式会社 | Compositions for preventing and / or ameliorating side effects of a drug, symptoms associated with the side effects of a drug, and / or side effects associated with treatment. |
Also Published As
Publication number | Publication date |
---|---|
JP5266267B2 (en) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4486157B1 (en) | Method and apparatus for producing hydrogen-containing biological fluid | |
JP5266267B2 (en) | Method and apparatus for producing hydrogen-containing biological fluid | |
JP5859558B2 (en) | Erythrocyte irradiation and anaerobic preservation | |
CN108883221A (en) | Regenerated peritoneal dialysis system | |
CN105120913B (en) | Sodium and buffer solution source capsule for the controlled compatible stream of modularization | |
AU2017246829A1 (en) | Peritoneal dialysate fluid generation system with integrated cycler | |
JP2015003871A (en) | Oxidative stress inhibiting dialysis agent and method of preparing the same | |
BR112017022126B1 (en) | ACCUMULATION APPARATUS, SOLUTION PRODUCTION APPARATUS AND ITS USE AND NITRIC OXIDE BATH APPARATUS (NO) AND METHOD TO ACCUMULATE | |
US11284616B2 (en) | Irradiation of red blood cells and anaerobic storage | |
JP2016101565A (en) | Manufacturing method and manufacturing apparatus for hydrogen water | |
US20220211030A1 (en) | Irradiation of Red Blood Cells and Anaerobic Storage | |
TWI574685B (en) | A method for producing a suitable liquid for living organisms containing hydrogen, and an external preparation for the liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130218 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130218 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130218 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5266267 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |