[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011175940A - Dye-sensitized solar cell module and method of manufacturing the same - Google Patents

Dye-sensitized solar cell module and method of manufacturing the same Download PDF

Info

Publication number
JP2011175940A
JP2011175940A JP2010040882A JP2010040882A JP2011175940A JP 2011175940 A JP2011175940 A JP 2011175940A JP 2010040882 A JP2010040882 A JP 2010040882A JP 2010040882 A JP2010040882 A JP 2010040882A JP 2011175940 A JP2011175940 A JP 2011175940A
Authority
JP
Japan
Prior art keywords
dye
metal
sensitized solar
plate
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010040882A
Other languages
Japanese (ja)
Other versions
JP5541687B2 (en
Inventor
Yoshikatsu Nishida
義勝 西田
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010040882A priority Critical patent/JP5541687B2/en
Publication of JP2011175940A publication Critical patent/JP2011175940A/en
Application granted granted Critical
Publication of JP5541687B2 publication Critical patent/JP5541687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell module having a simple structure, in which light receiving surfaces of the respective cells are located on the same side, and a superior electricity-conducting function and a stable spacer function are exhibited between the adjacent cells. <P>SOLUTION: Each cell 9 has a translucent conductive member 1, a catalyst layer 2, an electrolyte layer 3, a semiconductor layer 4, and a metal member 5 from a plate-like body A side toward a plate-like B side. In the dye-sensitized solar cell module, a partial surface (including the case where metal of a catalyst maternal is attached) of the translucent conductive member 1 constituting a counter electrode 20 of one cell and a surface of a thick-wall 52 of the metal member 5 having a thin-wall 51 and the thick-wall 52 constituting an optical electrode 40 of the other cell are laminated and brought into contact with each other between adjoining cells, thereby securing the electric conduction in series between the cells, and securing a gap between the counter electrode 20 and the optical electrode 40 with the thick-wall 52 of the metal member 5 as a spacer, and the counter electrodes 20 and the optical electrodes 40 of the adjoining cells are insulated from each other by insulating members 6A, 6B, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、対向する絶縁性板状体の間に、直列に接続された複数の色素増感型太陽電池セルが組み込まれているモジュールであって、光電極に金属部材を使用したものに関する。   The present invention relates to a module in which a plurality of dye-sensitized solar cells connected in series are incorporated between opposing insulating plate-like bodies, and a metal member is used for a photoelectrode.

太陽電池は従来、主としてシリコンを光電変換素子に用いたものが使われているが、より経済的な次世代太陽電池として「色素増感型太陽電池」がある。色素増感型太陽電池の開放電圧は1V以下であるため、単セルで一般の電子機器を動作させるには電圧不足となりやすい。このため、複数のセルを直列に接続した色素増感型太陽電池モジュールの実用化が研究されている。   Conventionally, solar cells using mainly silicon as a photoelectric conversion element have been used. As a more economical next-generation solar cell, there is a “dye-sensitized solar cell”. Since the open-circuit voltage of the dye-sensitized solar cell is 1 V or less, the voltage tends to be insufficient to operate a general electronic device with a single cell. For this reason, the practical application of a dye-sensitized solar cell module in which a plurality of cells are connected in series has been studied.

特許文献1には、基板上に光電極および対向電極を交互に配列して直列構造を形成したタイプのモジュール(以下、「W型モジュール」という)が開示されている。しかし、W型モジュールの場合、対向電極側からの入射光を利用するセルが半数を占める。光が対向電極側から入射する場合、対向電極での反射や電解液での吸収によって半導体層に到達する光の強度が低下し、モジュール全体の光電変換効率の低下を招く要因となる。   Patent Document 1 discloses a type of module (hereinafter referred to as “W-type module”) in which photoelectrodes and counter electrodes are alternately arranged on a substrate to form a series structure. However, in the case of the W-type module, half of the cells use incident light from the counter electrode side. When light enters from the counter electrode side, the intensity of light reaching the semiconductor layer is reduced by reflection at the counter electrode and absorption by the electrolytic solution, which causes a decrease in photoelectric conversion efficiency of the entire module.

特許文献2には、一対の基板間に光電極構成材料、電解質を含有する多孔性絶縁層、対向電極構成材料を積層したセルを構成し、対向電極を構成する導電部材がセル間絶縁層を乗り越えて隣のセルの光電極に接続された構造のモジュール(以下、「モノシリックモジュール」という)が開示されている。モノシリックモジュールの場合、一つの基板上に光電極から対向電極まで順に積層していくため連続的な製造に適している。しかし、対向電極部材が高さ数十μmのセル間絶縁層を乗り越えるように連続した層を形成する必要があるため高度な積層技術が要求され、製造コストが増大する。   In Patent Document 2, a cell in which a photoelectrode constituent material, a porous insulating layer containing an electrolyte, and a counter electrode constituent material are stacked between a pair of substrates is formed, and a conductive member constituting the counter electrode has an intercell insulating layer. A module (hereinafter referred to as a “monolithic module”) having a structure in which it is overcome and connected to the photoelectrode of the adjacent cell is disclosed. The monolithic module is suitable for continuous production because it is laminated in order from a photoelectrode to a counter electrode on one substrate. However, since it is necessary to form a continuous layer so that the counter electrode member can get over the inter-cell insulating layer having a height of several tens of μm, an advanced lamination technique is required, and the manufacturing cost increases.

特許文献3〜6には、光電極と対向電極が各セルでそれぞれ同じ基板側にあるモジュールにおいて、隣接するセルの光電極と対向電極を導電部材の挿入によって直列に接続したタイプのモジュール(以下、「Z型モジュール」という)が開示されている。Z型モジュールは一方の基板側からの入射光を各セルで均等に利用できるためW型モジュールのような効率低下は生じない。しかし、電極間を繋ぐ導電部材の挿入が必要であり、光電極−導電部材−対向電極の通電経路において良好な導電性を実現することは必ずしも容易ではなく、十分に満足できる導電性を確保しつつ、製造コストの低減を図ったものは未だ出現していない。   In Patent Documents 3 to 6, in a module in which a photoelectrode and a counter electrode are on the same substrate side in each cell, a module of a type in which a photoelectrode and a counter electrode of adjacent cells are connected in series by inserting a conductive member (hereinafter referred to as a module). , "Z type module"). In the Z-type module, incident light from one substrate side can be used uniformly in each cell, so that the efficiency is not reduced as in the W-type module. However, it is necessary to insert a conductive member that connects the electrodes, and it is not always easy to achieve good conductivity in the energization path of the photoelectrode-conductive member-counter electrode, and sufficiently satisfactory conductivity is ensured. On the other hand, there has not yet appeared a product that has been reduced in production cost.

また、電池の出力を増大させるためには1つのセルの面積を大きくすることが有利となるが、その場合、電極間の間隔を確保するためのスペーサーとして、変形しにくく強度を安定して負担できるものを適用することが望まれる。特にモジュール全体の面積が大きい場合、セル間の領域にもスペーサーの機能を有する高強度部材を設ける必要がある。ただし、セル間領域の割合が増えると有効な受光面積の割合が減少するので変換効率の低下を招く。このためセル間領域はできるだけ小面積とすることが望まれる。従来のZ型モジュールにおけるセル間の構造では、少ない面積で安定して優れたスペーサー機能を果たすことが難しい。   In order to increase the output of the battery, it is advantageous to increase the area of one cell, but in that case, it is difficult to be deformed as a spacer for securing the space between the electrodes, and the strength is stably borne. It is desirable to apply what can be done. In particular, when the entire area of the module is large, it is necessary to provide a high-strength member having a spacer function also in a region between cells. However, since the proportion of the effective light receiving area decreases as the proportion of the inter-cell region increases, the conversion efficiency decreases. For this reason, it is desirable to make the inter-cell region as small as possible. In the structure between cells in the conventional Z-type module, it is difficult to stably perform an excellent spacer function with a small area.

特開2007−18809号公報JP 2007-18809 A 特開2008−16351号公報JP 2008-16351 A 特開2001−357897号公報JP 2001-357897 A 特表2002−535808号公報Special Table 2002-535808 特表2002−540559号公報Special Table 2002-540559 特開2007−18862号公報JP 2007-18862 A

本発明は、各セルの受光面が同じ側にあり、隣接セル間で良好な通電機能と安定したスペーサー機能を発揮するシンプルな構造の色素増感型太陽電池モジュールを提供することを目的とする。   An object of the present invention is to provide a dye-sensitized solar cell module having a simple structure in which the light receiving surface of each cell is on the same side and exhibits a good energization function and a stable spacer function between adjacent cells. .

上記目的は、対向する絶縁性かつ透光性の板状体Aと絶縁性の板状体Bとの間に、直列に接続された複数の色素増感型太陽電池セルが組み込まれているモジュールであって、
各セルは、板状体A側から板状体B側に向かって、透光性導電部材、触媒層、電解質層、半導体層、金属部材を有し、その透光性導電部材と触媒層により対向電極が構成され、半導体層と金属部材により光電極が構成されており、
隣接するセルの間では、一方のセルの対向電極を構成している透光性導電部材の一部表面(触媒物質の金属が付着している場合を含む)と、他方のセルの光電極を構成している薄肉部と厚肉部を有する金属部材の当該厚肉部表面とが積層して接触することによりセル間の直列の導通が確保されると共に、当該金属部材の厚肉部をスペーサーとして光電極と対向電極の間隙が確保され、
隣接するセルの光電極同士および対向電極同士はそれぞれ絶縁部材により絶縁されている、色素増感型太陽電池モジュールによって達成される。
The above object is a module in which a plurality of dye-sensitized solar cells connected in series are incorporated between an opposing insulating and translucent plate A and insulating plate B. Because
Each cell has a translucent conductive member, a catalyst layer, an electrolyte layer, a semiconductor layer, and a metal member from the plate A side to the plate B side, and the translucent conductive member and the catalyst layer The counter electrode is configured, the photoelectrode is configured by the semiconductor layer and the metal member,
Between adjacent cells, a part of the surface of the translucent conductive member constituting the counter electrode of one cell (including the case where the metal of the catalyst substance is attached) and the photoelectrode of the other cell The thin-walled portion and the thick-walled surface of the metal member having the thick-walled portion are stacked and brought into contact with each other to ensure serial continuity between the cells, and the thick-walled portion of the metal member is a spacer. As a gap between the photoelectrode and the counter electrode is secured,
This is achieved by a dye-sensitized solar cell module in which the photoelectrodes and the counter electrodes of adjacent cells are insulated from each other by an insulating member.

前記金属部材は、前記板状体Bの表面上に支持された金属シートに対して、「レジスト膜によるマスキング→エッチング→レジスト膜の除去」の手法を適用することにより形成されたものを採用することができる。
前記金属部材の材料としては、ニッケル、チタン、チタン合金、クロム、アルミニウム、アルミニウム合金、モリブデン、または鋼のシート材に由来するものとすることができる。「シート材に由来する」とは、シート材を加工することによって得られたものを意味する。
The metal member is formed by applying a technique of “masking with resist film → etching → removing resist film” to the metal sheet supported on the surface of the plate-like body B. be able to.
The material of the metal member may be derived from nickel, titanium, titanium alloy, chromium, aluminum, aluminum alloy, molybdenum, or steel sheet material. “Derived from sheet material” means a material obtained by processing a sheet material.

特に、前記金属部材としてはステンレス鋼を採用することができる。「ステンレス鋼」とは、JIS G0203:2009の番号3801に示されているように、Cr含有量10.5質量%以上、C含有量1.2質量%以下として耐食性を向上させた合金鋼である。具体的なステンレス鋼種としては、例えば規格鋼種であれば下記(A)または(B)のものが挙げられる。各成分元素の含有量範囲を例示すると下記(C)または(D)が挙げられる。
(A)JIS G4305:2005に規定されるフェライト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜3質量%の範囲にあるステンレス鋼。
(B)JIS G4305:2005に規定されるオーステナイト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜7質量%の範囲にあるステンレス鋼。
In particular, stainless steel can be adopted as the metal member. “Stainless steel” is an alloy steel that has improved corrosion resistance with a Cr content of 10.5 mass% or more and a C content of 1.2 mass% or less, as shown in the number 3801 of JIS G0203: 2009. is there. Specific stainless steel types include, for example, the following (A) or (B) if they are standard steel types. Examples of the content range of each component element include the following (C) or (D).
(A) Stainless steel that belongs to the ferritic steel types specified in JIS G4305: 2005, has a Cr content of 16 to 32 mass%, and a Mo content of 0.3 to 3 mass%.
(B) Stainless steel that belongs to the austenitic steel grade specified in JIS G4305: 2005, has a Cr content of 16 to 32% by mass, and a Mo content of 0.3 to 7% by mass.

(C)質量%でC:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0〜0.04%、S:0〜0.03%、Ni:0〜0.6%、Cr:16.0〜35.0%、Mo:0.3〜3.0%、Cu:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.2%、N:0〜0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。 (C) By mass% C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0 to 0.04%, S: 0 to 0.03%, Ni: 0 to 0.6%, Cr: 16.0 to 35.0%, Mo: 0.3 to 3.0%, Cu: 0 to 1.0%, Nb: 0 ~ 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025% or less, B: 0 to 0.01%, remaining Fe and unavoidable impurities Ferritic stainless steel.

(D)質量%でC:0.0001〜0.15%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0〜0.045%、S:0〜0.03%、Ni:6.0〜28.0%、Cr:16.0〜35.0%、Mo:0.3〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.1%、N:0〜0.3%、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。 (D) By mass% C: 0.0001 to 0.15%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0 to 0.045%, S: 0 to 0.03%, Ni: 6.0 to 28.0%, Cr: 16.0 to 35.0%, Mo: 0.3 to 7.0%, Cu: 0 to 3.5%, Nb : 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.1%, N: 0 to 0.3%, B: 0 to 0.01%, balance Fe and inevitable impurities Austenitic stainless steel consisting of

上記(C)、(D)において含有量の下限が0%であるものは、当該元素が任意含有元素であることを意味する。   In the above (C) and (D), the lower limit of the content is 0%, which means that the element is an optional element.

このようなモジュールの製造方法として、対向する絶縁性かつ透光性の板状体Aと絶縁性の板状体Bとの間に、直列に接続された複数の色素増感型太陽電池セルが組み込まれているモジュールを製造するに際し、
[1]対向電極側構造体作製工程;
透光性導電部材の膜を表面に有する板状体Aを用意し、
セルのピッチに等しいピッチで前記透光性導電部材にその膜厚を貫通する溝を形成することにより溝を挟んで両側の透光性導電部材同士を離間させるステップ(図2(b)参照)、
セル内部となる領域に位置する透光性導電部材の表面部分に触媒層を形成するステップ(図2(c)参照)、
前記溝の部分に絶縁部材を挿入して隣接する透光性導電部材同士を絶縁するステップ(図2(d)参照)、
を有する手順により対向電極側構造体を得る工程、
[2]光電極側構造体作製工程;
セルを構築したときの[板状体Aと板状体Bの間隔]−[前記透光性導電部材の厚さ]に相当する厚さ以上の金属シートが板状体Bの表面に接合されたものを用意し、
「レジスト膜によるマスキング→エッチング→レジスト膜除去」の手法により、隣接するセルの間となる領域に位置する金属シートの表面部分を厚肉部として残し、セル内部となる領域に位置する金属シートの表面部分をエッチングして薄肉部とするステップ(図3(e)(f)参照)、
「レジスト膜によるマスキング→エッチング→レジスト膜除去」の手法により、セルのピッチに等しいピッチの溝を形成することにより金属シートを離間させ、個々の金属部材に区分するステップ(図3(g)(h)参照)、
前記薄肉部に半導体層を形成させるステップ(図3(i)参照)、
前記半導体層に増感色素を担持させるステップ(図3(j)参照)、
前記溝の部分に絶縁部材を挿入して隣接する金属部材同士を絶縁するステップ(図3(k)参照)、
を有する手順により光電極側構造体を得る工程、
[3]合体工程;
前記の対向電極側構造体と光電極側構造体を、前者の離間された各透光性導電部材の一部表面(触媒物質の金属が付着している場合を含む)と後者の各厚肉部がそれぞれ接触して重なるように合体させて、半導体層と触媒層の間に電解質層が充填された状態で封止する工程、
を有する色素増感型太陽電池モジュールの製造法が提供される。
As a method for producing such a module, a plurality of dye-sensitized solar cells connected in series between an opposing insulating and translucent plate A and insulating plate B are provided. When manufacturing the embedded module,
[1] counter electrode side structure manufacturing process;
A plate-like body A having a translucent conductive member film on the surface is prepared,
Step of separating the translucent conductive members on both sides across the groove by forming a groove penetrating the film thickness in the translucent conductive member at a pitch equal to the cell pitch (see FIG. 2B) ,
A step of forming a catalyst layer on the surface portion of the translucent conductive member located in the region to be inside the cell (see FIG. 2C);
Inserting an insulating member into the groove to insulate adjacent translucent conductive members (see FIG. 2D);
Obtaining a counter electrode side structure by a procedure comprising:
[2] Photoelectrode side structure manufacturing process;
When a cell is constructed, a metal sheet having a thickness equal to or greater than [the distance between the plate A and the plate B] − [thickness of the translucent conductive member] is bonded to the surface of the plate B. Prepare something,
By the method of “masking with resist film → etching → resist film removal”, the surface portion of the metal sheet located in the area between adjacent cells is left as a thick part, and the metal sheet located in the area inside the cell is Etching the surface portion to form a thin wall portion (see FIGS. 3E and 3F),
The step of separating the metal sheets into individual metal members by forming grooves having a pitch equal to the cell pitch by the method of “masking with resist film → etching → resist film removal” (FIG. 3G) h)),
Forming a semiconductor layer on the thin portion (see FIG. 3I);
A step of carrying a sensitizing dye on the semiconductor layer (see FIG. 3 (j)),
Inserting an insulating member into the groove to insulate adjacent metal members from each other (see FIG. 3 (k));
Obtaining a photoelectrode-side structure by a procedure comprising:
[3] coalescence process;
The counter electrode side structure and the photoelectrode side structure are divided into a part of the surface of each of the former translucent conductive members (including the case where the metal of the catalyst substance is attached) and the latter thick wall. A step of sealing in a state in which the electrolyte layers are filled between the semiconductor layer and the catalyst layer, by combining the parts so that the parts are in contact with each other and overlapping
A method for producing a dye-sensitized solar cell module having the following formula is provided.

本発明は以下のようなメリットを有する。
(1)光電極を金属材料で構成しているので電池内部の導電性が向上し、光電変換効率の向上に有利となる。
(2)セル間の通電を担う導体と、光電極の集電部材とが1つの金属部材で構成されるのでモジュールの構造が簡素化され、コストメリットに優れる。
(3)前記の金属部材はモジュール基板(絶縁性の板状体)の上に配置した金属シートに対してフォトエッチングの手法を利用して直接形成させることが可能であるため、寸法精度に優れる。
(4)セル間では前記金属部材が一定の電極間隔を確保するためのスペーサーとして機能するので、他のスペーサー部材が不要となり、セル間領域の占める面積率を低減させることができる。これによりモジュールに入射する光を有効に利用でき、光電変換効率の向上に繋がる。
(5)前記金属部材からなるスペーサーは変形しにくく強度を安定して負担できるので、広い受光面積をもつ色素増感型太陽電池モジュールの構築に有利となる。
The present invention has the following merits.
(1) Since the photoelectrode is made of a metal material, the conductivity inside the battery is improved, which is advantageous for improving the photoelectric conversion efficiency.
(2) Since the conductor responsible for energization between the cells and the current collecting member of the photoelectrode are composed of one metal member, the structure of the module is simplified and the cost merit is excellent.
(3) Since the metal member can be directly formed on a metal sheet placed on a module substrate (insulating plate-like body) by using a photoetching technique, it has excellent dimensional accuracy. .
(4) Since the metal member functions as a spacer for securing a certain electrode interval between cells, other spacer members are unnecessary, and the area ratio occupied by the inter-cell region can be reduced. Thereby, the light incident on the module can be used effectively, leading to an improvement in photoelectric conversion efficiency.
(5) Since the spacer made of the metal member is hard to deform and can stably bear the strength, it is advantageous for the construction of a dye-sensitized solar cell module having a wide light receiving area.

本発明の色素増感型太陽電池モジュールの断面構造を模式的に例示した図。The figure which illustrated typically the cross-section of the dye-sensitized solar cell module of this invention. 対向電極側構造体作製工程における部材断面状態を模式的に例示した図。The figure which illustrated typically the member section state in the counter electrode side structure fabrication process. 光電極側構造体作製工程における部材断面状態を模式的に例示した図。The figure which illustrated typically the member cross-sectional state in the photoelectrode side structure preparation process.

図1に、本発明の色素増感型太陽電池モジュール10の断面構造を模式的に例示する。この図は厚さ方向を誇張して描いてあり、実際のモジュールの寸法形状をそのまま反映したものではない。絶縁性かつ透光性の板状体Aと絶縁性の板状体Bが一定距離で対向しており、その間に、透光性導電部材1、触媒層2、電解質層3、半導体層4および金属部材5によって構成される色素増感型太陽電池セル9が組み込まれている。厚さ方向に見てセルの存在する部分をセル領域100、隣り合うセル同士の間の部分をセル間領域200と呼ぶ。各セル9において、透光性導電部材1と触媒層2により対向電極20が構成され、半導体層4と金属部材5により光電極40が構成されている。セル間では、一方のセルの対向電極20を構成する透光性導電部材1の一部表面と他方のセルの光電極40を構成する金属部材5の一部表面が重なっている。これによりセル間の直列接続が実現される。セル間で直列接続を担う金属部材5は薄肉部51と厚肉部52を有している。   FIG. 1 schematically illustrates a cross-sectional structure of the dye-sensitized solar cell module 10 of the present invention. This figure is drawn with the thickness direction exaggerated, and does not reflect the actual dimensional shape of the module as it is. The insulative and translucent plate A and the insulative plate B are opposed to each other at a constant distance, and the translucent conductive member 1, catalyst layer 2, electrolyte layer 3, semiconductor layer 4 and A dye-sensitized solar cell 9 constituted by the metal member 5 is incorporated. A portion where cells are present when viewed in the thickness direction is called a cell region 100, and a portion between adjacent cells is called an inter-cell region 200. In each cell 9, the counter electrode 20 is configured by the translucent conductive member 1 and the catalyst layer 2, and the photoelectrode 40 is configured by the semiconductor layer 4 and the metal member 5. Between the cells, a partial surface of the translucent conductive member 1 constituting the counter electrode 20 of one cell and a partial surface of the metal member 5 constituting the photoelectrode 40 of the other cell overlap. Thereby, series connection between cells is realized. The metal member 5 responsible for series connection between cells has a thin portion 51 and a thick portion 52.

セル領域100では金属部材5の薄肉部51の表面に半導体層4が形成され、光電極40が構成されている。
セル間領域200では金属部材5の厚肉部52の表面が透光性導電部材1の一部表面11と積層して接触している。これにより隣接セル間の導通が確保されると共に、厚肉部52が対向電極20と光電極40の間隔を保つためのスペーサーとして機能する。透光性導電部材1の表面には製造工程の途中で触媒物質の金属が付着することがある。この部分に触媒の機能は必要ないが、触媒物質の金属が付着していることに問題はない。すなわち、セル間領域200において積層している透光性導電部材1と金属部材5の間には触媒物質の金属が介在していることがある(図1では当該金属が介在している場合を例示してある)。隣り合うセル9の対向電極20同士および光電極40同士はそれぞれ絶縁部材6Aおよび6Bにより絶縁されている。
In the cell region 100, the semiconductor layer 4 is formed on the surface of the thin portion 51 of the metal member 5, and the photoelectrode 40 is configured.
In the inter-cell region 200, the surface of the thick portion 52 of the metal member 5 is in contact with the partial surface 11 of the translucent conductive member 1 in a stacked manner. As a result, conduction between adjacent cells is ensured, and the thick portion 52 functions as a spacer for maintaining the distance between the counter electrode 20 and the photoelectrode 40. The metal of the catalyst substance may adhere to the surface of the translucent conductive member 1 during the manufacturing process. There is no need for a catalyst function in this portion, but there is no problem that the metal of the catalyst material is attached. That is, the metal of the catalytic material may be interposed between the translucent conductive member 1 and the metal member 5 laminated in the inter-cell region 200 (in FIG. 1, the case where the metal is interposed). Exemplified) The opposing electrodes 20 and the photoelectrodes 40 of the adjacent cells 9 are insulated by insulating members 6A and 6B, respectively.

各セル9において、板状体A側から入射した光が半導体層4に届くと、光電極40と対向電極20との間に起電力が生じ、電子は「半導体層4→金属部材5」の経路で移動してセル外へ出て行き、「透光性導電部材1→触媒層4→電解質層3」の経路で移動してセル内へ入ってくる。各セル9はセル間領域200において直列に繋がっており、最も低電位側のセル9(図1では右端のセル)における金属部材5と、最も高電位側のセル9(図1では左端のセル)における透光性導電部材1との間に、当該色素増感型太陽電池モジュール10によって発電される電圧が生じる。そして、導線8と負荷7によって回路を構成したとき、負荷7で電力が消費される。
図1は3セルを直列配置したモジュールの構造を例示したものであるが、実際には要求される起電力に応じて直列配置するセルの数が設定される。
In each cell 9, when light incident from the plate-like body A side reaches the semiconductor layer 4, an electromotive force is generated between the photoelectrode 40 and the counter electrode 20, and electrons are “semiconductor layer 4 → metal member 5”. It moves along the route and goes out of the cell, and moves along the route “translucent conductive member 1 → catalyst layer 4 → electrolyte layer 3” and enters the cell. Each cell 9 is connected in series in the inter-cell region 200, and the metal member 5 in the cell 9 on the lowest potential side (rightmost cell in FIG. 1) and the cell 9 on the highest potential side (leftmost cell in FIG. 1). The voltage generated by the dye-sensitized solar cell module 10 is generated between the transparent conductive member 1 in FIG. When the circuit is configured by the conductive wire 8 and the load 7, power is consumed by the load 7.
FIG. 1 exemplifies the structure of a module in which three cells are arranged in series, but the number of cells arranged in series is actually set according to the required electromotive force.

〔金属部材〕
本発明の色素増感型太陽電池モジュールは、光電極40を構成する金属部材5に特徴がある。最も低電位側のセルを除き、各セル9に使用される金属部材5は薄肉部51と厚肉部52を有している。これらの金属部材5は基本的に板状の部材であり、板面内に板厚の異なる部分があると捉えることができる。薄肉部51と厚肉部52の板厚差は例えば20〜100μm程度とすればよい。最も低電位側のセルにおける金属部材5はスペーサーとして利用する場合を除き厚肉部52を有している必要はなく、セル領域200において他のセルの薄肉部51に相当する板厚を有している。本明細書では厚肉部52を有していない金属部材5の、薄肉部51に相当する板厚部分も便宜上薄肉部51と呼ぶ。各セル9の光電極40は、薄肉部51の表面に半導体層4を形成したものである。セル間領域200において、厚肉部52がスペーサーとして機能する。厚肉部52の表面は隣のセルから伸びている透光性導電部材1の一部表面11(その表面に触媒層2の金属が付着している場合を含む)と積層して接触し、板状体AとBの間を埋める。図1ではモジュールの厚さ方向の寸法を誇張して描いてあるが、厚肉部52はモジュールの厚さ方向を板厚とする板状の金属体であるから、透光性導電部材1と積層することにより板状体A、B間にかかる荷重を安定して負担することができる。すなわち、金属部材5の厚肉部52は単純な構造で良好な導電性と高い強度を同時に担うものである。
[Metal members]
The dye-sensitized solar cell module of the present invention is characterized by the metal member 5 constituting the photoelectrode 40. Except for the cell on the lowest potential side, the metal member 5 used for each cell 9 has a thin portion 51 and a thick portion 52. These metal members 5 are basically plate-like members, and it can be understood that there are portions having different plate thicknesses in the plate surface. The difference in plate thickness between the thin portion 51 and the thick portion 52 may be about 20 to 100 μm, for example. The metal member 5 in the cell on the lowest potential side does not need to have the thick part 52 except when used as a spacer, and has a plate thickness corresponding to the thin part 51 of another cell in the cell region 200. ing. In this specification, the plate | board thickness part corresponded to the thin part 51 of the metal member 5 which does not have the thick part 52 is also called the thin part 51 for convenience. The photoelectrode 40 of each cell 9 is obtained by forming the semiconductor layer 4 on the surface of the thin portion 51. In the inter-cell region 200, the thick portion 52 functions as a spacer. The surface of the thick part 52 is laminated and contacted with a part of the surface 11 of the translucent conductive member 1 extending from the adjacent cell (including the case where the metal of the catalyst layer 2 is attached to the surface), The space between the plate-like bodies A and B is filled. In FIG. 1, although the dimension in the thickness direction of the module is exaggerated, the thick portion 52 is a plate-like metal body having a thickness in the thickness direction of the module. By laminating, the load applied between the plate-like bodies A and B can be stably borne. That is, the thick part 52 of the metal member 5 has a simple structure and simultaneously bears good conductivity and high strength.

金属部材5の金属としては、電解質層3に使用される電解液に対して耐食性を有する材料であれば種々の金属材料が適用できる。発明者らの検討によれば、ニッケル、チタン、チタン合金、クロム、アルミニウム、アルミニウム合金、モリブデン、または鋼を使用することができる。これらの金属材料を用いると、後述のように「レジスト膜によるマスキング→エッチング→レジスト膜の除去」の手法を利用して薄肉部51、厚肉部52の形成および隣り合うセルの金属部材5同士を離間する溝の形成を精度良く行うことが可能である。色素増感型太陽電池モジュールはパーソナルユースの比較的安価な機器への搭載も考えられ、機器の耐用期間を考慮して最適な耐食性レベルの金属材料を選択すればよい。上記において、チタンおよびチタン合金としては例えばJIS H460:2007の表2に記載の組成を有するものが挙げられる。またアルミニウムおよびアルミニウム合金としては例えばJIS H400:2006の表2に記載の組成を有するものが挙げられる。   As the metal of the metal member 5, various metal materials can be applied as long as the material has corrosion resistance to the electrolytic solution used for the electrolyte layer 3. According to the study by the inventors, nickel, titanium, titanium alloy, chromium, aluminum, aluminum alloy, molybdenum, or steel can be used. When these metal materials are used, as will be described later, the formation of the thin portion 51 and the thick portion 52 and the adjacent metal members 5 of the adjacent cells using the method of “masking with a resist film → etching → removing the resist film” are used. It is possible to accurately form the grooves separating the two. The dye-sensitized solar cell module may be mounted on a relatively inexpensive device for personal use, and a metal material having an optimum corrosion resistance level may be selected in consideration of the service life of the device. In the above, examples of titanium and titanium alloys include those having the composition described in Table 2 of JIS H460: 2007. Examples of aluminum and aluminum alloys include those having the composition described in Table 2 of JIS H400: 2006.

良好な耐食性を示し、かつ貴金属やチタン合金より安価な金属材料としてステンレス鋼がある。本発明に適用する金属部材5の材料としてステンレス鋼は好適な対象である。中でも、Cr含有量が16.0質量%以上、かつMo含有量が0.3質量%以上であるステンレス鋼はヨウ素を使用した色素増感型太陽電池の電解液に対して優れた耐食性を呈し、長期間にわたって初期の光電変換効率が高く維持されるので、耐久性の高い色素増感型太陽電池モジュールを構築するうえで有利である。具体的なステンレス鋼種としては前記(A)〜(D)に示したものが挙げられる。特にCr含有量は17.0質量%以上とすることがより好ましく、Mo含有量は0.8質量%以上とすることがより好ましい。   Stainless steel is a metal material that exhibits good corrosion resistance and is cheaper than noble metals and titanium alloys. Stainless steel is a suitable object as the material of the metal member 5 applied to the present invention. Among them, stainless steel having a Cr content of 16.0% by mass or more and a Mo content of 0.3% by mass or more exhibits excellent corrosion resistance with respect to an electrolyte solution of a dye-sensitized solar cell using iodine. Since the initial photoelectric conversion efficiency is maintained high over a long period of time, it is advantageous in constructing a dye-sensitized solar cell module with high durability. Specific stainless steel types include those shown in (A) to (D) above. In particular, the Cr content is more preferably 17.0% by mass or more, and the Mo content is more preferably 0.8% by mass or more.

金属部材5としてステンレス鋼を使用する場合、エッチングによって薄肉部51の表面にエッジ状境界を持つピットを多数形成させることができる。このような粗面化表面は表面積が大きく、半導体層との密着性に優れるので、優れた光電変換効率を得るうえで有利となる。具体的な粗面化の手法は本出願人により特願2009−191348に開示された。   When stainless steel is used as the metal member 5, a large number of pits having edge-like boundaries can be formed on the surface of the thin portion 51 by etching. Such a roughened surface has a large surface area and excellent adhesion to the semiconductor layer, which is advantageous in obtaining excellent photoelectric conversion efficiency. A specific roughening method was disclosed in Japanese Patent Application No. 2009-191348 by the present applicant.

〔モジュールの製造〕
本発明の色素増感型太陽電池モジュールは、例えば板状体Aをベースとする「対向電極側構造体」と、板状体Bをベースとする「光電極側構造体」を別々に作製したのち、それら両部材を合体させる手法により効率的に製造することができる。以下、その製造方法について例示する。
[Manufacture of modules]
In the dye-sensitized solar cell module of the present invention, for example, a “counter electrode side structure” based on the plate A and a “photo electrode side structure” based on the plate B are separately manufactured. Then, it can manufacture efficiently by the method of uniting these two members. Hereinafter, the manufacturing method will be exemplified.

[1]対向電極側構造体作製工程
図2に、対向電極側構造体を作製するための工程における部材断面状態を模式的に示す。図2中の手順(a)〜(d)に基づいて説明する。なお、この手順は例示であり必ずしもこれに限られるものではない。
[1] Counter electrode side structure manufacturing process FIG. 2 schematically shows a member cross-sectional state in a process for manufacturing the counter electrode side structure. This will be described based on the procedures (a) to (d) in FIG. In addition, this procedure is an illustration and is not necessarily limited to this.

(a)透光性導電部材1の膜を表面に有する板状体Aを用意する。板状体Aは透光性かつ絶縁性を有するものであり、ガラス板や透光性プラスチックシート(アクリルシートその他)が使用できる。透光性導電部材1としては、例えばITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)、ZnO(酸化亜鉛)等の酸化物導電膜が使用できる。その膜厚は例えば0.1〜1.0μm程度とすればよい。透光性導電部材1と板状体Aは容易に剥がれないように接合されていることが望ましい。 (A) A plate-like body A having a translucent conductive member 1 film on the surface is prepared. The plate-like body A has translucency and insulation, and a glass plate or a translucent plastic sheet (acrylic sheet or the like) can be used. As the translucent conductive member 1, for example, an oxide conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), TO (tin oxide), ZnO (zinc oxide) or the like can be used. The film thickness may be, for example, about 0.1 to 1.0 μm. It is desirable that the translucent conductive member 1 and the plate-like body A are joined so as not to easily peel off.

(b)板状体A上の透光性導電部材1に、セルのピッチに等しいピッチで、その膜厚を貫通する溝61を形成する。この溝61によって両側の透光性導電部材1同士の導通を断ち切ることが重要である。その方法として、例えばレーザートーチ60を用いてレーザー光を照射する手法が挙げられる。 (B) In the translucent conductive member 1 on the plate A, grooves 61 penetrating the film thickness are formed at a pitch equal to the cell pitch. It is important to cut off the conduction between the translucent conductive members 1 on both sides by the groove 61. As the method, for example, a method of irradiating laser light using a laser torch 60 can be mentioned.

(c)溝61により区分された各透光性導電部材1の表面に触媒層2を形成させる。触媒物質としては白金、ニッケル、ポリアニリン、ポリエチレンジオキシチオフェン、カーボンなどが適用できる。白金、ニッケルなどの金属膜の場合は、例えばスパッタリング法により形成させることができる。発明者らの検討によれば、平均膜厚が約1nmと極めて薄い白金膜を形成させた場合でも電池として機能することが確認された。触媒層2の平均膜厚は例えば1〜300nm程度とすればよい。変換効率の安定性と経済性を両立させる上では、10〜200nm、あるいは20〜100nmの範囲にコントロールすることより効果的である。触媒層2はセル内部となる領域(図1のセル領域100)に存在すれば十分であり、セル間となる領域(図1のセル間領域200)の一部表面11には触媒層2は不要である。ただし、スパッタリング法を適用する際には、マスキングしない限り上記の一部表面11の部分にも触媒物質の金属が付着する。この部分に金属が付着していても特に問題となることはない。 (C) The catalyst layer 2 is formed on the surface of each translucent conductive member 1 divided by the grooves 61. Platinum, nickel, polyaniline, polyethylene dioxythiophene, carbon, etc. can be applied as the catalyst material. In the case of a metal film such as platinum or nickel, it can be formed by sputtering, for example. According to the study by the inventors, it was confirmed that even when an extremely thin platinum film having an average film thickness of about 1 nm was formed, it functions as a battery. The average film thickness of the catalyst layer 2 may be about 1 to 300 nm, for example. In order to achieve both conversion efficiency stability and economic efficiency, it is more effective to control the range of 10 to 200 nm or 20 to 100 nm. It suffices that the catalyst layer 2 exists in a region (cell region 100 in FIG. 1) inside the cell, and the catalyst layer 2 is formed on a partial surface 11 of the region (inter-cell region 200 in FIG. 1) between cells. It is unnecessary. However, when the sputtering method is applied, the metal of the catalytic substance adheres to the portion of the partial surface 11 as long as it is not masked. Even if metal adheres to this portion, there is no particular problem.

(d)溝61の部分に絶縁部材6Aを挿入することにより、溝61を挟んで隣り合う透光性導電部材1同士の導通を防止する。絶縁部材6Bの素材としては例えば熱硬化性樹脂が適用できる。その場合、後述の合体工程において熱硬化性樹脂を硬化させることができる。なお、上記(c)において触媒層2の膜厚を薄く設定する場合には溝61の部分に触媒の金属物質が付着しても両側の透光性導電部材1同士の導通を防止することは可能であるが、絶縁部材6Aの挿入を触媒層2の形成より前の段階で済ませておくことによって透光性導電部材1同士の導通は完全に回避される。 (D) By inserting the insulating member 6 </ b> A into the groove 61, conduction between adjacent translucent conductive members 1 across the groove 61 is prevented. As the material of the insulating member 6B, for example, a thermosetting resin can be applied. In that case, the thermosetting resin can be cured in the coalescence process described later. When the thickness of the catalyst layer 2 is set to be thin in (c) above, it is possible to prevent conduction between the translucent conductive members 1 on both sides even if the metal material of the catalyst adheres to the groove 61 portion. Although it is possible, conduction between the translucent conductive members 1 can be completely avoided by inserting the insulating member 6A at a stage prior to the formation of the catalyst layer 2.

上記の(b)〜(d)を行う手順は、(d)が(b)の後となる限り、順序は不同である。例えば、(b)における溝の形成は(c)における触媒層2の形成後に行っても構わない。また、前述のように(d)の絶縁部材6Bの挿入を(c)の触媒層2の形成より前に行っても構わない。
このようにして対向電極側構造体70が作製される。
The procedure for performing the above (b) to (d) is in no particular order as long as (d) is after (b). For example, the groove formation in (b) may be performed after the formation of the catalyst layer 2 in (c). Further, as described above, the insulating member 6B of (d) may be inserted before the formation of the catalyst layer 2 of (c).
In this manner, the counter electrode side structure 70 is manufactured.

[2]光電極側構造体作製工程
図3に、光電極側構造体を作製するための工程における部材断面状態を模式的に示す。図3中の手順(e)〜(k)に基づいて説明する。なお、この手順は例示であり必ずしもこれに限られるものではない。
[2] Photoelectrode-side structure manufacturing process FIG. 3 schematically shows a member cross-sectional state in a process for manufacturing the photoelectrode-side structure. This will be described based on the procedures (e) to (k) in FIG. In addition, this procedure is an illustration and is not necessarily limited to this.

(e)板状体Bの表面に金属シート50が接合された板状部材を用意する。板状体Bは絶縁性を有している必要があるが、透光性は必要ないため、種々のガラスやプラスチックシートなどが使用できる。金属シート50は前述のようにニッケル、チタン、チタン合金、クロム、アルミニウム、アルミニウム合金、モリブデン、または鋼のシート材などが適用対象となり、当該モジュールが搭載される機器の耐用期間などに応じて適切な耐食性を有する材料が選択される。金属シート50の厚さはセルを構築したときの[板状体Aと板状体Bの間隔]−[前記透光性導電部材の厚さ]に相当する厚さとすればよい。それ以上の厚さのものを用意して、後工程のエッチングにて厚さを調整することも可能である。前述のように透光性導電部材1のセル間となる領域(図1のセル間領域200)の一部表面11に触媒物質の金属が付着する場合には、前記の「相当する厚さ」は付着する触媒層の厚さを差し引いた厚さとなる。具体的には例えば40〜500μm程度の金属シート50を使用することができる。金属シート50と板状体Bは容易に剥がれないように接着剤などにより接合されていることが望ましい。薄肉部51となる部分を除いてレジスト膜63を塗布してマスキングする。 (E) A plate-like member in which the metal sheet 50 is bonded to the surface of the plate-like body B is prepared. Although the plate-like body B needs to have insulating properties, since it does not need translucency, various glasses, plastic sheets, and the like can be used. As described above, the metal sheet 50 is applicable to nickel, titanium, titanium alloy, chromium, aluminum, aluminum alloy, molybdenum, or steel sheet material, and is appropriate according to the service life of the device in which the module is mounted. A material having good corrosion resistance is selected. The thickness of the metal sheet 50 may be a thickness corresponding to [the distance between the plate A and the plate B] − [the thickness of the translucent conductive member] when the cell is constructed. It is also possible to prepare a thicker one and adjust the thickness by etching in a later step. As described above, when the metal of the catalytic substance adheres to a part of the surface 11 of the region between the cells of the translucent conductive member 1 (inter-cell region 200 in FIG. 1), the “corresponding thickness” described above. Is a thickness obtained by subtracting the thickness of the deposited catalyst layer. Specifically, for example, a metal sheet 50 of about 40 to 500 μm can be used. It is desirable that the metal sheet 50 and the plate-like body B are bonded with an adhesive or the like so that they are not easily peeled off. The resist film 63 is applied and masked except for the portion that becomes the thin portion 51.

(f)金属シート50を板状体Bに接合されたままの状態でエッチング液64に浸漬し、レジスト膜63でマスキングされていない部分をエッチングし、所定の厚さの薄肉部51を形成する。その薄肉部51の厚さは例えば20〜50μmである。金属シート50がステンレス鋼である場合、エッチング液として塩化第二鉄を含む酸を使用すると、そのエッチングによって金属シート50の表面がアンカー効果の高いピットに覆われた粗面化表面となり、光電変換効率の向上に有利となる。薄肉部51が所定の厚さになったのちエッチング液64から取り出し、レジスト膜63を除去する。 (F) The metal sheet 50 is immersed in the etching solution 64 while being bonded to the plate-like body B, and a portion not masked by the resist film 63 is etched to form a thin portion 51 having a predetermined thickness. . The thickness of the thin portion 51 is, for example, 20 to 50 μm. When the metal sheet 50 is stainless steel, when an acid containing ferric chloride is used as an etchant, the surface of the metal sheet 50 becomes a roughened surface covered with pits having a high anchor effect, and photoelectric conversion is performed. This is advantageous for improving efficiency. After the thin portion 51 reaches a predetermined thickness, it is taken out from the etching solution 64 and the resist film 63 is removed.

(g)薄肉部51を形成した金属シート50の表面に、セルのピッチで離間させるための溝となる部分を除き、再度レジスト膜63を塗布する。 (G) A resist film 63 is applied again on the surface of the metal sheet 50 on which the thin portion 51 is formed, except for a portion that becomes a groove for separating at a cell pitch.

(h)再びエッチング液64に浸漬し、セルのピッチに等しいピッチの溝65を形成して金属シート50を個々の金属部材5に区分する。溝65によって隣り合う金属部材5同士が離間され導通を有していないことが重要である。各金属部材5は薄肉部51を有し、図1のセル間領域200となる金属部材5の部分には厚肉部52を有するものとなる。溝65による離間が完了したのちエッチング液64から取り出し、レジスト膜63を除去する。 (H) It is immersed again in the etching solution 64 to form grooves 65 having a pitch equal to the cell pitch, thereby dividing the metal sheet 50 into individual metal members 5. It is important that the adjacent metal members 5 are separated from each other by the groove 65 and do not have conduction. Each metal member 5 has a thin portion 51, and a portion of the metal member 5 that becomes the inter-cell region 200 in FIG. After the separation by the groove 65 is completed, the resist film 63 is removed from the etching solution 64.

(i)金属部材5の薄肉部51の表面に半導体層4を形成させる。半導体層4は比表面積の大きいTiO2等の半導体粒子を用いた多孔質層であり、例えばTiO2粒子を含有するペーストを塗布し乾燥させる手法により半導体層4を形成させることができる。必要に応じて400〜500℃程度の温度に加熱して焼成する。ペーストの塗布をスクリーン印刷法によって行うと所定範囲に精度良く半導体層4を配置することができる。半導体層4の乾燥膜厚は例えば10〜40μm程度とすればよい。 (I) The semiconductor layer 4 is formed on the surface of the thin portion 51 of the metal member 5. The semiconductor layer 4 is a porous layer using semiconductor particles such as TiO 2 having a large specific surface area. For example, the semiconductor layer 4 can be formed by applying and drying a paste containing TiO 2 particles. If necessary, it is baked by heating to a temperature of about 400 to 500 ° C. When the paste is applied by a screen printing method, the semiconductor layer 4 can be accurately arranged in a predetermined range. The dry film thickness of the semiconductor layer 4 may be about 10 to 40 μm, for example.

(j)半導体層4にルテニウム錯体等の増感色素を担持させる。その手法としては半導体層4を板状体Bに搭載された状態のまま増感色素が分散した溶液中に浸漬する手法が採用できる。半導体層4の細孔に増感色素が行き渡ったのち溶液中から引き上げ、乾燥させると、増感色素を担持した半導体層4が得られる。 (J) A sensitizing dye such as a ruthenium complex is supported on the semiconductor layer 4. As the method, a method of immersing the semiconductor layer 4 in a solution in which the sensitizing dye is dispersed while being mounted on the plate-like body B can be employed. When the sensitizing dye reaches the pores of the semiconductor layer 4 and then is pulled up from the solution and dried, the semiconductor layer 4 carrying the sensitizing dye is obtained.

(k)溝65の部分に絶縁部材6Bを挿入することにより、溝65を挟んで隣り合う金属部材5同士の導通を防止する。絶縁部材6Bの素材としては例えば熱硬化性樹脂が適用できる。その場合、後述の合体工程において熱硬化性樹脂を硬化させることができる。 (K) By inserting the insulating member 6 </ b> B into the groove 65, conduction between adjacent metal members 5 across the groove 65 is prevented. As the material of the insulating member 6B, for example, a thermosetting resin can be applied. In that case, the thermosetting resin can be cured in the coalescence process described later.

上記の(e)〜(k)を行う手順は、(f)が(e)の後となり、(h)が(g)の後となり、(i)が(f)(h)のエッチング後となり、(j)が(i)の後となり、(k)の絶縁部材の挿入が(h)の溝も形成後となる限り、順序は不同である。例えば、(g)および(h)の溝の形成を(e)および(f)の薄肉部の形成より先に行っても構わないし、(k)の絶縁部材の挿入を(i)の半導体層形成の前に行っても構わない。
このようにして光電極側構造体80が作製される。なお、上記[1]と[2]は順序不同である。
The procedure for performing the above (e) to (k) is as follows. (F) is after (e), (h) is after (g), and (i) is after (f) (h) etching. As long as (j) is after (i) and the insertion of the insulating member in (k) is after the formation of the groove in (h), the order is not specified. For example, the grooves (g) and (h) may be formed prior to the formation of the thin-walled parts (e) and (f), and the insulating member (k) may be inserted into the semiconductor layer (i). You may carry out before formation.
In this way, the photoelectrode side structure 80 is manufactured. Note that the above [1] and [2] are in no particular order.

[3]合体工程
上述のようにして得られた対向電極側構造体70と光電極側構造体80を、前者の各透光性導電部材1の一部表面11(触媒物質の金属が付着している場合を含む)と後者の各厚肉部52がそれぞれ接触して重なるように合体させる。その際、触媒層2と半導体層4の間に電解質層3を充填した状態として、封止する。電解質層3は例えばヨウ素を含むような色素増感型太陽電池用の電解液そのもので構成するか、あるいはそのような電解液を含浸させてイオンが移動できる状態とした媒体で構成することができる。絶縁部材6A、6Bとして熱硬化性樹脂を使用している場合は、封止の段階で加熱を行い、樹脂を硬化させるとよい。
このようにして図1に示したような断面構造の色素増感型太陽電池モジュール10が構築される。
[3] Combining Step The counter electrode side structure 70 and the photoelectrode side structure 80 obtained as described above are attached to a part of the surface 11 of each of the former translucent conductive members 1 (catalyst metal is attached). And the latter thick portions 52 are brought into contact with each other so as to overlap. At that time, sealing is performed with the electrolyte layer 3 filled between the catalyst layer 2 and the semiconductor layer 4. The electrolyte layer 3 can be composed of, for example, an electrolyte for a dye-sensitized solar cell containing iodine, or a medium in which ions can move by being impregnated with such an electrolyte. . In the case where a thermosetting resin is used as the insulating members 6A and 6B, heating is preferably performed at the sealing stage to cure the resin.
In this way, the dye-sensitized solar cell module 10 having a cross-sectional structure as shown in FIG. 1 is constructed.

光電極40を構成する金属部材5として種々の金属材料を用い、図1に示した構造で5セルを直列配置した色素増感型太陽電池モジュールを作製して、各モジュールの開放電圧を評価した。   Using various metal materials as the metal member 5 constituting the photoelectrode 40, a dye-sensitized solar cell module in which 5 cells are arranged in series with the structure shown in FIG. 1 was produced, and the open circuit voltage of each module was evaluated. .

〔対向電極側構造体の作製〕
対向電極用の透光性基板として、ガラス基板上に厚さ約1μmのFTO膜を形成した材料(旭硝子社製)を用意した(図2(a))。このガラス基板は板状体Aに相当し、FTO膜は透光性導電部材1に相当する。その透光性導電部材1にYAGレーザーを照射することによりセルのピッチに等しいピッチで膜厚を貫通する溝61を形成した(図2(b))。溝61により離間された各透光性導電部材1の表面に触媒物質の白金をスパッタコーティングして触媒層2を形成した(図2(c))。図1のセル間領域200となる一部表面11にも触媒物質の白金が付着している。離間された透光性導電部材1同士の間には導通がないことを確認している。その後、溝61の部分に熱硬化性樹脂からなる絶縁部材6Aを注入した。このようにして対向電極側構造体70を得た。
[Preparation of counter electrode structure]
As a light-transmitting substrate for the counter electrode, a material (manufactured by Asahi Glass Co., Ltd.) in which an FTO film having a thickness of about 1 μm was formed on a glass substrate was prepared (FIG. 2A). This glass substrate corresponds to the plate-like body A, and the FTO film corresponds to the translucent conductive member 1. By irradiating the translucent conductive member 1 with a YAG laser, grooves 61 penetrating the film thickness at a pitch equal to the cell pitch were formed (FIG. 2B). The catalyst layer 2 was formed by sputter-coating platinum as a catalyst material on the surface of each translucent conductive member 1 separated by the groove 61 (FIG. 2C). The catalytic material platinum is also attached to the partial surface 11 which becomes the inter-cell region 200 of FIG. It has been confirmed that there is no electrical continuity between the transparent conductive members 1 separated from each other. Thereafter, an insulating member 6A made of a thermosetting resin was injected into the groove 61. In this way, a counter electrode side structure 70 was obtained.

〔光電極側構造体の作製〕
金属部材5の素材として、ニッケル、チタン、クロム、アルミニウム、モリブデンのシート材(以上、いずれもニラコ社製、純度;スリーナイン)、JIS G3141に規定される冷間圧延鋼板SPCC、およびJIS G4305に規定される冷間圧延ステンレス鋼板SUS447J1(30%Cr−2%Moフェライト系鋼)を用意した。クロムは板厚2.0mmであり、その他はいずれも板厚0.1mmの金属シートである。各金属シートの片面に、厚さ約0.1mmのPEN(ポリエチレンナフタレート)フィルム(帝人デュポンフィルム社製;テオネックス)を、熱可塑性樹脂フィルム(三井デュポンケミカル社製;サーリン)を用いて融着させた。PENフィルムおよび融着層が図1の板状体Bに相当する。
[Production of photoelectrode side structure]
As a material of the metal member 5, a sheet material of nickel, titanium, chromium, aluminum, and molybdenum (all of which are manufactured by Nilaco, purity; Three Nine), a cold-rolled steel plate SPCC defined in JIS G3141, and specified in JIS G4305 Cold rolled stainless steel sheet SUS447J1 (30% Cr-2% Mo ferritic steel) was prepared. Chromium has a plate thickness of 2.0 mm, and the others are metal sheets with a plate thickness of 0.1 mm. A PEN (polyethylene naphthalate) film (made by Teijin DuPont Films; Teonex) with a thickness of about 0.1 mm is fused to one side of each metal sheet using a thermoplastic resin film (Mitsui DuPont Chemicals; Surlyn). I let you. The PEN film and the fusion layer correspond to the plate-like body B in FIG.

その板状体B上の金属シートの表面に、フォトレジスト装置を用いて、セル間領域200となる幅2mmの部分に等間隔でレジスト膜(東京応化工業社製;EPPR)63を塗布してマスキングし、セル領域100となる幅10mmの部分を露出させた(図3(e))。これを各金属のエッチング液64に浸漬させることにより前記露出部の金属を深さ50μmまで溶解させ、薄肉部51を形成させた(図3(f))。薄肉部51の厚さは50μmとなる。エッチング液64としては、ニッケルには硝酸、チタンには弗酸、クロムには塩化第二鉄・塩酸混合液、アルミニウムには水酸化ナトリウム水溶液、モリブデンには硝酸・硫酸混合液、冷延鋼板およびステンレス鋼板には塩化第二鉄・塩酸混合液を用いた。次に、そのレジスト膜63を除去した後、厚肉部52の一部に幅1mmの部分を残し、その他の部分を再度レジスト膜でマスキングした(図3(g))。これを再びエッチング液64に浸漬させ、レジスト膜が塗布されていない部分の金属を完全に溶解させ、幅1mmの溝65を形成させた(図3(h))。これにより金属シートはセルのピッチで離間され、隣同士で導通のない金属部材5に区分された。レジスト膜63を除去した後、各金属部材5の薄肉部51の表面にTiO2ペースト(Solaronix社製;Ti−Nanoxide D/DP)をスクリーン印刷により塗布し、450℃で焼成することにより半導体層4を形成した(図3(i))。半導体層4の平均乾燥膜厚は約10μmである。増感色素としてルテニウム錯体色素(Solaronix社製;Ruthenium 535−bisTBA)を使用し、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させて色素溶液62を得た。半導体層4を板状体Bごと色素溶液62に浸漬し、増感色素が担持された半導体層4を得た(図3(j))。その後、溝65の部分に熱硬化性樹脂からなる絶縁部材6Bを注入した。このようにして光電極側構造体80を得た。 A resist film (manufactured by Tokyo Ohka Kogyo Co., Ltd .; EPPR) 63 is applied to the surface of the metal sheet on the plate-like body B at an equal interval on a 2 mm wide portion that becomes the inter-cell region 200 using a photoresist device Masking was performed to expose a portion having a width of 10 mm to be the cell region 100 (FIG. 3E). This was immersed in an etching solution 64 of each metal to dissolve the metal in the exposed portion to a depth of 50 μm, thereby forming a thin portion 51 (FIG. 3F). The thickness of the thin portion 51 is 50 μm. Etching solution 64 is nitric acid for nickel, hydrofluoric acid for titanium, ferric chloride / hydrochloric acid mixture for chromium, aqueous sodium hydroxide solution for aluminum, nitric acid / sulfuric acid mixture for molybdenum, cold-rolled steel plate and A ferric chloride / hydrochloric acid mixture was used for the stainless steel plate. Next, after removing the resist film 63, a part with a width of 1 mm was left in a part of the thick part 52, and the other part was masked again with the resist film (FIG. 3G). This was again immersed in the etching solution 64, and the metal in the portion where the resist film was not applied was completely dissolved to form a groove 65 having a width of 1 mm (FIG. 3 (h)). As a result, the metal sheets were separated at the cell pitch and separated into adjacent metal members 5 that were not conductive. After removing the resist film 63, a TiO 2 paste (manufactured by Solaronix; Ti-Nanoxide D / DP) is applied to the surface of the thin portion 51 of each metal member 5 by screen printing, and baked at 450 ° C. 4 was formed (FIG. 3 (i)). The average dry film thickness of the semiconductor layer 4 is about 10 μm. A ruthenium complex dye (manufactured by Solaronix; Ruthenium 535-bisTBA) was used as a sensitizing dye, and this was dispersed in a mixed solvent of acetonitrile and tert-butanol to obtain a dye solution 62. The semiconductor layer 4 was immersed in the dye solution 62 together with the plate-like body B to obtain the semiconductor layer 4 carrying the sensitizing dye (FIG. 3 (j)). Thereafter, an insulating member 6B made of a thermosetting resin was injected into the groove 65. Thus, the photoelectrode side structure 80 was obtained.

〔色素増感型太陽電池モジュールの作製(合体工程)〕
上記で得られた対向電極側構造体70と光電極側構造体80を、前者の各一部領域11と後者の各厚肉部52がそれぞれ接触して重なるように合体させた。その際、ホットプレス機により加熱して絶縁部材6A、6Bの熱硬化性樹脂を硬化させた。その後、予め対向電極側構造体70に設けておいた電解液注入口からヨウ素を含む電解液3(ペクセルテクノロジーズ社製;PECE−K01)を注入し、半導体層4の多孔質中に液が含浸されるように対向電極20と光電極40の間に充填した。この状態で封止し、図1に示したタイプの5セルからなる色素増感型太陽電池モジュールを構築した。ここで、透光性導電部材1と金属部材5の肉厚部52との間には触媒物質の金属(白金)が介在している。
[Production of dye-sensitized solar cell module (merging process)]
The counter electrode side structure 70 and the photoelectrode side structure 80 obtained above were combined so that each of the former partial regions 11 and each of the latter thick portions 52 were in contact with each other and overlapped. At that time, the thermosetting resin of the insulating members 6A and 6B was cured by heating with a hot press machine. Thereafter, an electrolytic solution 3 containing iodine (manufactured by Pexel Technologies; PECE-K01) is injected from an electrolytic solution injection port previously provided in the counter electrode side structure 70, and the liquid is injected into the porous layer of the semiconductor layer 4. It filled between the counter electrode 20 and the photoelectrode 40 so that it might be impregnated. Sealed in this state, a dye-sensitized solar cell module composed of 5 cells of the type shown in FIG. 1 was constructed. Here, a metal (platinum) of a catalytic substance is interposed between the translucent conductive member 1 and the thick portion 52 of the metal member 5.

〔開放電圧VOCの測定〕
作製した色素増感型太陽電池モジュールの板状体A側の面から、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の疑似太陽光を照射しながら、ソースメータ(KEYTHLEY社製;2400型)により当該モジュールの開放電圧VOC(V)を測定した。結果を表1に示す。
[Measurement of open circuit voltage V OC ]
While irradiating pseudo solar light of AM 1.5, 100 mW / cm 2 from the surface of the prepared dye-sensitized solar cell module on the plate A side using a solar simulator (Yamashita Denso Co., Ltd .; YSS-100). The open circuit voltage V OC (V) of the module was measured with a source meter (manufactured by KEYTHLEY; Model 2400). The results are shown in Table 1.

単セルの開放電圧は0.74Vであるところ、5セルを直列接続した各モジュールの開放電圧は単セルの開放電圧の和となっており、単セルが良好に直列接続されていることが確認された。   Since the open voltage of the single cell is 0.74V, the open voltage of each module in which 5 cells are connected in series is the sum of the open voltage of the single cells, and it is confirmed that the single cells are well connected in series. It was done.

表2に示す各ステンレス鋼種からなる板厚0.1mmの冷延焼鈍鋼板(2D仕上げ材)を一般的なステンレス鋼板製造工程により製造し、これを供試材とした。表2中、組織の欄は「α」がフェライト系、「γ」がオーステナイト系を意味する。表中におけるハイフン「−」は製鋼現場における通常の分析手法にて測定限界以下であることを意味する。   A cold-rolled annealed steel plate (2D finish) having a thickness of 0.1 mm made of each stainless steel type shown in Table 2 was produced by a general stainless steel plate production process, and this was used as a test material. In Table 2, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in the table means that it is below the measurement limit by a normal analysis method in the steelmaking field.

これら各種ステンレス鋼板を光電極40の金属部材5に用いて実施例1と同様に5セルからなる色素増感型太陽電池モジュールを作製した。各モジュールについて実施例1と同様の手法で疑似太陽光を照射しながら、前記ソースメータにより短絡電流JSC(mA/cm2)および開放電圧VOC(V)を測定した。その後、各モジュールを85℃の恒温槽中に100h放置させた後、同様に短絡電流JSCおよび開放電圧VOCを測定した。結果を表3に示す。 Using these various stainless steel plates as the metal member 5 of the photoelectrode 40, a dye-sensitized solar cell module consisting of 5 cells was produced in the same manner as in Example 1. The short circuit current J SC (mA / cm 2 ) and the open circuit voltage V OC (V) were measured with the source meter while irradiating the artificial sunlight in the same manner as in Example 1 for each module. Thereafter, each module was allowed to stand in a constant temperature bath at 85 ° C. for 100 hours, and then the short circuit current J SC and the open circuit voltage V OC were measured in the same manner. The results are shown in Table 3.

表3からわかるように、モジュール作製直後はいずれも高い短絡電流JSCおよび良好な開放電圧VOCを示した。85℃×100h放置後には、Mo無添加またはMo含有量が0.3質量%未満であるステンレス鋼種を金属部材5に用いたモジュール(No.1〜3、21、22)において短絡電流JSCおよび開放電圧VOCの低下が見られた。これは、ステンレス鋼の腐食が進行したことに起因する導電性の低下が主たる原因であると考えられる。ただし、比較的耐用期間の短い低廉な機器に搭載する用途であれば、このようなステンレス鋼種を用いた低コストのモジュールが有用となりうる。 As can be seen from Table 3, the short circuit current J SC and the good open circuit voltage V OC were all shown immediately after the module was manufactured. After leaving at 85 ° C. for 100 hours, the short circuit current J SC is not obtained in modules (No. 1 to 3, 21, and 22) in which the stainless steel type having no Mo added or Mo content of less than 0.3% by mass is used for the metal member 5. In addition, a decrease in the open circuit voltage V OC was observed. This is considered to be mainly due to a decrease in conductivity due to the progress of corrosion of stainless steel. However, a low-cost module using such a stainless steel type can be useful for use in an inexpensive device with a relatively short service life.

一方、Cr:16.0質量%以上、かつMo:0.30質量%以上を含有するステンレス鋼種を用いたモジュール(No.4〜9、23)では、85℃×100h放置後においても初期の性能が維持されており、高い信頼性を有することが確認された。   On the other hand, in modules (Nos. 4 to 9 and 23) using a stainless steel type containing Cr: 16.0% by mass or more and Mo: 0.30% by mass or more, even after being left at 85 ° C. for 100 hours, It was confirmed that the performance was maintained and it had high reliability.

A 絶縁性かつ透光性の板状体
B 絶縁性の板状体
1 透光性導電部材
2 触媒層
3 電解質層
4 半導体層
5 金属部材
6A、6B 絶縁部材
7 負荷
8 導線
9 色素増感型太陽電池セル
10 色素増感型太陽電池モジュール
11 透光性導電部材の一部表面
20 対向電極
40 光電極
50 金属シート
51 薄肉部
52 厚肉部
60 レーザートーチ
61、65 溝
62 色素溶液
63 レジスト膜
64 エッチング液
70 対向電極側構造体
80 光電極側構造体
100 セル領域
200 セル間領域
A Insulating and translucent plate-like body B Insulating plate-like body 1 Translucent conductive member 2 Catalyst layer 3 Electrolyte layer 4 Semiconductor layer 5 Metal member 6A, 6B Insulating member 7 Load 8 Conductor 9 Dye-sensitized type Solar cell 10 Dye-sensitized solar cell module 11 Partial surface of translucent conductive member 20 Counter electrode 40 Photoelectrode 50 Metal sheet 51 Thin part 52 Thick part 60 Laser torch 61, 65 Groove 62 Dye solution 63 Resist film
64 Etching solution 70 Counter electrode side structure 80 Photo electrode side structure 100 Cell region 200 Inter-cell region

Claims (8)

対向する絶縁性かつ透光性の板状体Aと絶縁性の板状体Bとの間に、直列に接続された複数の色素増感型太陽電池セルが組み込まれているモジュールであって、
各セルは、板状体A側から板状体B側に向かって、透光性導電部材、触媒層、電解質層、半導体層、金属部材を有し、その透光性導電部材と触媒層により対向電極が構成され、半導体層と金属部材により光電極が構成されており、
隣接するセルの間では、一方のセルの対向電極を構成している透光性導電部材の一部表面(触媒物質の金属が付着している場合を含む)と、他方のセルの光電極を構成している薄肉部と厚肉部を有する金属部材の当該厚肉部表面とが積層して接触することによりセル間の直列の導通が確保されると共に、当該金属部材の厚肉部をスペーサーとして光電極と対向電極の間隙が確保され、
隣接するセルの光電極同士および対向電極同士はそれぞれ絶縁部材により絶縁されている、色素増感型太陽電池モジュール。
A module in which a plurality of dye-sensitized solar cells connected in series are incorporated between the opposing insulating and translucent plate A and insulating plate B,
Each cell has a translucent conductive member, a catalyst layer, an electrolyte layer, a semiconductor layer, and a metal member from the plate A side to the plate B side, and the translucent conductive member and the catalyst layer The counter electrode is configured, the photoelectrode is configured by the semiconductor layer and the metal member,
Between adjacent cells, a part of the surface of the translucent conductive member constituting the counter electrode of one cell (including the case where the metal of the catalyst substance is attached) and the photoelectrode of the other cell The thin-walled portion and the thick-walled surface of the metal member having the thick-walled portion are stacked and brought into contact with each other to ensure serial continuity between the cells, and the thick-walled portion of the metal member is a spacer. As a gap between the photoelectrode and the counter electrode is secured,
A dye-sensitized solar cell module in which photoelectrodes and counter electrodes of adjacent cells are insulated from each other by an insulating member.
前記金属部材は、前記板状体Bの表面上に支持された金属シートに対して、「レジスト膜によるマスキング→エッチング→レジスト膜の除去」の手法を適用することにより形成されたものである請求項1に記載の色素増感型太陽電池モジュール。   The metal member is formed by applying a technique of “masking with a resist film → etching → removing a resist film” on a metal sheet supported on the surface of the plate-like body B. Item 2. The dye-sensitized solar cell module according to Item 1. 前記金属部材は、ニッケル、チタン、チタン合金、クロム、アルミニウム、アルミニウム合金、モリブデン、または鋼のシート材に由来するものである請求項1または2に記載の色素増感型太陽電池モジュール。   The dye-sensitized solar cell module according to claim 1 or 2, wherein the metal member is derived from a sheet material of nickel, titanium, titanium alloy, chromium, aluminum, aluminum alloy, molybdenum, or steel. 前記金属部材は、JIS G4305:2005に規定されるフェライト系鋼種に属し、且つCr含有量が16.0〜32.0質量%、Mo含有量が0.3〜3.0質量%の範囲にあるステンレス鋼からなるものである請求項1または2に記載の色素増感型太陽電池モジュール。   The metal member belongs to a ferritic steel type defined in JIS G4305: 2005, and has a Cr content of 16.0 to 32.0 mass% and a Mo content of 0.3 to 3.0 mass%. The dye-sensitized solar cell module according to claim 1 or 2, comprising a certain stainless steel. 前記金属部材は、JIS G4305:2005に規定されるオーステナイト系鋼種に属し、且つCr含有量が16.0〜32.0質量%、Mo含有量が0.3〜7.0質量%の範囲にあるステンレス鋼からなるものである請求項1または2に記載の色素増感型太陽電池モジュール。   The metal member belongs to the austenitic steel grade specified in JIS G4305: 2005, and the Cr content is in the range of 16.0 to 32.0 mass% and the Mo content is in the range of 0.3 to 7.0 mass%. The dye-sensitized solar cell module according to claim 1 or 2, comprising a certain stainless steel. 前記金属部材は、質量%でC:0.0001〜0.15%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0〜0.04%、S:0〜0.03%、Ni:0〜0.6%、Cr:16.0〜35.0%、Mo:0.3〜3.0%、Cu:0〜1.0%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.2%、N:0〜0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼からなるものである請求項1または2に記載の色素増感型太陽電池モジュール。   The metal member is, by mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0 to 0.04%, S: 0 to 0.03%, Ni: 0 to 0.6%, Cr: 16.0 to 35.0%, Mo: 0.3 to 3.0%, Cu: 0 to 1.0%, Nb : 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025% or less, B: 0 to 0.01%, balance Fe and inevitable The dye-sensitized solar cell module according to claim 1 or 2, wherein the dye-sensitized solar cell module is made of ferritic stainless steel made of impurities. 前記金属部材は、質量%でC:0.0001〜0.15%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0〜0.045%、S:0〜0.03%、Ni:6.0〜28.0%、Cr:16.0〜35.0%、Mo:0.3〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜0.1%、N:0〜0.3%、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼からなるものである請求項1または2に記載の色素増感型太陽電池モジュール。   The metal member is C: 0.0001 to 0.15% by mass, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0 to 0.045%, S: 0 to 0.03%, Ni: 6.0 to 28.0%, Cr: 16.0 to 35.0%, Mo: 0.3 to 7.0%, Cu: 0 to 3.5% Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.1%, N: 0 to 0.3%, B: 0 to 0.01%, balance Fe and inevitable The dye-sensitized solar cell module according to claim 1 or 2, wherein the dye-sensitized solar cell module is made of an austenitic stainless steel made of natural impurities. 対向する絶縁性かつ透光性の板状体Aと絶縁性の板状体Bとの間に、直列に接続された複数の色素増感型太陽電池セルが組み込まれているモジュールを製造するに際し、
[1]対向電極側構造体作製工程;
透光性導電部材の膜を表面に有する板状体Aを用意し、
セルのピッチに等しいピッチで前記透光性導電部材にその膜厚を貫通する溝を形成することにより溝を挟んで両側の透光性導電部材同士を離間させるステップ、
セル内部となる領域に位置する透光性導電部材の表面部分に触媒層を形成するステップ、
前記溝の部分に絶縁部材を挿入して隣接する透光性導電部材同士を絶縁するステップ、
を有する手順により対向電極側構造体を得る工程、
[2]光電極側構造体作製工程;
セルを構築したときの[板状体Aと板状体Bの間隔]−[前記透光性導電部材の厚さ]に相当する厚さ以上の金属シートが板状体Bの表面に接合されたものを用意し、
「レジスト膜によるマスキング→エッチング→レジスト膜除去」の手法により、隣接するセルの間となる領域に位置する金属シートの表面部分を厚肉部として残し、セル内部となる領域に位置する金属シートの表面部分をエッチングして薄肉部とするステップ、
「レジスト膜によるマスキング→エッチング→レジスト膜除去」の手法により、セルのピッチに等しいピッチの溝を形成することにより金属シートを離間させ、個々の金属部材に区分するステップ、
前記薄肉部に半導体層を形成させるステップ、
前記半導体層に増感色素を担持させるステップ、
前記溝の部分に絶縁部材を挿入して隣接する金属部材同士を絶縁するステップ、
を有する手順により光電極側構造体を得る工程、
[3]合体工程;
前記の対向電極側構造体と光電極側構造体を、前者の離間された各透光性導電部材の一部表面(触媒物質の金属が付着している場合を含む)と後者の各厚肉部がそれぞれ接触して重なるように合体させて、半導体層と触媒層の間に電解質層が充填された状態で封止する工程、
を有する請求項1〜7のいずれかに記載の色素増感型太陽電池モジュールの製造法。
When manufacturing a module in which a plurality of dye-sensitized solar cells connected in series are incorporated between the opposing insulating and translucent plate A and insulating plate B. ,
[1] counter electrode side structure manufacturing process;
A plate-like body A having a translucent conductive member film on the surface is prepared,
Separating the translucent conductive members on both sides across the groove by forming a groove penetrating the film thickness in the translucent conductive member at a pitch equal to the pitch of the cells;
Forming a catalyst layer on the surface portion of the translucent conductive member located in the region that is inside the cell;
Inserting an insulating member into the groove to insulate adjacent translucent conductive members;
Obtaining a counter electrode side structure by a procedure comprising:
[2] Photoelectrode side structure manufacturing process;
When a cell is constructed, a metal sheet having a thickness equal to or greater than [the distance between the plate A and the plate B] − [thickness of the translucent conductive member] is bonded to the surface of the plate B. Prepare something,
By the method of “masking with resist film → etching → resist film removal”, the surface portion of the metal sheet located in the area between adjacent cells is left as a thick part, and the metal sheet located in the area inside the cell is Etching the surface part into a thin part,
The step of separating the metal sheet by forming grooves having a pitch equal to the cell pitch by the method of “masking with resist film → etching → resist film removal” and dividing into individual metal members,
Forming a semiconductor layer on the thin portion;
Carrying a sensitizing dye on the semiconductor layer;
Inserting an insulating member into the groove portion to insulate adjacent metal members from each other;
Obtaining a photoelectrode-side structure by a procedure comprising:
[3] coalescence process;
The counter electrode-side structure and the photoelectrode-side structure are divided into a part of the surface of each of the former translucent conductive members (including the case where a catalyst metal is attached) and the latter thick wall. A step of sealing in a state in which the electrolyte layers are filled between the semiconductor layer and the catalyst layer, by combining the parts so that the parts are in contact with each other and overlapping
The manufacturing method of the dye-sensitized solar cell module in any one of Claims 1-7 which have these.
JP2010040882A 2010-02-25 2010-02-25 Dye-sensitized solar cell module and manufacturing method thereof Expired - Fee Related JP5541687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010040882A JP5541687B2 (en) 2010-02-25 2010-02-25 Dye-sensitized solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040882A JP5541687B2 (en) 2010-02-25 2010-02-25 Dye-sensitized solar cell module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011175940A true JP2011175940A (en) 2011-09-08
JP5541687B2 JP5541687B2 (en) 2014-07-09

Family

ID=44688606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040882A Expired - Fee Related JP5541687B2 (en) 2010-02-25 2010-02-25 Dye-sensitized solar cell module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5541687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528476A (en) * 2014-07-23 2016-01-27 Eight19 Ltd Roll-to-roll processing of a coated web

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2002093476A (en) * 2000-09-20 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
JP2003282163A (en) * 2002-03-26 2003-10-03 Toppan Printing Co Ltd Dye-sensitized solar battery
JP2007012377A (en) * 2005-06-29 2007-01-18 Tokyo Univ Of Science Solar cell module
JP2008276961A (en) * 2007-04-25 2008-11-13 Sharp Corp Pigment sensitized solar battery module and its manufacturing method
JP2009037861A (en) * 2007-08-01 2009-02-19 Sharp Corp Dye-sensitized solar cell module
JP2009099476A (en) * 2007-10-19 2009-05-07 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2002093476A (en) * 2000-09-20 2002-03-29 Dainippon Printing Co Ltd Coloring matter sensitization type solar battery cell, coloring matter sensitization type solar battery module, using the same, and their manufacturing method
JP2003282163A (en) * 2002-03-26 2003-10-03 Toppan Printing Co Ltd Dye-sensitized solar battery
JP2007012377A (en) * 2005-06-29 2007-01-18 Tokyo Univ Of Science Solar cell module
JP2008276961A (en) * 2007-04-25 2008-11-13 Sharp Corp Pigment sensitized solar battery module and its manufacturing method
JP2009037861A (en) * 2007-08-01 2009-02-19 Sharp Corp Dye-sensitized solar cell module
JP2009099476A (en) * 2007-10-19 2009-05-07 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528476A (en) * 2014-07-23 2016-01-27 Eight19 Ltd Roll-to-roll processing of a coated web
CN106663703A (en) * 2014-07-23 2017-05-10 埃特19有限公司 Flexible substrate material and method of fabricating an electronic thin film device
US11264581B2 (en) 2014-07-23 2022-03-01 Eight19 Limited Flexible substrate material and method of fabricating an electronic thin film device

Also Published As

Publication number Publication date
JP5541687B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN100466124C (en) Solid electrolytic capacitor and method of manufacturing the same
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
WO2013001908A1 (en) Power storage device element and power storage device
JP2009245750A (en) Dye-sensitized solar battery and method of manufacturing the same
JP5227194B2 (en) Laminated electrode
JP5230961B2 (en) Dye-sensitized solar cell
JP5714594B2 (en) Method for producing dye-sensitized solar cell module using foil and dye-sensitized solar cell module produced thereby
US20210020994A1 (en) Battery and battery manufacturing method
TWI250543B (en) Solid electrolytic capacitor
JP5052768B2 (en) Solar cell module and manufacturing method thereof
JP5541687B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2008262837A (en) Dye-sensitized solar cell and its manufacturing method
JP5324793B2 (en) Dye-sensitized solar cell
JP5582821B2 (en) Manufacturing method of dye-sensitized solar cell module
TW201133877A (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP2008258028A (en) Dye-sensitized solar cell
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
JP2005317225A (en) Dye-sensitized solar cell, and photoelectrode for the same
JP2002094087A (en) Solar cell module
KR20100071764A (en) Dye-sensitized solar cell molule and manufacturing method thereof
EP2359406B1 (en) Photovoltaic devices
JP5530372B2 (en) Manufacturing method of electric module
JP2008108508A (en) Dye-sensitized solar cell
JP5685708B2 (en) Method for producing dye-sensitized solar cell
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R150 Certificate of patent or registration of utility model

Ref document number: 5541687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees