[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011174817A - Foreign matter inspection system, exposure system, and device manufacturing method - Google Patents

Foreign matter inspection system, exposure system, and device manufacturing method Download PDF

Info

Publication number
JP2011174817A
JP2011174817A JP2010039202A JP2010039202A JP2011174817A JP 2011174817 A JP2011174817 A JP 2011174817A JP 2010039202 A JP2010039202 A JP 2010039202A JP 2010039202 A JP2010039202 A JP 2010039202A JP 2011174817 A JP2011174817 A JP 2011174817A
Authority
JP
Japan
Prior art keywords
light
inspection
scattered light
foreign matter
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010039202A
Other languages
Japanese (ja)
Inventor
Kohei Maeda
浩平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010039202A priority Critical patent/JP2011174817A/en
Publication of JP2011174817A publication Critical patent/JP2011174817A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foreign matter inspection system capable of detecting the surface, to which a foreign matter is adhered, of two surfaces of an inspection target. <P>SOLUTION: The foreign matter inspection system is equipped with a floodlight projection part for projecting inspection light on the inspection target, a light detection part including a detector for detecting the intensity of the scattered light emitted from the inspection target on which the inspection light is projected and a control part. The detector detects the intensity of the first scattered light emitted from the inspection target by projecting the inspection light wherein a polarization direction is a first direction and the intensity of the second scattered light emitted from the inspection target by projecting the inspection light wherein the polarization direction is a second direction. The control part determines whether the surface to which the foreign matter is adhered is the first or second surface of the inspection target on the basis of whether the ratio of the intensities of the first and second scattered lights detected by the detector is larger or smaller than a standard value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置や液晶表示装置の製造において用いられる異物検査装置、露光装置及びデバイス製造方法に関する。本発明は、特に、マスクのたわみを気圧補正するためにマスクの上側に構成される平面ガラスやペリクルの両面における異物の有無を検出する異物検査装置に関する。   The present invention relates to a foreign matter inspection apparatus, an exposure apparatus, and a device manufacturing method used in manufacturing a semiconductor device and a liquid crystal display device. In particular, the present invention relates to a foreign substance inspection apparatus for detecting the presence or absence of foreign substances on both surfaces of a flat glass and a pellicle formed on the upper side of a mask in order to correct the pressure of the mask deflection.

近年、露光装置に用いられるマスクの大型化によりマスクが自重でたわみ、像性能が悪化することが懸念されている。そのためこれまでマスクの自重たわみを低減させる多くの工夫がなされてきた。特許文献1には、マスクの上側を平面ガラスで塞いで密閉室を構成し、マスク下面のたわみを検出し、検出結果に基づいて密閉室の圧力を調整することによってマスクのたわみを補正する露光装置が開示されている。   In recent years, there is a concern that the mask will be bent by its own weight due to an increase in the size of the mask used in the exposure apparatus and image performance will deteriorate. Therefore, many contrivances have been made so far to reduce the self-weight deflection of the mask. Patent Document 1 discloses an exposure in which the upper side of a mask is closed with a flat glass to form a sealed chamber, the deflection of the lower surface of the mask is detected, and the pressure of the sealed chamber is adjusted based on the detection result to correct the deflection of the mask. An apparatus is disclosed.

密閉室を構成する平面ガラスの上下面に異物が付着すると露光時の像性能を劣化させる恐れがあるので、平面ガラスの上下面に付着した異物を検出し、除去する必要がある。保管場所からマスクステージまで搬送工程において、マスクと平面ガラスとが分離し、マスク又は平面ガラスが搬送部材によって保持されつつ搬送されている状態において、マスクや平面ガラスの上下面の異物検査が行われる。図11は、従来の異物検査であり、光源16及び投影レンズ17を含む投光部と、受光レンズ18及び検出器15を含む受光部とを備える。そして、搬送部材19に保持された状態で、平面ガラス3(又はマスク)の上下面側に双方に配置された2台の異物検査装置を用いて平面ガラス3(又はマスク)の上下各面の異物検査が行われる。   If foreign matter adheres to the upper and lower surfaces of the flat glass constituting the sealed chamber, the image performance at the time of exposure may be deteriorated. Therefore, it is necessary to detect and remove the foreign matters adhering to the upper and lower surfaces of the flat glass. In the transfer process from the storage location to the mask stage, the mask and the flat glass are separated, and the foreign matter inspection of the upper and lower surfaces of the mask and the flat glass is performed while the mask or the flat glass is being transferred while being held by the transfer member. . FIG. 11 shows a conventional foreign object inspection, which includes a light projecting unit including a light source 16 and a projection lens 17, and a light receiving unit including a light receiving lens 18 and a detector 15. And in the state hold | maintained at the conveyance member 19, the upper and lower surfaces of the flat glass 3 (or mask) are used for the upper and lower surfaces of the flat glass 3 (or mask) by using two foreign substance inspection devices. Foreign matter inspection is performed.

特開平10−214780号公報JP-A-10-214780

搬送部材19に保持された状態でマスクや平面ガラス3の上下各面の異物検査を行った後、マスクと平面ガラス3とを合体してマスクのたわみを補正する機構を構築している。搬送部材19の搬送のための駆動機構は、マスクや平面ガラス3の近くに存在する。そのため、異物検査が終了してからマスクと平面ガラス3とを合体するまでの間に、駆動機構の駆動によって発生した塵がマスクの上面や平面ガラス3の下面に付着することがある。また、マスクと平面ガラス3とを合体して形成された密閉空間内を減圧するときに、マスクと平面ガラス3との接触部分から細かい金属片などが舞い、その金属片がマスクの上面や平面ガラス3の下面に付着することがある。   After the foreign matter inspection is performed on the upper and lower surfaces of the mask and the flat glass 3 while being held by the transport member 19, the mask and the flat glass 3 are combined to correct the deflection of the mask. A drive mechanism for transporting the transport member 19 exists near the mask and the flat glass 3. Therefore, dust generated by driving of the driving mechanism may adhere to the upper surface of the mask or the lower surface of the flat glass 3 after the foreign matter inspection is completed and before the mask and the flat glass 3 are combined. Further, when the inside of the sealed space formed by combining the mask and the flat glass 3 is depressurized, a fine metal piece or the like flies from the contact portion between the mask and the flat glass 3, and the metal piece is on the upper surface or the plane of the mask. It may adhere to the lower surface of the glass 3.

しかし、従来の異物検査は、マスクと平面ガラス3とが合体してマスクのたわみを補正する機構が構築された後に、マスクの上面や平面ガラス3の下面の異物を検査することができない。また、マスクパターン面に異物が付着しないように、マスクパターン面を保護するペリクルが付着された後の、ペリクルのマスク側の面に付着した異物も、従来の異物検査では検査することができない。そこで、本発明は、異物の付着した面が被検物の2面のうちのいずれの面であるかを検出することが可能な異物検査装置を提供することを目的とする。   However, in the conventional foreign matter inspection, the foreign matter on the upper surface of the mask or the lower surface of the flat glass 3 cannot be inspected after the mask and the flat glass 3 are combined to construct a mechanism for correcting the deflection of the mask. Further, the foreign matter attached to the mask side surface of the pellicle after the pellicle protecting the mask pattern surface is attached cannot be inspected by the conventional foreign matter inspection so that the foreign matter does not adhere to the mask pattern surface. Therefore, an object of the present invention is to provide a foreign matter inspection apparatus capable of detecting which of two surfaces of a test object is a surface to which foreign matter is attached.

本発明は、光透過性の被検物に付着した異物を検査する異物検査装置であって、前記被検物に検査光を投光する投光部と、前記検査光が投光されることによって前記被検物から生じる散乱光の強度を検出する検出器を含む受光部と、制御部と、を備え、前記検出器は、偏光方向が第1の方向である第1の検査光が投光されることによって前記被検物から生じる第1の散乱光の強度と、偏光方向が第2の方向である第2の検査光が投光されることによって前記被検物から生じる第2の散乱光の強度とを検出し、前記被検物の第1面に付着した異物によって生じる前記第1の散乱光および前記第2の散乱光の強度の比は基準値より大きく、前記被検物の前記第1面の反対側の第2面に付着した異物によって生じる前記第1の散乱光および前記第2の散乱光の強度の比は前記基準値より小さく、前記制御部は、前記検出器により検出された前記第1の散乱光の強度および前記第2の散乱光の強度の比が前記基準値より大きいか小さいかによって異物が付着した面が前記第1面および前記第2面のいずれであるかを判定し、当該判定した結果を出力する、ことを特徴とする。   The present invention is a foreign matter inspection apparatus for inspecting a foreign matter adhering to a light transmissive test object, wherein a light projecting unit that projects test light onto the test object, and the test light is projected. A light receiving unit including a detector for detecting the intensity of scattered light generated from the test object, and a control unit, and the detector projects the first inspection light whose polarization direction is the first direction. The intensity of the first scattered light generated from the test object by being irradiated and the second test light generated from the test object by projecting the second inspection light whose polarization direction is the second direction. The intensity of the scattered light is detected, and the ratio of the intensity of the first scattered light and the second scattered light caused by the foreign matter adhering to the first surface of the test object is larger than a reference value, and the test object The first scattered light and the second generated by the foreign matter adhering to the second surface opposite to the first surface The ratio of the intensity of the scattered light is smaller than the reference value, and the control unit is configured such that the ratio of the intensity of the first scattered light and the intensity of the second scattered light detected by the detector is greater than the reference value. It is characterized in that it is determined which of the first surface and the second surface the surface to which the foreign substance is attached depending on whether it is small, and the determined result is output.

本発明によれば、異物の付着した面が被検物の2面のうちのいずれの面であるかを検出することが可能な異物検査装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the foreign material inspection apparatus which can detect which surface of the 2 surfaces of a to-be-tested object is the surface to which the foreign material adhered can be provided.

実施例1の異物検査装置を示す図The figure which shows the foreign material inspection apparatus of Example 1. 被検物の上下両面の異物を検査することを説明する図The figure explaining inspecting the foreign matter on both the upper and lower sides of the specimen S偏光、P偏光が被検物を透過している様子を示す図The figure which shows a mode that S polarized light and P polarized light are permeate | transmitting the test object 検査光の入射角度と透過光量との関係を示す図The figure which shows the relationship between the incident angle of inspection light, and the amount of transmitted light 被検物上下両面における散乱光強度の関係を示す図Diagram showing the relationship between scattered light intensity on the upper and lower surfaces of the specimen 実施例2における異物検査装置を示す図The figure which shows the foreign material inspection apparatus in Example 2. 実施例3における異物検査装置を示す図The figure which shows the foreign material inspection apparatus in Example 3. P偏光、S偏光を使用する場合の散乱光強度と異物サイズとの関係を示す図The figure which shows the relationship between the scattered-light intensity | strength in the case of using P polarized light and S polarized light, and a foreign material size 実施例4における異物検査装置を示す図The figure which shows the foreign material inspection apparatus in Example 4. 露光装置を示した図Figure showing exposure equipment 従来の異物検査装置を示す図。The figure which shows the conventional foreign material inspection apparatus.

以下に、本発明の実施形態を添付の図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[露光装置]
図10には、露光装置が示されている。マスク5は、パターン面を下にしてマスクホルダ6によって真空吸着により保持されている。マスク5の上方には露光光を射出する光源1が設けられ、光源1とマスク5との間には、照明光学系2が設けられる。マスク5の露光光が透過した側には投影光学系11を挟んで露光の対象である基板12が配置されている。光源1から射出された露光光は、照明光学系2によってマスク5に照射される。マスク5に形成されたパターンの像は、露光光により投影光学系11を通じて基板12上に投影される。マスクホルダ6の下側にはマスク5のたわみを検出する検出系21が設けられる。検出系21は、斜入射タイプのフォーカスセンサの構成、機能を備えている。発光ダイオードなどの光源10から投影レンズ(不図示)を介してマスク5のパターン面に対して斜めから検出光が投光される。その反射光を受光レンズ(不図示)を介してフォトダイオードなどのディテクタ9で検出することにより、マスク5のたわみを検出する。ディテクタ9の検出信号出力側は、演算部8に接続されている。演算部8の出力側には気圧制御部7が接続されており、この気圧制御部7はパイプ4を介してマスク5のたわみを補正する気密室13に接続されている。気密室13は、下面側がマスク5で、上面側が平面ガラス3で塞がれた密閉箱状となっている。気密室13を構成する平面ガラス3は、平面板であるため露光光に影響を与えない。平面ガラス3とマスク5とで挟まれた空間は気密室13とされ、この気密室内の圧力を気圧制御部7で制御することでマスク5のたわみを制御する。気圧制御部7は、演算部8から入力される気圧制御量に基づいて、気密室13の気圧を制御する。このように、検出系21によりマスク5のたわみが検出され、演算部8によりたわみ量とこのたわみ量を補正する気圧制御量の算出が行われ、気圧制御部7により気密室13の気圧が制御される。このため、マスク5の自重によって発生するたわみに起因するパターンの横ずれや像面の湾曲、マスク5の熱的変形に起因するディストーションや像面湾曲などが軽減されて、良好にマスク5のパターンの投影を行うことが可能となる。
[Exposure equipment]
FIG. 10 shows an exposure apparatus. The mask 5 is held by vacuum suction by the mask holder 6 with the pattern surface facing down. A light source 1 that emits exposure light is provided above the mask 5, and an illumination optical system 2 is provided between the light source 1 and the mask 5. On the side of the mask 5 through which the exposure light is transmitted, a substrate 12 to be exposed is disposed with the projection optical system 11 interposed therebetween. The exposure light emitted from the light source 1 is applied to the mask 5 by the illumination optical system 2. The pattern image formed on the mask 5 is projected onto the substrate 12 through the projection optical system 11 by exposure light. A detection system 21 that detects the deflection of the mask 5 is provided below the mask holder 6. The detection system 21 has the configuration and function of a grazing incidence type focus sensor. Detection light is projected obliquely from the light source 10 such as a light emitting diode to the pattern surface of the mask 5 via a projection lens (not shown). The reflected light is detected by a detector 9 such as a photodiode through a light receiving lens (not shown) to detect the deflection of the mask 5. The detection signal output side of the detector 9 is connected to the calculation unit 8. An atmospheric pressure control unit 7 is connected to the output side of the calculation unit 8, and the atmospheric pressure control unit 7 is connected to an airtight chamber 13 that corrects the deflection of the mask 5 through a pipe 4. The hermetic chamber 13 has a sealed box shape in which the lower surface side is covered with the mask 5 and the upper surface side is closed with the flat glass 3. Since the flat glass 3 constituting the hermetic chamber 13 is a flat plate, it does not affect the exposure light. A space between the flat glass 3 and the mask 5 is an airtight chamber 13, and the pressure of the airtight chamber is controlled by the atmospheric pressure control unit 7 to control the deflection of the mask 5. The atmospheric pressure control unit 7 controls the atmospheric pressure in the hermetic chamber 13 based on the atmospheric pressure control amount input from the calculation unit 8. In this way, the deflection of the mask 5 is detected by the detection system 21, the deflection amount and the atmospheric pressure control amount for correcting the deflection amount are calculated by the calculation unit 8, and the atmospheric pressure in the hermetic chamber 13 is controlled by the atmospheric pressure control unit 7. Is done. For this reason, the lateral displacement of the pattern and the curvature of the image plane caused by the deflection caused by the weight of the mask 5 are reduced, and the distortion and the curvature of field caused by the thermal deformation of the mask 5 are reduced. Projection can be performed.

[実施例1]
図1に示すようにマスク5と光透過性の被検物である平面ガラス3とが露光用のマスクステージ14上に搭載されている。そしてその上側に異物検査装置が配置される。マスクステージ14又は異物検査装置に構成された駆動部22が駆動することにより、異物検査装置は、図2に示されるように、平面ガラス3の第1面(下面)及び第1面の反対側の第2面(上面)に付着した異物を検査する。平面ガラス3に検査光を投光する投光部25内に、投影レンズ17に加えて、光源16から出射されたP偏光の検査光およびS偏光の検査光の一方を選択する検査光選択部材24aを配置する。この検査光選択部材24aとして、λ/2板や偏光ビームスプリッタ、偏光板、その他光学結晶などが使われる。また、光源16自体にP偏光およびS偏光の一方を選択する機能がついていてもよい。P偏光の検査光は、偏光方向が第1の方向である第1の検査光を構成し、S偏光の検査光は、偏光方向が第2の方向である第2の検査光を構成する。一方、受光部26は、受光レンズ18と、検査光が投光されることによって平面ガラス3から生じる散乱光の強度を検出し、検出結果を制御部Cに送る検出器15とを含む。検出器15は、第1の検査光(P偏光)が投光された状態で第1の散乱光(P偏光の散乱光)の強度を検出し、第2の検査光(S偏光)が投光された状態で第2の散乱光(S偏光の散乱光)の強度を検出する。その結果、検出器15は、第1の散乱光(P偏光の散乱光)の強度と第2の散乱光(S偏光の散乱光)の強度とを分離して検出する。
[Example 1]
As shown in FIG. 1, a mask 5 and a flat glass 3 that is a light-transmitting test object are mounted on a mask stage 14 for exposure. A foreign substance inspection device is disposed on the upper side. When the drive unit 22 configured in the mask stage 14 or the foreign substance inspection apparatus is driven, the foreign substance inspection apparatus has the first surface (lower surface) of the flat glass 3 and the opposite side of the first surface as shown in FIG. The foreign matter adhering to the second surface (upper surface) is inspected. An inspection light selection member that selects one of the P-polarized inspection light and the S-polarized inspection light emitted from the light source 16 in addition to the projection lens 17 in the light projecting unit 25 that projects the inspection light onto the flat glass 3. 24a is arranged. As the inspection light selection member 24a, a λ / 2 plate, a polarizing beam splitter, a polarizing plate, other optical crystals, or the like is used. The light source 16 itself may have a function of selecting one of P-polarized light and S-polarized light. The P-polarized inspection light constitutes first inspection light whose polarization direction is the first direction, and the S-polarized inspection light constitutes second inspection light whose polarization direction is the second direction. On the other hand, the light receiving unit 26 includes a light receiving lens 18 and a detector 15 that detects the intensity of scattered light generated from the flat glass 3 by projecting the inspection light and sends the detection result to the control unit C. The detector 15 detects the intensity of the first scattered light (P-polarized scattered light) in a state where the first inspection light (P-polarized light) is projected, and the second inspection light (S-polarized light) is projected. The intensity of the second scattered light (S-polarized scattered light) is detected in the illuminated state. As a result, the detector 15 detects the intensity of the first scattered light (P-polarized scattered light) and the intensity of the second scattered light (S-polarized scattered light) separately.

図1に示すように、検査光選択部材24aを投光部25内に配置し、被検物である平面ガラス3に対してS偏光が投光されるように検査光選択部材24aを調整する。そうすると、検査光は平面ガラス3の上下面において本紙面に対して直交する向きに偏光方位をもつ光となる(図3A)。同様に、平面ガラス3に対してP偏光が投光されるように検査光選択部材24aを調整すると、検査光は平面ガラス3の上下面において矢印の向きに偏光方位をもつ光となる(図3B)。投光部25の光軸と被検物である平面ガラス3の上面の法線とがなす角度(θ)を横軸、検査光選択部材24a(S偏光、P偏光に調整した場合)を通過した直後の検査光の光量を1とする。そのとき、検査光が平面ガラス3の上面から下面側へ透過してくる光量(Ts、Tp)を縦軸にとると図4のようになる。例えばθ=85°のとき、Tp/Ts≒3.5となる。つまり、検査光選択部材24aが選択する検査光をS偏光からP偏光に変えることにより平面ガラス3の下面に付着した異物を照明する光量が3.5倍に変化することになる。   As shown in FIG. 1, the inspection light selection member 24 a is disposed in the light projecting unit 25, and the inspection light selection member 24 a is adjusted so that S-polarized light is projected onto the flat glass 3 that is the test object. . If it does so, inspection light turns into light which has a polarization azimuth | direction in the direction orthogonal to this paper surface in the upper and lower surfaces of the plane glass 3 (FIG. 3A). Similarly, when the inspection light selection member 24a is adjusted so that P-polarized light is projected onto the flat glass 3, the inspection light becomes light having a polarization direction in the direction of the arrow on the upper and lower surfaces of the flat glass 3 (FIG. 3B). An angle (θ) formed by the optical axis of the light projecting unit 25 and the normal line of the upper surface of the flat glass 3 as the test object passes through the horizontal axis and passes through the inspection light selection member 24a (when adjusted to S-polarized light or P-polarized light). The light quantity of the inspection light immediately after is set to 1. At that time, when the amount of light (Ts, Tp) transmitted from the upper surface of the flat glass 3 to the lower surface is taken as the vertical axis, the inspection light is as shown in FIG. For example, when θ = 85 °, Tp / Ts≈3.5. That is, by changing the inspection light selected by the inspection light selection member 24a from S-polarized light to P-polarized light, the amount of light that illuminates the foreign matter attached to the lower surface of the flat glass 3 is changed by a factor of 3.5.

このように検査光選択部材24aにより検査光の偏光方向を変えることにより、平面ガラス3の上面に付着した異物に対する照明光量を偏光方向に関わらず一定に保ちつつ、平面ガラス3の下面に付着した異物に対する照明光量を変えることができる。その結果、制御部Cは、偏光方向の変化に伴う異物からの散乱光の強度変化を検出することにより、異物が平面ガラス3の第1面および第2面のどちら(すなわち、上下面のいずれ)に付着しているかどうかを検出し判断することができる。   In this way, by changing the polarization direction of the inspection light by the inspection light selection member 24a, the amount of illumination with respect to the foreign matter attached to the upper surface of the flat glass 3 is kept constant regardless of the polarization direction, and is attached to the lower surface of the flat glass 3. The illumination light quantity with respect to the foreign substance can be changed. As a result, the control unit C detects the intensity change of the scattered light from the foreign matter accompanying the change in the polarization direction, so that the foreign matter is either the first surface or the second surface of the flat glass 3 (that is, any of the upper and lower surfaces). ) Can be detected and determined.

検査の前に、平面ガラス3の上面に付着した、粒径が分かっている異物からの散乱光の強度を、各偏光方向(S、P偏光)で検出し、記録する(図5A)。同様に平面ガラス3の下面に付着した、粒径が分かっている異物からの散乱光の強度を、各偏光(S、P偏光)で検出、記録する(図5B)。そして検査時は、図5A、図5Bの記録結果を異物の大きさの判断基準とする。例えば100μmの異物が平面ガラス3の上下面に付着していたとすると上面の異物からの散乱光の強度は、50μmの異物の散乱光強度を1(S、P偏光ともに)とすると、S偏光で6.3、P偏光で8.4である。同様に下面の異物からの散乱光の強度は、S偏光で0.45、P偏光で2.16である。このように上面に付着した異物からの散乱光の強度は、検査光が同一光路、同一光量で照明されている場合でも検査光選択部材24aの調整状態や、検査光の光量の安定性、平面ガラス3の光学特性のばらつきなどにより、S偏光=P偏光になるとは限らない。よって、図5Cに示される、上面に付着した異物のP偏光の散乱光の強度およびS偏光の散乱光の強度の比=8.4/6.3=1.33、同じく下面に付着した異物のP偏光の散乱光の強度およびS偏光の散乱光の強度の比=2.16/0.45=4.8に注目する。下面(第1面)に付着した第1の散乱光(P偏光の散乱光)の強度および第2の散乱光(S偏光の散乱光)の強度の比は、異物のサイズに関係なく基準値(例えば2.5)より大きい。一方、上面(第2面)に付着した第1の散乱光(P偏光の散乱光)の強度および第2の散乱光(S偏光の散乱光)の強度の比は、異物のサイズに関係なく基準値(例えば2.5)より小さい。そこで、制御部Cは、第1の散乱光(P偏光の散乱光)の強度および第2の散乱光(S偏光の散乱光)の強度の比が基準値より大きいか小さいかによって、異物が上面、下面のいずれに付着しているかを判定する。その基準値の設定においては、異物の大きさや異物の位置、検査光選択部材24aの調整精度、検査光の光量の安定性、被検物となる平面ガラス3の光学特性などによる散乱光の強度の比(P偏光/S偏光)のばらつきを考慮して設定することが望ましい。   Prior to the inspection, the intensity of scattered light from a foreign substance with a known particle size attached to the upper surface of the flat glass 3 is detected and recorded in each polarization direction (S, P polarization) (FIG. 5A). Similarly, the intensity of scattered light from a foreign substance having a known particle diameter attached to the lower surface of the flat glass 3 is detected and recorded for each polarized light (S, P polarized light) (FIG. 5B). At the time of inspection, the recording results in FIGS. 5A and 5B are used as criteria for determining the size of the foreign matter. For example, if 100 μm foreign matter is attached to the upper and lower surfaces of the flat glass 3, the intensity of scattered light from the foreign matter on the top surface is 1 (both S and P polarized light), and the intensity of scattered light from the foreign matter of 50 μm is S polarized. 6.3, P polarization is 8.4. Similarly, the intensity of scattered light from the foreign matter on the lower surface is 0.45 for S-polarized light and 2.16 for P-polarized light. Thus, the intensity of the scattered light from the foreign matter adhering to the upper surface is such that the adjustment state of the inspection light selection member 24a, the stability of the light amount of the inspection light, and the flat surface even when the inspection light is illuminated with the same optical path and the same amount of light. Due to variations in the optical characteristics of the glass 3, S polarization = P polarization is not always satisfied. Therefore, as shown in FIG. 5C, the ratio of the intensity of the P-polarized scattered light and the intensity of the S-polarized scattered light of the foreign matter attached to the upper surface = 8.4 / 6.3 = 1.33, and the foreign matter also attached to the lower surface. Note that the ratio of the intensity of the P-polarized scattered light and the intensity of the S-polarized scattered light = 2.16 / 0.45 = 4.8. The ratio of the intensity of the first scattered light (P-polarized scattered light) and the intensity of the second scattered light (S-polarized scattered light) attached to the lower surface (first surface) is a reference value regardless of the size of the foreign matter. Greater than (eg 2.5). On the other hand, the ratio of the intensity of the first scattered light (P-polarized scattered light) attached to the upper surface (second surface) and the intensity of the second scattered light (S-polarized scattered light) is independent of the size of the foreign matter. It is smaller than a reference value (for example, 2.5). Therefore, the control unit C determines whether the foreign matter depends on whether the ratio of the intensity of the first scattered light (P-polarized scattered light) and the intensity of the second scattered light (S-polarized scattered light) is larger or smaller than the reference value. It is determined whether it is attached to the upper surface or the lower surface. In setting the reference value, the size of the foreign matter, the position of the foreign matter, the adjustment accuracy of the inspection light selection member 24a, the stability of the amount of inspection light, the intensity of the scattered light due to the optical characteristics of the flat glass 3 serving as the test object, etc. It is desirable to set in consideration of variations in the ratio (P-polarized light / S-polarized light).

次に、平面ガラス3に付着した異物の大きさ、付着位置、上下面のどちらに付着しているかを検査するフローについて説明する。ステップ1で、異物検査装置に対する光透過性を有する被検物の上下面に、大きさが分かっている異物を配置する。そして検査光選択部材24aにより検査光をS偏光およびP偏光の一方に選択し、必要な検査領域を検査する。その結果、適正な光源の光量を決定し、図5A、図5Bのような感度曲線を作成し、記録することで以後、異物の大きさの判断基準とする。ステップ2で、前記感度曲線から図5Cに示すP偏光の散乱光およびS偏光の散乱光の強度の比を求め、上下面のどちらに異物がついているかを判断する基準値(閾値)を設定する。ステップ3で、異物検査装置に構成される検査光選択部材24aを検査光がS偏光になるように調整し、ステップ1で求めた光量で、異物検査装置に構成される駆動部22またはマスクステージ14を駆動させながら被検物の必要な検査領域を検査する。ステップ3において異物が検出された場合、ステップ4で、異物検査装置に構成される検査光選択部材24aを検査光がP偏光になるように調整する。そして、異物検査装置は、ステップ1で求めた光量で異物検査装置に構成される駆動部22またはマスクステージ14を駆動させながら被検物の必要な検査領域を検査する。ステップ3における駆動部22またはマスクステージ14の駆動方向は、ステップ4における駆動部22またはマスクステージ14の駆動方向の逆方向である。また、ステップ3で検査光をP偏光とし、ステップ4で検査光をS偏光とするようにしてもよい。   Next, a flow for inspecting the size of the foreign matter attached to the flat glass 3, the attachment position, and the top and bottom surfaces will be described. In step 1, a foreign substance having a known size is placed on the upper and lower surfaces of a test object having optical transparency to the foreign substance inspection apparatus. Then, the inspection light selecting member 24a selects inspection light as one of S-polarized light and P-polarized light, and inspects a necessary inspection region. As a result, an appropriate light amount of the light source is determined, and sensitivity curves as shown in FIGS. 5A and 5B are created and recorded, and then used as criteria for determining the size of the foreign matter. In step 2, the ratio of the intensity of the P-polarized scattered light and the S-polarized scattered light shown in FIG. 5C is obtained from the sensitivity curve, and a reference value (threshold value) for determining which of the upper and lower surfaces has foreign matter is set. . In step 3, the inspection light selection member 24 a configured in the foreign substance inspection apparatus is adjusted so that the inspection light becomes S-polarized light, and the drive unit 22 or the mask stage configured in the foreign substance inspection apparatus with the light amount obtained in step 1 The required inspection area of the test object is inspected while driving 14. If foreign matter is detected in step 3, in step 4, the inspection light selection member 24a configured in the foreign matter inspection apparatus is adjusted so that the inspection light becomes P-polarized light. The foreign matter inspection apparatus inspects a necessary inspection region of the test object while driving the drive unit 22 or the mask stage 14 configured in the foreign matter inspection apparatus with the light amount obtained in step 1. The drive direction of the drive unit 22 or the mask stage 14 in step 3 is the reverse direction of the drive direction of the drive unit 22 or the mask stage 14 in step 4. Alternatively, the inspection light may be P-polarized light at step 3 and the inspection light may be S-polarized light at step 4.

ステップ5において、制御部Cは、ステップ3、4で得られた結果とステップ2で設定した基準値を元に被検物の上面、下面のどちらに付着した異物かを判定する。ステップ6において、制御部Cは、ステップ5で得られた結果と駆動部の駆動量から検査領域内の異物の位置を判定する。ステップ7において、制御部Cは、ステップ1で求めた被検物の上面の感度曲線と下面の感度曲線を元に検出された異物の大きさを判定する。ステップ8において、制御部Cは、ステップ5〜7で判定した結果を出力する。本実施例の構成でかつ上記ステップを踏むことにより、異物検査装置は、被検物である平面ガラス3の上下面に存在する異物を検出することができる。   In step 5, the control unit C determines whether the foreign matter has adhered to the upper surface or the lower surface of the test object based on the results obtained in steps 3 and 4 and the reference value set in step 2. In step 6, the control unit C determines the position of the foreign matter in the inspection area from the result obtained in step 5 and the driving amount of the driving unit. In step 7, the control unit C determines the size of the detected foreign matter based on the sensitivity curve on the upper surface and the sensitivity curve on the lower surface of the test object obtained in step 1. In step 8, the control unit C outputs the result determined in steps 5-7. By taking the above steps with the configuration of the present embodiment, the foreign matter inspection apparatus can detect foreign matter present on the upper and lower surfaces of the flat glass 3 that is the test object.

[実施例2]
実施例1では、投光部25がP偏光の検査光およびS偏光の検査光の一方を選択的に投光し、検出器15がP偏光の検査光が投光された状態でP偏光の散乱光の強度を検出し、S偏光の検査光が投光された状態でS偏光の散乱光の強度を検出した。そして、投光部25がP偏光の検査光およびS偏光の検査光の一方を選択的に投光するように、投光部25に検査光選択部材24aを配置した。実施例2では、投光部25は、P偏光の検査光およびS偏光の検査光の双方を投光する。そして、図6に示されるように、検査光選択部材24aを投光部25に設ける代わりに、P偏光の散乱光およびS偏光の散乱光の一方を選択的に透過する選択部材24bを被検物である平面ガラス3と検出器15との間に配置する。その結果、実施例2の異物検査装置において、検出器15は、選択部材24bがP偏光の散乱光を選択的に透過する状態でP偏光の散乱光の強度を検出し、選択部材24bがS偏光の散乱光を選択的に透過する状態でS偏光の散乱光の強度を検出する。選択部材24bとして、λ/2板や偏光ビームスプリッタ、偏光板、その他光学結晶などが使われる。実施例2においても、選択部材24bによって検出器15に透過させる散乱光の偏光方向を変更して異物検査を2回行うことによって、被検物である平面ガラス3の上下面に存在する異物を検出することができる。
[Example 2]
In the first embodiment, the light projecting unit 25 selectively projects one of the P-polarized inspection light and the S-polarized inspection light, and the detector 15 projects the P-polarized light while the P-polarized inspection light is projected. The intensity of the scattered light was detected, and the intensity of the S-polarized scattered light was detected in a state where the S-polarized inspection light was projected. Then, the inspection light selecting member 24a is arranged in the light projecting unit 25 so that the light projecting unit 25 selectively projects one of the P-polarized inspection light and the S-polarized inspection light. In the second embodiment, the light projecting unit 25 projects both P-polarized inspection light and S-polarized inspection light. Then, as shown in FIG. 6, instead of providing the inspection light selection member 24a in the light projecting unit 25, the selection member 24b that selectively transmits one of the P-polarized scattered light and the S-polarized scattered light is tested. It arrange | positions between the plane glass 3 which is a thing, and the detector 15. FIG. As a result, in the foreign matter inspection apparatus according to the second embodiment, the detector 15 detects the intensity of the P-polarized scattered light in a state where the selection member 24b selectively transmits the P-polarized scattered light, and the selection member 24b detects S. The intensity of the S-polarized scattered light is detected in a state of selectively transmitting the polarized scattered light. As the selection member 24b, a λ / 2 plate, a polarizing beam splitter, a polarizing plate, and other optical crystals are used. Also in the second embodiment, the foreign matter present on the upper and lower surfaces of the flat glass 3 as the test object is obtained by performing the foreign matter inspection twice by changing the polarization direction of the scattered light transmitted to the detector 15 by the selection member 24b. Can be detected.

[実施例3]
実施例1、2では、検査光または散乱光の偏光方向を変更して異物検査を2回行うことによって、平面ガラス3の上下面に存在する異物の検査を行った。実施例3では、実施例2と同じように、投光部25は、P偏光の検査光およびS偏光の検査光の双方を投光する。実施例2では、受光部26内にP偏光の散乱光およびS偏光の散乱光の一方を選択的に透過する選択部材24bを配置した。実施例3では、選択部材24bの代わりに、図7に示されるように、平面ガラス3の上下面の異物で生じたP偏光の散乱光とS偏光の散乱光とを分離する偏光ビームスプリッタ(ビームスプリッタ)24cを配置する。また、実施例3では、検出器15は、P偏光の散乱光の強度を検出する第1検出器15aとP偏光の散乱光の強度を検出する第2検出器15bの2台となる。制御部Cは、第1および第2検出器15a,15bの検出結果からP偏光の散乱光およびS偏光の散乱光の強度の比を取得し、異物が平面ガラス3の上下面どちらに付着しているか判定する。また、実施例3では、実施例1、2のように検査光または散乱光の偏光方向を切り替える必要が無いため異物検査を2回行う必要がなく、検査時間を半分に短縮することができる。
[Example 3]
In Examples 1 and 2, the foreign matter existing on the upper and lower surfaces of the flat glass 3 was inspected by changing the polarization direction of the inspection light or scattered light and performing the foreign matter inspection twice. In the third embodiment, as in the second embodiment, the light projecting unit 25 projects both P-polarized inspection light and S-polarized inspection light. In the second embodiment, the selection member 24 b that selectively transmits one of the P-polarized scattered light and the S-polarized scattered light is disposed in the light receiving unit 26. In the third embodiment, instead of the selection member 24b, as shown in FIG. 7, a polarization beam splitter that separates P-polarized scattered light and S-polarized scattered light generated by foreign matter on the upper and lower surfaces of the flat glass 3 ( A beam splitter 24c is disposed. In the third embodiment, there are two detectors 15, that is, a first detector 15 a that detects the intensity of the P-polarized scattered light and a second detector 15 b that detects the intensity of the P-polarized scattered light. The controller C obtains the ratio of the intensity of the P-polarized scattered light and the S-polarized scattered light from the detection results of the first and second detectors 15 a and 15 b, and the foreign matter adheres to either the upper or lower surface of the flat glass 3. Judgment is made. Further, in the third embodiment, since it is not necessary to switch the polarization direction of the inspection light or scattered light as in the first and second embodiments, it is not necessary to perform the foreign substance inspection twice, and the inspection time can be reduced to half.

実施例3における異物検査装置を使用した場合の検査フローを説明する。ステップ1において、異物検査装置に対する光透過性を有する平面ガラス3の上下面に、大きさが分かっている異物を配置する。そして異物検査装置を用いて必要な検査領域を検査する。その結果、適正な光源の光量を決定し、図8A、図8Bに示されるように、第1検出器15a、第2検出器15b毎に感度曲線を作成し、記録することで以後、異物の大きさの判断基準とする。ステップ2において、前記各検出器15a,15bの感度曲線からP偏光の散乱光およびS偏光の散乱光の強度の比を求め、上下面のどちらに異物がついているかを判定するための基準値(閾値)を設定する。ステップ3において、異物検査装置は、ステップ1で求めた光量で異物検査装置に構成される駆動部22またはマスクステージ14を駆動させながら、必要な検査領域を検査する。それによって、第1検出器15aは異物のよって生じたP偏光の散乱光の強度を取得し、第2検出器15bは、S偏光の散乱光の強度を取得する。   An inspection flow when the foreign matter inspection apparatus according to the third embodiment is used will be described. In step 1, a foreign substance whose size is known is arranged on the upper and lower surfaces of the flat glass 3 having light permeability with respect to the foreign substance inspection apparatus. Then, a necessary inspection area is inspected using a foreign substance inspection apparatus. As a result, an appropriate light amount of the light source is determined, and sensitivity curves are created and recorded for each of the first detector 15a and the second detector 15b as shown in FIGS. 8A and 8B. This is a standard for judging size. In step 2, the ratio of the intensity of the P-polarized scattered light and the S-polarized scattered light is obtained from the sensitivity curves of the detectors 15a and 15b, and a reference value for determining which of the upper and lower surfaces has foreign matter (in FIG. Threshold). In step 3, the foreign matter inspection apparatus inspects a necessary inspection region while driving the drive unit 22 or the mask stage 14 configured in the foreign matter inspection apparatus with the light amount obtained in step 1. Thereby, the first detector 15a acquires the intensity of the P-polarized scattered light generated by the foreign matter, and the second detector 15b acquires the intensity of the S-polarized scattered light.

ステップ4において、制御部Cは、ステップ3で得られた結果とステップ2で設定した基準値を元に、異物が付着した面が平面ガラス3の上面および下面のいずれであるかを判定する。ステップ5において、制御部Cは、ステップ4で得られた結果と駆動部の駆動量から、検査領域内の異物の位置を判定する。ステップ6において、制御部Cは、ステップ1で作成し、記録した第1検出器15aの感度曲線と、第2検出器15bの感度曲線を元に、検出された異物の大きさを判定する。実施例3では、平面ガラス3の検査領域を1回検査するだけで、被検物である平面ガラス3の上下面に存在する異物を検出することができる。   In step 4, the control unit C determines whether the surface to which the foreign matter has adhered is the upper surface or the lower surface of the flat glass 3 based on the result obtained in step 3 and the reference value set in step 2. In step 5, the control unit C determines the position of the foreign matter in the inspection area from the result obtained in step 4 and the driving amount of the driving unit. In Step 6, the control unit C determines the size of the detected foreign matter based on the sensitivity curve of the first detector 15a and the sensitivity curve of the second detector 15b created and recorded in Step 1. In Example 3, the foreign substance which exists in the upper and lower surfaces of the flat glass 3 which is a test object is detectable only by test | inspecting the test | inspection area | region of the flat glass 3 once.

[実施例4]
実施例1〜3では、異物検査装置の被検物は平面ガラス3であった。実施例4では、異物検査装置を用いて、図9に示されるように、マスク5の2面のうち基板12が配置される側の面(下面)に付着されマスク5のパターン面を保護するペリクル27の上下面の異物を検査することもできる。実施例1〜4における異物の大きさに関しては、異物検査装置の検出器15の画素数から判定しても良い。
[Example 4]
In Examples 1 to 3, the test object of the foreign substance inspection apparatus was the flat glass 3. In the fourth embodiment, as shown in FIG. 9, the foreign matter inspection apparatus is used to protect the pattern surface of the mask 5 by being attached to the surface (lower surface) on the side where the substrate 12 is disposed, of the two surfaces of the mask 5. Foreign matter on the upper and lower surfaces of the pellicle 27 can also be inspected. The size of the foreign matter in Examples 1 to 4 may be determined from the number of pixels of the detector 15 of the foreign matter inspection apparatus.

[デバイス製造方法]
次に、上述の露光装置を利用した半導体集積回路素子、液晶表示素子等のデバイス製造方法を例示的に説明する。デバイスは、前述の露光装置を用いて基板を露光する露光工程と、露光工程で露光された基板を現像する現像工程と、現像工程で現像された基板を加工する他の周知の工程とを経ることによって製造される。他の周知の工程は、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング工程などである。以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
[Device manufacturing method]
Next, device manufacturing methods such as semiconductor integrated circuit elements and liquid crystal display elements using the above-described exposure apparatus will be described as an example. The device undergoes an exposure process for exposing the substrate using the above-described exposure apparatus, a development process for developing the substrate exposed in the exposure process, and another known process for processing the substrate developed in the development process. Manufactured by. Other known processes are etching, resist stripping, dicing, bonding, packaging processes, and the like. As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

Claims (8)

光透過性の被検物に付着した異物を検査する異物検査装置であって、
前記被検物に検査光を投光する投光部と、
前記検査光が投光されることによって前記被検物から生じる散乱光の強度を検出する検出器を含む受光部と、
制御部と、
を備え、
前記検出器は、偏光方向が第1の方向である第1の検査光が投光されることによって前記被検物から生じる第1の散乱光の強度と、偏光方向が第2の方向である第2の検査光が投光されることによって前記被検物から生じる第2の散乱光の強度とを検出し、
前記被検物の第1面に付着した異物によって生じる前記第1の散乱光および前記第2の散乱光の強度の比は基準値より大きく、前記被検物の前記第1面の反対側の第2面に付着した異物によって生じる前記第1の散乱光および前記第2の散乱光の強度の比は前記基準値より小さく、
前記制御部は、
前記検出器により検出された前記第1の散乱光の強度および前記第2の散乱光の強度の比が前記基準値より大きいか小さいかによって異物が付着した面が前記第1面および前記第2面のいずれであるかを判定し、
当該判定した結果を出力する、
ことを特徴とする異物検査装置。
A foreign matter inspection apparatus for inspecting foreign matter attached to a light-transmitting test object,
A light projecting unit that projects inspection light onto the test object;
A light receiving unit including a detector that detects the intensity of scattered light generated from the test object by projecting the inspection light;
A control unit;
With
The detector has the intensity of the first scattered light generated from the test object when the first inspection light whose polarization direction is the first direction is projected, and the polarization direction is the second direction. Detecting the intensity of the second scattered light generated from the test object by projecting the second inspection light;
The ratio of the intensity of the first scattered light and the second scattered light generated by the foreign matter adhering to the first surface of the test object is greater than a reference value, and is on the opposite side of the first surface of the test object. The ratio of the intensity of the first scattered light and the second scattered light generated by the foreign matter attached to the second surface is smaller than the reference value,
The controller is
Depending on whether the ratio of the intensity of the first scattered light and the intensity of the second scattered light detected by the detector is larger or smaller than the reference value, the surface on which foreign matter has adhered is the first surface and the second surface. Determine which of the faces
Output the judgment result,
Foreign matter inspection apparatus characterized by the above.
前記投光部は、前記第1の検査光および前記第2の検査光の一方を選択的に投光し、
前記検出器は、前記第1の検査光が投光された状態で前記第1の散乱光の強度を検出し、前記第2の検査光が投光された状態で前記第2の散乱光の強度を検出する、ことを特徴とする請求項1に記載の異物検査装置。
The light projecting unit selectively projects one of the first inspection light and the second inspection light,
The detector detects the intensity of the first scattered light in a state where the first inspection light is projected, and the detector detects the intensity of the second scattered light in a state where the second inspection light is projected. The foreign matter inspection apparatus according to claim 1, wherein intensity is detected.
前記投光部は、前記第1の検査光および前記第2の検査光の双方を投光し、
前記受光部は、前記被検物と前記検出器との間に配置されて前記第1の散乱光および前記第2の散乱光の一方を選択的に透過する選択部材を含み、
前記検出器は、前記選択部材が前記第1の散乱光を選択的に透過する状態で前記第1の散乱光の強度を検出し、前記選択部材が前記第2の散乱光を選択的に透過する状態で前記第2の散乱光の強度を検出する、ことを特徴とする請求項1に記載の異物検査装置。
The light projecting unit projects both the first inspection light and the second inspection light,
The light receiving unit includes a selection member that is disposed between the test object and the detector and selectively transmits one of the first scattered light and the second scattered light,
The detector detects the intensity of the first scattered light in a state where the selection member selectively transmits the first scattered light, and the selection member selectively transmits the second scattered light. 2. The foreign matter inspection apparatus according to claim 1, wherein the intensity of the second scattered light is detected in a state where the second scattered light is detected.
前記投光部は、前記第1の検査光および前記第2の検査光の双方を投光し、
前記受光部は、前記被検物と前記検出器との間に配置されて前記第1の散乱光と前記第2の散乱光とを分離するビームスプリッタを含み、
前記検出器は、前記ビームスプリッタにより分離された前記第1の散乱光の強度を検出する第1検出器と前記第2の散乱光の強度を検出する第2検出器とを含み、
前記制御部は、前記第1検出器の検出結果および前記第2検出器の検出結果から前記第1の散乱光および前記第2の散乱光の強度の比を取得する、ことを特徴とする請求項1に記載の異物検査装置。
The light projecting unit projects both the first inspection light and the second inspection light,
The light receiving unit includes a beam splitter that is disposed between the test object and the detector and separates the first scattered light and the second scattered light,
The detector includes a first detector that detects the intensity of the first scattered light separated by the beam splitter, and a second detector that detects the intensity of the second scattered light,
The said control part acquires the ratio of the intensity | strength of a said 1st scattered light and a said 2nd scattered light from the detection result of a said 1st detector, and the detection result of a said 2nd detector, It is characterized by the above-mentioned. Item 1. A foreign matter inspection apparatus according to Item 1.
前記第1の検査光および前記第1の散乱光はP偏光であり、前記第2の検査光および前記第2の散乱光はS偏光である、ことを特徴とする請求項1ないし4のいずれか1項に記載の異物検査装置。   The first inspection light and the first scattered light are P-polarized light, and the second inspection light and the second scattered light are S-polarized light. The foreign matter inspection apparatus according to claim 1. マスクのパターンを介して基板を露光する露光装置であって、
前記マスクの2面のうち前記基板が配置される側の反対側の面と平面ガラスとで挟まれた空間は気密室とされ、当該気密室内の圧力を調整することによって前記マスクのたわみが制御されるように構成され、
前記露光装置は、前記平面ガラスの第1面と前記第1面の反対側の第2面とに付着した異物を検査する請求項1乃至請求項5のいずれか1項に記載の異物検査装置を備えることを特徴とする露光装置。
An exposure apparatus that exposes a substrate through a mask pattern,
A space sandwiched between the two surfaces of the mask opposite to the surface on which the substrate is disposed and the flat glass is an airtight chamber, and the deflection of the mask is controlled by adjusting the pressure in the airtight chamber. Configured to be
6. The foreign matter inspection apparatus according to claim 1, wherein the exposure apparatus inspects foreign matter attached to a first surface of the flat glass and a second surface opposite to the first surface. 7. An exposure apparatus comprising:
マスクのパターンを介して基板を露光する露光装置であって、
前記マスクの2面のうち前記基板が配置される側の面にはペリクルが付着されており、
前記露光装置は、前記ペリクルの第1面と前記第1面の反対側の第2面とに付着した異物を検査する請求項1乃至請求項5のいずれか1項に記載の異物検査装置を備えることを特徴とする露光装置。
An exposure apparatus that exposes a substrate through a mask pattern,
A pellicle is attached to the surface on which the substrate is disposed, of the two surfaces of the mask,
6. The foreign matter inspection apparatus according to claim 1, wherein the exposure apparatus inspects foreign matter attached to a first surface of the pellicle and a second surface opposite to the first surface. An exposure apparatus comprising the exposure apparatus.
請求項6または7に記載の露光装置を用いて基板を露光する工程と、
前記工程で露光された基板を現像する工程と、
を含むデバイス製造方法。
Exposing the substrate using the exposure apparatus according to claim 6 or 7,
Developing the substrate exposed in the step;
A device manufacturing method including:
JP2010039202A 2010-02-24 2010-02-24 Foreign matter inspection system, exposure system, and device manufacturing method Withdrawn JP2011174817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039202A JP2011174817A (en) 2010-02-24 2010-02-24 Foreign matter inspection system, exposure system, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039202A JP2011174817A (en) 2010-02-24 2010-02-24 Foreign matter inspection system, exposure system, and device manufacturing method

Publications (1)

Publication Number Publication Date
JP2011174817A true JP2011174817A (en) 2011-09-08

Family

ID=44687804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039202A Withdrawn JP2011174817A (en) 2010-02-24 2010-02-24 Foreign matter inspection system, exposure system, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP2011174817A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258880A (en) * 2010-06-11 2011-12-22 Canon Inc Foreign matter inspecting device, exposure unit using the same, and manufacturing method of device using the same
WO2016088623A1 (en) * 2014-12-01 2016-06-09 東レエンジニアリング株式会社 Substrate examination device
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method
CN107727661A (en) * 2017-11-02 2018-02-23 中国科学院光电研究院 The apparatus and method for determining transparent material surface flaw/spot position
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258880A (en) * 2010-06-11 2011-12-22 Canon Inc Foreign matter inspecting device, exposure unit using the same, and manufacturing method of device using the same
WO2016088623A1 (en) * 2014-12-01 2016-06-09 東レエンジニアリング株式会社 Substrate examination device
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method
CN107727661A (en) * 2017-11-02 2018-02-23 中国科学院光电研究院 The apparatus and method for determining transparent material surface flaw/spot position
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method
JP7292842B2 (en) 2018-09-21 2023-06-19 キヤノン株式会社 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method

Similar Documents

Publication Publication Date Title
JP5594254B2 (en) Silicon substrate inspection apparatus and inspection method
US7643139B2 (en) Method and apparatus for detecting defects
JPH01187437A (en) Defect inspection device
US5963316A (en) Method and apparatus for inspecting a surface state
JPH075115A (en) Surface condition inspection apparatus
JP2011174817A (en) Foreign matter inspection system, exposure system, and device manufacturing method
US8339568B2 (en) Foreign particle inspection apparatus, exposure apparatus, and method of manufacturing device
JP7183156B2 (en) Method and apparatus for inspecting defects on transparent substrate and method for emitting incident light
JP2015078865A (en) Foreign substance inspection device
JP2006072147A5 (en)
JP2013140061A (en) Method for detecting foreign substance on front and back sides of transparent flat substrate, and foreign substance inspection device using the method
JP2015137927A (en) imaging device and inspection system
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2007121312A (en) Surface defect inspection device
US10801967B2 (en) Mask inspection apparatus, switching method, and mask inspection method
JP2010271186A (en) Defect inspection apparatus
JP2007194888A (en) Method of inspecting solid-state imaging device
JP4654408B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
KR102582877B1 (en) Foreign matter checking apparatus, exposure apparatus, and article manufacturing method
CN111007077A (en) Device for detecting foreign matters on upper surface of ultrathin transparent substrate
KR101185076B1 (en) Reflective type optical sensor for reflector
JP3953841B2 (en) GAP MEASURING METHOD, GAP MEASURING DEVICE, AND EXPOSURE DEVICE
JP4493428B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JPS63103951A (en) Dust inspection device
JP2006351441A (en) Optical sensor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507