[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011165836A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2011165836A
JP2011165836A JP2010026105A JP2010026105A JP2011165836A JP 2011165836 A JP2011165836 A JP 2011165836A JP 2010026105 A JP2010026105 A JP 2010026105A JP 2010026105 A JP2010026105 A JP 2010026105A JP 2011165836 A JP2011165836 A JP 2011165836A
Authority
JP
Japan
Prior art keywords
semiconductor device
power semiconductor
electrode
external electrode
lead terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026105A
Other languages
Japanese (ja)
Other versions
JP5218442B2 (en
Inventor
Shingo Sudo
進吾 須藤
Yohei Omoto
洋平 大本
Toshiya Tadakuma
利弥 只熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010026105A priority Critical patent/JP5218442B2/en
Publication of JP2011165836A publication Critical patent/JP2011165836A/en
Application granted granted Critical
Publication of JP5218442B2 publication Critical patent/JP5218442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor device which has higher reliability than before. <P>SOLUTION: The power semiconductor device includes a tubular electrode 8 fixed to a circuit pattern on which a semiconductor element is mounted, a resin housing 1 which seals the semiconductor element and the tubular electrode such that the other end of the tubular electrode is exposed, and an external electrode 2 which is inserted into the tubular electrode and has a protrusion portion 21 abutting on the other end or the resin housing as a result of the insertion. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、樹脂封止型の半導体装置に関し、特に電力用半導体装置であってパッケージ上面より電極を取り出す半導体装置に関する。   The present invention relates to a resin-encapsulated semiconductor device, and more particularly to a power semiconductor device in which an electrode is taken out from an upper surface of a package.

半導体装置は、その内部回路において1kV以上の絶縁耐圧を有する半導体チップ(例えばIGBT等)を扱うことがある。このような電力用半導体装置では、内部回路の地絡を防止するため、半導体装置の筐体つまりモールド樹脂において、当該半導体装置に備わる放熱板と電極との間の絶縁距離を確保することが必須である。   A semiconductor device may handle a semiconductor chip (eg, IGBT) having a dielectric breakdown voltage of 1 kV or higher in its internal circuit. In such a power semiconductor device, in order to prevent a ground fault of the internal circuit, it is essential to ensure an insulation distance between the heat sink and the electrode provided in the semiconductor device in the housing of the semiconductor device, that is, the mold resin. It is.

一方、半導体装置の外形の小型化を図るためには、半導体装置の上面から電極を取り出す構成が好ましい。また、半導体装置の筐体を作製する方法としては、生産性及び信頼性の向上が可能なトランスファモールド法が知られている。しかしながら、該トランスファモールド法では、狭隘な部分、例えばモールド金型の合わせ面であるパーティングライン部分にも封止樹脂が流入してしまうことから、一般的には上記パーティングラインにリードフレームを配置して、封止樹脂が金型外へ流出するのを抑制している。   On the other hand, in order to reduce the size of the outer shape of the semiconductor device, it is preferable to take out the electrode from the upper surface of the semiconductor device. As a method for manufacturing a housing of a semiconductor device, a transfer mold method capable of improving productivity and reliability is known. However, in the transfer molding method, since the sealing resin also flows into a narrow part, for example, a parting line part that is a mating surface of the mold, a lead frame is generally attached to the parting line. It arrange | positions and it suppresses that sealing resin flows out of a metal mold | die.

このようなトランスファモールド法を用いて、上述のように半導体装置の上面から電極を取り出す半導体モジュールの開発が進められており、具体的構造について、下記の特許文献1に開示がある。   Development of a semiconductor module in which an electrode is extracted from the upper surface of a semiconductor device as described above using such a transfer mold method has been advanced, and a specific structure is disclosed in Patent Document 1 below.

特許文献1では、パワーモジュールにおける内部回路基板に起立設置された外部接続端子に封止樹脂漏出阻止部を、別途、取り付けたり、張出し成形して構成している。そして、上記封止樹脂漏出阻止部をモールド用の金型に密着させることにより、トランスファモールド法によって構成される筐体上面からの外部接続端子の取り出しを実現することを開示している。   In Patent Document 1, a sealing resin leakage prevention portion is separately attached to an external connection terminal that is erected on an internal circuit board in a power module, or is formed by overhanging. And it discloses that the external connection terminal can be taken out from the upper surface of the casing constituted by the transfer molding method by bringing the sealing resin leakage prevention portion into close contact with a mold.

特開2009−59812号公報JP 2009-59812 A

しかしながら、従来技術には下記のような問題がある。即ち、特許文献1では、樹脂筐体上面からピン状の外部接続端子を突出可能であるが、上記封止漏出阻止部が金型に密着するように、内部の回路基板に対して外部接続端子を垂直に接続する必要があり、かつ接続後における外部接続端子の高さを揃える必要がある。よって、特許文献1の発明は、多数の外部接続端子を取り出す構造には不向きである。また、外部接続端子と、プリント基板などの外部配線との接続において両者のピッチにズレがあるときには、外部接続端子が変形し、樹脂筐体と外部接続端子との界面に応力が作用した状態となる。このような応力が作用した状況で、外部接続端子が数十アンペアのような大電流を扱い、高温環境で長時間使用される等、電力用半導体装置が過酷な環境下で使用される場合、電力用半導体装置としての信頼性を向上させるためには、樹脂筐体と外部接続端子との界面で発生する応力を緩和する必要がある。   However, the prior art has the following problems. That is, in Patent Document 1, a pin-shaped external connection terminal can be projected from the upper surface of the resin housing, but the external connection terminal is connected to the internal circuit board so that the sealing leakage prevention portion is in close contact with the mold. Need to be connected vertically, and the heights of the external connection terminals after connection need to be made uniform. Therefore, the invention of Patent Document 1 is not suitable for a structure in which a large number of external connection terminals are taken out. Further, when the pitch between the external connection terminal and the external wiring such as a printed circuit board is misaligned, the external connection terminal is deformed and stress is applied to the interface between the resin housing and the external connection terminal. Become. In the situation where such stress is applied, the external connection terminal handles a large current such as several tens of amperes, and when the power semiconductor device is used in a harsh environment, such as being used for a long time in a high temperature environment, In order to improve the reliability as a power semiconductor device, it is necessary to relieve the stress generated at the interface between the resin casing and the external connection terminal.

本発明は、上述したような問題点を解決するためになされたもので、従来に比べて信頼性の高い電力用半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power semiconductor device having higher reliability than the conventional one.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の第1態様における電力用半導体装置は、半導体素子が実装される回路パターンを有する基板と、筒状形状であり、上記回路パターンに固定される一端部、及び上記一端部に対向する他端部を有する筒状電極と、上記筒状電極の上記他端部における少なくとも他端を露出させて、上記基板、上記半導体素子、及び上記筒状電極を封止する樹脂筐体と、上記筒状電極の上記他端部に挿入される外部電極であって、上記挿入により、上記他端に当接し又は上記樹脂筐体に当接する張出部を有する外部電極と、を備えたことを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, the power semiconductor device according to the first aspect of the present invention includes a substrate having a circuit pattern on which a semiconductor element is mounted, a cylindrical shape, one end fixed to the circuit pattern, and facing the one end. A cylindrical electrode having the other end, and a resin casing that exposes at least the other end of the cylindrical electrode at the other end to seal the substrate, the semiconductor element, and the cylindrical electrode; An external electrode that is inserted into the other end of the cylindrical electrode, and has an overhanging portion that abuts against the other end or abuts against the resin casing by the insertion. It is characterized by.

本発明の第1態様における電力用半導体装置によれば、外部電極は、筒状電極に挿入されたときに筒状電極の他端又は樹脂筐体に当接する張出部を有する。よって、筒状電極と外部電極との配列ピッチにズレが存在して外部電極が変形した状態であっても、上記張出部が筒状電極の他端あるいは樹脂筐体に支持されており、樹脂筐体と外部電極との界面に作用する応力を緩和することができる。したがって、たとえ、上記応力が作用した状況において、外部電極が大電流を扱い、高温環境で長時間使用される等、電力用半導体装置が過酷な環境下で使用された場合であっても、電力用半導体装置としての信頼性を従来に比べて向上することができる。   According to the power semiconductor device of the first aspect of the present invention, the external electrode has the overhanging portion that comes into contact with the other end of the cylindrical electrode or the resin housing when inserted into the cylindrical electrode. Therefore, even when there is a deviation in the arrangement pitch between the cylindrical electrode and the external electrode and the external electrode is deformed, the overhanging portion is supported by the other end of the cylindrical electrode or the resin casing, The stress acting on the interface between the resin casing and the external electrode can be relaxed. Therefore, even if the power semiconductor device is used in a harsh environment, such as when the external electrode handles a large current and is used for a long time in a high-temperature environment in the situation where the stress is applied, the power As a semiconductor device, the reliability can be improved as compared with the prior art.

また、上記張出部を上記他端又は樹脂筐体に当接させることによって、樹脂筐体の成形金型との位置決め精度を緩和することができ、さらに外部電極の高さを張出部によって規定することができる。よって、複数の外部電極の高さを揃えることが容易となる。したがって、組立性にも優れた電力用半導体装置を提供することが可能となる。   Further, by bringing the overhanging portion into contact with the other end or the resin housing, the positioning accuracy of the resin housing with the molding die can be relaxed, and the height of the external electrode can be adjusted by the overhanging portion. Can be prescribed. Therefore, it becomes easy to make the heights of the plurality of external electrodes uniform. Therefore, it is possible to provide a power semiconductor device excellent in assemblability.

本発明の実施の形態1にかかる電力用半導体装置の、図2に示すI−I部における断面図である。FIG. 3 is a cross-sectional view of the power semiconductor device according to the first embodiment of the present invention, taken along line II in FIG. 2. 図1に示す電力用半導体装置の斜視図である。FIG. 2 is a perspective view of the power semiconductor device shown in FIG. 1. 本発明の実施の形態2にかかる電力用半導体装置の断面図である。It is sectional drawing of the semiconductor device for electric power concerning Embodiment 2 of this invention. 図3に示す電力用半導体装置を作製するための方法の一例を説明するための図である。It is a figure for demonstrating an example of the method for producing the power semiconductor device shown in FIG. 図3に示す電力用半導体装置を作製するための他の方法を説明するための図である。It is a figure for demonstrating the other method for producing the power semiconductor device shown in FIG. 本発明の実施の形態3にかかる電力用半導体装置の斜視図である。It is a perspective view of the semiconductor device for electric power concerning Embodiment 3 of this invention. 図6に示す電力用半導体装置に使用されるリード端子を示す正面図及び側面図である。It is the front view and side view which show the lead terminal used for the power semiconductor device shown in FIG. 本発明の実施の形態4にかかる電力用半導体装置に使用されるリード端子の正面図及び側面図である。It is the front view and side view of a lead terminal which are used for the power semiconductor device concerning Embodiment 4 of this invention. 図8に示すリード端子の一変形例における正面図及び側面図である。FIG. 9 is a front view and a side view of a modified example of the lead terminal shown in FIG. 8.

本発明の実施形態である電力用半導体装置について、図を参照しながら以下に説明する。尚、各図において、同一又は同様の構成部分については同じ符号を付している。また、以下に説明する各実施の形態では、本発明による効果が顕著に現れることから、半導体装置としてIGBT(絶縁ゲート型バイポーラトランジスタ)及びFWDi(フリーホイール・ダイオード)等の発熱性の素子を例に採るが、本発明は、これらに限定するものではなく、勿論、通常の半導体装置にも適用可能である。   A power semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. Further, in each of the embodiments described below, since the effects of the present invention are remarkably exhibited, heat generating elements such as IGBT (Insulated Gate Bipolar Transistor) and FWDi (Free Wheel Diode) are exemplified as semiconductor devices. However, the present invention is not limited to these, and can be applied to ordinary semiconductor devices.

実施の形態1.
図1は、本発明の実施の形態1にかかる電力用半導体装置101の外形図であって、図2に示すI−I方向における電力用半導体装置101の断面が示されている。本実施形態の電力用半導体装置101は、その基本的構成部分として、回路基板4と、筒状電極8と、樹脂筐体1と、外部電極2とを有する。
Embodiment 1 FIG.
FIG. 1 is an outline view of the power semiconductor device 101 according to the first embodiment of the present invention, and shows a cross section of the power semiconductor device 101 in the II direction shown in FIG. The power semiconductor device 101 of this embodiment includes a circuit board 4, a cylindrical electrode 8, a resin casing 1, and an external electrode 2 as its basic components.

回路基板4は、一般的にメタルベース基板として用いられ、放熱板41に、熱伝導性絶縁接着層42を介して回路パターン43を接着して形成され、一実施例として45mm×40mmの大きさにてなる基板である。放熱板41は、本実施形態では銅にてなる厚さ2.0mmの金属板であるが、熱伝導に優れる材料であれば良く、銅に限定されない。熱伝導性絶縁接着層42は、本実施形態では、絶縁性接着剤としてのエポキシ樹脂に、熱伝導性フィラーとしてアルミナなどの比較的熱伝導率の高い絶縁性材料を混合した、厚さ0.2mmにてなる層である。回路パターン43は、本実施形態では、電気伝導と熱伝導に優れた銅を主とした金属よりなる厚さ0.5mmの層にて形成した配線パターンである。   The circuit board 4 is generally used as a metal base board, and is formed by adhering a circuit pattern 43 to a heat radiating plate 41 via a heat conductive insulating adhesive layer 42. As an example, the circuit board 4 has a size of 45 mm × 40 mm. It is the board | substrate which consists of. In the present embodiment, the heat radiating plate 41 is a metal plate made of copper having a thickness of 2.0 mm. In the present embodiment, the heat conductive insulating adhesive layer 42 is formed by mixing an epoxy resin as an insulating adhesive with an insulating material having a relatively high thermal conductivity such as alumina as a heat conductive filler. It is a layer consisting of 2 mm. In the present embodiment, the circuit pattern 43 is a wiring pattern formed of a layer having a thickness of 0.5 mm made of a metal mainly made of copper, which is excellent in electrical conduction and thermal conduction.

このように構成された回路基板4の回路パターン43には、半導体素子として、それぞれ厚さ0.13mmのIGBT5と、FWDi6とが、厚さ50μmにて、接合材の一例に相当するSn−Ag−Cu系のはんだによって接続されている。該接続により、IGBT5及びFWDi6におけるそれぞれの裏面電極であるコレクタ電極及びカソード電極(共に不図示)の回路パターン43への電気的接続と、IGBT5及びFWDi6の発生熱を放熱板41へ、さらに放熱板41に取り付けられるヒートシンク(不図示)への放熱とが可能となる。   In the circuit pattern 43 of the circuit board 4 configured as described above, as a semiconductor element, an IGBT 5 having a thickness of 0.13 mm and an FWDi 6 each having a thickness of 50 μm correspond to an example of a bonding material Sn-Ag. -Connected by Cu-based solder. By this connection, the collector electrode and the cathode electrode (both not shown) of the IGBT 5 and FWDi 6 are electrically connected to the circuit pattern 43, the generated heat of the IGBT 5 and FWDi 6 is transferred to the heat sink 41, and the heat sink Heat radiation to a heat sink (not shown) attached to 41 is possible.

IGBT5及びFWDi6の表面電極であるエミッタ電極、アノード電極(共に不図示)には、一例として直径400μmのアルミニウムワイヤ7が超音波ワイヤボンディングにて接続され、上記表面電極は回路パターン43と電気的に接続されている。また、IGBT5の制御電極であるゲート電極(不図示)にも、同様にアルミニウムワイヤ7が接続され、上記ゲート電極は回路パターン43と接続されている。尚、上記ゲート電極との配線は、電圧印加が主であるため、ワイヤ7の径は200μm程度の細いワイヤでも構わない。   For example, an aluminum wire 7 having a diameter of 400 μm is connected to the emitter electrode and the anode electrode (both not shown) as surface electrodes of the IGBT 5 and FWDi 6 by ultrasonic wire bonding, and the surface electrode is electrically connected to the circuit pattern 43. It is connected. Similarly, an aluminum wire 7 is connected to a gate electrode (not shown) that is a control electrode of the IGBT 5, and the gate electrode is connected to the circuit pattern 43. In addition, since the voltage is mainly applied to the wiring with the gate electrode, the wire 7 may be a thin wire having a diameter of about 200 μm.

さらに回路基板4の回路パターン43には、導電性に優れる銅からなる高さ5.3mmの筒状電極8が立設され、接合材の一例に相当しIGBT5等を接合する、はんだと同種のはんだにて回路パターン43に固定される。筒状電極8は、筒状であれば内形、外形の各形状は問わない。例えば、ナット状でネジを切った部材であっても構わない。本実施形態では円筒形状である。このような筒状電極8は、例えばパイプ材料を機械加工することで作製され、一実施例として外径が1.6mm、内径が1.0mmであり、回路パターン43に、はんだにより固定される、接続部に相当する一端部8aと、外部電極2が挿入され接続される他端部8bとを有する。また、上記はんだは、はんだ付時のぬれ広がりによって、円筒状電極8の主に内周に、はんだフィレットを形成している。はんだフィレットが形成されると、筒状電極8の高さを決めるはんだ厚は、およそ10μm程度となり、筒状電極8は、回路パターン43に対してほぼ垂直に接続される。よって、筒状電極8の他端8cは、水平又はほぼ水平な状態となる。   Further, the circuit pattern 43 of the circuit board 4 is provided with a cylindrical electrode 8 having a height of 5.3 mm made of copper having excellent conductivity, which is equivalent to an example of a bonding material, and which joins the IGBT 5 or the like. The circuit pattern 43 is fixed with solder. As long as the cylindrical electrode 8 is cylindrical, the inner shape and the outer shape are not limited. For example, it may be a nut-like member with a screw cut. In this embodiment, it is a cylindrical shape. Such a cylindrical electrode 8 is produced, for example, by machining a pipe material. As an example, the cylindrical electrode 8 has an outer diameter of 1.6 mm and an inner diameter of 1.0 mm, and is fixed to the circuit pattern 43 by solder. , One end portion 8a corresponding to the connection portion, and the other end portion 8b to which the external electrode 2 is inserted and connected. The solder forms a solder fillet mainly on the inner periphery of the cylindrical electrode 8 due to the wetting and spreading during soldering. When the solder fillet is formed, the solder thickness that determines the height of the cylindrical electrode 8 is about 10 μm, and the cylindrical electrode 8 is connected substantially perpendicularly to the circuit pattern 43. Therefore, the other end 8c of the cylindrical electrode 8 is in a horizontal or almost horizontal state.

樹脂筐体1は、上述のように構成された回路基板4、IGBT5、FWDi6、及び筒状電極8を、水分や異物などから保護するためのものであり、また、外部電極2などを設計値に基づいた寸法で保持するためのものであり、主としてエポキシ樹脂を用いて、半導体装置の製造で一般的に採用されているトランスファモールド法を用いて成型される。本実施形態では、樹脂筐体1は、76mm×45mm、厚さ8mmからなり、その上面1aには、筒状電極8の上記他端部8bに位置する他端8cが露出している。尚、筒状電極8について、樹脂筐体1から露出する部分は、上記他端8cに限定されず、上記他端8cを含むその近傍部分つまり筒状電極8の側面も含むことができる。   The resin casing 1 is for protecting the circuit board 4, IGBT 5, FWDi 6, and the cylindrical electrode 8 configured as described above from moisture, foreign matter, and the like, and the external electrode 2 and the like are designed values. And is formed by using a transfer mold method generally employed in the manufacture of semiconductor devices, mainly using an epoxy resin. In the present embodiment, the resin casing 1 has a size of 76 mm × 45 mm and a thickness of 8 mm, and the other end 8 c located at the other end 8 b of the cylindrical electrode 8 is exposed on the upper surface 1 a. In addition, about the cylindrical electrode 8, the part exposed from the resin housing | casing 1 is not limited to the said other end 8c, The vicinity part containing the said other end 8c, ie, the side surface of the cylindrical electrode 8, can also be included.

また、樹脂筐体1には、当該樹脂筐体1に露出した、放熱板41の露出面に放熱グリース等を介して接続されるヒートシンク(不図示)を取り付けるための貫通穴1bが設けられており、ネジ止めにより上記ヒートシンクの固定が可能である。該ヒートシンクからの放熱により、IGBT5及びFWDi6の発熱による温度上昇がさらに抑制される。また、筒状電極8には、ピン状の端子にてなる外部電極2が挿入され、外部機器と当該半導体装置101との電気的接続が可能となる。   Further, the resin casing 1 is provided with a through hole 1b for attaching a heat sink (not shown) that is exposed to the resin casing 1 and connected to the exposed surface of the heat radiating plate 41 via heat radiating grease or the like. The heat sink can be fixed by screwing. Due to heat dissipation from the heat sink, temperature rise due to heat generation of the IGBT 5 and FWDi 6 is further suppressed. Further, the cylindrical electrode 8 is inserted with the external electrode 2 formed of a pin-shaped terminal, so that the external device and the semiconductor device 101 can be electrically connected.

外部電極2は、本実施形態では、リン青銅などの銅合金からなる直径1.2mm、高さ10mmのほぼ円柱形状のピン電極であり、その一端部22が筒状電極8の上記他端部8bに挿入される。さらに外部電極2は、本実施形態において特徴的構成の一つである張出部21を有する。張出部21は、外部電極2が筒状電極8に挿入されたとき、筒状電極8の上記他端8cに当接し又は樹脂筐体1の上面1aに当接する部分であり、本実施形態では、図2に示すように、外部電極2の本体部23から外部電極2の直径方向に突出した円形のつば形状を有する。このような張出部21は、例えば金型による潰し加工にて本体部23と一体成形可能であり、一実施例として、直径が約2mmである。   In the present embodiment, the external electrode 2 is a substantially cylindrical pin electrode having a diameter of 1.2 mm and a height of 10 mm made of a copper alloy such as phosphor bronze, and one end 22 thereof is the other end of the cylindrical electrode 8. 8b is inserted. Furthermore, the external electrode 2 has an overhang portion 21 which is one of the characteristic configurations in the present embodiment. The overhanging portion 21 is a portion that contacts the other end 8c of the cylindrical electrode 8 or the upper surface 1a of the resin casing 1 when the external electrode 2 is inserted into the cylindrical electrode 8, and this embodiment Then, as shown in FIG. 2, it has a circular collar shape protruding from the main body portion 23 of the external electrode 2 in the diameter direction of the external electrode 2. Such an overhang portion 21 can be integrally formed with the main body portion 23 by, for example, a crushing process using a mold, and has a diameter of about 2 mm as an example.

以上のような構成を有する電力用半導体装置101の製造方法としては、メタルベースの回路基板4に、IGBT5、FWDi6、及び筒状電極8をはんだ付けし、アルミニウムワイヤ7で接続するところまで完了した組立部品を、予め加熱されたモールド金型に装填する。次に、トランスファモールド法を用いてエポキシ樹脂を主剤とするモールド樹脂を上記金型内に流入させ、加熱、加圧環境下で硬化させる。この際、筒状電極8とモールド金型とを接触させることで、筒状電極8の他端8cが閉止され、上記モールド樹脂の筒状電極8内への流入が抑制される。
このような樹脂封止成型後、筒状電極8に外部電極2を圧入することによって電力用半導体装置101が完成する。筒状電極8に外部電極2を圧入した状態では、外部電極2に張出部21の当接面21aは、筒状電極8の他端8cに接触し又は樹脂筐体1の上面1aに接触し、張出部21は上面1aより露出して配置される。
The manufacturing method of the power semiconductor device 101 having the above-described configuration has been completed until the IGBT 5, FWDi 6, and the cylindrical electrode 8 are soldered to the metal-based circuit board 4 and connected by the aluminum wire 7. The assembly part is loaded into a preheated mold. Next, a mold resin mainly composed of an epoxy resin is caused to flow into the mold using a transfer mold method, and is cured under a heating and pressure environment. At this time, the cylindrical electrode 8 and the mold are brought into contact with each other, whereby the other end 8c of the cylindrical electrode 8 is closed, and the flow of the mold resin into the cylindrical electrode 8 is suppressed.
After such resin sealing molding, the power semiconductor device 101 is completed by press-fitting the external electrode 2 into the cylindrical electrode 8. In a state in which the external electrode 2 is press-fitted into the cylindrical electrode 8, the contact surface 21 a of the projecting portion 21 contacts the external electrode 2 or the other end 8 c of the cylindrical electrode 8 or contacts the upper surface 1 a of the resin housing 1. And the overhang | projection part 21 is arrange | positioned exposed from the upper surface 1a.

以上説明した電力用半導体装置101によれば、外部電極2に張出部21を設けたことにより以下の効果を得ることができる。
即ち、各外部電極2において、張出部21から先端24までの長さは均一にて作製されている。さらに、上述のように、筒状電極8の他端8cは水平あるいは略水平に設置され、樹脂筐体1の高さは金型で規定される。よって、上記他端8cあるいは樹脂筐体1の上面1aに張出部21を当接させることで、筒状電極8への外部電極2の挿入高さは、全ての外部電極2においてほぼ一定とすることができる。
According to the power semiconductor device 101 described above, the following effects can be obtained by providing the overhang portion 21 on the external electrode 2.
That is, in each external electrode 2, the length from the overhanging portion 21 to the tip 24 is made uniform. Furthermore, as described above, the other end 8c of the cylindrical electrode 8 is installed horizontally or substantially horizontally, and the height of the resin casing 1 is defined by a mold. Accordingly, the protruding height 21 is brought into contact with the other end 8c or the upper surface 1a of the resin casing 1 so that the insertion height of the external electrode 2 into the cylindrical electrode 8 is substantially constant in all the external electrodes 2. can do.

また、外部電極2は、一般的に、外部の配線で用いられるプリント基板(図示せず)に設けられたスルーホールとはんだ付けにより接続される。その際、外部電極2の位置や、外部電極2間のピッチが上記スルーホールのピッチとずれている場合には、外部電極2をわずかに変形させて上記基板、つまり上記スルーホールに挿入する必要がある。このとき、張出部21が存在しない場合には、外部電極2に加えられた変形が筒状電極8への外部電極2の圧入部に対する応力となる。   The external electrode 2 is generally connected to a through hole provided in a printed board (not shown) used for external wiring by soldering. At that time, if the position of the external electrode 2 or the pitch between the external electrodes 2 is deviated from the pitch of the through hole, the external electrode 2 needs to be slightly deformed and inserted into the substrate, that is, the through hole. There is. At this time, when the projecting portion 21 does not exist, the deformation applied to the external electrode 2 becomes a stress on the press-fitting portion of the external electrode 2 into the cylindrical electrode 8.

これに対し本実施形態の場合には、張出部21が筒状電極8の他端8cあるいは樹脂筐体1の上面1aに接触していることから、外部電極2に作用している曲げ応力によって上記圧入部に加わる応力を分散させ軽減することができる。よって、筒状電極8と樹脂筐体1との界面に作用する応力を従来に比べて軽減することができ、樹脂筐体1における界面部分からの亀裂の発生及び進展を抑制することができる。したがって、電力用半導体装置101としての信頼性を従来に比べて向上させることができる。   On the other hand, in the case of the present embodiment, since the overhanging portion 21 is in contact with the other end 8c of the cylindrical electrode 8 or the upper surface 1a of the resin casing 1, the bending stress acting on the external electrode 2 Thus, the stress applied to the press-fit portion can be dispersed and reduced. Therefore, the stress acting on the interface between the cylindrical electrode 8 and the resin casing 1 can be reduced as compared with the conventional case, and the generation and progress of cracks from the interface portion in the resin casing 1 can be suppressed. Therefore, the reliability as the power semiconductor device 101 can be improved as compared with the conventional case.

また、電力用半導体装置101を実際に使用する際には、電力用半導体装置101と、外部電極2が接続されている上記プリント基板との温度差によって、熱膨張率に依存した変形が外部電極2に作用する。よって、温度サイクル数が多い環境下や温度差が大きい環境下では、筒状電極8への外部電極2の圧入部、及び筒状電極8と樹脂筐体1との界面には、繰り返し応力が発生し、上記圧入部ではダメージが進展することも考えられる。しかしながら、本実施形態の場合、上述のように、張出部21が圧入部及び上記界面に加わる応力を分散させ軽減することができることから、たとえ、電力用半導体装置101が過酷な環境下で使用された場合であっても、電力用半導体装置101の信頼性を向上することができる。ひいては電力用半導体装置101の長寿命化を図ることができる。   When the power semiconductor device 101 is actually used, deformation depending on the coefficient of thermal expansion is caused by the temperature difference between the power semiconductor device 101 and the printed circuit board to which the external electrode 2 is connected. Acts on 2. Therefore, in an environment where the number of temperature cycles is large or an environment where the temperature difference is large, repeated stress is applied to the press-fitting portion of the external electrode 2 into the cylindrical electrode 8 and the interface between the cylindrical electrode 8 and the resin casing 1. It is considered that the damage is generated at the press-fitting portion. However, in the case of the present embodiment, as described above, since the overhanging portion 21 can disperse and reduce the stress applied to the press-fitting portion and the interface, the power semiconductor device 101 is used in a harsh environment. Even in such a case, the reliability of the power semiconductor device 101 can be improved. As a result, the life of the power semiconductor device 101 can be extended.

尚、本実施形態では、上述のように、張出部21は、外部電極2の本体部23と一体成形されているが、例えば溶接や接着などの手段によって張出部21用の別部材を本体部23に取り付けることで形成してもよい。
さらにまた、張出部21は、単に、筒状電極8の他端8cあるいは樹脂筐体1の上面1aに接触するだけでなく、接着などの手段により、他端8cあるいは上面1aに固定されてもよい。
このような変形例においても、上述した効果と同一の効果を奏することができる。
In the present embodiment, as described above, the overhanging portion 21 is integrally formed with the main body portion 23 of the external electrode 2. However, for example, another member for the overhanging portion 21 is attached by means such as welding or adhesion. You may form by attaching to the main-body part 23. FIG.
Furthermore, the overhanging portion 21 is not only brought into contact with the other end 8c of the cylindrical electrode 8 or the upper surface 1a of the resin casing 1, but is fixed to the other end 8c or the upper surface 1a by means such as adhesion. Also good.
Even in such a modification, the same effect as described above can be obtained.

また、外部電極2の先端部分と上記スルーホールとがはんだ付けされず単に圧入されるだけの場合、圧入時に外部電極2の中心と上記スルーホールの中心とのずれ量だけ、外部電極2が変形を受け、はんだ付の場合よりも高い応力が発生することが懸念される。しかしながらこの場合においても、張出部21を設けたことで、外部電極2と筒状電極8との接続信頼性を向上させることが可能である。   Further, when the tip of the external electrode 2 and the through hole are merely soldered without being soldered, the external electrode 2 is deformed by the amount of deviation between the center of the external electrode 2 and the center of the through hole during press fitting. There is a concern that a higher stress is generated than in the case of soldering. However, even in this case, it is possible to improve the connection reliability between the external electrode 2 and the cylindrical electrode 8 by providing the overhanging portion 21.

また、本実施形態では、張出部21は、外部電極2の本体部23を中心とした円形状であることから、外部電極2が本体部23を中心にいずれの方向に変形した場合でも、上記接続信頼性を確保することができる。   Further, in the present embodiment, since the overhanging portion 21 is circular with the main body portion 23 of the external electrode 2 as the center, even when the external electrode 2 is deformed in any direction around the main body portion 23, The connection reliability can be ensured.

実施の形態2.
図3は、本発明の実施の形態2にかかる電力用半導体装置102の断面図である。上述した実施の形態1では、複数の外部電極2における各張出部21の間には何の物体も存在していない。これに対して本実施の形態2では、それぞれの張出部21間に、樹脂筐体1による障壁部11を設けた。この点でのみ、本実施の形態2は、実施の形態1における構成と異なり、実施の形態2におけるその他の構成は、実施の形態1の構成に同じである。よって、以下ではこの相違点のみについて説明を行う。
Embodiment 2. FIG.
FIG. 3 is a sectional view of the power semiconductor device 102 according to the second embodiment of the present invention. In the first embodiment described above, no object exists between the overhang portions 21 in the plurality of external electrodes 2. On the other hand, in the second embodiment, the barrier portion 11 made of the resin casing 1 is provided between the overhang portions 21. Only in this respect, the second embodiment is different from the configuration in the first embodiment, and other configurations in the second embodiment are the same as the configurations in the first embodiment. Therefore, only this difference will be described below.

上記障壁部11は、隣接する張出部21同士間において十分な沿面絶縁距離を確保するためのものである。即ち、実施の形態1における電力用半導体装置101と同様に、本実施の形態2の電力用半導体装置102においても高電圧を扱うため、隣接する各外部電極2においては十分な沿面絶縁距離をとる必要がある。一方、実施の形態1にて説明したように、各外部電極2に張出部21を設けることで、各張出部21間の絶縁距離を確保するためには、各外部電極2の配置ピッチを従前より大きくする必要が生じる。これでは半導体装置全体の大型化を招いてしまう。   The barrier portion 11 is for ensuring a sufficient creeping insulation distance between the adjacent overhang portions 21. That is, in the same way as the power semiconductor device 101 in the first embodiment, the power semiconductor device 102 in the second embodiment handles a high voltage, and therefore, the adjacent external electrodes 2 have a sufficient creeping insulation distance. There is a need. On the other hand, as described in the first embodiment, the arrangement pitch of each external electrode 2 is provided in order to secure the insulation distance between each overhang portion 21 by providing the overhang portion 21 in each external electrode 2. Need to be larger than before. This leads to an increase in the size of the entire semiconductor device.

そこで、本実施の形態2では、筒状電極8の長さを実施形態1の場合に比べて短くし、樹脂筐体1において、それぞれの筒状電極8の他端8cが位置し張出部21が位置する部分に凹部12を形成する。このように構成することで、隣接する張出部21の間には、凹部12を形成する側壁に対応する障壁部11が存在する。障壁部11によって、隣接する張出部21同士の沿面距離及び空間距離を大きくすることが可能となり、電力用半導体装置102を大型化することなく十分な絶縁距離を確保することが可能となる。   Therefore, in the second embodiment, the length of the cylindrical electrode 8 is made shorter than in the case of the first embodiment, and the other end 8c of each cylindrical electrode 8 is positioned in the resin casing 1 so that the protruding portion is located. A recess 12 is formed in a portion where 21 is located. By configuring in this way, the barrier portion 11 corresponding to the side wall forming the recess 12 exists between the adjacent overhang portions 21. The barrier portion 11 makes it possible to increase the creeping distance and the spatial distance between the adjacent overhang portions 21 and to secure a sufficient insulation distance without increasing the size of the power semiconductor device 102.

本実施形態では、障壁部11は、以下のような方法で形成される。即ち、図4に示すように、トランスファモールド法に用いられる上金型91及び下金型92の内、筒状電極8の他端8c側に位置する上金型91について、樹脂筐体1の上面1aを成形する上金型91の内面91aに対して上記他端8cを含む部分を凸状にすることで、樹脂筐体1に上記凹部12を形成し障壁部11を成形することができる。一実施例として、凹部12の深さつまり障壁部11の高さは、1.5mmである。尚、障壁部11への異物などの付着により、沿面距離が短くなることが考えられることから、障壁部11の高さは、大きい方が好ましい。目安としては1mm以上の高さが望ましい。   In the present embodiment, the barrier portion 11 is formed by the following method. That is, as shown in FIG. 4, among the upper mold 91 and the lower mold 92 used in the transfer molding method, the upper mold 91 located on the other end 8 c side of the cylindrical electrode 8 is used for the resin casing 1. By making the portion including the other end 8 c convex with respect to the inner surface 91 a of the upper mold 91 for molding the upper surface 1 a, the barrier portion 11 can be formed by forming the concave portion 12 in the resin casing 1. . As an example, the depth of the concave portion 12, that is, the height of the barrier portion 11 is 1.5 mm. In addition, since it is thought that a creepage distance becomes short by adhesion of the foreign material etc. to the barrier part 11, the one where the height of the barrier part 11 is larger is preferable. As a guide, a height of 1 mm or more is desirable.

また、障壁部11の別の形成方法としては、図5に示すように、例えばシリコーンなどの軟質材料93を上金型91と筒状電極8とで挟み、樹脂筐体1の成形後に取り外すことでも、実現可能である。軟質材料93としては、好ましくはシリコーンなど、樹脂筐体1のエポキシ樹脂との接着性が低い材料が選択されるが、銅、黄銅などの軟質の金属を用いることも可能である。   Further, as another method of forming the barrier portion 11, as shown in FIG. 5, for example, a soft material 93 such as silicone is sandwiched between the upper mold 91 and the cylindrical electrode 8 and removed after the resin casing 1 is molded. But it is feasible. As the soft material 93, a material having a low adhesiveness to the epoxy resin of the resin casing 1 such as silicone is preferably selected, but a soft metal such as copper or brass can also be used.

また、本実施形態では上述のように樹脂筐体1の上面1aに対して凹部12を形成することで障壁部11を形成したが、これとは逆に、図1に示すように上面1aより突出して露出する、隣接する張出部21同士の間に、上面1aに凸状の障壁部を形成してもよい。   Further, in the present embodiment, the barrier portion 11 is formed by forming the concave portion 12 on the upper surface 1a of the resin casing 1 as described above. On the contrary, as shown in FIG. A convex barrier portion may be formed on the upper surface 1a between the adjacent protruding portions 21 that protrude and are exposed.

尚、上述のような方法で障壁部11を有する樹脂筐体1を成形した後、実施の形態1にて示したものと同様に、筒状電極8に外部電極2を挿入することによって、電力用半導体装置102が構成される。
本実施形態では、外部電極2が筒状電極8に挿入されたとき、外部電極2の張出部21の当接面21aは、筒状電極8の他端8c、あるいは、凹部12の底面12a(図3)に接触し、張出部21は底面12aより露出して配置される。
In addition, after molding the resin casing 1 having the barrier portion 11 by the method as described above, the external electrode 2 is inserted into the cylindrical electrode 8 in the same manner as shown in the first embodiment. A semiconductor device 102 is configured.
In the present embodiment, when the external electrode 2 is inserted into the cylindrical electrode 8, the contact surface 21 a of the protruding portion 21 of the external electrode 2 is the other end 8 c of the cylindrical electrode 8 or the bottom surface 12 a of the recess 12. In contact with (FIG. 3), the overhanging portion 21 is disposed to be exposed from the bottom surface 12a.

以上説明した本実施形態の電力用半導体装置102は、勿論、実施形態1の電力用半導体装置101による上述した効果を奏することができ、かつ、障壁部11の形成によって、電力用半導体装置の小型化を図ることができる。   The power semiconductor device 102 according to the present embodiment described above can, of course, achieve the effects described above by the power semiconductor device 101 according to the first embodiment, and the size of the power semiconductor device can be reduced by forming the barrier portion 11. Can be achieved.

さらにまた、樹脂筐体1に上記凹部12を形成するために、実施形態1の電力用半導体装置101の構成に比べて短い筒状電極8を用いる。よって、回路パターン43に筒状電極8を立設するとき、回路パターン43に対して筒状電極8が傾斜し難くなると共に、部材の寸法精度も向上し、組み立てが比較的容易になるという効果もある。   Furthermore, in order to form the recess 12 in the resin casing 1, a cylindrical electrode 8 that is shorter than the configuration of the power semiconductor device 101 of the first embodiment is used. Therefore, when the cylindrical electrode 8 is erected on the circuit pattern 43, the cylindrical electrode 8 is less likely to be inclined with respect to the circuit pattern 43, the dimensional accuracy of the members is improved, and the assembly is relatively easy. There is also.

実施の形態3.
図6は、本発明の実施の形態3にかかる電力用半導体装置103の斜視図である。本実施の形態では、IGBT5及びFWDi6の主電極と接続される外部電極2として、実施の形態1、2におけるピン電極ではなく、一実施例として板幅2mm、板厚1mmの板状のリード端子25を用いる。また、図6に示すように、リード端子25に対応して、樹脂筐体1には、上述の実施の形態2で説明した、凹部12を形成している。本実施の形態3の電力用半導体装置103におけるその他の構成は、上述した実施の形態1,2の電力用半導体装置101,102における構成と同じであり、ここでの説明は省略する。以下には、相違する構成部分であるリード端子25について主に説明を行う。
Embodiment 3 FIG.
FIG. 6 is a perspective view of the power semiconductor device 103 according to the third embodiment of the present invention. In this embodiment, the external electrode 2 connected to the main electrode of the IGBT 5 and FWDi 6 is not the pin electrode in the first and second embodiments, but a plate-like lead terminal having a plate width of 2 mm and a plate thickness of 1 mm as an example. 25 is used. As shown in FIG. 6, corresponding to the lead terminals 25, the resin casing 1 is formed with the recesses 12 described in the second embodiment. Other configurations of the power semiconductor device 103 according to the third embodiment are the same as those of the power semiconductor devices 101 and 102 according to the first and second embodiments described above, and a description thereof is omitted here. Hereinafter, the lead terminal 25 which is a different component will be mainly described.

ピン電極に代えてリード端子25を用いる理由は、ピン端子に比べて断面積が大きく、例えば数十アンペアの大電流を流すことができるからである。このようなリード端子25は、図7に示すようなプレスフィット端子であり、筒状電極8への接続は、上述した実施の形態1,2の場合と同様に圧入による。尚、図7において、左側の図はリード端子25の正面図に相当し、右側の図はリード端子25の側面図に相当する。   The reason for using the lead terminal 25 instead of the pin electrode is that the cross-sectional area is larger than that of the pin terminal, and a large current of, for example, several tens of amperes can flow. Such a lead terminal 25 is a press-fit terminal as shown in FIG. 7, and the connection to the cylindrical electrode 8 is performed by press fitting as in the case of the first and second embodiments. In FIG. 7, the left diagram corresponds to a front view of the lead terminal 25, and the right diagram corresponds to a side view of the lead terminal 25.

外部電極2としてのリード端子25は、板形状の本体部253と、張出部21とを有し、リード端子25における張出部21は、突出部251と、支持部252とを有する。
突出部251は、本体部253の板厚方向254に直交する板幅方向255に沿って、本体部253の軸方向におけるほぼ中央部から本体部253の両側へ突出する部材であり、その厚みは、本実施形態では本体部253の板厚と同じとしている。また、左右の突出部251は、本実施形態では同じ長さにて延在するが異なっても構わない。また、上記軸方向における突出部251の幅サイズは特に規定しない。尚、一実施例として、上記幅サイズは約3mmである。
The lead terminal 25 as the external electrode 2 has a plate-shaped main body portion 253 and an overhang portion 21, and the overhang portion 21 in the lead terminal 25 has a protruding portion 251 and a support portion 252.
The protruding portion 251 is a member that protrudes from the substantially central portion in the axial direction of the main body portion 253 to both sides of the main body portion 253 along the plate width direction 255 orthogonal to the plate thickness direction 254 of the main body portion 253. In this embodiment, the plate thickness of the main body 253 is the same. Moreover, although the right and left protrusions 251 extend with the same length in this embodiment, they may be different. Further, the width size of the protruding portion 251 in the axial direction is not particularly defined. As an example, the width size is about 3 mm.

支持部252は、左右の各突出部251の先端部分を板厚方向254へ折り曲げて形成した部分であり、左右の各突出部251において互いに逆向きに適宜な長さにて延在する。尚、一実施例として、支持部252の長さは約1mmである。   The support portion 252 is a portion formed by bending the tip portion of each of the left and right projecting portions 251 in the plate thickness direction 254, and extends at an appropriate length in opposite directions in the left and right projecting portions 251. As an example, the length of the support portion 252 is about 1 mm.

上述のように構成される突出部251及び支持部252の内、少なくとも支持部252の当接面252aは、図6に示すように、リード端子25が筒状電極8に圧入されたときに、樹脂筐体1における凹部12の底面12aに接触する。また、突出部251及び支持部252は、底面12aより露出して配置される。   Of the protruding portion 251 and the support portion 252 configured as described above, at least the contact surface 252a of the support portion 252 is, as shown in FIG. 6, when the lead terminal 25 is press-fitted into the cylindrical electrode 8. It contacts the bottom surface 12 a of the recess 12 in the resin casing 1. Moreover, the protrusion part 251 and the support part 252 are arrange | positioned exposed from the bottom face 12a.

板状のリード端子25が張出部21として上述の突出部251及び支持部252を有することで以下のような効果を奏する。
即ち、例えばリード端子25を外部の回路を構成するプリント基板(図示せず)などに接続する際、及び、上記プリント基板との接続後、リード端子25を有する電力用半導体装置103が温度サイクル環境下に置かれた際には、電力用半導体装置103と上記プリント基板との温度差あるいは熱膨張率差により、リード端子25を変形させる応力が発生する。よって、張出部21として突出部251及び支持部252を有しない、単なる短冊状のリード端子であれば、特に板厚方向254への応力に対してはリード端子自体が撓み、筒状電極8との接続部に応力がかかる。
The plate-like lead terminal 25 has the above-described protruding portion 251 and support portion 252 as the overhanging portion 21, thereby providing the following effects.
That is, for example, when the lead terminal 25 is connected to a printed circuit board (not shown) constituting an external circuit and after the connection to the printed circuit board, the power semiconductor device 103 having the lead terminal 25 is in a temperature cycle environment. When placed underneath, a stress that deforms the lead terminal 25 is generated due to a temperature difference or a thermal expansion coefficient difference between the power semiconductor device 103 and the printed circuit board. Therefore, when the protruding portion 21 does not have the protruding portion 251 and the supporting portion 252 and is a simple strip-shaped lead terminal, the lead terminal itself bends in particular with respect to the stress in the plate thickness direction 254, and the cylindrical electrode 8. Stress is applied to the connection part.

これに対して本実施形態におけるリード端子25は、突出部251及び支持部252を有することから、突出部251が延在する板幅方向255へのリード端子25における変形又は応力は勿論緩和され、さらに板厚方向254へのリード端子25における変形又は応力についても、支持部252を設けたことで緩和させることができる。   On the other hand, since the lead terminal 25 in the present embodiment has the protruding portion 251 and the support portion 252, the deformation or stress in the lead terminal 25 in the plate width direction 255 in which the protruding portion 251 extends is naturally relieved, Further, deformation or stress in the lead terminal 25 in the plate thickness direction 254 can be reduced by providing the support portion 252.

特に、図7に示されるリード端子25のように、板幅方向255の反発力で支持されるプレスフィット端子を用いる場合には、板厚方向254における応力を緩和することで著しく信頼性を向上させることが可能となる。よって、支持部252を設けた構造は、非常に有効である。
また、リード端子25を筒状電極8に圧入するときにおいても、板厚方向254へリード端子25が傾き難くなる。よって、リード端子25の角度を気にせずに筒状電極8への設置が完了するため、生産性の向上にも寄与する。
このような効果は、特に図6に示すような、それぞれのリード端子25が同一の板幅方向255に沿って配向されている構成において顕著に発揮される。
In particular, when using a press-fit terminal supported by a repulsive force in the plate width direction 255, such as the lead terminal 25 shown in FIG. 7, the reliability is remarkably improved by relaxing the stress in the plate thickness direction 254. It becomes possible to make it. Therefore, the structure provided with the support portion 252 is very effective.
Even when the lead terminal 25 is press-fitted into the cylindrical electrode 8, the lead terminal 25 is less likely to tilt in the plate thickness direction 254. Therefore, since the installation to the cylindrical electrode 8 is completed without worrying about the angle of the lead terminal 25, it contributes to the improvement of productivity.
Such an effect is particularly prominent in a configuration in which the lead terminals 25 are oriented along the same plate width direction 255 as shown in FIG.

また、リード端子25について、本実施形態では作製が容易であるという理由から、突出部251の先端部分を折り曲げることで支持部252を形成しているが、突出部251に対する支持部252の形成方法は、これに限定されない。例えば、突出部251とは別の部材を用い、接着等により各突出部251に取り付けてもよい。さらに、突出部251に対する支持部252の設置位置は、リード端子25の板厚方向254への変形時におけるモーメント力の観点からすると突出部251の先端部分が好ましいが、上記先端部分に限定するものではなく、突出部251の延在方向において、板厚方向254への変形を抑制可能な位置とすることができる。また、支持部252の延在方向、つまり突出部251に対する支持部252の配向角度についても、本実施形態では樹脂筐体1における凹部12の幅サイズを最小に抑えることができることから、90度つまり板厚方向254としているが、これに限定されず、上述のように板厚方向254へのリード端子25の変形を抑制可能な角度とすることができる。   Further, for the reason that the lead terminal 25 is easy to manufacture in the present embodiment, the support portion 252 is formed by bending the tip portion of the protrusion 251, but the method of forming the support portion 252 with respect to the protrusion 251 is also preferred. Is not limited to this. For example, a member different from the protruding portion 251 may be used and attached to each protruding portion 251 by adhesion or the like. Further, the position of the support portion 252 relative to the protrusion 251 is preferably the tip portion of the protrusion 251 from the viewpoint of moment force when the lead terminal 25 is deformed in the plate thickness direction 254, but is limited to the tip portion. Instead, in the extending direction of the protruding portion 251, it is possible to set a position where deformation in the plate thickness direction 254 can be suppressed. Further, with respect to the extending direction of the support portion 252, that is, the orientation angle of the support portion 252 with respect to the protruding portion 251, since the width size of the concave portion 12 in the resin casing 1 can be minimized in this embodiment, 90 degrees, Although it is set as the plate thickness direction 254, it is not limited to this, It can be set as the angle which can suppress the deformation | transformation of the lead terminal 25 to the plate thickness direction 254 as mentioned above.

リード端子25について上述したような効果を有する本実施形態における電力用半導体装置103は、勿論、実施形態1の電力用半導体装置101による上述した効果を奏することができる。   The power semiconductor device 103 according to the present embodiment having the effects described above with respect to the lead terminal 25 can of course exhibit the effects described above with the power semiconductor device 101 according to the first embodiment.

実施の形態4.
図8は、本発明の実施の形態4における電力用半導体装置に備わり、外部電極2の変形例に相当するリード端子26を示している。尚、図8において、左側の図はリード端子26の正面図に相当し、右側の図はリード端子26の側面図に相当する。このようなリード端子26は、上述した実施の形態1から3の電力用半導体装置101〜103における外部電極2又はリード端子25に代えて用いることができる。よって、以下では、リード端子26についてのみ説明を行い、電力用半導体装置におけるその他の構成部分についての説明は省略する。尚、実施の形態3のように、リード端子26は、IGBT5及びFWDi6の主電極と接続される外部電極として使用するのが好ましい。
Embodiment 4 FIG.
FIG. 8 shows a lead terminal 26 corresponding to a modification of the external electrode 2 provided in the power semiconductor device according to the fourth embodiment of the present invention. In FIG. 8, the left diagram corresponds to a front view of the lead terminal 26, and the right diagram corresponds to a side view of the lead terminal 26. Such a lead terminal 26 can be used in place of the external electrode 2 or the lead terminal 25 in the power semiconductor devices 101 to 103 of the first to third embodiments described above. Accordingly, only the lead terminal 26 will be described below, and description of other components in the power semiconductor device will be omitted. As in the third embodiment, the lead terminal 26 is preferably used as an external electrode connected to the main electrodes of the IGBT 5 and FWDi 6.

リード端子26は、上述したリード端子25とほぼ同様の構成を有し、屈曲部261を有する点でのみ異なる。
屈曲部261は、リード端子26における、突出部251及び支持部252と、先端262との間に位置し、リード端子26の板厚方向264に凸となる部分であり、本実施形態では、半円形の円弧形状にてなる。尚、屈曲部261の形状は、円弧状に限定されず、例えばV字、W字、又はS字等の形状であってもよい。
The lead terminal 26 has substantially the same configuration as the lead terminal 25 described above, and is different only in that it has a bent portion 261.
The bent portion 261 is a portion of the lead terminal 26 that is located between the protruding portion 251 and the support portion 252 and the tip 262 and is convex in the plate thickness direction 264 of the lead terminal 26. It has a circular arc shape. In addition, the shape of the bending part 261 is not limited to circular arc shape, For example, shapes, such as V shape, W shape, or S shape, may be sufficient.

上述のような屈曲部261を有するリード端子26は、以下のような効果を奏する。
即ち、実施の形態3で述べた通り、電力用半導体装置と外部の回路とを接続すると、使用環境における温度分布や、装置と基板との熱膨張率の差により、リード端子26が変形したり、リード端子26に応力が作用したりする。これに対しては上述したように、リード端子26に備わる突出部251及び支持部252によって、リード端子26と筒状電極8との接続信頼性を向上させることができる。
The lead terminal 26 having the bent portion 261 as described above has the following effects.
That is, as described in the third embodiment, when the power semiconductor device is connected to an external circuit, the lead terminal 26 may be deformed due to the temperature distribution in the usage environment or the difference in thermal expansion coefficient between the device and the substrate. A stress acts on the lead terminal 26. On the other hand, as described above, the connection reliability between the lead terminal 26 and the cylindrical electrode 8 can be improved by the protruding portion 251 and the support portion 252 provided in the lead terminal 26.

例えば上述のリード端子25のように屈曲部261を有しないリード端子では、外部回路との接続部分であるはんだ付部や圧入部に応力が加わることになる。これは、リード端子における板厚方向254への力の作用は、リード端子自体が撓むことができるので、上記接続部分への応力伝播は緩和されるが、板幅方向255への作用については、リード端子が変形しにくいので、上記接続部分への応力は軽減されにくい。   For example, in a lead terminal that does not have a bent portion 261 such as the lead terminal 25 described above, stress is applied to a soldered portion or a press-fit portion that is a connection portion with an external circuit. This is because the action of the force in the plate thickness direction 254 at the lead terminal can be bent by the lead terminal itself, so that the stress propagation to the connecting portion is alleviated, but the action in the plate width direction 255 is Since the lead terminal is not easily deformed, the stress on the connection portion is difficult to be reduced.

そこで本実施の形態4では、リード端子26に上記屈曲部261を設け、屈曲部261にて板幅方向255への力つまり変形を吸収する。これにより、リード端子26と外部回路との接続部分に作用する応力を緩和し、上記接続部分の接続信頼性を向上させることができ、また、リード端子26と外部回路との接続を簡素化することもできる。   Therefore, in the fourth embodiment, the bent portion 261 is provided on the lead terminal 26, and the bent portion 261 absorbs a force in the plate width direction 255, that is, deformation. Thereby, the stress acting on the connection portion between the lead terminal 26 and the external circuit can be relieved, the connection reliability of the connection portion can be improved, and the connection between the lead terminal 26 and the external circuit is simplified. You can also.

また、リード端子と外部回路との接続を、はんだ付や圧入ではなく、プレスフィット端子による圧入にて行う場合には、当該プレスフィット端子には、上記外部回路へ圧入する際の荷重によって軸方向に撓まず、かつ、上述したように当該プレスフィット端子の板厚方向及び板幅方向には可撓であることが要求される。よって、このようなプレスフィット端子としては、図9に示すリード端子27が好ましい。リード端子27は、軸方向の両端部分にプレスフィット端子部分を設け、リード端子25と同様に突出部251及び支持部252を有し、かつ、突出部251及び支持部252と先端272との間に、ねじり部271を有する。ねじり部271は、リード端子27における軸周り方向に90度、当該リード端子27をねじることで形成される部分である。これは、リード端子27の板厚方向274には、リード端子27が変形しやすいという特性を利用したものである。   In addition, when the lead terminal and the external circuit are connected by press-fitting with a press-fit terminal instead of soldering or press-fitting, the press-fit terminal has an axial direction due to the load when press-fitting into the external circuit. The press-fit terminal is required to be flexible in the plate thickness direction and plate width direction as described above. Therefore, as such a press-fit terminal, the lead terminal 27 shown in FIG. 9 is preferable. The lead terminal 27 is provided with a press-fit terminal portion at both end portions in the axial direction, and has a protruding portion 251 and a supporting portion 252 as in the case of the lead terminal 25, and between the protruding portion 251 and the supporting portion 252 and the distal end 272. In addition, a torsion part 271 is provided. The twisted portion 271 is a portion formed by twisting the lead terminal 27 by 90 degrees in the direction around the axis of the lead terminal 27. This utilizes the characteristic that the lead terminal 27 is easily deformed in the plate thickness direction 274 of the lead terminal 27.

上述のねじり部271は、例えば、電力用半導体装置の全体が高温となる場合など、上記外部回路のプリント基板と電力用半導体装置のリード端子との接続部分への負荷が大きい環境下で有効である。ねじり部271を設けることで、リード端子27と上記外部回路とのはんだ付けを必要とせず、かつ、端子の軸方向における剛性を維持しながら応力を軽減可能なリード端子構造を提供することができる。このようなリード端子27による効果は、特に、半導体素子を高い温度で使用できるSiC(シリコンカーバイド)を基材とした半導体装置において顕著に発揮される。また、上述のリード端子27は、強い振動を受ける半導体装置などにおいても、接続信頼性の向上に寄与することができる。   The above-described twisted portion 271 is effective in an environment where a load on a connection portion between the printed circuit board of the external circuit and the lead terminal of the power semiconductor device is large, for example, when the entire power semiconductor device is at a high temperature. is there. By providing the torsion part 271, it is possible to provide a lead terminal structure that does not require soldering between the lead terminal 27 and the external circuit and that can reduce stress while maintaining rigidity in the axial direction of the terminal. . Such an effect of the lead terminal 27 is particularly prominent in a semiconductor device based on SiC (silicon carbide) that can use a semiconductor element at a high temperature. Further, the lead terminal 27 described above can contribute to the improvement of connection reliability even in a semiconductor device or the like that receives strong vibration.

リード端子26,27について上述したような効果を有する本実施形態における電力用半導体装置104は、勿論、実施形態1の電力用半導体装置101による上述した効果を奏することができる。
また、上述した各実施形態における構成を適宜組み合わせて構成することも可能である。
The power semiconductor device 104 according to the present embodiment having the effects described above with respect to the lead terminals 26 and 27 can of course exhibit the effects described above with the power semiconductor device 101 according to the first embodiment.
Moreover, it is also possible to combine the structure in each embodiment mentioned above suitably.

1 樹脂筐体、2 外部電極、4 回路基板、5 IGBT、6 FWDi、
8 筒状電極、11 障壁部、12 凹部、21 張出部、25〜27 リード端子、
101〜103 電力用半導体装置、
251 突出部、252 支持部、261 屈曲部、271 ねじり部。
1 resin housing, 2 external electrode, 4 circuit board, 5 IGBT, 6 FWDi,
8 cylindrical electrode, 11 barrier portion, 12 concave portion, 21 overhang portion, 25-27 lead terminal,
101-103 power semiconductor device,
251 Projection part, 252 Support part, 261 Bending part, 271 Torsion part.

Claims (7)

半導体素子が実装される回路パターンを有する基板と、
筒状形状であり、上記回路パターンに固定される一端部、及び上記一端部に対向する他端部を有する筒状電極と、
上記筒状電極の上記他端部における少なくとも他端を露出させて、上記基板、上記半導体素子、及び上記筒状電極を封止する樹脂筐体と、
上記筒状電極の上記他端部に挿入される外部電極であって、上記挿入により、上記他端に当接し又は上記樹脂筐体に当接する張出部を有する外部電極と、
を備えたことを特徴とする電力用半導体装置。
A substrate having a circuit pattern on which a semiconductor element is mounted;
A tubular electrode having a cylindrical shape and having one end fixed to the circuit pattern and the other end opposed to the one end;
A resin housing that exposes at least the other end of the other end of the cylindrical electrode and seals the substrate, the semiconductor element, and the cylindrical electrode;
An external electrode that is inserted into the other end of the cylindrical electrode, and has an overhanging portion that abuts against the other end or abuts against the resin housing by the insertion;
A power semiconductor device comprising:
上記筒状電極及び上記外部電極は複数組設けられ、
上記樹脂筐体は、隣接する上記張出部の間に形成される障壁部を有する、請求項1記載の電力用半導体装置。
A plurality of sets of the cylindrical electrode and the external electrode are provided,
The power semiconductor device according to claim 1, wherein the resin casing includes a barrier portion formed between the adjacent overhang portions.
上記障壁部は、上記樹脂筐体において上記張出部に対応して凹部を設けることで形成される、請求項2記載の電力用半導体装置。   The power semiconductor device according to claim 2, wherein the barrier portion is formed by providing a concave portion corresponding to the protruding portion in the resin casing. 上記外部電極は棒形状であり、上記張出部は円形のつば状にてなる、請求項1から3のいずれか1項に記載の電力用半導体装置。   4. The power semiconductor device according to claim 1, wherein the external electrode has a rod shape, and the projecting portion has a circular collar shape. 5. 上記外部電極は、板形状の本体部を有し、上記張出部は、上記本体部の板厚方向に直交する板幅方向に上記本体部の両側へ板厚にて延在する突出部と、両側の上記突出部からそれぞれ上記板厚方向で互いに逆向きに延在する支持部とを有する、請求項1から3のいずれか1項に記載の電力用半導体装置。   The external electrode has a plate-shaped main body portion, and the overhang portion includes a protruding portion that extends to both sides of the main body portion with a plate thickness in a plate width direction orthogonal to the plate thickness direction of the main body portion. 4. The power semiconductor device according to claim 1, further comprising support portions extending in opposite directions in the plate thickness direction from the protruding portions on both sides. 5. 上記外部電極は、板状形状であり、上記張出部と当該外部電極の先端との間に、当該外部電極の板厚方向に凸となる屈曲部を有する、請求項1から5のいずれか1項に記載の電力用半導体装置。   6. The external electrode according to claim 1, wherein the external electrode has a plate-like shape, and has a bent portion that is convex in the thickness direction of the external electrode between the projecting portion and the tip of the external electrode. 2. A power semiconductor device according to item 1. 上記外部電極は、板状形状であり、上記張出部と当該外部電極の先端との間に形成されるねじり部を有する、請求項1から5のいずれか1項に記載の電力用半導体装置。   6. The power semiconductor device according to claim 1, wherein the external electrode has a plate shape and has a torsion part formed between the overhang part and a tip of the external electrode. .
JP2010026105A 2010-02-09 2010-02-09 Power semiconductor device Active JP5218442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026105A JP5218442B2 (en) 2010-02-09 2010-02-09 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026105A JP5218442B2 (en) 2010-02-09 2010-02-09 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2011165836A true JP2011165836A (en) 2011-08-25
JP5218442B2 JP5218442B2 (en) 2013-06-26

Family

ID=44596178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026105A Active JP5218442B2 (en) 2010-02-09 2010-02-09 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP5218442B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084764A (en) * 2011-10-11 2013-05-09 Mitsubishi Electric Corp Power semiconductor device
JP2013225555A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2014132803A1 (en) * 2013-02-26 2014-09-04 三菱電機株式会社 Power semiconductor device
JP2018029141A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN110268519A (en) * 2017-02-03 2019-09-20 Abb瑞士股份有限公司 Power semiconductor modular
WO2022054560A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Semiconductor device, semiconductor device manufacturing method, and power converter
EP4053887A1 (en) * 2021-03-05 2022-09-07 Infineon Technologies AG Method and device for producing a housing
WO2023214500A1 (en) * 2022-05-02 2023-11-09 ローム株式会社 Semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256460A (en) * 1986-04-30 1987-11-09 Matsushita Electric Works Ltd Pin grid array and manufacture thereof
JPH032650U (en) * 1989-05-29 1991-01-11
JPH04192547A (en) * 1990-11-27 1992-07-10 Mitsubishi Plastics Ind Ltd Manufacture of substrate for semiconductor mounting use
JP2007184315A (en) * 2006-01-04 2007-07-19 Hitachi Ltd Resin-sealed power semiconductor module
JP2007235004A (en) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp Semiconductor device
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP2010027813A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2010129797A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Semiconductor device for power

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256460A (en) * 1986-04-30 1987-11-09 Matsushita Electric Works Ltd Pin grid array and manufacture thereof
JPH032650U (en) * 1989-05-29 1991-01-11
JPH04192547A (en) * 1990-11-27 1992-07-10 Mitsubishi Plastics Ind Ltd Manufacture of substrate for semiconductor mounting use
JP2007184315A (en) * 2006-01-04 2007-07-19 Hitachi Ltd Resin-sealed power semiconductor module
JP2007235004A (en) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp Semiconductor device
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP2010027813A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2010129797A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Semiconductor device for power

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084764A (en) * 2011-10-11 2013-05-09 Mitsubishi Electric Corp Power semiconductor device
JP2013225555A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2014132803A1 (en) * 2013-02-26 2014-09-04 三菱電機株式会社 Power semiconductor device
CN105074919A (en) * 2013-02-26 2015-11-18 三菱电机株式会社 Power semiconductor device
JPWO2014132803A1 (en) * 2013-02-26 2017-02-02 三菱電機株式会社 Power semiconductor device
KR101728264B1 (en) * 2013-02-26 2017-04-18 미쓰비시덴키 가부시키가이샤 Power semiconductor device
US9640453B2 (en) 2013-02-26 2017-05-02 Mitsubishi Electric Corporation Power semiconductor device
US9887142B2 (en) 2013-02-26 2018-02-06 Mitsubishi Electric Corporation Power semiconductor device
JP2018029141A (en) * 2016-08-18 2018-02-22 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
CN110268519A (en) * 2017-02-03 2019-09-20 Abb瑞士股份有限公司 Power semiconductor modular
JP2020506551A (en) * 2017-02-03 2020-02-27 アーベーベー・シュバイツ・アーゲー Power semiconductor module
JP7158392B2 (en) 2017-02-03 2022-10-21 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト power semiconductor module
WO2022054560A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Semiconductor device, semiconductor device manufacturing method, and power converter
JP7450740B2 (en) 2020-09-14 2024-03-15 三菱電機株式会社 Semiconductor device, semiconductor device manufacturing method, and power conversion device
EP4053887A1 (en) * 2021-03-05 2022-09-07 Infineon Technologies AG Method and device for producing a housing
WO2023214500A1 (en) * 2022-05-02 2023-11-09 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP5218442B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5218442B2 (en) Power semiconductor device
JP6354831B2 (en) Semiconductor device, method for assembling semiconductor device, component for semiconductor device, and unit module
JP6345300B2 (en) Power semiconductor device, power semiconductor device embedded device, and manufacturing method of power semiconductor device embedded device
JP5272768B2 (en) Power semiconductor device and manufacturing method thereof
KR101173927B1 (en) semiconductor device module
JP5262793B2 (en) Power semiconductor device and manufacturing method thereof
JP5069758B2 (en) Semiconductor device
JP2008124468A (en) Power module
JP2006066813A (en) Semiconductor device
JP2017174951A (en) Semiconductor device
JP5446302B2 (en) Heat sink and module
JP5935374B2 (en) Manufacturing method of semiconductor module
JP5213919B2 (en) Semiconductor device
CN107622987B (en) Semiconductor device with a plurality of semiconductor chips
JP2014013878A (en) Electronic apparatus
JP6094197B2 (en) Power module
KR101954393B1 (en) Electronic device
JP6010942B2 (en) Semiconductor device and manufacturing method thereof
JP2011138964A (en) Semiconductor device and method of manufacturing semiconductor device
JP4883684B2 (en) Method for manufacturing insulated high power semiconductor device
JP2012238684A (en) Power semiconductor device
JP2012059876A (en) Semiconductor module and manufacturing method of the same
JP4797492B2 (en) Semiconductor device
JP2009164511A (en) Semiconductor device and method of manufacturing the same
JP2006303375A (en) Power converting device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250