JP2011162745A - Conductive rubber composition - Google Patents
Conductive rubber composition Download PDFInfo
- Publication number
- JP2011162745A JP2011162745A JP2010030316A JP2010030316A JP2011162745A JP 2011162745 A JP2011162745 A JP 2011162745A JP 2010030316 A JP2010030316 A JP 2010030316A JP 2010030316 A JP2010030316 A JP 2010030316A JP 2011162745 A JP2011162745 A JP 2011162745A
- Authority
- JP
- Japan
- Prior art keywords
- ethylene
- conductive rubber
- rubber
- olefin copolymer
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、コードスイッチ等の導電部材に用いる導電ゴム組成物に関するものである。 The present invention relates to a conductive rubber composition used for a conductive member such as a cord switch.
電磁波シールドや帯電防止、感圧スイッチの電極などに用いられる導電ゴムとして、ベースゴムにカーボン等の導電性付与剤を添加するタイプのものが使用されている。たとえば、アクリロニトリルブタジエンゴム(NBR)に導電性付与剤としてカーボンを添加したもの(特許文献1)や、シリコーンゴムにカーボンを添加したもの(特許文献2)がある。導電ゴムは、カーボンを添加すると粘度が上昇して加工がし難くなるため、ベースゴムのムーニ粘度ML1+4(100℃)が40以下の低粘度のものが使用される。 As a conductive rubber used for an electromagnetic wave shield, an antistatic, an electrode of a pressure sensitive switch, or the like, a type in which a conductivity imparting agent such as carbon is added to a base rubber is used. For example, there are those obtained by adding carbon as a conductivity imparting agent to acrylonitrile butadiene rubber (NBR) (Patent Document 1) and those obtained by adding carbon to silicone rubber (Patent Document 2). The conductive rubber has a low viscosity with a Mooney viscosity ML 1 + 4 (100 ° C.) of 40 or less because the viscosity increases when carbon is added and the processing becomes difficult.
そして、導電ゴムを架橋する方法としては、硫黄架橋、過酸化物架橋、電子線照射架橋、などがある。この中で、硫黄架橋、過酸化物架橋は、熱をトリガーとして架橋させるため、シートなどを押出成形等する際は、架橋が進まない温度で押出等を行う必要がある。これに対して電子線照射架橋は、電子線を成形体に照射させて架橋させるため、高温で押出等の成形をしても押出機等の装置内で架橋が起こり成形不良になるようなことがなく、高温成形が可能という特長がある。 And methods for crosslinking the conductive rubber include sulfur crosslinking, peroxide crosslinking, electron beam irradiation crosslinking, and the like. Among these, since sulfur crosslinking and peroxide crosslinking are crosslinked by using heat as a trigger, it is necessary to perform extrusion or the like at a temperature at which crosslinking does not proceed when a sheet or the like is extruded. In contrast, electron beam irradiation cross-linking involves cross-linking by irradiating a molded body with an electron beam, so that even if molding such as extrusion at a high temperature, cross-linking occurs in an apparatus such as an extruder, resulting in poor molding. There is a feature that high temperature molding is possible.
特に、導電ゴムの体積抵抗を低くしたい場合、カーボン等の導電性付与剤を大量に添加する必要があり、高粘度で加工性が非常に悪くなる。そこで、高温で低粘度化して成形可能な電子線照射架橋は、低抵抗の導電ゴムを架橋する方法として有効となる。 In particular, when it is desired to reduce the volume resistance of the conductive rubber, it is necessary to add a large amount of a conductivity-imparting agent such as carbon. Therefore, electron beam irradiation cross-linking that can be molded by reducing the viscosity at high temperature is effective as a method for cross-linking low-resistance conductive rubber.
しかしながら、電子線照射架橋の場合、金型成形や押出成形等した後に、別工程で電子線照射架橋を行う場合が多い。これは、電子線照射装置が非常に高価であり、成形工程の中に組み込むことが難しいためである。このため、未架橋のシート等の成形体を次工程の電子線架橋工程に移動する場合、取り扱いの観点から、成形体同士を重ね合わせたり、ボビンに何重にも巻きつけることがある。しかし、このとき導電ゴムが未架橋のため、成形体同士が密着して張り付いてしまう課題があった。さらに、ベースゴムのムーニ粘度ML1+4(100℃)が40以下の低粘度の場合、張り付きが顕著となる課題があった。 However, in the case of electron beam irradiation cross-linking, electron beam irradiation cross-linking is often performed in a separate step after molding or extrusion molding. This is because the electron beam irradiation apparatus is very expensive and difficult to incorporate into the molding process. For this reason, when moving compacts, such as an uncrosslinked sheet, to the next electron beam cross-linking step, the compacts may be overlapped or wound several times around the bobbin from the viewpoint of handling. However, since the conductive rubber is uncrosslinked at this time, there is a problem that the molded bodies stick to each other. Furthermore, when the Mooney viscosity ML 1 + 4 (100 ° C.) of the base rubber is a low viscosity of 40 or less, there is a problem that sticking becomes remarkable.
そこで本発明の目的は、電子線照射架橋を行う導電ゴムにおいて、未架橋の状態でも導電ゴム同士が張り付くことがなく加工性に優れた導電ゴム組成物を提供することにある。 Accordingly, an object of the present invention is to provide a conductive rubber composition which is excellent in processability without causing the conductive rubbers to stick to each other even in an uncrosslinked state in the conductive rubber subjected to electron beam irradiation crosslinking.
上記課題を達成すべく請求項1の発明は、ムーニ粘度MLが40以下のベースゴムに導電性付与剤を添加した導電ゴムにおいて、前記ベースゴムにエチレン−αオレフィン共重合体を、その合計100質量部に対して前記エチレン−αオレフィン共重合体が5〜40質量部となるように添加したことを特徴とする導電ゴム組成物である。
In order to achieve the above object, the invention according to
請求項2の発明は、前記エチレン−αオレフィン共重合体のゴム硬度が60〜95である請求項1に記載の導電ゴム組成物である。
The invention according to
請求項3の発明は、前記エチレン−αオレフィン共重合体のメルトフローレートが5以上である請求項1または2に記載の導電ゴム組成物である。
The invention according to
請求項4の発明は、前記導電性付与剤がカーボンである請求項1〜3のいずれかに記載の導電ゴム組成物である。
The invention according to claim 4 is the conductive rubber composition according to any one of
本発明によれば、電子線照射架橋を行う導電ゴムにおいて、未架橋の状態でも導電ゴム同士が張り付くことなく加工性に優れた導電ゴム組成物を得ることができる。 According to the present invention, in a conductive rubber that undergoes electron beam irradiation crosslinking, a conductive rubber composition having excellent processability can be obtained without the conductive rubber sticking even in an uncrosslinked state.
以下、本発明の好適な一実施の形態を詳述する。 Hereinafter, a preferred embodiment of the present invention will be described in detail.
本発明の導電ゴム組成物は、ベースゴムと、導電性付与剤と、エチレン−αオレフィン共重合体とからなるものである。 The conductive rubber composition of the present invention comprises a base rubber, a conductivity imparting agent, and an ethylene-α olefin copolymer.
エチレン−αオレフィン共重合体は、半結晶性の樹脂であり、未架橋の状態でも、樹脂同士が密着することがないので、導電ゴムに添加することで、密着を防ぐことができる。 The ethylene-α-olefin copolymer is a semi-crystalline resin, and even in an uncrosslinked state, the resins do not adhere to each other. Therefore, addition to the conductive rubber can prevent adhesion.
エチレン−αオレフィン共重合体の添加量としては、ベースゴムとの合計が100質量部となるように、5〜40質量部添加するのがよい。5質量部未満であると、導電ゴム同士の密着を防ぐ効果がほとんどなくなる。40質量部より多いと、圧縮永久歪が大きくなるなど、導電ゴムとしての特性が失われてしまう。 As addition amount of an ethylene-alpha olefin copolymer, it is good to add 5-40 mass parts so that a sum total with a base rubber may be 100 mass parts. If it is less than 5 parts by mass, the effect of preventing the adhesion between the conductive rubbers is almost lost. When the amount is more than 40 parts by mass, characteristics as a conductive rubber are lost, for example, compression set becomes large.
エチレン−αオレフィン共重合体のゴム硬度(ショアA硬度)は60〜95であるとよい。60未満であると、導電ゴム同士の密着を防ぐ効果がほとんどなくなってしまう。95を超えると、導電ゴム自体が硬くなりすぎてしまい柔軟性を失ってしまう。 The rubber hardness (Shore A hardness) of the ethylene-α-olefin copolymer is preferably 60 to 95. If it is less than 60, the effect of preventing the adhesion between the conductive rubbers is almost lost. If it exceeds 95, the conductive rubber itself becomes too hard and loses flexibility.
エチレン−αオレフィン共重合体のメルトフローレートは5以上であるとよい。メルトフローレートは溶融時の流れ性の指標であり、値が大きいほど流れ性がよい。この値が5未満であると、導電ゴム加工時の粘度が大きくなり、加工性が極端に悪くなる。 The melt flow rate of the ethylene-α olefin copolymer is preferably 5 or more. The melt flow rate is an index of flowability at the time of melting, and the larger the value, the better the flowability. When this value is less than 5, the viscosity at the time of processing the conductive rubber increases, and the processability becomes extremely poor.
エチレン−αオレフィン共重合体のαオレフィン部樹脂としては、プロピレン、ブテン等が挙げられるがこれに限るものではない。 Examples of the α-olefin part resin of the ethylene-α-olefin copolymer include propylene and butene, but are not limited thereto.
ベースゴムの材質については、EPDM(エチレン−プロピレン−ジエンゴム)、NBR(アクリロニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等が挙げられるがこれに限定されるものではない。また、ベースゴムとしては、100℃におけるムーニ粘度ML1+4(100℃)が40以下であるゴムを用いる。 Examples of the material of the base rubber include, but are not limited to, EPDM (ethylene-propylene-diene rubber), NBR (acrylonitrile butadiene rubber), SBR (styrene butadiene rubber), and the like. As the base rubber, a rubber having a Mooney viscosity ML 1 + 4 (100 ° C.) at 100 ° C. of 40 or less is used.
導電性付与剤としては、カーボンを用いる。 Carbon is used as the conductivity imparting agent.
また、エチレン−αオレフィン共重合体は非極性の樹脂であるため、金属と接着し難く成形時の金型離型性が良くなる、金属芯線に導電ゴムを押出被覆した成形物の端末の導電ゴム剥離が容易になる、という利点もある。 In addition, since the ethylene-α-olefin copolymer is a nonpolar resin, it is difficult to adhere to a metal and the mold releasability at the time of molding is improved. There is also an advantage that rubber peeling becomes easy.
次に、導電ゴム組成物を構成する材料を各種ミキサーを用いて均一に混錬し、金型成形や押出成形などして、シートなどの成形体とする。この成形体を電子線照射工程へ移動し、架橋を行うことで、架橋導電ゴムとされる。 Next, the material constituting the conductive rubber composition is uniformly kneaded using various mixers, and molded or extruded to form a molded body such as a sheet. The molded body is moved to an electron beam irradiation step and crosslinked to form a crosslinked conductive rubber.
本発明では、エチレン−αオレフィン共重合体を配合しているので、成形体を電子線照射工程に移動する際、成形体同士を重ね合わせても張り付くことがない。 In this invention, since the ethylene-alpha olefin copolymer is mix | blended, when moving a molded object to an electron beam irradiation process, even if a molded object is piled up, it does not stick.
以下、本発明の実施例1〜6及び比較例1〜6について説明する。 Hereinafter, Examples 1 to 6 and Comparative Examples 1 to 6 of the present invention will be described.
まず、表1に実施例1〜6及び比較例1〜6で用いたエチレン−αオレフィン共重合体の物性を示す。 First, Table 1 shows the physical properties of the ethylene-α olefin copolymers used in Examples 1 to 6 and Comparative Examples 1 to 6.
表1は、今回検討したエチレン−αオレフィン共重合体(商品名:タフマー、三井化学(株)製)のショアAによるゴム硬度(ASTM D2240)とメルトフローレート(230℃、ASTM D1238)を示したものである。 Table 1 shows the rubber hardness (ASTM D2240) and the melt flow rate (230 ° C., ASTM D1238) of Shore A of the ethylene-α-olefin copolymer (trade name: TAFMER, manufactured by Mitsui Chemicals, Inc.) examined this time. It is a thing.
次に、表2に実施例1〜6及び比較例1〜6で用いたベースゴムの物性を示す。 Next, Table 2 shows the physical properties of the base rubbers used in Examples 1 to 6 and Comparative Examples 1 to 6.
表2は、今回検討したベースゴム(EPゴム、三井化学(株)製)のムーニ粘度ML1+4(100℃)(JIS K6300−1)を示したものである。 Table 2 shows the Mooney viscosity ML 1 + 4 (100 ° C.) (JIS K6300-1) of the base rubber (EP rubber, manufactured by Mitsui Chemicals, Inc.) examined this time.
表3に実施例1〜6及び比較例1〜6の配合と特性を示す。 Table 3 shows the composition and characteristics of Examples 1 to 6 and Comparative Examples 1 to 6.
表3のベースゴムとしては表2に示したEPゴムを使用し、カーボンとしては、ケッチェンブラック・インターナショナル製ケッチェンブラックEC600JDを使用した。エチレン−αオレフィン共重合体は表1に示した物性のものを使用した。 EP rubber shown in Table 2 was used as the base rubber in Table 3, and Ketjen Black EC600JD manufactured by Ketjen Black International was used as the carbon. As the ethylene-α olefin copolymer, those having physical properties shown in Table 1 were used.
実施例1〜6及び比較例1〜6の配合材を、プレスを用い、温度180℃で1mm厚のシートに成形した(未架橋の状態)。 The compounding materials of Examples 1 to 6 and Comparative Examples 1 to 6 were formed into 1 mm thick sheets at a temperature of 180 ° C. using a press (in an uncrosslinked state).
導電ゴム同士の密着性を評価するため、図1に示すように、幅5mm、長さ20mmに切り出したシート2枚1,1’を、5mmラップさせ(接着面2の面積は5mm×5mm)、ラップ面に1kgの重り3をのせて、60℃で1時間放置したサンプルを作製した。その後、図2に示すように、引張速度50mm/minで引張試験を行い、張り付き強度を測定した。
In order to evaluate the adhesion between the conductive rubbers, as shown in FIG. 1, two
また、未架橋の導電ゴムについて加工性の指標であるコンパウンドムーニ粘度ML1+4(180℃)(JIS K6300−1)を測定した。 Moreover, the compound Mooney viscosity ML1 + 4 (180 degreeC) (JIS K6300-1) which is a processability parameter | index about uncrosslinked electrically conductive rubber was measured.
成形した1mm厚シートについて電子線照射架橋(照射量18Mrad)を行い、架橋導電ゴムシートを得た。この後、このシートを用いて圧縮永久歪試験(JIS K6262;150℃、25%圧縮、22h放置)と体積抵抗測定(JIS K7194;四端子四深針法)、ゴム硬度測定(ASTM D2240、ショアA)を行った。 The molded 1 mm thick sheet was subjected to electron beam irradiation crosslinking (irradiation amount: 18 Mrad) to obtain a crosslinked conductive rubber sheet. Thereafter, using this sheet, a compression set test (JIS K6262; 150 ° C., 25% compression, left for 22 hours), volume resistance measurement (JIS K7194; four-terminal four-deep needle method), rubber hardness measurement (ASTM D2240, Shore) A) was performed.
実施例1〜6は、エチレン−αオレフィン共重合体の配合量が5〜40質量部であり、張り付き強度15N以下、圧縮永久歪50以下、コンパウンドムーニ粘度120以下、ゴム硬度95以下と良好である。 In Examples 1 to 6, the blending amount of the ethylene-α-olefin copolymer is 5 to 40 parts by mass, the sticking strength is 15 N or less, the compression set is 50 or less, the compound Mooney viscosity is 120 or less, and the rubber hardness is 95 or less. is there.
これに対して比較例1は、実施例1〜3と同じエチレン−αオレフィン共重合体(タフマーA70090)を用いたものであるが、配合量が3質量部と少ないため、未架橋の状態での導電ゴム同士の張り付き強度が19Nと、目標(実用上問題ないレベル)の15Nを超えてしまった。 On the other hand, Comparative Example 1 uses the same ethylene-α olefin copolymer (Tuffmer A70090) as in Examples 1 to 3, but the blending amount is as small as 3 parts by mass, so in an uncrosslinked state. The sticking strength between the conductive rubbers of 19N exceeded 19N, which is the target (a level that causes no problem in practical use).
比較例3は、実施例4,5と同じエチレン−αオレフィン共重合体(タフマーA35070S)を用いたものであるが、配合量が2.5質量部と少ないため、未架橋の状態での導電ゴム同士の張り付き強度が20Nと、比較例1と同様に目標の15Nを超えてしまった。 Comparative Example 3 uses the same ethylene-α olefin copolymer (Toughmer A35070S) as in Examples 4 and 5, but the compounding amount is as small as 2.5 parts by mass, so that the conductivity in an uncrosslinked state is The sticking strength between the rubbers was 20 N, which exceeded the target of 15 N as in Comparative Example 1.
比較例4は、比較例1,3とは別のエチレン−αオレフィン共重合体(タフマーA1050S)を用いたものであるが、配合量が3質量部と少ないため、未架橋の状態での導電ゴム同士の張り付き強度が24Nと、比較例1,3と同様に目標の15Nを超えてしまった。 Comparative Example 4 uses an ethylene-α olefin copolymer (Tuffmer A1050S) different from Comparative Examples 1 and 3. However, since the blending amount is as small as 3 parts by mass, conductivity in an uncrosslinked state is used. The sticking strength between the rubbers was 24 N, which exceeded the target 15 N as in Comparative Examples 1 and 3.
よって、エチレン−αオレフィン共重合体の配合量は5質量部以上がよい。 Therefore, the blending amount of the ethylene-α olefin copolymer is preferably 5 parts by mass or more.
また、比較例2は、実施例1〜3と同じエチレン−αオレフィン共重合体(タフマーA70090)を用いたものであるが、配合量が50質量部と多いため、圧縮永久歪が56と、目標の50を超えてしまい、実用上問題があった。 Moreover, although the comparative example 2 uses the same ethylene-alpha olefin copolymer (Tuffmer A70090) as Examples 1-3, since a compounding quantity is as many as 50 mass parts, compression set is 56, The target of 50 was exceeded and there was a problem in practical use.
比較例5は、比較例2とは別のエチレン−αオレフィン共重合体(BL4000)を用いたものであるが、配合量が50質量部と多いため、圧縮永久歪が58と、目標の50を超えてしまい、比較例2と同様に実用上問題があった。 Comparative Example 5 uses an ethylene-α olefin copolymer (BL4000) different from Comparative Example 2. However, since the blending amount is as large as 50 parts by mass, the compression set is 58 and the target 50 As in Comparative Example 2, there was a problem in practical use.
よって、エチレン−αオレフィン共重合体の配合量は40質量部以下がよい。 Therefore, the blending amount of the ethylene-α olefin copolymer is preferably 40 parts by mass or less.
また、比較例6は、実施例2と同じエチレン−αオレフィン共重合体(タフマーA70090)を同じ配合量としたものであるが、ベースゴムのムーニ粘度ML1+4(100℃)が45と大きいEPT4045を使用したため、コンパウンドムーニ粘度が140と非常に大きくなってしまい、加工が困難となった。この結果から、ベースゴムのムーニ粘度ML1+4(100℃)は40以下がよいことがわかる。 In Comparative Example 6, the same ethylene-α olefin copolymer (Tuffmer A70090) as in Example 2 was used in the same amount, but the Mooney viscosity ML 1 + 4 (100 ° C.) of the base rubber was 45. Since a large EPT4045 was used, the compound Mooney viscosity became as large as 140, making it difficult to process. From this result, it is understood that the Mooney viscosity ML 1 + 4 (100 ° C.) of the base rubber is preferably 40 or less.
さらに、比較例1と比較例4を見ると、エチレン−αオレフィン共重合体の配合量は3質量部で同じであるが、比較例4のタフマーA1050Sはメルトフローレートが2.2と小さいため、コンパウンドムーニ粘度が126と目標値(120以下)より大きくなってしまっている。よって、メルトフローレートは5以上であることが好ましい。 Further, when Comparative Example 1 and Comparative Example 4 are viewed, the blending amount of the ethylene-α olefin copolymer is the same at 3 parts by mass, but the Tuffmer A1050S of Comparative Example 4 has a low melt flow rate of 2.2. The compound Mooney viscosity is 126, which is larger than the target value (120 or less). Therefore, the melt flow rate is preferably 5 or more.
また、比較例2と比較例5を見ると、エチレン−αオレフィン共重合体の配合量は50質量部で同じであるが、比較例5のタフマーBL4000はゴム硬度が99と大きいため、架橋導電ゴムのゴム硬度も98と目標値(60〜95)より大きくなって柔軟性が失われている。この結果から、エチレン−αオレフィン共重合体のゴム硬度は60〜95であることが好ましい。 Moreover, when the comparative example 2 and the comparative example 5 are seen, although the compounding quantity of an ethylene-alpha olefin copolymer is the same at 50 mass parts, since the Tuffmer BL4000 of the comparative example 5 has a large rubber hardness, it is bridge | crosslinking conductive. The rubber hardness of the rubber is 98, which is larger than the target value (60 to 95), and the flexibility is lost. From this result, the rubber hardness of the ethylene-α-olefin copolymer is preferably 60 to 95.
以上の結果より、本発明によれば、電子線照射架橋を行う導電ゴムにおいて、未架橋の状態でも導電ゴム同士が張り付く不具合がなく、加工性に優れ、架橋後には圧縮永久歪が小さく、体積抵抗が低く、柔軟性のある導電ゴムを得ることができることがわかる。 From the above results, according to the present invention, in the conductive rubber subjected to electron beam irradiation crosslinking, there is no problem that the conductive rubbers stick to each other even in an uncrosslinked state, the processability is excellent, the compression set is small after crosslinking, the volume It can be seen that a conductive rubber having low resistance and flexibility can be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010030316A JP5549257B2 (en) | 2010-02-15 | 2010-02-15 | Conductive rubber composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010030316A JP5549257B2 (en) | 2010-02-15 | 2010-02-15 | Conductive rubber composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011162745A true JP2011162745A (en) | 2011-08-25 |
JP5549257B2 JP5549257B2 (en) | 2014-07-16 |
Family
ID=44593812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010030316A Active JP5549257B2 (en) | 2010-02-15 | 2010-02-15 | Conductive rubber composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5549257B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991022B2 (en) | 2014-03-18 | 2018-06-05 | Hitachi Metals, Ltd. | Electroconductive resin composition and pressure sensor |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223207A (en) * | 1982-06-21 | 1983-12-24 | 日立電線株式会社 | Semiconductive composition |
JPH04216840A (en) * | 1990-12-18 | 1992-08-06 | Sumitomo Electric Ind Ltd | Semiconductive composition |
JPH0859925A (en) * | 1994-08-24 | 1996-03-05 | Showa Electric Wire & Cable Co Ltd | Semiconductive rubber composition |
JP2000133047A (en) * | 1998-10-22 | 2000-05-12 | Furukawa Electric Co Ltd:The | Rubber composition |
JP2001510629A (en) * | 1997-06-05 | 2001-07-31 | エクソン・ケミカル・パテンツ・インク | Electrical device comprising ethylene, alpha-olefin, vinyl norbornene elastomer and ethylene alpha-olefin polymer |
JP2002284941A (en) * | 2001-01-17 | 2002-10-03 | Mitsui Chemicals Inc | Soft resin composition for injection molding and use thereof |
JP2006037115A (en) * | 1995-07-05 | 2006-02-09 | Mitsui Chemicals Inc | Method for producing rubber composition |
WO2008078700A1 (en) * | 2006-12-22 | 2008-07-03 | Bando Chemical Industries, Ltd. | Rubber composition for transmission belt and transmission belt |
JP2009013428A (en) * | 2008-10-22 | 2009-01-22 | Riken Technos Corp | Thermoplastic elastomer composition |
JP2009128781A (en) * | 2007-11-27 | 2009-06-11 | Canon Chemicals Inc | Conductive rubber roller, method for manufacturing the same, and charging roller |
-
2010
- 2010-02-15 JP JP2010030316A patent/JP5549257B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58223207A (en) * | 1982-06-21 | 1983-12-24 | 日立電線株式会社 | Semiconductive composition |
JPH04216840A (en) * | 1990-12-18 | 1992-08-06 | Sumitomo Electric Ind Ltd | Semiconductive composition |
JPH0859925A (en) * | 1994-08-24 | 1996-03-05 | Showa Electric Wire & Cable Co Ltd | Semiconductive rubber composition |
JP2006037115A (en) * | 1995-07-05 | 2006-02-09 | Mitsui Chemicals Inc | Method for producing rubber composition |
JP2001510629A (en) * | 1997-06-05 | 2001-07-31 | エクソン・ケミカル・パテンツ・インク | Electrical device comprising ethylene, alpha-olefin, vinyl norbornene elastomer and ethylene alpha-olefin polymer |
JP2000133047A (en) * | 1998-10-22 | 2000-05-12 | Furukawa Electric Co Ltd:The | Rubber composition |
JP2002284941A (en) * | 2001-01-17 | 2002-10-03 | Mitsui Chemicals Inc | Soft resin composition for injection molding and use thereof |
WO2008078700A1 (en) * | 2006-12-22 | 2008-07-03 | Bando Chemical Industries, Ltd. | Rubber composition for transmission belt and transmission belt |
JP2009128781A (en) * | 2007-11-27 | 2009-06-11 | Canon Chemicals Inc | Conductive rubber roller, method for manufacturing the same, and charging roller |
JP2009013428A (en) * | 2008-10-22 | 2009-01-22 | Riken Technos Corp | Thermoplastic elastomer composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991022B2 (en) | 2014-03-18 | 2018-06-05 | Hitachi Metals, Ltd. | Electroconductive resin composition and pressure sensor |
US10431348B2 (en) | 2014-03-18 | 2019-10-01 | Hitachi Metals, Ltd. | Pressure sensor including electrical conductors comprising electroconductive resin composition that does not need cross-linking |
Also Published As
Publication number | Publication date |
---|---|
JP5549257B2 (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6686355B2 (en) | Conductive elastomer composition and molded article made of the same | |
KR102010872B1 (en) | Semiconductive composition for cable | |
JP2019056092A (en) | Conductive elastomer composition, and conductive sheet using the same | |
JP6776344B2 (en) | Semi-conductive shield composition | |
JP5549257B2 (en) | Conductive rubber composition | |
JP2011052152A (en) | Composition of conductive rubber | |
JP2014159505A (en) | Rubber composition for sealant and sealant using the same | |
JP2016222875A (en) | Elastomer composition and cable | |
JP2016210824A5 (en) | ||
JP6821980B2 (en) | Rubber composition containing antistatic agent and method for producing the same | |
JP2005307059A (en) | Poly(4-methyl-1-pentene) resin film | |
JP2012074173A (en) | Insulated electric wire | |
JP6401551B2 (en) | Resin composite material and manufacturing method thereof | |
JP4485636B2 (en) | Wire covering material and electric wire using the covering material | |
JP5025050B2 (en) | Crosslinkable semiconductive resin composition and power cable using the same | |
JP6032636B2 (en) | Method for producing rubber-polyolefin composite | |
JP6445485B2 (en) | Semiconductive resin composition and power cable using the same | |
WO2017134731A1 (en) | Electrically conductive thermoplastic elastomer composition and pressure-sensitive switch | |
JP4956974B2 (en) | Conductive thermoplastic resin composition and molded article | |
KR101527563B1 (en) | Supramolecular network thermo-reversible crosslinked elastomer having heat-resistant, chemical-resistance, high mechanical properties | |
JP4042237B2 (en) | Rubber composition | |
JPS5810801B2 (en) | Semiconductive resin composition with improved peelability | |
JP2006258459A (en) | Flexible radiation shielding/sound insulating material | |
Raghavendrakumar et al. | Effect of amphiphilic polymer modified graphene surfactant on the thermal, viscoelastic and tensile properties of nitrile latex nanocomposites | |
JPH06271708A (en) | Polychloroprene rubber composition and wire and cable coated therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130830 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140505 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5549257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |