JP2011150911A - Microwave heating device - Google Patents
Microwave heating device Download PDFInfo
- Publication number
- JP2011150911A JP2011150911A JP2010011657A JP2010011657A JP2011150911A JP 2011150911 A JP2011150911 A JP 2011150911A JP 2010011657 A JP2010011657 A JP 2010011657A JP 2010011657 A JP2010011657 A JP 2010011657A JP 2011150911 A JP2011150911 A JP 2011150911A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- microwave
- microwave heating
- opening
- heating apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
本発明は、マイクロ波加熱装置又はその加熱を利用した乾燥装置に関する。 The present invention relates to a microwave heating apparatus or a drying apparatus using the heating.
従来、マイクロ波を利用する加熱又は乾燥装置は、電磁シールドされた筐体内へマイクロ波を供給し、そのマイクロ波電力が供給された筐体内へ基材を搬送することにより基材の一部にマイクロ波を吸収させて発熱させる方法が一般的であった(例えば、特許文献1参照)。しかしこの様な方法では、エネルギーロスが大きく且つ基材上に均一なマイクロ波電力を供給することは難しく基材上で均一な温度を必要する場合には使用できない。 Conventionally, a heating or drying apparatus that uses microwaves supplies microwaves into a case that is electromagnetically shielded, and transports the base material into a case that is supplied with the microwave power. A method of generating heat by absorbing microwaves has been common (see, for example, Patent Document 1). However, in such a method, it is difficult to supply a uniform microwave power on the substrate with a large energy loss, and it cannot be used when a uniform temperature is required on the substrate.
一方、矩形状のマイクロ波導波管を利用する場合は、エネルギーロスを低減できるが、矩形状導波管の縦方向(矩形の長さ方向)にマイクロ波が進行した場合、この進行方向に直角な方向(矩形の巾方向)の電界強度が強くなることが知られており、同様に基材上に均一なマイクロ波電力を供給することは難しい。 On the other hand, when a rectangular microwave waveguide is used, energy loss can be reduced. However, when microwaves travel in the longitudinal direction (rectangular length direction) of the rectangular waveguide, they are perpendicular to the traveling direction. It is known that the electric field strength in a certain direction (rectangular width direction) becomes strong, and similarly, it is difficult to supply uniform microwave power on the substrate.
また導波管内のマイクロ波の伝播波長を長くするほど導波管の縦方向における電磁波エネルギーの効率が高くなることも知られているが、このマイクロ波の導波管内波長は導波管の横幅長さを狭くすると長くできる。通常使用されるマイクロ波(波長2.45GH)の場合、導波管の巾(横の長さ)を61mmから62mmにしたとき管内伝播波長が一番長くなり電界強度が最大になる。即ち導波管に設ける開口部を導波管に対して横方向に配置することによって横方向に強力な電界強度を発生させることができるが、前記したように導波管の巾は61〜62mm程度に限定されるので、これ以上長く均一な電界が得られず、均一な加熱はできない。 It is also known that the longer the propagation wavelength of microwaves in the waveguide, the higher the efficiency of electromagnetic wave energy in the longitudinal direction of the waveguide. It can be lengthened by narrowing the length. In the case of a commonly used microwave (wavelength: 2.45 GH), when the width (lateral length) of the waveguide is changed from 61 mm to 62 mm, the propagation wavelength in the tube is the longest and the electric field strength is maximized. That is, a strong electric field strength can be generated in the transverse direction by arranging the opening provided in the waveguide in the transverse direction with respect to the waveguide. However, as described above, the width of the waveguide is 61 to 62 mm. Since it is limited to the extent, a uniform electric field cannot be obtained longer than this, and uniform heating cannot be performed.
本発明の目的は、幅広いフィルム基材に対し均一にマイクロ波加熱できるマイクロ波加熱装置を提供し、更に極短時間に処理することでフィルム基材上にコーティングされた特定層のみを加熱することによりフィルム基材への熱ダメージを発生させることなく緻密化させたり結晶化させることに対しても使用可能なマイクロ波加熱装置を提供することにある。 An object of the present invention is to provide a microwave heating apparatus capable of uniformly heating a wide range of film bases, and to heat only a specific layer coated on the film base by further processing in a very short time. Accordingly, an object of the present invention is to provide a microwave heating apparatus that can be used for densification or crystallization without causing thermal damage to the film substrate.
本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
1.マイクロ波発生源で発生したマイクロ波を導入する反対側が無反射終端されている導波管を有するマイクロ波加熱装置であって、該導波管の筐体面の一部に、マイクロ波の進行方向に沿って縦長の開口部を設け、この開口部に近接し且つ平行にガイドローラーを併設し、該ガイドローラーと該導波管の開口部との間にフィルム基材を配置し、該ガイドローラーに該フィルム基材を保持し搬送しながらマイクロ波を照射することにより該フィルム基材を加熱することを特徴とするマイクロ波加熱装置。 1. A microwave heating apparatus having a waveguide having a reflection-free termination on the opposite side to which microwaves generated from a microwave generation source are introduced, and a microwave traveling direction on a part of a casing surface of the waveguide A longitudinally long opening is provided along with a guide roller adjacent to and parallel to the opening, and a film substrate is disposed between the guide roller and the waveguide opening, and the guide roller A microwave heating apparatus that heats the film substrate by irradiating microwaves while holding and transporting the film substrate.
2.前記縦長の開口部と前記導波管の内面との間に形成される狭窄された空間部分に、該狭窄された空間部分の電界強度を調整するための導電体を設けたことを特徴とする前記1に記載のマイクロ波加熱装置。 2. The constricted space formed between the vertically long opening and the inner surface of the waveguide is provided with a conductor for adjusting the electric field strength of the constricted space. 2. The microwave heating apparatus according to 1 above.
3.前記導電体と前記開口部との関係位置を調整する手段を併せ備えたことを特徴とする前記2に記載のマイクロ波加熱装置。 3. 3. The microwave heating apparatus according to 2 above, further comprising means for adjusting a relative position between the conductor and the opening.
4.前記狭窄された空間部分に設けた前記導電体を、前記導波管の縦軸方向に沿って複数個設け、該導電体と前記開口部との関係位置を前記導波管の外部から調整する手段を併せ設けることにより、前記導波管の縦軸方向に沿った電界強度分布を均整化できるようにしたことを特徴とする前記1〜3の何れか1項に記載のマイクロ波加熱装置。
4). A plurality of the conductors provided in the constricted space portion are provided along the longitudinal axis direction of the waveguide, and the position of the conductor and the opening is adjusted from the outside of the waveguide. 4. The microwave heating apparatus according to any one of
5.前記導波管が偏平な矩形状導波管であることを特徴とする前記1〜4の何れか1項に記載のマイクロ波加熱装置。 5. 5. The microwave heating apparatus according to any one of 1 to 4, wherein the waveguide is a flat rectangular waveguide.
6.前記マイクロ波が、導波管の両端より導入されることを特徴とする前記1〜5の何れか1項に記載のマイクロ波加熱装置。 6). 6. The microwave heating apparatus according to any one of 1 to 5, wherein the microwave is introduced from both ends of the waveguide.
7.前記マイクロ波が、100μsec以下のパルス巾で供給されることを特徴とする前記1〜5の何れか1項にマイクロ波加熱装置。 7). 6. The microwave heating apparatus according to any one of 1 to 5, wherein the microwave is supplied with a pulse width of 100 μsec or less.
本発明によれば、導波管内を伝播するマイクロ波電磁エネルギーをフィルム基材に直接照射させることができ、更に処理時間もマイクロ秒オーダーでコントロールできることより、照射エネルギーを詳細に制御できることで、フィルム基材への熱ダメージも抑制でき且つ効率的に基材上に設けた特定の膜だけを加熱することが出来るため、熱に弱いフィルム基材上でも緻密な結晶化薄膜をえることが可能となった。 According to the present invention, it is possible to directly irradiate the film substrate with microwave electromagnetic energy propagating in the waveguide, and further, the processing time can be controlled in the order of microseconds, so that the irradiation energy can be controlled in detail. Since heat damage to the base material can be suppressed and only a specific film provided on the base material can be efficiently heated, a dense crystallized thin film can be obtained even on a heat-sensitive film base material. became.
更に導波管内の、空間導波路部の電界強度分布を、管の縦方向に沿って調整する手段を提供したので、導波管の縦方向加工歪及び基材吸収に基づく電界強度のバラツキも容易に調整することが可能となり、長さ方向に均一に加熱することができる。 Furthermore, since a means for adjusting the electric field strength distribution of the spatial waveguide portion in the waveguide along the longitudinal direction of the tube is provided, the variation in electric field strength due to the longitudinal processing strain of the waveguide and the absorption of the substrate is also provided. It can be easily adjusted and can be heated uniformly in the length direction.
上記、問題点に対し、本発明者等は、導波管の側壁部にこの導波管の縦方向(マイクロ波の伝播方向)に沿ってスリット状の開口部を設け、このスリットの方向に沿って導波管の外に隣接して且つ平行にガイドローラーを併設し、該ガイドローラーと矩形状導波管開口部との間にフィルム基材を配置し、該ガイドローラーにフィルム基材を保持し搬送しながらマイクロ波を照射する加熱手段を考案し、本発明を成すに至った。 In response to the above problems, the present inventors provide a slit-like opening in the side wall of the waveguide along the longitudinal direction of the waveguide (the propagation direction of the microwave), and in the direction of the slit. A guide roller is provided adjacent to and parallel to the outside of the waveguide, and a film substrate is disposed between the guide roller and the rectangular waveguide opening, and the film substrate is disposed on the guide roller. The present inventors have devised a heating means for irradiating microwaves while holding and transporting the present invention.
本発明により導波管の横幅は前記によって制限されても縦長さは自由に長くでき、広い面積のフィルム基材をより効率良く均一に加熱又は加熱を利用した乾燥ができるようになった。 According to the present invention, even when the horizontal width of the waveguide is limited by the above, the vertical length can be freely increased, and a film substrate having a large area can be more efficiently and uniformly heated or dried using heating.
以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1は、本発明マイクロ波加熱装置の基本構成を示す図で、マイクロ波の導波管1はアルミや真鍮などの導体で構成され、縦長さy横幅a厚さbの偏平な矩形状の空洞型導波管で、矢印MWの方向からマイクロ波が導入され管内を縦方向に進行する。2はこの導波管の偏平平面(H面)に設けられた縦長の開口部である。その開口部2に近接して且つ平行にフィルム基材4を保持するガイドローラー3が併設され、そのガイドローラーとマイクロ波導波管1に設けられた開口部2との間にフィルム基材4が配置されている。
FIG. 1 is a diagram showing a basic configuration of a microwave heating apparatus according to the present invention. A
図1において、導波管1へ導入されるマイクロ波の波長をλoとしたとき、導波管内を伝播するマイクロ波の波長λgは、次式を満足するように選定し、λgが開口部長y’より長くなるように導波管の幅aを選定するのが望ましい。
In FIG. 1, when the wavelength of the microwave introduced into the
εは誘電率、μは透磁率である。(rは、真空の値に対しての比を表す。たとえば、εr、μrは、それぞれ比誘電率と比透磁率を表す。)
一般的に使われる周波数2.45GHz、波長120mmのマイクロ波をこの導波管に送り込む場合は、上式によれば導波管幅aを61.3mmに選定したとき導波管内のマイクロ波の波長λgは2467mmとなり、縦軸方向に十分長い波長のマイクロ波を走らせることができる。
ε is a dielectric constant, and μ is a magnetic permeability. (R represents the ratio to the vacuum value. For example, ε r and μ r represent the relative permittivity and the relative permeability, respectively.)
When a commonly used microwave having a frequency of 2.45 GHz and a wavelength of 120 mm is fed into this waveguide, according to the above equation, when the waveguide width a is selected to be 61.3 mm, the microwave in the waveguide The wavelength λg is 2467 mm, and a sufficiently long wavelength microwave can be run in the vertical axis direction.
図2は、図1の基本構成の側面図である。図2において5はマイクロ波発生源、6はマイクロ波誘導管、7は電磁波の反射部で反射波の波長を調整するための可動反射板8を備えている。この反射板8はプランジャー式になっており、位置を左右に調整することにより導波管内を進行するマイクロ波波長λgを微調整することができ、これにより導波管内の電界強度を長さ方向全体に亘って均一になるように調整できる。 FIG. 2 is a side view of the basic configuration of FIG. In FIG. 2, 5 is a microwave generation source, 6 is a microwave guide tube, and 7 is a reflection part of electromagnetic waves, and includes a movable reflector 8 for adjusting the wavelength of the reflected wave. The reflecting plate 8 is of a plunger type, and the microwave wavelength λg traveling in the waveguide can be finely adjusted by adjusting the position to the left and right, thereby increasing the electric field strength in the waveguide. It can be adjusted to be uniform over the entire direction.
導波管内を伝播するマイクロ波電磁エネルギーが点線矢印meに示すようにフィルム基材(図示せず)へ放射される。 Microwave electromagnetic energy propagating in the waveguide is radiated to a film substrate (not shown) as indicated by a dotted arrow me.
図3は、導波管の厚みbをある程度厚くした状態で、導波管内の下面の導波路空間ギャップkを実質的に狭くし、この部分の電界強度を強くする手段を設けた実施例である。即ち導波管1の下壁面の内側に第2の導電体の壁板9を取り付け、この壁板の中央部付近9aを図に示すように内側へ凹ませることにより、マイクロ波の伝播容積を充分大きく確保しつつギャップkの部分の電界密度即ち電界強度を高めたものである。これにより導波管内のマイクロ波の電磁波エネルギーが強く作用し、フィルム基材によるエネルギー損失に伴う電界強度分布の補正を行い均一化させることができる。
FIG. 3 shows an embodiment in which means for increasing the electric field strength of this portion is provided by substantially reducing the waveguide space gap k on the lower surface in the waveguide with the waveguide thickness b being increased to some extent. is there. That is, the
尚10は開口部下面の狭隘部空間(ギャップ部k)に設けられた導電性ブラシで、このブラシ10の上下位置をねじ機構11によって導波管外から矢印方向に調整することにより、ギャップk部の電界強度を微調整する。このブラシ機構を紙面に垂直方向即ち開口部の長手方向(図2、y’の方向)に沿って複数個設けておくことにより、電界強度の不均一性を調整することができる。
尚、本発明に用いる導波管にはマイクロ波を管内へ誘導管などを介して導入するものであるが、必要に応じてこれに高周波コイルなどを付設して高周波電力を付加的に与え、導波管内の電磁波エネルギーを強めるようにしても良い。 The waveguide used in the present invention introduces microwaves into the tube via a guide tube or the like, and if necessary, a high frequency coil is attached to the waveguide to additionally provide high frequency power. The electromagnetic wave energy in the waveguide may be strengthened.
本発明のマイクロ波加熱装置は、矩形型導波管の縦軸方向に沿って安定したライン状のマイクロ波照射を行うことができるので、広い面積をもつ被処理物体に対しても短時間に効率的に加熱処理することが可能となる。 The microwave heating apparatus of the present invention can perform stable line-shaped microwave irradiation along the longitudinal direction of the rectangular waveguide, so that even a target object having a large area can be irradiated in a short time. It becomes possible to heat-process efficiently.
更にパルスマイクロ波を用いることで、極短時間での加熱処理も可能となることで、熱に弱い樹脂フィルム上にコーティングされた膜に対し有効に該薄膜部のみを発熱させることが出来るため、フィルム上で緻密な結晶化無機膜の形成などにも応用可能となる。 Furthermore, by using pulsed microwaves, it becomes possible to perform heat treatment in an extremely short time, so that only the thin film part can be effectively heated with respect to the film coated on the heat-sensitive resin film, It can also be applied to the formation of a dense crystallized inorganic film on a film.
図4は従来のマイクロ波加熱装置20の動作説明用側面図である。マイクロ波遮断壁22内にマイクロ波アンテナ21が設置され、図示されないが、該アンテナにはマイクロ波電源が接続されている。該マイクロ波電源より供給された電力は、マイクロ遮断壁内に該アンテナよりマイクロ波エネルギーとして供給される。フィルム基材4は矢印方向に搬送されながら、マイクロ波によって加熱される。
FIG. 4 is a side view for explaining the operation of the conventional
以下実施例により本発明を説明するが本発明はこれにより限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.
実施例1
図1記載のマイクロ波加熱装置を用いて、100μm厚みのポリエチレンテレフタレート(PET)上に酸化錫膜15nmがコーティングされたフィルムにマイクロ波を照射し酸化錫膜を加熱させた。
Example 1
Using the microwave heating apparatus shown in FIG. 1, microwaves were irradiated to a film in which a tin oxide film of 15 nm was coated on polyethylene terephthalate (PET) having a thickness of 100 μm to heat the tin oxide film.
装置条件は、
ロール径:100mmΦ
ロール幅:1500mm
フィルム幅:1450mm
マイクロ波:(株)ニッシン製 マイクロ波電源 MPS−30D
(周波数2.45GHz)
導波管幅aは61.3mm
スリット間隙:10mm
スリット幅:1400mm
であり、フィルムをライン速度10m/minで処理を行った。
The equipment conditions are
Roll diameter: 100mmΦ
Roll width: 1500mm
Film width: 1450mm
Microwave: Nissin Corporation Microwave Power Supply MPS-30D
(Frequency 2.45 GHz)
Waveguide width a is 61.3mm
Slit gap: 10mm
Slit width: 1400mm
The film was processed at a line speed of 10 m / min.
加熱均一性の評価
酸化錫膜上に日油技研工業(株)製サーモラベル(5S−95)を貼付け、加熱処理後の温度分布を巾手50mm間隔で測定した。
Evaluation of heat uniformity A thermolabel (5S-95) manufactured by NOF Giken Co., Ltd. was pasted on the tin oxide film, and the temperature distribution after the heat treatment was measured at intervals of 50 mm in width.
加熱処理前の基材温度は室温の25℃であったが、加熱処理後は巾手全域に渡り全て105℃以上110℃未満を示した。 The substrate temperature before the heat treatment was 25 ° C., which was room temperature, but after the heat treatment, all showed 105 ° C. or more and less than 110 ° C. over the entire width.
実施例2
実施例1に於いて、酸化錫膜の代わりに酸化チタン膜を100nm真空蒸着した後、その上にITO膜を10nm真空蒸着したフィルムに代え、更にマイクロ波電源を(株)エーイーティー社製マイクロ波電源ML2000D及びMH2000SをパルスジェネレーターAPPGでパルス駆動させて加熱処理を行った。
Example 2
In Example 1, instead of a tin oxide film, a titanium oxide film was vacuum-deposited with a thickness of 100 nm, and then an ITO film was vacuum-deposited with a thickness of 10 nm. Microwave power sources ML2000D and MH2000S were pulse-driven by a pulse generator APPG and subjected to heat treatment.
ここで用いたパルス条件は、パルス幅3μsecでパルス間隔を2msecとした。 The pulse conditions used here were a pulse width of 3 μsec and a pulse interval of 2 msec.
加熱処理後の酸化チタン膜の屈折率は、処理前2.1であったものが、2.45まで増加し、結晶構造を解析した結果、アナターゼ構造を示した。またこの時の基材フィルムは特に熱ダメージも無く良好であった。 The refractive index of the titanium oxide film after the heat treatment was 2.1 before the treatment, but increased to 2.45. As a result of analyzing the crystal structure, an anatase structure was shown. Further, the base film at this time was good without any thermal damage.
比較例
図4に示す一般的なマイクロ波ボックス内でマイクロ波を照射するマイクロ波加熱装置を用い実施例1と同様の加熱均一性を評価した結果、温度分布は95℃以下を示すところも有れば115℃以上を示すところもあり、均一な加熱状況は確認できなかった。
Comparative Example As a result of evaluating the same heating uniformity as in Example 1 using a microwave heating apparatus that irradiates microwaves in a general microwave box shown in FIG. 4, the temperature distribution may be 95 ° C. or lower. In some cases, the temperature was 115 ° C. or higher, and a uniform heating condition could not be confirmed.
1 マイクロ波の導波管
2 導波管の壁面に設けた縦長開口部
3 フィルム基材を保持するガイドローラー
4 フィルム基材
5 マイクロ波発生源
6 マイクロ波誘導管
7 マイクロ波反射部
8 可動反射板
9 導波管内の電界強度調整用第2の壁板(導電体)
10 導体ブラシ
11 ねじ機構
20 マイクロ波加熱装置
21 マイクロ波アンテナ
22 マイクロ波遮断壁
DESCRIPTION OF
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010011657A JP2011150911A (en) | 2010-01-22 | 2010-01-22 | Microwave heating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010011657A JP2011150911A (en) | 2010-01-22 | 2010-01-22 | Microwave heating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011150911A true JP2011150911A (en) | 2011-08-04 |
Family
ID=44537723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010011657A Pending JP2011150911A (en) | 2010-01-22 | 2010-01-22 | Microwave heating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011150911A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013172620A1 (en) * | 2012-05-14 | 2013-11-21 | 한국전기연구원 | Microwave heating apparatus for uniformly heating objects based on near-cutoff condition |
KR101387661B1 (en) | 2012-05-14 | 2014-04-22 | 한국전기연구원 | Microwave Heating Apparatus for Uniform Heating of Target Based on Near-cutoff Condition |
KR101420246B1 (en) * | 2012-10-26 | 2014-07-21 | 한국전기연구원 | Microwave Heating Apparatus Based on Near-cutoff Condition Waveguide and Microwave Generator |
KR101420256B1 (en) * | 2012-10-26 | 2014-07-21 | 한국전기연구원 | Microwave Heating Apparatus for Uniform Heating of Continuous Object |
KR20150038542A (en) | 2012-09-25 | 2015-04-08 | 쇼와 덴코 가부시키가이샤 | Microwave heating device |
KR101533628B1 (en) * | 2013-10-31 | 2015-07-06 | 한국전기연구원 | Heating Apparatus and Method For Large Heating Area Using Magnetic Field of Microwave |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035256B1 (en) * | 1970-12-31 | 1975-11-14 | ||
JPS5390042A (en) * | 1977-01-19 | 1978-08-08 | Nec Corp | Microwave heating apparatus |
JPS57170491A (en) * | 1981-04-10 | 1982-10-20 | Sanyo Electric Co | Microwave heater |
JPH03218082A (en) * | 1990-01-23 | 1991-09-25 | Mitsubishi Electric Corp | Carbon dioxide gas laser device |
JPH05506535A (en) * | 1990-01-31 | 1993-09-22 | アルファ―ラヴァル フード エンジニアリング アーベー | Improvement methods and plants for maintaining the quality of individual foods |
JP2006269151A (en) * | 2005-03-23 | 2006-10-05 | Adtec Plasma Technology Co Ltd | Microwave line plasma generating device |
-
2010
- 2010-01-22 JP JP2010011657A patent/JP2011150911A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035256B1 (en) * | 1970-12-31 | 1975-11-14 | ||
JPS5390042A (en) * | 1977-01-19 | 1978-08-08 | Nec Corp | Microwave heating apparatus |
JPS57170491A (en) * | 1981-04-10 | 1982-10-20 | Sanyo Electric Co | Microwave heater |
JPH03218082A (en) * | 1990-01-23 | 1991-09-25 | Mitsubishi Electric Corp | Carbon dioxide gas laser device |
JPH05506535A (en) * | 1990-01-31 | 1993-09-22 | アルファ―ラヴァル フード エンジニアリング アーベー | Improvement methods and plants for maintaining the quality of individual foods |
JP2006269151A (en) * | 2005-03-23 | 2006-10-05 | Adtec Plasma Technology Co Ltd | Microwave line plasma generating device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013172620A1 (en) * | 2012-05-14 | 2013-11-21 | 한국전기연구원 | Microwave heating apparatus for uniformly heating objects based on near-cutoff condition |
KR101387661B1 (en) | 2012-05-14 | 2014-04-22 | 한국전기연구원 | Microwave Heating Apparatus for Uniform Heating of Target Based on Near-cutoff Condition |
JP2015517725A (en) * | 2012-05-14 | 2015-06-22 | コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute | Microwave heating device for uniform heating of an object to be heated based on conditions near the cutoff value |
US10660166B2 (en) | 2012-05-14 | 2020-05-19 | Korea Electrotechnology Research Institute | Microwave heating apparatus for uniformly heating objects based on near-cutoff condition |
KR20150038542A (en) | 2012-09-25 | 2015-04-08 | 쇼와 덴코 가부시키가이샤 | Microwave heating device |
US10375773B2 (en) | 2012-09-25 | 2019-08-06 | Showa Denko K.K. | Microwave heating apparatus |
KR101420246B1 (en) * | 2012-10-26 | 2014-07-21 | 한국전기연구원 | Microwave Heating Apparatus Based on Near-cutoff Condition Waveguide and Microwave Generator |
KR101420256B1 (en) * | 2012-10-26 | 2014-07-21 | 한국전기연구원 | Microwave Heating Apparatus for Uniform Heating of Continuous Object |
KR101533628B1 (en) * | 2013-10-31 | 2015-07-06 | 한국전기연구원 | Heating Apparatus and Method For Large Heating Area Using Magnetic Field of Microwave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9018110B2 (en) | Apparatus and methods for microwave processing of semiconductor substrates | |
JP2011150911A (en) | Microwave heating device | |
WO2013018358A1 (en) | Microwave heating device | |
ATE273748T1 (en) | MICROWAVE HEATER | |
JP2009146650A (en) | Microwave applicator | |
Fukunari et al. | Observation of a comb-shaped filamentary plasma array under subcritical condition in 303-GHz millimetre-wave air discharge | |
JP2000048946A (en) | Microwave oven | |
JP5918441B2 (en) | Microwave heating device for uniform heating of an object to be heated based on conditions near the cutoff value | |
CN103650637B (en) | Microwave heating equipment | |
WO2016104205A1 (en) | Plasma processing device and plasma processing method | |
JP2013098106A (en) | Microwave heating device | |
US4184060A (en) | Process for developing a two-component diazotype material on a non-metallic carrier, which material can be developed by the influence of heat | |
US20230131336A1 (en) | Material processing apparatus using quasi-traveling microwave to conduct heat treatment | |
US6753516B1 (en) | Method and apparatus for controlling an electric field intensity within a waveguide | |
KR101221859B1 (en) | Plasma processing apparatus | |
JP2013229476A (en) | Light irradiation device and light irradiation method | |
EP2933081A1 (en) | Microwave heating apparatus and method | |
WO2019225413A1 (en) | Microwave processing device | |
KR101387661B1 (en) | Microwave Heating Apparatus for Uniform Heating of Target Based on Near-cutoff Condition | |
JP6645068B2 (en) | Microwave heating equipment | |
JP2019140103A (en) | Microwave-heating device, heating method and chemical reaction method | |
JP2019140213A (en) | Thin film pattern-firing method and microwave-firing device | |
WO2012115108A1 (en) | Wiring formation method and device | |
JP2015162321A (en) | Radio frequency heating device | |
JP2518670B2 (en) | Microwave heating system, method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120919 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20130218 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A02 | Decision of refusal |
Effective date: 20140304 Free format text: JAPANESE INTERMEDIATE CODE: A02 |