[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011140428A - Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate - Google Patents

Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate Download PDF

Info

Publication number
JP2011140428A
JP2011140428A JP2010002942A JP2010002942A JP2011140428A JP 2011140428 A JP2011140428 A JP 2011140428A JP 2010002942 A JP2010002942 A JP 2010002942A JP 2010002942 A JP2010002942 A JP 2010002942A JP 2011140428 A JP2011140428 A JP 2011140428A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
nitride
based compound
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010002942A
Other languages
Japanese (ja)
Inventor
Osamu Morioka
理 森岡
操 ▲高▼草木
Misao Takakusaki
Mitsuru Mikami
充 三上
Takayuki Shimizu
孝幸 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010002942A priority Critical patent/JP2011140428A/en
Publication of JP2011140428A publication Critical patent/JP2011140428A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride-based compound semiconductor substrate, by which a nitride-based compound semiconductor layer free from a warp and having little variation in the off-angle in the plane is grown with satisfactory reproducibility, and to provide a nitride-based compound semiconductor self-standing substrate suitable for manufacturing a semiconductor device. <P>SOLUTION: In the method for manufacturing a nitride-based compound semiconductor substrate, comprising epitaxially growing a nitride-based compound semiconductor layer on a substrate for growth, a rare earth perovskite substrate having a main plane, where the (011) plane is made to incline at an off angle of 0-2°(0° is excepted) in ≈[010] direction, is used as the substrate for growth. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、窒化物系化合物半導体基板の製造方法及び窒化物系化合物半導体自立基板に関し、特に、成長用基板の主面のオフ方向及びオフ角に関する。   The present invention relates to a method for manufacturing a nitride-based compound semiconductor substrate and a nitride-based compound semiconductor free-standing substrate, and more particularly to an off direction and an off angle of a main surface of a growth substrate.

従来、基板上にGaN等の窒化物系化合物半導体(以下、GaN系半導体)をエピタキシャル成長させてなる半導体デバイス(例えば、電子デバイスや光デバイス)が知られている。この半導体デバイスには、主にサファイアやSiCなどからなる基板が用いられるが、これらの基板材料はGaN系半導体との格子不整合が大きいため、この上にGaN系半導体をエピタキシャル成長させると、歪みによる結晶欠陥が発生してしまう。そして、エピタキシャル層に生じた結晶欠陥は、半導体デバイスの特性を低下させる要因となる。そこで、このような格子不整合に起因する問題を解決するために様々な成長方法が試みられている。   Conventionally, a semiconductor device (for example, an electronic device or an optical device) obtained by epitaxially growing a nitride compound semiconductor such as GaN (hereinafter referred to as a GaN-based semiconductor) on a substrate is known. For this semiconductor device, a substrate mainly made of sapphire or SiC is used. However, since these substrate materials have a large lattice mismatch with a GaN-based semiconductor, when a GaN-based semiconductor is epitaxially grown on the substrate, distortion occurs due to strain. Crystal defects will occur. And the crystal defect which arose in the epitaxial layer becomes a factor which reduces the characteristic of a semiconductor device. Therefore, various growth methods have been tried to solve the problems caused by such lattice mismatch.

例えば特許文献1では、擬似的な格子定数がGaN系半導体に近いNdGaO基板(以下、NGO基板)を用いることが提案されている。具体的には、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)によりNGO基板上にGaN厚膜を成長させ、GaN自立基板(GaNのみで構成された基板)を作製する技術が開示されている。NGO基板の(011)面では、NGOのa軸の長さとGaNの[11−20]方向の格子定数がほぼ一致するので、上述した格子不整合に起因する問題を解決できる。そして、GaN自立基板を半導体デバイス用基板とすることで、デバイス特性の向上を図ることができる。 For example, Patent Document 1 proposes to use an NdGaO 3 substrate (hereinafter referred to as an NGO substrate) whose pseudo lattice constant is close to that of a GaN-based semiconductor. Specifically, a technique is disclosed in which a GaN thick film is grown on an NGO substrate by hydride vapor phase epitaxy (HVPE) to produce a GaN free-standing substrate (a substrate composed only of GaN). Yes. On the (011) plane of the NGO substrate, the length of the NGO a-axis and the lattice constant in the [11-20] direction of GaN substantially coincide with each other, so that the problem caused by the lattice mismatch described above can be solved. The device characteristics can be improved by using the GaN free-standing substrate as a semiconductor device substrate.

また、GaN厚膜層の成長は一般的には1000℃付近の成長温度で行われるが、NGO基板が1000℃付近の高温下で原料ガスに曝されると変質してしまい、GaN厚膜層の結晶品質が低下してしまう。そのため、GaN厚膜層を成長させる前に600℃付近でNGO基板上に低温保護層と呼ばれるGaN薄膜層を成長させ、NGO基板を保護する技術が提案されている(例えば特許文献1,2)。   In addition, the growth of the GaN thick film layer is generally performed at a growth temperature of about 1000 ° C., but when the NGO substrate is exposed to the source gas at a high temperature of about 1000 ° C., the GaN thick film layer changes in quality. The crystal quality of the will deteriorate. Therefore, a technique for protecting the NGO substrate by growing a GaN thin film layer called a low-temperature protective layer on the NGO substrate at around 600 ° C. before growing the GaN thick film layer (for example, Patent Documents 1 and 2). .

特開2003−257854号公報JP 2003-257854 A 特開2000−4045号公報JP 2000-4045 A

しかしながら、1000℃でGaN厚膜層を成長させた後、室温まで温度を下げていくと、GaNとNGOの熱膨張係数の差によってGaN厚膜層に応力が加わり、GaN厚膜層が反った状態となり、面内のオフ角のばらつきが大きくなる。また、反った状態のGaN厚膜層をNGO基板と分離して、このGaN厚膜結晶から切り出したGaN自立基板においても、面内のオフ角のばらつきが大きくなってしまう。そして、GaN自立基板の面内のオフ角のばらつきが大きくなると、その基板を用いた半導体デバイスにおいて、所望の特性(例えば、発光素子の発光波長)が得られなくなる虞がある。   However, after the GaN thick film layer was grown at 1000 ° C., when the temperature was lowered to room temperature, stress was applied to the GaN thick film layer due to the difference in thermal expansion coefficient between GaN and NGO, and the GaN thick film layer warped. As a result, in-plane off-angle variation increases. Further, even in a GaN free-standing substrate obtained by separating the warped GaN thick film layer from the NGO substrate and cutting out from this GaN thick film crystal, the variation in the in-plane off angle becomes large. If the variation in the off angle within the surface of the GaN free-standing substrate becomes large, there is a possibility that desired characteristics (for example, the emission wavelength of the light emitting element) cannot be obtained in a semiconductor device using the substrate.

本発明は、反り返りがなく、面内のオフ角のばらつきが小さな窒化物系化合物半導体層を再現性よく成長させることができる窒化物系化合物半導体基板の製造方法、及び半導体デバイスの作製に好適な窒化物系化合物半導体自立基板を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is suitable for a method of manufacturing a nitride-based compound semiconductor substrate capable of growing a nitride-based compound semiconductor layer without warping and having a small in-plane off-angle variation with good reproducibility, and for manufacturing a semiconductor device. An object is to provide a nitride-based compound semiconductor free-standing substrate.

上記目的を達成するため、請求項1に記載の発明は、
成長用基板上に窒化物系化合物半導体層をエピタキシャル成長させる窒化物系化合物半導体基板の製造方法において、
前記成長用基板として、(011)面を≒[010]方向に0〜2°(0°を除く)のオフ角で傾斜させた主面を有する希土類ペロブスカイト基板を用いることを特徴とする。
In order to achieve the above object, the invention described in claim 1
In a method for manufacturing a nitride-based compound semiconductor substrate in which a nitride-based compound semiconductor layer is epitaxially grown on a growth substrate,
As the growth substrate, a rare earth perovskite substrate having a main surface in which the (011) plane is inclined at an off angle of 0 to 2 ° (excluding 0 °) in the ≈ [010] direction is used.

ここで、「≒[010]方向」とは、[011]方向を軸として、[100]方向から反時計回りに90°回転させた方向(CCW90°)であり、厳密には[010]方向から少しだけずれていることを示している。NGOの(011)面における[100]方向、≒[010]方向は、GaNの(0001)面における[1−100]方向、[11−20]方向にそれぞれ対応する。   Here, the “≈ [010] direction” is a direction (CCW 90 °) rotated 90 ° counterclockwise from the [100] direction with the [011] direction as an axis, strictly speaking, the [010] direction. It shows that it is slightly deviated from. The [100] direction and the [010] direction in the (011) plane of NGO correspond to the [1-100] direction and the [11-20] direction in the (0001) plane of GaN, respectively.

請求項2に記載の発明は、請求項1に記載の窒化物系化合物半導体基板の製造方法において、前記成長用基板として、(011)面を≒[010]方向に1°傾斜させた主面を有する希土類ペロブスカイト基板を用いることを特徴とする。   According to a second aspect of the present invention, in the method for producing a nitride-based compound semiconductor substrate according to the first aspect, as the growth substrate, a (011) plane is inclined by 1 ° in the ≈ [010] direction. It is characterized by using a rare earth perovskite substrate having

請求項3に記載の発明は、請求項1又は2に記載の窒化物系化合物半導体基板の製造方法において、ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)を利用して、III族金属とHClから生成された塩化物ガスとNHを反応させて成長用基板上に窒化物系化合物半導体をエピタキシャル成長させることを特徴とする。 The invention according to claim 3 is a method for producing a nitride-based compound semiconductor substrate according to claim 1 or 2, wherein a hydride vapor phase epitaxy (HVPE) is used to form a group III metal and A nitride compound semiconductor is epitaxially grown on a growth substrate by reacting a chloride gas generated from HCl with NH 3 .

請求項4に記載の発明は、請求項1から3の何れか一項に記載の製造方法によって製造された窒化物系化合物半導体基板から前記窒化物化合物半導体層を分離して得られる窒化物系化合物半導体自立基板であって、
面内における[11−20]方向及び[1−100]方向に対するオフ角のばらつきが、それぞれ1°以下であることを特徴とする。
The invention according to claim 4 is a nitride system obtained by separating the nitride compound semiconductor layer from the nitride compound semiconductor substrate manufactured by the manufacturing method according to any one of claims 1 to 3. A compound semiconductor free-standing substrate,
The variation in off-angle with respect to the [11-20] direction and the [1-100] direction in the plane is 1 ° or less, respectively.

従来は、HVPE法を利用してGaN自立基板を製造する場合、(011)面を[100]方向に−2°傾斜させた主面を有するNGO基板上に低温保護層及びGaN厚膜層を成長させていた。この場合、GaN厚膜層の反り返りが大きく、GaN厚膜層において[11−20]方向及び[1−100]方向に対するオフ角のばらつきがそれぞれ1.11°と1.22°であり、1°を超えていた。そして、このようなGaN厚膜層からなるGaN自立基板においてもまた、オフ角のばらつきは1°を超えていた。
そこで本発明者等は、GaNをエピタキシャル成長させるNGO基板の主面(成長面)に着目し、GaN系半導体基板の製造に最適なオフ方向及びオフ角の範囲を実験的に見出し、本発明に想到した。
Conventionally, when a GaN free-standing substrate is manufactured by using the HVPE method, a low-temperature protective layer and a GaN thick film layer are formed on an NGO substrate having a main surface whose (011) plane is inclined by −2 ° in the [100] direction. It was growing. In this case, the warpage of the GaN thick film layer is large, and the variations of the off angles with respect to the [11-20] direction and the [1-100] direction in the GaN thick film layer are 1.11 ° and 1.22 °, respectively. It was over °. Even in such a GaN free-standing substrate made of a GaN thick film layer, the variation in off-angle exceeded 1 °.
Accordingly, the present inventors have focused on the main surface (growth surface) of the NGO substrate on which GaN is epitaxially grown, experimentally found the range of the off direction and the off angle that are optimal for the manufacture of the GaN-based semiconductor substrate, and arrived at the present invention. did.

本発明によれば、反り返りがなく、面内の[11−20]方向及び[1−100]方向に対するオフ角のばらつきが小さな窒化物系化合物半導体層を再現性よく成長させることができ、半導体デバイスの作製に好適な窒化物系化合物半導体自立基板を得ることができる。   According to the present invention, it is possible to grow a nitride-based compound semiconductor layer with no reproducibility and a small variation in off-angle with respect to the in-plane [11-20] direction and [1-100] direction with good reproducibility. A nitride-based compound semiconductor free-standing substrate suitable for device fabrication can be obtained.

実施例及び比較例1で作製されたGaN自立基板について、面内の5点で[1−100]方向及び[11−20]方向に対するオフ角を測定したときのオフ角のばらつきについて示す図である。The figure which shows about the dispersion | variation in an off angle when measuring the off angle with respect to a [1-100] direction and a [11-20] direction at five points in a plane about the GaN self-supporting substrate produced in the Example and the comparative example 1. is there. 比較例2で作製されたGaN自立基板について、面内の5点で[1−100]方向及び[11−20]方向に対するオフ角を測定したときのオフ角のばらつきについて示す図である。It is a figure which shows about the dispersion | variation in an off angle when measuring the off angle with respect to a [1-100] direction and a [11-20] direction at five points in a plane about the GaN self-supporting substrate produced by the comparative example 2. FIG. オフ基板の主面の定義について示す図である。It is a figure shown about the definition of the main surface of an off substrate.

以下、本発明の実施形態について詳細に説明する。
本実施形態では、HVPE法を利用して、希土類ペロブスカイトからなるNGO基板上に、GaN系半導体であるGaNをエピタキシャル成長させ、GaN基板を製造する方法について説明する。HVPE法では、III族金属であるGaとHClから生成された塩化物ガス(GaCl)とNHを反応させて、基板上にGaN層をエピタキシャル成長させる。
Embodiments of the present invention are described in detail below.
In the present embodiment, a method for manufacturing a GaN substrate by epitaxially growing GaN, which is a GaN-based semiconductor, on an NGO substrate made of a rare earth perovskite using the HVPE method will be described. In the HVPE method, chloride gas (GaCl) generated from group III metal Ga and HCl is reacted with NH 3 to epitaxially grow a GaN layer on the substrate.

このとき、成長用基板として、(011)面を≒[010]方向に0〜2°(0°を除く)のオフ角で傾斜させた主面を有するNGO基板を用いる。ここで、(011)面を≒[010]方向にオフ角Xで傾斜させた主面とは、図3に示すように定義される。すなわち、法線ベクトルが[011]方向から≒[010]方向に向かってオフ角Xだけ傾いている主面である。   At this time, an NGO substrate having a main surface in which the (011) plane is inclined in the ≈ [010] direction at an off angle of 0 to 2 ° (excluding 0 °) is used as a growth substrate. Here, the principal surface obtained by inclining the (011) plane in the ≈ [010] direction with the off angle X is defined as shown in FIG. That is, the normal surface is inclined by the off-angle X from the [011] direction toward the [010] direction.

このNGO基板をHVPE装置内に配置し、基板温度が第1成長温度(400〜800℃)となるまで昇温する。そして、GaメタルとHClから生成されたIII族原料となるGaClと、V族原料となるNHを、NGO基板上に供給し、GaNからなる低温保護層を形成する。
次に、基板温度が第2成長温度(950〜1050℃)となるまで昇温する。そして、低温保護層上に原料ガスを供給し、GaN厚膜層を形成する。
This NGO substrate is placed in the HVPE apparatus and heated up until the substrate temperature reaches the first growth temperature (400 to 800 ° C.). Then, GaCl as a group III material generated from Ga metal and HCl and NH 3 as a group V material are supplied onto the NGO substrate to form a low-temperature protective layer made of GaN.
Next, the temperature is raised until the substrate temperature reaches the second growth temperature (950 to 1050 ° C.). Then, a source gas is supplied onto the low temperature protective layer to form a GaN thick film layer.

以上のようにして、NGO基板上に低温保護層及びGaN厚膜層が形成されたGaN基板が得られる。GaN基板におけるGaN厚膜層は、反り返りがなく、面内の[1−100]方向及び[11−20]方向に対するオフ角のばらつきが1°以下となる。また、室温まで冷却した後、適当な方法によりNGO基板を除去し、研磨下降して得られたGaN自立基板においても、面内の[1−100]方向及び[11−20]方向に対するオフ角のばらつきが1°以下となる。したがって、このGaN自立基板を半導体デバイス製造用の基板として用いることで、所望の特性を有する半導体デバイスを実現できる。   As described above, a GaN substrate in which a low-temperature protective layer and a GaN thick film layer are formed on an NGO substrate is obtained. The GaN thick film layer in the GaN substrate does not warp, and the variation in off-angle with respect to the in-plane [1-100] direction and [11-20] direction is 1 ° or less. Further, after cooling to room temperature, the NGO free-standing substrate obtained by removing the NGO substrate by an appropriate method and polishing down is also used for the in-plane [1-100] direction and [11-20] direction off-angles. Variation of 1 ° or less. Therefore, by using this GaN free-standing substrate as a substrate for manufacturing a semiconductor device, a semiconductor device having desired characteristics can be realized.

[実施例]
実施例では、(011)面を≒[010]方向に0〜2°のオフ角で傾斜させた主面を有するNGO基板を用いた。
このNGO基板上に、HClの供給分圧が2.19×10−3atm、NHの供給分圧が6.58×10−2atmとなるように原料ガスを供給し、GaNからなる低温保護層を50nm成長させた。
次に、この低温保護層の上に、HClの供給分圧が1.06×10−2atm、NHの供給分圧が5.00×10−2atmとなるように原料ガスを供給し、2500μmのGaN厚膜層を成長させた。このとき、成長温度は1000℃とし、成長時間は8時間とした。
[Example]
In the examples, an NGO substrate having a main surface in which the (011) plane is inclined in the ≈ [010] direction with an off angle of 0 to 2 ° was used.
On this NGO substrate, a raw material gas is supplied so that the supply partial pressure of HCl is 2.19 × 10 −3 atm and the supply partial pressure of NH 3 is 6.58 × 10 −2 atm. A protective layer was grown to 50 nm.
Next, a source gas is supplied onto the low-temperature protective layer so that the supply partial pressure of HCl is 1.06 × 10 −2 atm and the supply partial pressure of NH 3 is 5.00 × 10 −2 atm. A 2500 μm thick GaN thick film layer was grown. At this time, the growth temperature was 1000 ° C., and the growth time was 8 hours.

[比較例1]
比較例1では、(011)面を≒[010]方向に4°のオフ角で傾斜させた主面を有するNGO基板を用いて、実施例と同様にGaNからなる低温保護層及びGaN厚膜層を成長させた。
[Comparative Example 1]
In Comparative Example 1, an NGO substrate having a main surface in which the (011) plane is inclined at an off angle of 4 ° in the ≈ [010] direction, and a low-temperature protective layer and a GaN thick film made of GaN as in the example are used. Growing layers.

図1は、実施例及び比較例1で作製されたGaN基板のGaN厚膜層について、[1−100]方向及び[11−20]方向に対するオフ角を測定したときのオフ角のばらつきについて示す図である。なお、GaN厚膜層の面内の中心1点及び中心点を通る直交軸上の周縁部に位置する4点の計5点を測定点としている。また、5箇所の測定点におけるオフ角に基づいて、(最大値−最小値)/2によりオフ角のばらつきを算出している。   FIG. 1 shows the variation in off-angle when the off-angle is measured with respect to the [1-100] direction and the [11-20] direction for the GaN thick film layer of the GaN substrate produced in Example and Comparative Example 1. FIG. Note that a total of 5 points, which are one point in the plane of the GaN thick film layer and four points located on the peripheral edge on the orthogonal axis passing through the center point, are the measurement points. Based on the off angles at the five measurement points, the variation in the off angle is calculated by (maximum value−minimum value) / 2.

実施例で得られたGaN厚膜層では[1−100]方向及び[11−20]方向に対するオフ角のばらつきが1°以下であったのに対して、比較例で得られたGaN厚膜層では[1−100]方向及び[11−20]方向に対するオフ角のばらつきが1.5°以上であった。特に、(011)面を≒[010]方向に1°のオフ角で傾斜させた主面を有するNGO基板を用いた場合には、[1−100]方向及び[11−20]方向に対するオフ角のばらつきは0.2°となり、極めて良好であった。
また、得られたGaN厚膜層について、目視により反り返りを観察したところ、実施例で得られたGaN厚膜層の方が、比較例で得られたGaN厚膜層よりも明らかに反り返りが小さかった。
In the GaN thick film layer obtained in the example, the variation in the off angle with respect to the [1-100] direction and the [11-20] direction was 1 ° or less, whereas the GaN thick film obtained in the comparative example. In the layer, the variation in the off angle with respect to the [1-100] direction and the [11-20] direction was 1.5 ° or more. In particular, when an NGO substrate having a main surface in which the (011) plane is inclined at an off angle of 1 ° in the ≈ [010] direction is used, the off-direction with respect to the [1-100] direction and the [11-20] direction is used. The angle variation was 0.2 °, which was very good.
Further, when the obtained GaN thick film layer was visually observed for warping, the GaN thick film layer obtained in the example was clearly less warped than the GaN thick film layer obtained in the comparative example. It was.

[比較例2]
比較例2では、(011)面を[100]方向に−2°、1°、2°、4°のオフ角で傾斜させた主面を有するNGO基板を用いて、実施例と同様にGaNからなる低温保護層及びGaN厚膜層を成長させた。
図2は、比較例2で作製されたGaN基板のGaN厚膜層について、面内の5点で[1−100]方向及び[11−20]方向に対するオフ角を測定したときのオフ角のばらつきについて示す図である。
図2に示すように、比較例2で得られたGaN厚膜では、[1−100]方向及び[11−20]方向に対するオフ角のばらつきがいずれも1°以上であった。また、得られたGaN厚膜層について、目視により反り返りを観察したところ、実施例で得られたGaN厚膜層に比較して反り返りが明らかに大きかった。
[Comparative Example 2]
In Comparative Example 2, the GaN substrate having the main surface with the (011) plane inclined in the [100] direction at an off angle of −2 °, 1 °, 2 °, and 4 ° was used in the same manner as in the example. A low-temperature protective layer and a GaN thick film layer were grown.
FIG. 2 shows the off angle when the off angle with respect to the [1-100] direction and the [11-20] direction is measured at five points in the surface of the GaN thick film layer of the GaN substrate manufactured in Comparative Example 2. It is a figure shown about dispersion | variation.
As shown in FIG. 2, in the GaN thick film obtained in Comparative Example 2, the variation of the off angle with respect to the [1-100] direction and the [11-20] direction was both 1 ° or more. Further, when the obtained GaN thick film layer was visually checked for warpage, the warpage was clearly larger than that of the GaN thick film layer obtained in the examples.

上述したように、本実施形態では、NGO基板のオフ方向とオフ角を最適化しているので、反り返りがなく、面内の[1−100]方向及び[11−20]方向に対するオフ角のばらつきが1°以下のGaN厚膜層を再現性よく成長させることができる。
また、実施形態で得られたGaN基板からGaN厚膜層を分離し、研磨加工してGaN自立基板を作製することで、半導体デバイスの作製に好適なGaN自立基板を得ることができる。
As described above, in this embodiment, since the off direction and off angle of the NGO substrate are optimized, there is no warping and variation of the off angle with respect to the [1-100] direction and [11-20] direction in the plane. It is possible to grow a GaN thick film layer having an angle of 1 ° or less with good reproducibility.
Moreover, a GaN free-standing substrate suitable for manufacturing a semiconductor device can be obtained by separating a GaN thick film layer from the GaN substrate obtained in the embodiment and polishing it to prepare a GaN free-standing substrate.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
上記実施形態では成長用基板上に窒化物系化合物半導体であるGaNを成長させる場合について説明したが、成長用基板上に窒化物系化合物半導体層を成長させる場合にも本発明を適用することができる。ここで、窒化物系化合物半導体とは、InGaAl1−x−yN(0≦x+y≦1,0≦x≦1,0≦y≦1)で表される化合物半導体であり、例えば、GaN、InGaN、AlGaN,InGaAlN等がある。
また、実施形態ではHVPE法を利用した場合について説明したが、有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)や分子線エピタキシー法(MBE:Molecular Beam Epitaxy)を利用して窒化物系化合物半導体層をエピタキシャル成長させる場合に本発明を適用することができる。
As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
In the above embodiment, the case where GaN, which is a nitride compound semiconductor, is grown on a growth substrate has been described. However, the present invention can also be applied to the case where a nitride compound semiconductor layer is grown on a growth substrate. it can. Here, the nitride-based compound semiconductor is a compound semiconductor represented by In x Ga y Al 1-xy N (0 ≦ x + y ≦ 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1). For example, there are GaN, InGaN, AlGaN, InGaAlN, and the like.
In the embodiment, the case where the HVPE method is used has been described. However, a nitride system using a metal organic chemical vapor deposition (MOCVD) method or a molecular beam epitaxy (MBE) method is used. The present invention can be applied to epitaxial growth of a compound semiconductor layer.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (4)

成長用基板上に窒化物系化合物半導体層をエピタキシャル成長させる窒化物系化合物半導体基板の製造方法において、
前記成長用基板として、(011)面を≒[010]方向に0〜2°(0°を除く)のオフ角で傾斜させた主面を有する希土類ペロブスカイト基板を用いることを特徴とする窒化物系化合物半導体基板の製造方法。
In a method for manufacturing a nitride-based compound semiconductor substrate in which a nitride-based compound semiconductor layer is epitaxially grown on a growth substrate,
As the growth substrate, a rare earth perovskite substrate having a main surface in which a (011) plane is inclined at an off angle of 0 to 2 ° (excluding 0 °) in the ≈ [010] direction is used. For manufacturing a semiconductor compound semiconductor substrate.
前記成長用基板として、(011)面を≒[010]方向に1°傾斜させた主面を有する希土類ペロブスカイト基板を用いることを特徴とする請求項1に記載の窒化物系化合物半導体基板の製造方法。   2. The production of a nitride-based compound semiconductor substrate according to claim 1, wherein a rare earth perovskite substrate having a main surface whose (011) plane is inclined by 1 ° in the ≈ [010] direction is used as the growth substrate. Method. ハイドライド気相成長法(HVPE:Hydride Vapor Phase Epitaxy)を利用して、III族金属とHClから生成された塩化物ガスとNHを反応させて成長用基板上に窒化物系化合物半導体をエピタキシャル成長させることを特徴とする請求項1又は2に記載の窒化物系化合物半導体基板の製造方法 Using a hydride vapor phase epitaxy (HVPE), a nitride compound semiconductor is epitaxially grown on a growth substrate by reacting a group III metal, a chloride gas generated from HCl, and NH 3 . The method for producing a nitride-based compound semiconductor substrate according to claim 1 or 2, 請求項1から3の何れか一項に記載の製造方法によって製造された窒化物系化合物半導体基板から前記窒化物化合物半導体層を分離して得られる窒化物系化合物半導体自立基板であって、
面内における[11−20]方向及び[1−100]方向に対するオフ角のばらつきが、それぞれ1°以下であることを特徴とする窒化物系化合物半導体自立基板。
A nitride compound semiconductor free-standing substrate obtained by separating the nitride compound semiconductor layer from the nitride compound semiconductor substrate produced by the production method according to any one of claims 1 to 3,
A nitride-based compound semiconductor free-standing substrate, wherein variations in off-angle with respect to the [11-20] direction and the [1-100] direction in the plane are each 1 ° or less.
JP2010002942A 2010-01-08 2010-01-08 Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate Withdrawn JP2011140428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002942A JP2011140428A (en) 2010-01-08 2010-01-08 Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002942A JP2011140428A (en) 2010-01-08 2010-01-08 Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate

Publications (1)

Publication Number Publication Date
JP2011140428A true JP2011140428A (en) 2011-07-21

Family

ID=44456572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002942A Withdrawn JP2011140428A (en) 2010-01-08 2010-01-08 Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate

Country Status (1)

Country Link
JP (1) JP2011140428A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640123A (en) * 2018-09-03 2021-04-09 国立大学法人大阪大学 Nitride semiconductor device and substrate therefor, method for forming rare earth element-added nitride layer, red light-emitting device and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640123A (en) * 2018-09-03 2021-04-09 国立大学法人大阪大学 Nitride semiconductor device and substrate therefor, method for forming rare earth element-added nitride layer, red light-emitting device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4462251B2 (en) III-V nitride semiconductor substrate and III-V nitride light emitting device
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
WO2011093481A1 (en) Method for producing nitride compound semiconductor substrate, and nitride compound semiconductor free-standing substrate
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP5645887B2 (en) Device structure comprising semipolar nitride and characterized by nitride nucleation layer or buffer layer
JP2007106665A (en) Gallium nitride device substrate containing lattice parameter altering element
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP2005320237A (en) NON-POLAR SINGLE CRYSTALLINE a-PLANE NITRIDE SEMICONDUCTOR WAFER AND ITS MANUFACTURING METHOD
JP2017124968A (en) III-N template
JP4907476B2 (en) Nitride semiconductor single crystal
JP6404655B2 (en) AlN template substrate and manufacturing method thereof
US7589345B2 (en) Nitride-based compound semiconductor substrate and method for fabricating the same
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP6405767B2 (en) Gallium nitride substrate
JP2006279025A (en) Method of growing non-polar a-plane gallium nitride
JP2009143778A (en) Method for growing aluminum nitride crystal, aluminum nitride substrate and semiconductor device
US7348278B2 (en) Method of making nitride-based compound semiconductor crystal and substrate
JP2011216548A (en) METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE
JP2011140428A (en) Method for manufacturing nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-standing substrate
JP2019052057A (en) Composite substrate, composite substrate with group iii nitride crystal, and production method of group iii nitride crystal
JP2006222402A (en) Gallium nitride system compound semiconductor and method for manufacturing the same
JP2006185962A (en) Substrate for semiconductor growth and manufacturing method for semiconductor film
JP4998407B2 (en) Method for manufacturing group III-V nitride semiconductor substrate
JP4507810B2 (en) Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402