[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011140291A - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP2011140291A
JP2011140291A JP2010003485A JP2010003485A JP2011140291A JP 2011140291 A JP2011140291 A JP 2011140291A JP 2010003485 A JP2010003485 A JP 2010003485A JP 2010003485 A JP2010003485 A JP 2010003485A JP 2011140291 A JP2011140291 A JP 2011140291A
Authority
JP
Japan
Prior art keywords
refrigerant
air
heating
heating mode
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010003485A
Other languages
English (en)
Inventor
Seiji Ito
誠司 伊藤
Hajime Ito
肇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010003485A priority Critical patent/JP2011140291A/ja
Priority to DE102011008217A priority patent/DE102011008217A1/de
Priority to US12/930,540 priority patent/US20110167850A1/en
Publication of JP2011140291A publication Critical patent/JP2011140291A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】ヒートポンプサイクルによる暖房を行う車両用空調装置において、外気極低温時でも暖房能力を確保できるようにする。
【解決手段】圧縮機21と、車室外の室外熱交換器22と、空調ケース内の蒸発器13および放熱器とを有し、切り替え手段27、29、31によって、冷房モード、第1暖房モード、第2暖房モードの冷媒回路のいずれかに切り替えられる車両用空調装置において、第1暖房モード時に、放熱器14で冷媒を放熱させ、室外熱交換器22で冷媒に吸熱させるヒートポンプサイクルの冷媒回路を構成し、第2暖房モード時に、圧縮機21吐出後の高温気相冷媒を放熱器14で放熱させた後、放熱器14から流出の冷媒を室外熱交換器22、蒸発器13を迂回させて、圧縮機21に流入させるホットガスサイクルの冷媒回路を構成する。
【選択図】図4

Description

本発明は、冷凍サイクルを備える車両用空調装置に関するものである。
従来、冷凍サイクルを備える車両用空調装置として、空調ケース内に配置された蒸発器および凝縮器と、車室外に配置された室外熱交換器とを備え、冷媒回路中に設けた切替弁によって、冷房モードの冷媒回路、暖房モードの冷媒回路、除湿モードの冷媒回路のいずれかに切り替え可能に構成されたものがある。この暖房モードは、ヒートポンプサイクルによる暖房である。(例えば、特許文献1参照)
特許第3331765号公報
ところで、上述の構成のヒートポンプサイクルによる暖房モードでは、−30℃等の外気極低温時に暖房能力を確保できないという問題がある。
この理由の一例を挙げると、外気温度が極低温では、室外熱交換器で着霜が生じやすく、室外熱交換器が着霜する毎に、運転モードを暖房モードから除霜モードに切り替える必要が生じ、連続して暖房運転できないからである。
本発明は上記点に鑑みて、外気極低温時における暖房能力の確保が可能な車両用空調装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、冷房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替える冷媒回路の切替手段(27、29、31)とを備え、
第1暖房モードの冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)、暖房用減圧手段(23)、室外熱交換器(22)の順に流入させ、室外熱交換器(22)から流出の冷媒を蒸発器(13)を迂回させて圧縮機(21)の吸入側に導くことで、室外熱交換器(22)で吸熱させ、放熱器(14)で放熱させる冷媒回路を構成し、
第2暖房モードの冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)に流入させ、放熱器(14)から流出の冷媒を、室外熱交換器(22)と蒸発器(13)の両方を迂回させて、圧縮機(21)の吸入側に導くことで、放熱器(14)で放熱させる冷媒回路を構成し、
切替手段(27、29、31)は、第1暖房モードの暖房能力と相関関係のある物理量が暖房能力の低下側を示す値に達したときに、第1暖房モードから第2暖房モードへ冷媒回路を切り替えることを特徴としている。
本発明では、ヒートポンプサイクルによる第1暖房モードでの暖房能力が低下する条件下では、放熱器に流入した高温気相冷媒(ホットガス)を熱源として送風空気を加熱する第2暖房モードに切り替えるようにしている。そして、この第2暖房モードでは、室外熱交換器に冷媒を流さず、室外熱交換器を吸熱器として作用させないので、室外熱交換器の除霜運転が不要である。よって、本発明によれば、外気極低温時に連続した暖房運転が可能となり、暖房能力の確保が可能となる。
請求項2に記載の発明では、空調ケース(11)内のうち蒸発器(13)の空気流れ下流側に配置され、冷凍サイクルとは別の熱源によって送風空気を加熱する空気加熱手段(61)を備え、
放熱器(14)は、空調ケース(11)内のうち空気加熱手段(61)よりも空気流れ下流側に配置され、高圧側の高温冷媒と空気加熱手段(61)通過後の送風空気とを熱交換させて、冷媒を放熱させることを特徴としている。
ここで、圧縮機は、通常、冷凍サイクルの各機器の熱からの保護を目的として、圧縮機の吐出冷媒温度が所定温度未満となるように圧縮機の回転数を低く抑える機器保護制御がされる。
第1暖房モードでは、外気温度の低下に伴って、室外熱交換器での吸熱量を増大させるために減圧手段によって冷媒圧力を低下させるので、圧縮機の吸入圧力が低下し、圧縮比が増加するため、圧縮機の吐出冷媒温度は上昇する。このため、外気極低温時の第1暖房モードでは、圧縮機の吐出冷媒温度が所定温度を超えてしまうので、圧縮機の回転数を低く抑える機器保護制御が働き、その結果、暖房能力が実質的に低下してしまい、所望の暖房能力を確保できない。
これに対して、第2暖房モードでは、室外熱交換器で吸熱させないので、第1暖房モードよりも圧縮機の吸入圧力の低下を抑制でき、圧縮機の目標回転数が同じ場合の第1暖房モードよりも温度上昇を抑制できる。このため、第2暖房モードによれば、上述の機器保護制御による暖房能力の低下を回避できる。
さらに、第2暖房モードでは、放熱器による放熱量は圧縮機の圧縮仕事量で決定される。そして、放熱器の入口側空気温度が上昇するほど、放熱器での冷媒と空気との温度差を確保しようとして、冷媒の高圧側圧力が上昇するので、圧縮機の仕事量が増大し、放熱器による放熱量が増大するように、ホットガスサイクルがバランスする(図9参照)。
そこで、本発明では、運転モードが第2暖房モードの場合に、放熱器に、蒸発器通過直後の空気ではなく、空気加熱手段による加熱後の空気を流入させることで、放熱器での冷媒による放熱量を多くでき、第2暖房モードの暖房能力を向上させることができる。そして、本発明によれば、放熱器の入口側空気温度によっては、入口側空気温度が同じ第1暖房モードと比較して、高い暖房能力を得ることが可能となる(図10参照)。
ちなみに、本発明と異なり、空気加熱手段を放熱器の下流側に配置することもできるが、本発明によれば、上述の理由により、放熱器の空気流れ下流側に空気加熱手段が配置されている場合と比較して、放熱器の暖房能力を向上できる。
ここで、請求項1、2に記載の発明に関し、第2暖房モードの冷媒回路としては、請求項3、4に記載の冷媒回路が採用可能である。
請求項3に記載の冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)に流入させ、放熱器(14)から流出の冷媒を、減圧手段(23)によって減圧させた後に、圧縮機(21)の吸入側に導く冷媒回路である。
一方、請求項4に記載の冷媒回路は、圧縮機(21)吐出後の冷媒を、減圧手段(71)によって減圧させた後に、放熱器(14)に流入させる冷媒回路である。これによると、以下の理由により、請求項3に記載の冷媒回路と比較して、暖房能力を向上させることができる。請求項4に記載の冷媒回路では、放熱器に流入する前の冷媒を減圧するので、請求項3に記載の冷媒回路のように、圧縮機吐出後の冷媒を減圧せずに放熱器に流入させる場合と比較して、放熱器に流入する冷媒の温度が下がる。このため、放熱器に流入する冷媒の温度を、圧縮機吐出後の冷媒を減圧せずに放熱器に流入させる場合と同程度にしようとすると、圧縮機の仕事量が増大することとなるからである。
また、第1暖房モードから第2暖房モードへの冷媒回路の切り替えについては、例えば、請求項5に記載の発明のように、外気温度(Tam)が所定温度(T1)よりも低い場合に第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。
他の例として、請求項6に記載の発明のように、第1暖房モード時の圧縮機吸入側の冷媒圧力が所定圧力よりも低い場合に、第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。
他の例として、請求項7に記載の発明のように、第1暖房モード時の圧縮機吐出側の冷媒温度が所定温度よりも高い場合に第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。
また、請求項1に記載の放熱器としては、請求項8に記載の発明のように、液体を介して、高圧側の高温冷媒と蒸発器通過後の送風空気とを熱交換させる構成も採用可能である。すなわち、空調ケース(11)内のうち蒸発器(13)の空気流れ下流側に配置されるとともに、液体加熱手段(62)によって加熱された液体が内部を流れ、加熱された液体と蒸発器(13)通過後の送風空気とを熱交換させて、液体を放熱させる第1放熱器(61)と、高圧側の高温冷媒と液体とを熱交換させて、冷媒を放熱させる第2放熱器(81)とを有する構成が採用可能である。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における車両用空調装置の冷房モード時の冷媒回路を示す全体構成図である。 第1実施形態における車両用空調装置の除湿暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態における車両用空調装置の第1暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態における電気制御部のブロック図である。 図5中の空調制御装置40が実行する空調制御のフローチャートである。 第1実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。 第2実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。 第2実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。 (a)、(b)は、それぞれ、第2実施形態での放熱器14の入口空気温度に対する圧縮機動力、放熱器14の放熱量(暖房能力)の計算結果を示す図である。 第3実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。 第3実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。 第4実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある
(第1実施形態)
本実施形態は、走行用電動モータから車両走行用の駆動力を得る電気自動車(EV)に搭載される車両用空調装置である。図1〜4に、この車両用空調装置の全体構成を示す。
図1〜4に示すように、本実施形態の車両用空調装置1は、室内空調ユニット10と冷凍サイクル20とを備えている。なお、図1〜4は、それぞれ、本実施形態の車両用空調装置1において、冷凍サイクル20の運転モードが冷房モード、除湿暖房モード、第1暖房モード、第2暖房モード時の冷媒流れを示している。
室内空調ユニット10は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成する空調ケース11内に送風機12、蒸発器13、放熱器14等を収容したものである。
空調ケース11は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂で成形されている。空調ケース11内の送風空気流れ最上流側には、空調ケース11内に内気(車室内空気)、外気(車室外空気)を導入させる内気導入口11a、外気導入口11bと、内気の風量と外気の風量との風量割合を変化させる内外気切替ドア15とが設けられている。内外気切替ドア15は、内外気切替ドア用の電動アクチュエータによって駆動する。
内外気切替ドア15の空気流れ下流側には、内気導入口11a、外気導入口11bを介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)12が配置されている。この送風機12は、遠心多翼ファンを電動モータで駆動する電動送風機である。
送風機12の空気流れ下流側には、蒸発器13が配置されている。蒸発器13は、その内部を流通する低圧側の低温冷媒と送風空気とを熱交換させることにより、送風空気を冷却する冷却用熱交換器である。
蒸発器13の空気流れ下流側には、蒸発器13通過後の空気を流す加熱用冷風通路16、加熱冷風バイパス通路17といった空気通路が仕切壁11cによって形成されている。さらに、それらの空気流れ下流側には、加熱用冷風通路16および加熱冷風バイパス通路17から流出した空気を混合させる混合空間18が形成されている。
加熱用冷風通路16には、放熱器14が配置されている。この放熱器14は、高圧側の高温冷媒と蒸発器13通過後の空気とを熱交換させることにより、蒸発器13通過後の空気を加熱する加熱用熱交換器である。なお、この放熱器14は、後述の通り、冷媒を凝縮させる凝縮器として機能する。
一方、加熱冷風バイパス通路17は、蒸発器13通過後の空気を、放熱器14を通過させることなく、混合空間18に導くための空気通路である。したがって、混合空間18で混合された送風空気の温度は、加熱用冷風通路16を通過する空気および加熱冷風バイパス通路17を通過する空気の風量割合によって変化する。
そこで、本実施形態では、蒸発器13の空気流れ下流側であって、加熱用冷風通路16および加熱冷風バイパス通路17の入口側に、加熱用冷風通路16および加熱冷風バイパス通路17へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア19を配置している。
したがって、エアミックスドア19は、混合空間18内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整手段を構成する。エアミックスドア19は、エアミックスドア用の電動アクチュエータによって駆動する。
さらに、空調ケース11の送風空気流れ最下流部には、混合空間18から空調対象空間である車室内へ温度調整された送風空気を吹き出す吹出口(図示せず)が配置されている。この吹出口としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口、乗員の足元に向けて空調風を吹き出すフット吹出口、および、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ吹出口が設けられている。
また、フェイス吹出口、フット吹出口およびデフロスタ吹出口の空気流れ上流側には、それぞれ、フェイス吹出口の開口面積を調整するフェイスドア、フット吹出口の開口面積を調整するフットドア、デフロスタ吹出口の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モードドアを構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。
次に、本実施形態の冷凍サイクル20について説明する。
冷凍サイクル20は、上述の蒸発器13、放熱器14の他に、圧縮機21、室外熱交換器22、暖房用絞り23、冷房用絞り24、アキュムレータ25等によって構成されている。これらの各機器は、冷媒流路を形成する冷媒配管によって接続されている。この冷凍サイクル20では、冷媒として通常のフロン系冷媒を採用しており、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、この冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、この冷凍機油は冷媒とともにサイクルを循環している。
本実施形態では、具体的には、圧縮機21、放熱器14、暖房用絞り23、室外熱交換器22、冷房用絞り24、蒸発器13、アキュムレータ25、圧縮機21の順に直列に接続された冷媒回路が構成されている。
圧縮機21は、エンジンルーム内に配置され、冷凍サイクル20において冷媒を吸入し、圧縮して吐出するものであり、図示しないが、吐出容量が固定された固定容量型圧縮機構を電動モータで駆動する電動圧縮機として構成されている。この電動モータの回転数が空調制御装置に制御されることによって圧縮機21の冷媒吐出能力が制御される。なお、固定容量型圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。
放熱器14は、圧縮機21から吐出された高圧側の高温冷媒と送風空気との熱交換によって、冷媒を放熱させて凝縮させる凝縮器である。
暖房用絞り23は、主に第1暖房モードおよび第2暖房モード時に、放熱器14から流出した冷媒を減圧膨張させる暖房用減圧手段である。暖房用絞り23としては、キャピラリチューブ、オリフィス等の固定絞りや、絞り通路面積が調整可能な可変絞り機構が採用可能である。
室外熱交換器22は、エンジンルーム内に配置されて、内部を流通する冷媒と室外送風ファン22aから送風された車室外空気(外気)とを熱交換させるものである。室外熱交換器22の冷媒出口側には、冷房用絞り24を介して、蒸発器13が接続されている。
冷房用絞り24は、主に冷房モード時に、放熱器14から流出した冷媒を減圧膨張させる冷房用減圧手段である。冷房用絞り24としては、キャピラリチューブ、オリフィス等の固定絞りや、絞り通路面積が調整可能な可変絞りを採用できる。
蒸発器13は、冷房用絞り24を通過した後の低圧側の低温冷媒と送風空気との熱交換によって、冷媒を吸熱させて蒸発させるものである。
アキュムレータ25は、その内部に流入した冷媒の気液を分離して、余剰冷媒を蓄える低圧側気液分離器である。アキュムレータ25の気相冷媒出口には、圧縮機21の冷媒吸入側が接続されている。
さらに、この冷媒回路には、放熱器14から流出の冷媒を、暖房用絞り23を迂回させて、室外熱交換器22に導く第1バイパス流路26と、第1バイパス流路26を開閉する開閉手段としての第1電磁弁27とが設けられている。
また、室外熱交換器22から流出の冷媒を、冷房用絞り24と蒸発器13の両方を迂回させて、アキュムレータ25に導く第2バイパス流路28と、この第2バイパス流路28を開閉する開閉手段としての電気式三方弁29とが設けられている。電気式三方弁29は、その冷媒入口側が室外熱交換器22に接続されており、一方の冷媒出口側が蒸発器13に向かう冷媒流路に接続され、他方の冷媒出口側が第2バイパス流路28に接続されており、この冷媒出口側の2つの冷媒流路を切り替える切替手段である。
また、暖房用絞り23通過後の冷媒を、室外熱交換器22を迂回させて、第2バイパス流路28に導く第3バイパス流路30と、第3バイパス流路30を開閉する開閉手段としての第2電磁弁31とが設けられている。なお、第3バイパス流路30の下流側端部を第2バイパス流路28に接続しているが、第2バイパス流路28ではなく、蒸発器13とアキュムレータ25との間の冷媒流路に接続させても良い。
このような構成の冷凍サイクル20は、第1電磁弁27、第2電磁弁31、電気式三方弁29によって、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替え可能となっている。したがって、第1電磁弁27、第2電磁弁31、電気式三方弁29が冷媒回路の切替手段を構成している。
図1に示す冷房モードでは、第1電磁弁27が開き、電気式三方弁29が第2バイパス流路28側を閉じて蒸発器13側を開くことで、圧縮機21吐出後の冷媒が、図中の矢印のように、放熱器14→第1電磁弁27→室外熱交換器22→電気式三方弁29→冷房用絞り24→蒸発器13→アキュムレータ25→圧縮機21の順に循環する冷媒回路が構成される。
図2に示す除湿暖房モードでは、第1電磁弁27と第2電磁弁31の両方が閉じて、電気式三方弁29が第2バイパス流路28側を閉じて蒸発器13側を開くことで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→室外熱交換器22→電気式三方弁29→冷房用絞り24→蒸発器13→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。
図3に示す第1暖房モードでは、第1電磁弁27と第2電磁弁31の両方が閉じて、電気式三方弁29が第2バイパス流路28側を開き蒸発器13側を閉じることで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→室外熱交換器22→電気式三方弁29→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。
図4に示す第2暖房モードでは、第1電磁弁27が閉じて、第2電磁弁31が開くことで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→第2電磁弁31→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。
次に、図5により、本実施形態の電気制御部について説明する。図5は、本実施形態の電気制御部のブロック図である。
制御手段としての空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された機器の作動を制御する。出力側に接続された機器としては、送風機12、圧縮機21、室外送風ファン22a、電気式三方弁29、第1電磁弁27、第2電磁弁31、内外気切替ドア用電動アクチュエータ51、エアミックスドア用電動アクチュエータ52、吹出モードドア用電動アクチュエータ53等が挙げられる。
また、空調制御装置40の入力側には、各センサ群からの検出信号が入力される。このセンサ群としては、車室内温度Trを検出する内気センサ41、外気温度Tamを検出する外気センサ42(外気温度検出手段)、車室内の日射量Tsを検出する日射センサ43、圧縮機21の吐出冷媒温度Tdを検出する吐出温度センサ44(吐出温度検出手段)、圧縮機21の吐出側冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ45(吐出圧力検出手段)、蒸発器13から吹き出される空気温度である蒸発器吹出空気温度(蒸発器温度)TEを検出する蒸発器温度センサ46(蒸発器温度検出手段)、圧縮機21の吸入冷媒温度Tsを検出する吸入温度センサ47(吸入温度検出手段)、圧縮機21の吸入側冷媒圧力(低圧側冷媒圧力)Psを検出する吸入圧力センサ48(吸入圧力検出手段)、車室内の窓ガラス近傍の車室内空気の相対湿度を検出する湿度センサ、窓ガラス近傍の車室内空気の温度を検出する窓ガラス近傍温度センサ、および窓ガラス表面温度を検出する窓ガラス表面温度センサ等が挙げられる。
ちなみに、本実施形態では、図1〜4に示すように、吐出温度センサ44は、圧縮機21の冷媒流れ下流側かつ放熱器14の冷媒流れ上流側に配置され、吐出圧力センサ45は、放熱器14の下流側かつ第1バイパス流路26の上流側に配置され、吸入温度センサ47は、第2バイパス流路28のうち第3バイパス流路30との連結部よりも下流側に配置され、吸入圧力センサ48は、アキュムレータ25の下流側かつ圧縮機21の下流側に配置されている。
さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル50に設けられた各種空調操作スイッチからの操作信号が入力される。各種空調操作スイッチとしては、車両用空調装置1の作動スイッチ、圧縮機21の作動・停止を選択する圧縮機の作動スイッチ、運転モードの切替スイッチ、吹出口モードの切替スイッチ、送風機12の風量設定スイッチ、車室内温度設定スイッチ、冷凍サイクルの省動力化を優先させる指令を出力するエコノミースイッチ等が挙げられる。
次に、本実施形態の車両用空調装置1の作動を説明する。
空調制御装置40は、下記の通り、空調熱負荷に基づいて各種機器の制御目標値、例えば、送風機12の送風量、吸込口モード、吹出口モード、エアミックスドア19の開度、冷凍サイクル20の運転モード等を決定する。そして、その決定内容に応じた制御信号を各種機器に対して出力することで、各種機器が作動する。
図6に、空調制御装置40が実行する空調制御のフローチャートを示す。以下では、主に運転モードの決定処理について説明する。
ステップS1では空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群の検出信号や、操作パネル50の操作信号を読み込んでステップS2へ進む。
ステップS2では、圧縮機21が作動状態か否かを判定する。このとき、圧縮機21の作動スイッチによって、圧縮機21の停止が選択されている場合や、空調制御装置40が圧縮機21の停止制御をしている場合、NO判定して、ステップS1に戻る。一方、圧縮機21が作動状態であれば、YES判定して、ステップS3に進む。
ステップS3では、車室内吹出空気の目標吹出空気温度TAOを算出する。目標吹出空気温度TAOは、空調熱負荷、すなわち、車室内設定温度と、車室内温度等の車両環境条件とに基づいて算出され、具体的には、下記数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ41によって検出された車室内温度(内気温)、Tamは外気センサ42によって検出された外気温度、Tsは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
続いて、ステップS4では、目標吹出空気温度TAO、内外気導入口11a、11bからの吸気温度、窓ガラス近傍の車室内空気の温度および相対湿度、窓ガラス表面温度等に基づいて、冷凍サイクル20の運転モードを冷房モード、除湿暖房モード、暖房モードのいずれか1つに決定する。
なお、運転モード以外にも、目標吹出空気温度TAO等に基づいて、圧縮機21の目標回転数、エアミックスドア19の開度、室外送風ファン22aの送風量等の各種機器の制御目標値を決定する。また、本実施形態では、圧縮機21の目標回転数を決定する際に、冷凍サイクル20を構成する各種機器の熱からの保護を目的として、圧縮機21の吐出温度が所定温度未満となるように、圧縮機21の目標回転数を低減補正する(圧縮機21のパワーセーブ制御)。
続いて、ステップS5で、ステップS4で決定した運転モードが暖房モードであるか否かを判定する。このとき、冷房モードもしくは除湿暖房モードであれば、NO判定して、ステップS6に進み、さらに、ステップS4で決定した運転モードが冷房モードか否かを判定する。このとき、決定した運転モードが除湿暖房モードであれば、ステップS7に進み、決定した運転モードが冷房モードであれば、ステップS8に進む。
ステップS7では、各アクチュエータに対して、運転モードを除湿暖房モードとするための制御信号を出力する。具体的には、第1電磁弁27と第2電磁弁31の両方に対して、閉じるように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を閉じて蒸発器13側を開くように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。
これにより、エアミックスドア19は加熱用冷風通路16を全開とする位置となり、図2に示す暖房除湿モードが実行される。この暖房除湿モードでは、上述の通り、図中の矢印で示すように冷媒を循環させる冷媒回路が構成される。この冷媒回路では、放熱器14で高圧側の高温冷媒が放熱し、蒸発器13で低圧側の低温冷媒が吸熱するので、蒸発器13で送風機12からの送風空気が除湿され、除湿された後の送風空気が放熱器14で加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。
ここで、暖房用絞り23、冷房用絞り24として可変絞りを用いた場合、空調制御装置40は、目標吹出空気温度TAOに応じて、暖房用絞り23、冷房用絞り24の開度を制御する。例えば、放熱器14通過後の空気温度を低くする場合、暖房用絞り23を全開とし、冷房用絞り24を全開ではなく所定の絞り開度とする。これにより、放熱器14と室外熱交換器22の両方で冷媒が放熱し、放熱器14単独で放熱する場合よりも、放熱器14での放熱量が低減するので、放熱器14通過後の空気温度を低くできる。
反対に、放熱器14通過後の空気温度を高くする場合、暖房用絞り23を全開ではなく所定の絞り開度とし、冷房用絞り24を全開とする。これにより、蒸発器12と室外熱交換器22の両方で冷媒が吸熱し、蒸発器12単独で吸熱する場合よりも吸熱量が増大するので、放熱器14での放熱量を増大でき、放熱器14通過後の空気温度を高くできる。
なお、暖房用絞り23、冷房用絞り24として固定絞りを用いた場合では、外気温度によって、室外熱交換器22は放熱器、吸熱器もしくは単なる冷媒通路として作用する。
また、ステップS8では、運転モードを冷房モードとするために、各アクチュエータに対して制御信号を出力する。具体的には、第1電磁弁27に対して、開くように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を閉じて蒸発器13側を開くように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全閉とするための制御信号を出力する。
これにより、エアミックスドア19は加熱用冷風通路16を全閉とする位置となり、図1に示す冷房モードが実行される。この冷房モードでは、上述の通り、図中の矢印で示すように冷媒を循環させる冷媒回路が構成され、この冷媒回路では、室外熱交換器22で高圧側の高温冷媒が放熱し、蒸発器13で低圧側の低温冷媒が吸熱するので、蒸発器13で送風機12からの送風空気が冷却され、冷却された後の送風空気が図示しない吹出口から車室内に吹き出される。
また、ステップS5において、ステップS4で決定した運転モードが暖房モードの場合、YES判定となり、ステップS9に進む。
ステップS9では、第1暖房モードと第2暖房モードを選択するための判定を行う。具体的には、外気温度Tamが所定温度T1よりも高いか否かを判定する。所定温度T1は、第1暖房モードを実行した場合に、暖房能力が十分に確保できないときの外気温度を基準に設定され、例えば−30℃に設定される。
外気温度Tamが所定温度T1よりも高く、第1暖房モードによる暖房が可能である場合、ステップS10に進み、各アクチュエータに対して、第1暖房モードを実行するための制御信号を出力する。具体的には、第1電磁弁27と第2電磁弁31の両方に対して、閉じるように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を開き、蒸発器13側を閉じるように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。
これにより、エアミックスドア19は加熱用空気通路16を全開とする位置となり、図3に示す第1暖房モードが実行される。この第1暖房モードでは、図中の矢印のように冷媒を循環させる冷媒回路が構成され、この冷媒回路では、放熱器14で高圧側の高温冷媒が放熱し、室外熱交換器22で低圧側の低温冷媒が吸熱するので、蒸発器13通過後の送風空気が放熱器14で加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。
一方、ステップS9において、外気温度Tamが所定温度T1よりも低く、第1暖房モードでは十分な暖房能力が得られない場合、ステップS11に進む。
ステップS11では、各アクチュエータに対して、第2暖房モードを実行するための制御信号を出力する。具体的には、第1電磁弁27に対して閉じるように制御信号を出力し、第2電磁弁31に対して開くように制御信号を出力する。また、送風ファン22aに対して停止させるように制御信号を出力し、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。
これにより、エアミックスドア19は加熱用空気通路16を全開とする位置となり、送風ファン22aは停止して、図4に示す第2暖房モードが実行される。この第2暖房モードでは、図中の矢印のように冷媒を循環させる冷媒回路、すなわち、圧縮機21吐出後の冷媒を放熱器14に流入させ、放熱器14から流出の冷媒を、暖房用絞り23によって減圧させた後に、室外熱交換器22と蒸発器13の両方を迂回させて、圧縮機21の吸入側に導く冷媒回路が構成される。
したがって、第2暖房モードでは、圧縮機21吐出後の高圧側の高温冷媒が、放熱器14で蒸発器13通過後の送風空気と熱交換して放熱する。この放熱によって、放熱器14を通過する送風空気が加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。そして、放熱器14から流出した冷媒は、暖房用絞り23で減圧された後、第2電磁弁31、アキュムレータ25を経由して、圧縮機21に吸入される。
ここで、図7に第2暖房モード時の冷媒変化を示すモリエル線図を示す。第2暖房モード時では、図7に示すように、圧縮機21吐出後の高温気相冷媒(ホットガス)が、放熱器14で放熱することにより、一部凝縮して気液2相状態となり、気液2相状態の冷媒が、暖房用絞り23で減圧されて気相状態となるホットガスサイクルとなる。このホットガスサイクルでは、ヒートポンプサイクルの第1暖房モードとは異なり、室外熱交換器22での冷媒の吸熱が無いので、放熱器14の放熱量は、圧縮機21の圧縮仕事量で決定される。なお、本実施形態では、放熱器14で冷媒が気液2相状態となるが、用いる冷媒の物性によっては、気相状態のままとなる。
以上の説明の通り、本実施形態では、空調制御装置40によって、外気温度Tamが所定温度T1よりも高い場合に、ヒートポンプサイクルによる第1暖房モードを実行し、外気温度Tamが所定温度T1よりも低い外気極低温の場合に、放熱器14に流入した圧縮機吐出後のホットガスを熱源として送風空気を加熱する第2暖房モードに切り替えるようにしている。
そして、この第2暖房モードでは、室外熱交換器22に冷媒を流さず、室外熱交換器を吸熱器として作用させないので、室外熱交換器22は着霜せず、室外熱交換器22の除霜運転が不要となる。よって、本実施形態によれば、外気極低温時に連続した暖房運転が可能となり、暖房能力の確保が可能となる。
また、第1暖房モードでは、外気温度の低下に伴って、室外熱交換器22での吸熱のために暖房用絞り23によって冷媒圧力を低下させるので、その結果として、圧縮機21の吸入圧力が低下して、圧縮比が増加するため、圧縮機21の吐出冷媒温度は上昇する。このため、外気極低温時に第1暖房モードを実行すると、圧縮機21の吐出冷媒温度が所定温度を超えてしまうので、機器保護のために、圧縮機21の回転数を低く抑えるパワーセーブ制御が働き、その結果、暖房能力が実質的に低下してしまう。
これに対して、第2暖房モードでは、室外熱交換器22で冷媒を吸熱させないので、同じ外気温度下での第1暖房モード時と比較して、圧縮機21の吸入圧力の低下を抑制でき、圧縮機21の吐出冷媒温度の上昇を抑制できる。このため、外気極低温時に第2暖房モードを実行しても、上述の圧縮機21のパワーセーブ制御の働きを回避できる。
ちなみに、圧縮機吐出後の高圧側の高温気相冷媒(ホットガス)を蒸発器に流入させることで、蒸発器で冷媒を放熱させて暖房(ホットガス暖房)を行う冷凍サイクルは、文献を挙げるまでもなく周知であるが、この周知の冷凍サイクルでは、蒸発器に圧縮機吐出後の高圧冷媒を流入させるため、蒸発器は高圧冷媒に耐え得る耐高圧構造が必要であった。これに対して、本実施形態では、蒸発器13に高圧冷媒を流入させないので、蒸発器13の耐高圧構造を不要にできる。なお、下記の各実施形態においても同様である。
(第2実施形態)
本実施形態は、内燃機関(エンジン)および走行用電動モータから車両走行用の駆動力を得る、いわゆるハイブリッド車(HV)に搭載される車両用空調装置であり、第1実施形態に対して、室内空調ユニット10に温水式のヒータコア61を追加したものである。
図8に、本実施形態の車両用空調装置の全体構成を示す。具体的には、車両用空調装置1は、ヒータコア61とエンジン(EG)62との間をエンジン冷却水が循環する冷却水回路63を備えている。ヒータコア61は、エンジン冷却水を熱源として送風空気を加熱する空気加熱手段である。ヒータコア61は、空調ケース11内のうち蒸発器13よりも空気流れ下流側であって、放熱器14の空気流れ上流側に配置されている。
したがって、放熱器14は、空調ケース11内のうちヒータコア61よりも空気流れ下流側に配置されており、ヒータコア61通過後の送風空気が流入するようになっている。
そして、本実施形態では、第1暖房モードが選択される条件下においては、ヒータコア61の冷却水温度が所定温度よりも低い場合に、第1暖房モードによる暖房を実施し、ヒータコア61の冷却水温度が所定温度よりも高い場合に、ヒータコア61による暖房を実施するようになっている。
また、本実施形態では、第2暖房モード時にヒータコア61による送風空気の加熱を行うようになっている。具体的には、空調制御装置40は、冷凍サイクル20の運転モードとして第2暖房モードを実行する場合、エンジン62が停止状態であって、冷却水温度が所定温度よりも低ければ、エンジン作動の要求信号をエンジン制御装置に出力する。これにより、エンジン62を作動させて、冷却水温度を上昇させ、ヒータコア61によって送風空気を加熱する。したがって、第2暖房モード時の空調装置全体の暖房能力は、放熱器14の放熱量と、ヒータコア61の放熱量を合算したものとなる。
なお、本実施形態とは異なり、ヒータコア61を放熱器14の空気流れ下流側に配置することも可能である。しかし、本実施形態のように、ヒータコア61を放熱器14の空気流れ上流側に配置することで、ヒータコア61を放熱器14の空気流れ下流側に配置した場合と比較して、図9に示すように、放熱器14の放熱量を増大できる。
ここで、図9に、第2暖房モード時の冷媒変化を示すモリエル線図を示す。第2暖房モード時のホットガスサイクルでは、圧縮機21の仕事量と放熱器14の性能でサイクルバランスが決まる。このホットガスサイクルでは、放熱器14の入口空気温度がT01からT02に上昇すると(図示せず)、放熱量を確保するために、図9に示すように、高圧側の冷媒温度がT11からT12に上昇(高圧側の冷媒圧力がP1からP2に上昇)するので、その結果として、圧縮機21の圧縮仕事量が増加し、放熱器14の放熱量がQ1からQ2に増加するように、サイクルがバランスする。
したがって、ヒータコア61の放熱量が同じ場合、本実施形態のように、ヒータコア61を放熱器14の空気流れ上流側に配置することで、ヒータコア61を放熱器14の空気流れ下流側に配置した場合と比較して、放熱器14の暖房能力を向上できる。
また、本実施形態の第1暖房モードと第2暖房モードとを比較すると、図10(a)、(b)に示すように、第2暖房モードの方が、第1暖房モードよりも放熱器14の暖房能力が高くなる場合がある。なお、図10(a)、(b)は、それぞれ、放熱器14の入口空気温度に対する圧縮機動力、放熱器14の放熱量(暖房能力)の計算結果を示す図である。
外気極低温時に第1暖房モードを実行すると、図10(a)に示すように、放熱器14の入口空気温度が上昇するにつれて、圧縮機動力が上昇するが、入口空気温度が所定温度Txよりも高温の場合、パワーセーブ制御により、圧縮機動力は所定動力値を超えず、所定動力値で一定の傾向となる。
このため、第1暖房モード時では、図10(b)に示すように、放熱器14の放熱量、すなわち、放熱器14の暖房能力も、入口空気温度が所定温度Txよりも高温の領域では、所定暖房能力Qxで一定となり、所定暖房能力Qxよりも高い暖房能力を得ることができない。
これに対して、外気極低温時に第2暖房モードを実行すると、上述の通り、パワーセーブ制御を回避できるので、図10(a)に示すように、放熱器14の入口空気温度が上昇するにつれて、圧縮機動力は上昇し続ける傾向となる。このため、図10(b)に示すように、放熱器14の入口空気温度が所定温度Ta℃以上のときに、放熱器14の暖房能力が第1暖房モード時の暖房能力を超える結果となる。
(第3実施形態)
図11に、本実施形態の車両用空調装置の全体構成を示す。本実施形態は、第1実施形態の車両用空調装置に対して、圧縮機吐出後の冷媒を減圧させる第2暖房用絞り71を追加したものである。なお、第2実施形態の車両用空調装置に対してこの第2暖房用絞り71を追加しても良い。
具体的には、車両用空調装置1は、第1実施形態の構成に加えて、圧縮機21吐出後であって放熱器14流入前の冷媒を減圧させる第2暖房用絞り71と、第2暖房用絞り71を迂回して冷媒が流れる第4バイパス流路72と、第4バイパス流路72を開閉する開閉手段としての電磁弁73とを備えている。第2暖房用絞り71としては固定絞りもしくは可変絞りを採用できる。
また、本実施形態の第3バイパス流路30は、第1実施形態と異なり、放熱器14通過後の冷媒を、暖房用絞り23と室外熱交換器22とを迂回させて、第2バイパス流路28に導くようになっている。なお、第1実施形態で説明した暖房用絞り23は、本実施形態では第1暖房用絞り23となる。
空調制御装置40は、冷房モード、除湿暖房モードおよび第1暖房モード時に、電磁弁73を開くように制御信号を出力する。これにより、冷房モード、除湿暖房モードおよび第1暖房モード時の冷媒回路は、第1実施形態と同様の構成となる。
一方、空調制御装置40は、第2暖房モード時に電磁弁73を閉じるように制御信号を出力する。これにより、第2暖房モード時では、図11中の矢印のように、圧縮機21吐出後の冷媒を、第2暖房用絞り71によって減圧させた後に、放熱器14に流入させるとともに、放熱器14から流出の冷媒を、第1暖房用絞り23、室外熱交換器22および蒸発器13を迂回させて、圧縮機21の吸入側に導く冷媒回路が構成される。
図12は本実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。本実施形態では、圧縮機21吐出後の冷媒を、放熱器14に流入する前に、第2暖房用絞り71によって減圧させるので、放熱器14の入口冷媒温度T22は、圧縮機21吐出後の冷媒温度T21よりも低くなる。
このため、図7に示す第1実施形態の第2暖房モード時と比較すると、圧縮機21吐出後の冷媒温度が同じ場合、放熱器14の入口冷媒温度が低く、放熱器14を通過する送風空気との温度差が小さくなるので、この温度差を大きくしようとして、図12に示すホットガスサイクルは、図7に示すホットガスサイクルよりも大きくバランスする。
よって、本実施形態によれば、第1実施形態の第2暖房モード時よりも、圧縮機21の圧縮仕事量を増大させることができ、高い暖房能力が得られる。
ただし、本実施形態は、第2暖房用絞り71と、第4バイパス流路72と、電磁弁73とを備えており、第1実施形態よりも冷凍サイクル20の構成部品が多いため、冷凍サイクル20の構成簡素化の観点では、本実施形態よりも第1実施形態の方が好ましい。
(第4実施形態)
第1実施形態では、高温冷媒を放熱させる放熱器として、高温冷媒と送風空気とを、エンジン冷却水等の液体を介さずに、熱交換させる放熱器14を採用したが、本実施形態では、高温冷媒と送風空気とを、エンジン冷却水を介して、熱交換させる放熱器を採用している。
図13に、本実施形態の車両用空調装置の全体構成を示す。本実施形態は、第2実施形態で説明した図2に示す構成に対して、放熱器14を水冷媒熱交換器81に変更したものであり、その他の構成は第2実施形態と同様である。
本実施形態のヒータコア61は、空調ケース11内のうち蒸発器13の空気流れ下流側に配置されており、エンジン冷却水と蒸発器13通過後の送風空気とを熱交換させて、エンジン冷却水を放熱させる第1放熱器である。
水冷媒熱交換器81は、冷媒回路において圧縮機21の下流側、かつ、暖房用絞り23の上流側に接続されており、圧縮機21吐出後の高圧側の高温冷媒とエンジン冷却水とを熱交換させて、冷媒を放熱させる第2放熱器である。
このような構成の車両用空調装置は、第2実施形態に対して放熱器14を水冷媒熱交換器81に変更しただけなので、第2実施形態と同様に作動する。ちなみに、除湿暖房モード、第1暖房モード、第2暖房モード時では、水冷媒熱交換器81での冷媒の放熱によってエンジン冷却水を加熱し、ヒータコア61でのエンジン冷却水の放熱によって蒸発器13通過後の送風空気を加熱する。
したがって、水冷媒熱交換器81とヒータコア61の両方によって、高圧側の高温冷媒と蒸発器13通過後の送風空気とを、エンジン冷却水を介して熱交換させて、冷媒を放熱させる放熱器を構成していると言える。このように、高温冷媒を放熱させる放熱器としては、最終的に、高圧側の高温冷媒と蒸発器通過後の送風空気との間で熱交換させるものを採用できる。
本実施形態においても、第2暖房モード時では、第2実施形態の放熱器14と同様に、エンジン作動によってエンジン冷却水の温度が上昇するに連れて圧縮機動力が増大する傾向となるので、エンジン冷却水の温度によっては、第1暖房モード時と比較して、水冷媒熱交換器81の放熱量を多くできる。
また、本実施形態によると、第2実施形態と比較して、室内空調ユニット10に収容する熱交換器の数を3つから2つに低減できるので、室内空調ユニット10をコンパクトにできるという効果を奏する。
(他の実施形態)
(1)上述の各実施形態では、図6中のステップS9で、外気温度Tamに基づいて、第1暖房モードと第2暖房モードのどちらかを決定したが、外気温度Tam以外の他の物理量に基づいて、第1暖房モードと第2暖房モードのどちらかを決定しても良い。
この物理量とは、第1暖房モード時の暖房能力と相関関係のある物理量であり、例えば、圧縮機21の吸入側冷媒圧力Ps、圧縮機21の吐出側冷媒温度Ts、冷媒流量等が挙げられる。第1暖房モード時の暖房能力が低下する外気極低温時では、外気温度が極低温時よりも高い場合と比較して、吸入側冷媒圧力Psは低く、冷媒流量が少なく、吐出側冷媒温度Tsが高くなる。
物理量のしきい値を、第1暖房モード時の暖房能力が低下するときの物理量に基づいて設定する。そして、検出した物理量としきい値とを比較して、検出した物理量が第1暖房モード時の暖房能力の低下側を示す値に達したときに、第1暖房モード時の暖房能力が十分に得られないと判定して、第2暖房モードに決定する。
例えば、吸入圧力センサ48で第1暖房モード時の吸入側冷媒圧力Psを検出する。なお、吸入温度センサ47で検出した吸入温度から冷媒圧力を推定しても良い。そして、検出した吸入側冷媒圧力Psが第1所定圧力P1よりも低い場合、第2暖房モードへ冷媒回路を切り替え、第2暖房モード時の吸入側冷媒圧力Psが第2所定圧力(P1+α)よりも高い場合に、第1暖房モードへ冷媒回路を切り替えても良い。第2所定圧力は、第1暖房モードから第2暖房モードへ冷媒回路を切り替えた後、第2暖房モードによって第1暖房モード時よりも低圧側冷媒圧力が上昇したときに、直ちに、第1暖房モードに切り替わらないように設定する。
ちなみに、第1暖房モード時の吸入側冷媒圧力Psに基づいて、第2暖房モードへの切り替えを決定する場合では、外気極低温時だけでなく、室外熱交換器22に着霜が生じることで、第1暖房モードの暖房能力が低下した場合においても、第2暖房モードへの切り替えが可能となる。
また、例えば、吐出温度センサ44で第1暖房モード時の吐出側冷媒温度Tdを検出する。この検出した吐出側冷媒温度Tdが第1所定温度よりも高い場合、第2暖房モードへ冷媒回路を切り替え、第2暖房モード時の吐出側冷媒温度Tdが第2所定温度よりも低い場合に、第1暖房モードへ冷媒回路を切り替えても良い。第1所定温度は、パワーセーブ制御が働く温度域を考慮して設定され、例えば、150℃に設定される。
また、圧縮機21に設けた流量センサから冷媒流量を検出し、検出した冷媒流量が所定流量よりも低い場合、第2暖房モードへ冷媒回路を切り替えるようにしても良い。
(2)上述の各実施形態では、図1の冷房モード時、図2の除湿暖房モード時に、圧縮機21吐出後の冷媒が、放熱器14、室外熱交換器22、蒸発器13の順に流れる冷媒回路が構成されており、すなわち、3つの熱交換器が冷媒流れに対して直列に配置された構成であったが、3つの熱交換器が冷媒流れに対して直列に配置された構成でなくても良い。
例えば、図1に示す冷房モードにおいて、放熱器14を迂回して冷媒が流れるバイパス流路を設け、圧縮機21吐出後の冷媒を、放熱器14を迂回させて、室外熱交換器22に流入させる構成としても良い。
例えば、図2に示す除湿暖房モードに対して、室外熱交換器22を迂回して冷媒が流れるバイパス流路を設け、放熱器14流出後の冷媒を、室外熱交換器22を迂回させて、蒸発器13に流入させる構成としても良い。また、除湿暖房モード時に、放熱器14流出後の冷媒を、室外熱交換器22と蒸発器13とに対して、並列に流す構成としても良い。
(3)上述の各実施形態のうち、温水式のヒータコア61を用いる実施形態では、液体としてエンジン冷却水を用いたが、他の液体を用いても良い。例えば、エンジン以外の発熱体の冷却液を用いたり、発熱体の冷却を目的とせず、空気の加熱を目的として、電気ヒータ等の液体加熱手段によって加熱される液体を用いたりしても良い。
(4)第2実施形態では、放熱器14の入口空気温度を上昇させる手段として、温水式のヒータコア61を用いたが、冷凍サイクルとは別の熱源によって送風空気を加熱するものであれば、他の空気加熱手段を用いても良く、例えば、電気ヒータ等を用いても良い。
(5)なお、上述の各実施形態を実施可能な範囲で組み合わせても良い。
1 車両用空調装置
10 室内空調ユニット
13 蒸発器
14 放熱器
20 冷凍サイクル
21 圧縮機
22 室外熱交換器
23 暖房用絞り、第1暖房用絞り(暖房用減圧手段、減圧手段)
24 冷房用絞り(冷房用減圧手段)
27 第1電磁弁(冷媒回路の切替手段)
29 電気式三方弁(冷媒回路の切替手段)
31 第2電磁弁(冷媒回路の切替手段)
61 温水式ヒータコア(空気加熱手段、第1放熱器)
62 エンジン(液体加熱手段)
71 第2暖房用絞り(減圧手段)
81 水冷媒熱交換器(放熱器、第2放熱器)

Claims (8)

  1. 吸入した冷媒を圧縮して吐出する圧縮機(21)と、
    冷媒と室外空気とを熱交換させる室外熱交換器(22)と、
    空調ケース(11)内に配置され、低圧側の低温冷媒と車室内へ送風される送風空気とを熱交換させて冷媒を蒸発させる蒸発器(13)と、
    高圧側の高温冷媒と前記蒸発器(13)通過後の前記送風空気との間で熱交換させて、冷媒を放熱させる放熱器(14、61、81)と、
    冷房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替える冷媒回路の切替手段(27、29、31)とを備え、
    前記冷房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記室外熱交換器(22)、冷房用減圧手段(24)、前記蒸発器(13)、前記圧縮機(21)の順に循環させることで、前記蒸発器(13)で吸熱させ、前記室外熱交換器(22)で放熱させる冷媒回路を構成し、
    前記第1暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)、暖房用減圧手段(23)、前記室外熱交換器(22)の順に流入させ、前記室外熱交換器(22)から流出の冷媒を前記蒸発器(13)を迂回させて前記圧縮機(21)の吸入側に導くことで、前記室外熱交換器(22)で吸熱させ、前記放熱器(14)で放熱させる冷媒回路を構成し、
    前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)に流入させ、前記放熱器(14)から流出の冷媒を、前記室外熱交換器(22)と前記蒸発器(13)の両方を迂回させて、前記圧縮機(21)の吸入側に導くことで、前記放熱器(14)で放熱させる冷媒回路を構成し、
    前記切替手段(27、29、31)は、前記第1暖房モードの暖房能力と相関関係のある物理量が暖房能力の低下側を示す値に達したときに、前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする車両用空調装置。
  2. 前記空調ケース(11)内のうち前記蒸発器(13)の空気流れ下流側に配置され、冷凍サイクルとは別の熱源によって前記送風空気を加熱する空気加熱手段(61)を備え、
    前記放熱器(14)は、前記空調ケース(11)内のうち前記空気加熱手段(61)よりも空気流れ下流側に配置され、高圧側の高温冷媒と前記空気加熱手段(61)通過後の前記送風空気とを熱交換させて、冷媒を放熱させることを特徴とする請求項1に記載の車両用空調装置。
  3. 前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)に流入させ、前記放熱器(14)から流出の冷媒を、減圧手段(23)によって減圧させた後に、前記圧縮機(21)の吸入側に導く冷媒回路であることを特徴とする請求項1または2に記載の車両用空調装置。
  4. 前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を、減圧手段(71)によって減圧させた後に、前記放熱器(14)に流入させる冷媒回路であることを特徴とする請求項1または2に記載の車両用空調装置。
  5. 前記物理量としての外気温度(Tam)を検出する外気温度検出手段(42)を備え、
    前記切替手段(27、29、31)は、前記外気温度(Tam)が所定温度(T1)よりも低い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
  6. 前記物理量としての前記圧縮機(21)の吸入側の冷媒圧力を検出する吸入圧力検出手段(48)を備え、
    前記切替手段は、前記第1暖房モードにおける前記冷媒圧力が所定圧力よりも低い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
  7. 前記物理量としての前記圧縮機(21)の吐出側の冷媒温度を検出する吐出温度検出手段(44)を備え、
    前記切替手段は、前記第1暖房モードにおける前記冷媒温度が所定温度よりも高い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
  8. 前記放熱器は、
    前記空調ケース(11)内のうち前記蒸発器(13)の空気流れ下流側に配置されるとともに、液体加熱手段(62)によって加熱された前記液体が内部を流れ、加熱された前記液体と前記蒸発器(13)通過後の前記送風空気とを熱交換させて、前記液体を放熱させる第1放熱器(61)と、
    高圧側の高温冷媒と前記液体とを熱交換させて、冷媒を放熱させる第2放熱器(81)とを有する構成であることを特徴とする請求項1に記載の車両用空調装置。
JP2010003485A 2010-01-11 2010-01-11 車両用空調装置 Pending JP2011140291A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010003485A JP2011140291A (ja) 2010-01-11 2010-01-11 車両用空調装置
DE102011008217A DE102011008217A1 (de) 2010-01-11 2011-01-10 Klimaanlage für Fahrzeug
US12/930,540 US20110167850A1 (en) 2010-01-11 2011-01-10 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003485A JP2011140291A (ja) 2010-01-11 2010-01-11 車両用空調装置

Publications (1)

Publication Number Publication Date
JP2011140291A true JP2011140291A (ja) 2011-07-21

Family

ID=44257440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003485A Pending JP2011140291A (ja) 2010-01-11 2010-01-11 車両用空調装置

Country Status (3)

Country Link
US (1) US20110167850A1 (ja)
JP (1) JP2011140291A (ja)
DE (1) DE102011008217A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140024810A (ko) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
WO2014076934A1 (ja) * 2012-11-16 2014-05-22 株式会社デンソー 冷凍サイクル装置
WO2014080594A1 (ja) * 2012-11-20 2014-05-30 パナソニック株式会社 車両用ヒートポンプ装置および車両用空調装置
KR101418854B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR101418856B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR101418855B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
WO2014155981A1 (ja) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ 車両用空調装置
WO2014188984A1 (ja) * 2013-05-20 2014-11-27 サンデン株式会社 車両用空気調和装置
WO2015198564A1 (en) 2014-06-25 2015-12-30 Denso Corporation Heat pump cycle device
WO2016080343A1 (ja) * 2014-11-21 2016-05-26 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
WO2016203903A1 (ja) * 2015-06-16 2016-12-22 株式会社デンソー 車両用空調装置
JP2017189997A (ja) * 2016-04-11 2017-10-19 株式会社デンソー 空調装置
JP2019031148A (ja) * 2017-08-07 2019-02-28 本田技研工業株式会社 車両用空調装置
WO2020045261A1 (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
WO2023090083A1 (ja) * 2021-11-19 2023-05-25 サンデン株式会社 車両用空調装置
WO2023199912A1 (ja) * 2022-04-15 2023-10-19 株式会社デンソー ヒートポンプサイクル装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241222B1 (ko) * 2011-07-21 2013-03-13 기아자동차주식회사 차량용 히트펌프 시스템 제어방법
JP5821756B2 (ja) * 2011-04-21 2015-11-24 株式会社デンソー 冷凍サイクル装置
JP5367186B2 (ja) * 2011-09-06 2013-12-11 株式会社ヴァレオジャパン 車両用空調装置
US10184688B2 (en) 2011-12-28 2019-01-22 Desert Aire Corp. Air conditioning apparatus for efficient supply air temperature control
KR101443645B1 (ko) * 2012-02-07 2014-09-23 엘지전자 주식회사 전기자동차용 공기조화장치
CN102582393A (zh) * 2012-03-07 2012-07-18 浙江吉利汽车研究院有限公司 电动汽车驱动电机温度控制系统
JP5875918B2 (ja) * 2012-03-27 2016-03-02 サンデンホールディングス株式会社 車室内熱交換器及び車室内熱交換器のヘッダ間接続部材
US20130264325A1 (en) * 2012-04-04 2013-10-10 GM Global Technology Operations LLC Remote high voltage switch for controlling a high voltage heater located inside a vehicle cabin
JP2014009869A (ja) * 2012-06-28 2014-01-20 Denso Corp ヒートポンプサイクル
KR101551213B1 (ko) * 2012-08-10 2015-09-08 엘지전자 주식회사 전기자동차의 공기조화기
DE102012108886B4 (de) 2012-09-20 2019-02-14 Hanon Systems Wärmeübertrageranordnung und Klimatisierungssystem eines Kraftfahrzeuges
WO2014087645A1 (ja) * 2012-12-06 2014-06-12 パナソニック株式会社 車両用ヒートポンプ装置および車両用空調装置
US9533550B2 (en) * 2013-01-17 2017-01-03 Mitsubishi Electric Corporation Vehicle air conditioning control device
JP6026956B2 (ja) * 2013-05-24 2016-11-16 サンデンホールディングス株式会社 室内熱交換器
DE102013106831A1 (de) * 2013-06-28 2014-12-31 Valeo Klimasysteme Gmbh Fahrzeugklimaanlage eines Hybrid- oder Elektrofahrzeugs
JPWO2015011919A1 (ja) * 2013-07-26 2017-03-02 パナソニックIpマネジメント株式会社 車両用空調装置
CN103625242B (zh) * 2013-11-18 2015-12-09 华南理工大学 一种电动汽车热管理系统
CA2879702C (en) 2014-01-22 2016-11-08 Jeremy Hogan Heat pump temperature control
JP6418779B2 (ja) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 車両用空気調和装置
EP2942257A1 (de) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Vorrichtung zum Beheizen des Fahrgastraumes und/oder Fahrstandes von Schienenfahrzeugen
EP2942256A1 (de) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Vorrichtung zum Beheizen des Fahrgastraumes und/oder Fahrstandes von Schienenfahrzeugen
JP6496958B2 (ja) * 2014-09-19 2019-04-10 サンデンホールディングス株式会社 車両用空気調和装置
JP6353328B2 (ja) * 2014-09-24 2018-07-04 サンデンホールディングス株式会社 車両用空気調和装置
DE102014221930B4 (de) * 2014-10-28 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung und/oder Regelung einer Heiz-Klimaanlage in einem Kraftfahrzeug
US9764620B2 (en) 2014-11-03 2017-09-19 Ford Global Technologies, Llc System and method for operating a heat pump
JP6738157B2 (ja) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
FR3057211B1 (fr) * 2016-10-12 2020-09-04 Valeo Systemes Thermiques Procede de regulation d'une boucle de chauffage, ventilation et/ou climatisation
CN111380256A (zh) 2018-12-28 2020-07-07 三花控股集团有限公司 热泵系统
KR20210059276A (ko) * 2019-11-15 2021-05-25 현대자동차주식회사 차량용 히트펌프 시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193972A (ja) * 1992-12-22 1994-07-15 Nippondenso Co Ltd 空調装置
JPH11235919A (ja) * 1998-02-20 1999-08-31 Calsonic Corp ヒートポンプ式自動車用空気調和装置
JP2000343934A (ja) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式車両用空調装置
JP2001050572A (ja) * 1999-08-06 2001-02-23 Calsonic Kansei Corp 自動車用空気調和装置
JP2003080931A (ja) * 2001-09-17 2003-03-19 Keihin Corp ヒートポンプおよびその制御方法
JP2005061364A (ja) * 2003-08-19 2005-03-10 Calsonic Kansei Corp エンジンの冷却システム
JP2006232145A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd 車両用空調装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1543666A (fr) * 1966-10-26 1900-01-01 Procédé pour la régulation de température d'appareils frigorifiques ou analogues
US5473906A (en) * 1993-01-29 1995-12-12 Nissan Motor Co., Ltd. Air conditioner for vehicle
US5526650A (en) * 1993-09-21 1996-06-18 Nippondenso Co., Ltd. Air-conditioning apparatus
JP3246250B2 (ja) * 1995-02-16 2002-01-15 松下電器産業株式会社 電気自動車用ヒートポンプ冷暖房除湿装置
JP2001012830A (ja) * 1999-06-29 2001-01-19 Denso Corp 冷凍サイクル装置
JP3985394B2 (ja) * 1999-07-30 2007-10-03 株式会社デンソー 冷凍サイクル装置
NO320664B1 (no) * 2001-12-19 2006-01-16 Sinvent As System for oppvarming og kjoling av kjoretoy
US6834511B2 (en) * 2002-03-15 2004-12-28 Calsonic Kansei Corporation Vehicle air conditioning apparatus
JP4232463B2 (ja) * 2003-01-09 2009-03-04 株式会社デンソー 空調装置
JP5042058B2 (ja) * 2008-02-07 2012-10-03 三菱電機株式会社 ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193972A (ja) * 1992-12-22 1994-07-15 Nippondenso Co Ltd 空調装置
JPH11235919A (ja) * 1998-02-20 1999-08-31 Calsonic Corp ヒートポンプ式自動車用空気調和装置
JP2000343934A (ja) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd ヒートポンプ式車両用空調装置
JP2001050572A (ja) * 1999-08-06 2001-02-23 Calsonic Kansei Corp 自動車用空気調和装置
JP2003080931A (ja) * 2001-09-17 2003-03-19 Keihin Corp ヒートポンプおよびその制御方法
JP2005061364A (ja) * 2003-08-19 2005-03-10 Calsonic Kansei Corp エンジンの冷却システム
JP2006232145A (ja) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd 車両用空調装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418854B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR101418856B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR101418855B1 (ko) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR20140024810A (ko) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 차량용 히트 펌프 시스템
KR101637968B1 (ko) 2012-08-20 2016-07-21 한온시스템 주식회사 차량용 히트 펌프 시스템
JP2015077816A (ja) * 2012-11-16 2015-04-23 株式会社デンソー 冷凍サイクル装置
WO2014076934A1 (ja) * 2012-11-16 2014-05-22 株式会社デンソー 冷凍サイクル装置
DE112013005482B4 (de) 2012-11-16 2022-03-17 DENSO Air Systems Corporation Kältekreislaufvorrichtung
US9523518B2 (en) 2012-11-16 2016-12-20 Denso Corporation Refrigeration cycle device
WO2014080594A1 (ja) * 2012-11-20 2014-05-30 パナソニック株式会社 車両用ヒートポンプ装置および車両用空調装置
JP2014101019A (ja) * 2012-11-20 2014-06-05 Panasonic Corp 車両用ヒートポンプ装置および車両用空調装置
US10052939B2 (en) 2013-03-29 2018-08-21 Japan Climate Systems Corporation Vehicle air conditioner
JP2014196017A (ja) * 2013-03-29 2014-10-16 株式会社日本クライメイトシステムズ 車両用空調装置
WO2014155981A1 (ja) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ 車両用空調装置
US9944151B2 (en) 2013-05-20 2018-04-17 Sanden Holdings Corporation Vehicle air conditioner
WO2014188984A1 (ja) * 2013-05-20 2014-11-27 サンデン株式会社 車両用空気調和装置
JP2014226979A (ja) * 2013-05-20 2014-12-08 サンデン株式会社 車両用空気調和装置
WO2015198564A1 (en) 2014-06-25 2015-12-30 Denso Corporation Heat pump cycle device
WO2016080343A1 (ja) * 2014-11-21 2016-05-26 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
JP2016097817A (ja) * 2014-11-21 2016-05-30 三菱重工オートモーティブサーマルシステムズ株式会社 ヒートポンプ式車両用空調システム
US10137763B2 (en) 2014-11-21 2018-11-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat-pump-type vehicle air-conditioning system
WO2016203903A1 (ja) * 2015-06-16 2016-12-22 株式会社デンソー 車両用空調装置
JPWO2016203903A1 (ja) * 2015-06-16 2017-10-05 株式会社デンソー 車両用空調装置
JP2017189997A (ja) * 2016-04-11 2017-10-19 株式会社デンソー 空調装置
JP2019031148A (ja) * 2017-08-07 2019-02-28 本田技研工業株式会社 車両用空調装置
JP2020034228A (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
WO2020045261A1 (ja) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 車両空調装置用ヒートポンプシステム
JP7117945B2 (ja) 2018-08-30 2022-08-15 サンデン株式会社 車両空調装置用ヒートポンプシステム
US11794555B2 (en) 2018-08-30 2023-10-24 Sanden Corporation Heat pump system for vehicle air conditioning devices
WO2023090083A1 (ja) * 2021-11-19 2023-05-25 サンデン株式会社 車両用空調装置
WO2023199912A1 (ja) * 2022-04-15 2023-10-19 株式会社デンソー ヒートポンプサイクル装置

Also Published As

Publication number Publication date
US20110167850A1 (en) 2011-07-14
DE102011008217A1 (de) 2011-09-01

Similar Documents

Publication Publication Date Title
JP2011140291A (ja) 車両用空調装置
JP6794964B2 (ja) 冷凍サイクル装置
JP6015636B2 (ja) ヒートポンプシステム
JP5949648B2 (ja) 冷凍サイクル装置
JP6332560B2 (ja) 車両用空調装置
JP5445569B2 (ja) 車両用空調装置
JP6332193B2 (ja) 車両用空調装置
WO2013118456A1 (ja) 車両用空調装置
JP5935625B2 (ja) 冷凍サイクル制御装置
JP2018091536A (ja) 冷凍サイクル装置
WO2014002441A1 (ja) ヒートポンプサイクル
JP2019006330A (ja) 空調装置
JP2018036031A (ja) 冷凍サイクル装置
JP2018075922A (ja) 車両用空調装置
JP2013203221A (ja) 車両用の空調装置
JP5817660B2 (ja) 冷凍サイクル装置
JP6447232B2 (ja) 冷凍サイクル装置
JP5510374B2 (ja) 熱交換システム
JP6167891B2 (ja) ヒートポンプサイクル装置。
JP5935714B2 (ja) 冷凍サイクル装置
JP6375796B2 (ja) 冷凍サイクル装置
JP6544287B2 (ja) 空調装置
JP6369237B2 (ja) 空調装置
JP2016008792A (ja) ヒートポンプサイクル装置
JP5888126B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128