JP2011039354A - Optical fiber transmission system - Google Patents
Optical fiber transmission system Download PDFInfo
- Publication number
- JP2011039354A JP2011039354A JP2009188012A JP2009188012A JP2011039354A JP 2011039354 A JP2011039354 A JP 2011039354A JP 2009188012 A JP2009188012 A JP 2009188012A JP 2009188012 A JP2009188012 A JP 2009188012A JP 2011039354 A JP2011039354 A JP 2011039354A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- temperature
- transmission system
- tube
- fiber transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
本発明は、光ファイバ伝送系に係わり、ファイバ温度を制御することにより、伝送する分光の分光透過特性を安定することを可能にした光ファイバ伝送系に関する。 The present invention relates to an optical fiber transmission system, and more particularly to an optical fiber transmission system that can stabilize the spectral transmission characteristics of the transmitted spectrum by controlling the fiber temperature.
光ファイバは、その機械的柔軟性から、精密光学測定への使用頻度が近年増大しており、例えば、図8(a)に示すような光学系において、人工光源100の性能等級を判定するために、人工光源100からの分光を光ファイバ101からなる伝送系で伝送し、分光放射計102によって、分光放射照度を精密測定することが行われている。又、図8(b)は、図8(a)に示すような光学系における光学測定に用いられる典型的な光ファイバ伝送系を示す図であり、図8(c)は、図8(b)のE−E断面図である。図8(c)に示すよう、光ファイバ伝送系における、光ファイバ103は、複数ファイバが束になったファイババンドル構造1031又は単芯ファイバで構成されており、また、図8(b)に示すように、光ファイバ103の両端に設けられるファイバスリーブ104、105によって、光ファイバ103の両端においてファイババンドル1031の周りを被覆し保護する被覆1032を保持している。 In recent years, optical fibers have been frequently used for precision optical measurement due to their mechanical flexibility. For example, in order to determine the performance grade of the artificial light source 100 in an optical system as shown in FIG. In addition, the spectrum from the artificial light source 100 is transmitted through a transmission system including the optical fiber 101, and the spectral irradiance is precisely measured by the spectral radiometer 102. FIG. 8B is a diagram showing a typical optical fiber transmission system used for optical measurement in the optical system as shown in FIG. 8A, and FIG. It is EE sectional drawing of). As shown in FIG. 8C, the optical fiber 103 in the optical fiber transmission system is composed of a fiber bundle structure 1031 in which a plurality of fibers are bundled or a single-core fiber, and also shown in FIG. 8B. As described above, the fiber sleeves 104 and 105 provided at both ends of the optical fiber 103 hold the covering 1032 that covers and protects the periphery of the fiber bundle 1031 at both ends of the optical fiber 103.
しかし、このような光ファイバ伝送系は、設置状態によって分光透過特性が変動する弱点があり、この変動により測定値にばらつきが生じる欠陥があった。設置状態の変化する第1の理由は、光ファイバの曲がり具合の変化によるものである。これは測定中の光ファイバを支持する状態を固定することによって回避することができる。第2の理由は、光ファイバが設置される場所の気温変化である。気温変化は、測定室内の空調の点滅や大きな発熱量を有する計測用ランプの点滅などによって1〜2℃の変動として現れることがある。従来、このような気温変化による測定結果に与える影響を排除するために、受光素子自体に対する温度制御は入念に行われてきたが、これでは測定値の大きなばらつきが生じることを回避することはできない。
上記のごとく、光ファイバ伝送系を用いて人工光源100の分光放射照度を測定し、その性能等級を判定する場合、光ファイバ101のファイバ温度が外気に影響されて変化すると、その分光透過率が変わる。その結果、人工光源100の性能等級判定の際、分光放射計102において、光ファイバ101のファイバ温度が変化するごとに異なる結果が得られるという問題があった。
However, such an optical fiber transmission system has a weak point that the spectral transmission characteristics fluctuate depending on the installation state, and there is a defect that the measurement value varies due to the fluctuation. The first reason that the installation state changes is due to a change in the bending state of the optical fiber. This can be avoided by fixing the state of supporting the optical fiber under measurement. The second reason is a change in temperature at the place where the optical fiber is installed. The temperature change may appear as a fluctuation of 1 to 2 ° C. due to the blinking of the air conditioner in the measurement chamber or the blinking of the measuring lamp having a large calorific value. Conventionally, in order to eliminate the influence of the temperature change on the measurement result, the temperature control on the light receiving element itself has been carefully performed. However, it is not possible to avoid the occurrence of large variations in measurement values. .
As described above, when the spectral irradiance of the artificial light source 100 is measured using the optical fiber transmission system and the performance grade is determined, if the fiber temperature of the optical fiber 101 changes due to the outside air, the spectral transmittance is changed. change. As a result, when the performance grade of the artificial light source 100 is determined, the spectroradiometer 102 has a problem that a different result can be obtained each time the fiber temperature of the optical fiber 101 changes.
光ファイバ101における温度変化が、分光透過率に影響を及ぼす理由は、光ファイバ101を構成する種類の異なるガラス素材の屈折率が、温度変化によりそれぞれ異なった変化をすることにある。また屈折率は波長にも依存するため、測定中に光ファイバ101に温度変化があると光ファイバ101の分光透過率や入射部の開口数(NA)の値に変化が生じ、結果的として、分光放射計102において測定値のばらつきを生じる。 The reason why the temperature change in the optical fiber 101 affects the spectral transmittance is that the refractive indexes of different types of glass materials constituting the optical fiber 101 change differently depending on the temperature change. Further, since the refractive index also depends on the wavelength, if there is a temperature change in the optical fiber 101 during measurement, the spectral transmittance of the optical fiber 101 and the numerical aperture (NA) value of the incident portion change, and as a result, Variations in measured values occur in the spectroradiometer 102.
本発明の目的は、上記の問題点に鑑み、測定値のばらつきを抑制するために、光ファイバのファイバ温度を確実に安定化することを可能にした光ファイバ伝送系を提供することにある。 In view of the above problems, an object of the present invention is to provide an optical fiber transmission system capable of reliably stabilizing the fiber temperature of an optical fiber in order to suppress variations in measured values.
本発明は、上記の課題を解決するために、請求項1記載の発明は、分光を光ファイバによって伝送する光ファイバ伝送系において、内部に温度調整された流体を循環させるチューブを備え、該チューブを、前記光ファイバを内包するように、又は該光ファイバの外側面に、伝送方向に沿って配置したことを特徴とする光ファイバ伝送系である。
請求項2記載の発明は、前記光ファイバの外側の適当な位置に複数の測温体を設け、該測温体で測定された測定データに基づいて、前記チューブ内に循環する流体の温度を調整したことを特徴とする請求項1に記載の光ファイバ伝送系である。
請求項3記載の発明は、分光を光ファイバによって伝送する光ファイバ伝送系において、前記光ファイバの外側面に伝送方向に沿って加熱手段を設け、内部に温度調整された流体を循環させるチューブを備え、該チューブを、前記光ファイバ及び前記加熱手段を内包するように、又は該光ファイバ及び前記加熱手段の外側面に、伝送方向に沿って配置したことを特徴とする光ファイバ伝送系である。
請求項4記載の発明は、前記光ファイバの外側の適当な位置に複数の測温体を設け、該測温体で測定された測定データに基づいて、前記加熱手段の温度を調整すると共に前記チューブ内に循環する流体の温度を調整したことを特徴とする請求項3に記載の光ファイバ伝送系である。
請求項5記載の発明は、前記チューブの外側を前記光ファイバを内包するように断熱材で被覆したことを特徴とする請求項1ないし請求項4のいずれか1つに記載の光ファイバ伝送系である。
請求項6記載の発明は、分光を光ファイバによって伝送する光ファイバ伝送系において、
前記光ファイバの外側面に伝送方向に沿って加熱手段を設けると共に1個又は複数個の冷却又は加熱機能を有するペルチェ素子を設けたことを特徴とする光ファイバ伝送系である。
請求項7記載の発明は、前記光ファイバの外側の適当な位置に複数の測温体を設け、該測温体で測定された測定データに基づいて、前記加熱手段の温度を調整すると共に前記ペルチェ素子による前記冷却又は加熱機能を調整することを特徴とする請求項6に記載の光ファイバ伝送系である。
請求項8記載の発明は、前記加熱手段の外側を前記光ファイバを内包するように断熱材で被覆したことを特徴とする請求項6又は請求項7に記載の光ファイバ伝送系である。
In order to solve the above-mentioned problems, the present invention provides an optical fiber transmission system for transmitting a spectrum by an optical fiber, and includes a tube for circulating a fluid whose temperature is adjusted therein. Is disposed along the transmission direction so as to enclose the optical fiber or on the outer surface of the optical fiber.
According to the second aspect of the present invention, a plurality of temperature measuring elements are provided at appropriate positions outside the optical fiber, and the temperature of the fluid circulating in the tube is determined based on measurement data measured by the temperature measuring elements. The optical fiber transmission system according to claim 1, wherein the optical fiber transmission system is adjusted.
According to a third aspect of the present invention, in the optical fiber transmission system for transmitting the spectrum by an optical fiber, a heating means is provided on the outer surface of the optical fiber along the transmission direction, and a tube that circulates the temperature-adjusted fluid therein is provided. An optical fiber transmission system comprising: the tube disposed in the transmission direction so as to enclose the optical fiber and the heating unit or on an outer surface of the optical fiber and the heating unit. .
According to a fourth aspect of the present invention, a plurality of temperature measuring elements are provided at appropriate positions outside the optical fiber, the temperature of the heating means is adjusted based on measurement data measured by the temperature measuring elements, and The optical fiber transmission system according to claim 3, wherein the temperature of the fluid circulating in the tube is adjusted.
According to a fifth aspect of the present invention, the outer side of the tube is covered with a heat insulating material so as to enclose the optical fiber, and the optical fiber transmission system according to any one of the first to fourth aspects It is.
The invention according to claim 6 is an optical fiber transmission system for transmitting a spectrum by an optical fiber.
The optical fiber transmission system is characterized in that a heating means is provided on the outer surface of the optical fiber along the transmission direction, and one or more Peltier elements having a cooling or heating function are provided.
The invention according to claim 7 provides a plurality of temperature measuring elements at appropriate positions outside the optical fiber, adjusts the temperature of the heating means based on measurement data measured by the temperature measuring elements, and The optical fiber transmission system according to claim 6, wherein the cooling or heating function by a Peltier element is adjusted.
The invention according to claim 8 is the optical fiber transmission system according to claim 6 or 7, wherein the outside of the heating means is covered with a heat insulating material so as to enclose the optical fiber.
本発明によれば、光ファイバのファイバ温度を一定に保持できるため、測定中の光ファイバの分光透過率の変動を抑え、ファイバ先端から入力された分光の情報を気温の変動で損なうことなく、ファイバ後端に伝送させることができ、光ファイバを伝送路として用いる分光測定結果のばらつきを抑えることができる。具体的には、人工光源から温度制御された光ファイバで分光を伝送して分光放射照度を測定する際に、性能等級を誤り無く判定することができる。 According to the present invention, since the fiber temperature of the optical fiber can be kept constant, the fluctuation of the spectral transmittance of the optical fiber under measurement is suppressed, and the spectral information input from the fiber tip is not impaired by the fluctuation of the temperature. It can be transmitted to the rear end of the fiber, and variations in spectroscopic measurement results using the optical fiber as a transmission line can be suppressed. Specifically, when the spectrum is transmitted from an artificial light source using a temperature-controlled optical fiber and the spectral irradiance is measured, the performance grade can be determined without error.
本発明の第1の実施形態を図1を参照して説明する。
図1(a)は、本実施形態に係る伝送方向に平行な切断面から見た光ファイバ伝送系の構成を示す断面図、図1(b)は、図1(a)のA−A断面図である。
これらの図に示すように、この光ファイバ伝送系は、ファイババンドル1a及びファイバ被覆1bからなる光ファイバ1を、内側チューブ2と外側チューブ3で包み、温度調節器6で温度調節された水等からなる流体5を、内側チューブ2と外側チューブ3の間に、それらの一端側から他端側に流入させ、他端側から流出させて再び温度調節器6に循環させることによって、光ファイバ1を所定の温度に制御するものである。
A first embodiment of the present invention will be described with reference to FIG.
1A is a cross-sectional view showing a configuration of an optical fiber transmission system viewed from a cut surface parallel to the transmission direction according to the present embodiment, and FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG.
As shown in these drawings, the optical fiber transmission system includes an optical fiber 1 composed of a fiber bundle 1a and a fiber coating 1b, wrapped with an inner tube 2 and an outer tube 3, and temperature-adjusted by a temperature controller 6 or the like. The fluid 5 is made to flow between the inner tube 2 and the outer tube 3 from one end side thereof to the other end side, outflow from the other end side, and circulated again to the temperature controller 6, whereby the optical fiber 1. Is controlled to a predetermined temperature.
より詳細には、光ファイバ1の両端のファイバスリーブ7a、7bは、それぞれチューブ受け金具8a、8bに収納され、一方のチューブ受け金具8aは、内外チューブ2、3を介して他方のチューブ受金具8bに繋がっている。温度調節器6から流出した流体5は、一方のホース9aに流入し、一方のチューブ受金具8a内の通路を通り、内側チューブ2と外側チューブ3の間を流れ、他方のチューブ受金具8bを通って他方のホース9bに流出し、温度調節器6に帰還する。ここで、ファイバ温度は、光ファイバ1の適当な位置に取り付けられた不図示の複数の測温体(例えば、光ファイバ1からは測温されるが、流体5とは断熱される測温体)で測定され、測定データは温度調整器6に送られ、温度調節器6で温度調整された流体が一方のホース9aに流出され、循環される。通常、流体としては水が用いられる。なお、内外チューブ2、3が長く、チューブ中心位置で光ファイバ1を保持することが難しい場合は、不図示のファイバ支持体を適当な間隔で光ファイバ1の外側に取り付ける。また、外側チューブ3の外側面は内外チューブ2、3間を流れる流体の温度を一定に維持するために断熱材4で被覆される。 More specifically, the fiber sleeves 7a and 7b at both ends of the optical fiber 1 are accommodated in the tube receivers 8a and 8b, respectively, and one tube receiver 8a is connected to the other tube receiver via the inner and outer tubes 2 and 3 respectively. It is connected to 8b. The fluid 5 flowing out from the temperature controller 6 flows into one hose 9a, passes through a passage in one tube bracket 8a, flows between the inner tube 2 and the outer tube 3, and passes through the other tube bracket 8b. Then, it flows out to the other hose 9 b and returns to the temperature controller 6. Here, the fiber temperature is a plurality of temperature measuring elements (not shown) attached to appropriate positions of the optical fiber 1 (for example, temperature measuring elements which are measured from the optical fiber 1 but are insulated from the fluid 5). ) And the measured data is sent to the temperature controller 6, and the fluid whose temperature is adjusted by the temperature controller 6 flows out into one hose 9 a and is circulated. Usually, water is used as the fluid. In addition, when the inner and outer tubes 2 and 3 are long and it is difficult to hold the optical fiber 1 at the tube center position, a fiber support (not shown) is attached to the outside of the optical fiber 1 at an appropriate interval. The outer surface of the outer tube 3 is covered with a heat insulating material 4 in order to keep the temperature of the fluid flowing between the inner and outer tubes 2 and 3 constant.
本実施形態の発明によれば、外部の気温変化の影響により分光透過特性が変化する光ファイバ1の外側を温度調整された流体5を循環させることによって、光ファイバ1の分光透過特性の変動を抑える。また、外側チューブ3の外側を断熱材4で覆うことによって温度調整機能を向上させ、より一層光ファイバ1の分光透過特性の変動を抑えることができる。 According to the invention of this embodiment, the fluctuation of the spectral transmission characteristic of the optical fiber 1 is circulated by circulating the temperature-adjusted fluid 5 outside the optical fiber 1 whose spectral transmission characteristic changes due to an external temperature change. suppress. Further, by covering the outer side of the outer tube 3 with the heat insulating material 4, the temperature adjustment function can be improved, and fluctuations in the spectral transmission characteristics of the optical fiber 1 can be further suppressed.
次に、本発明の第2の実施形態を図2を参照して説明する。
図2(a)は、本実施形態に係る伝送方向に平行な切断面から見た光ファイバ伝送系の構成を示す断面図、図2(b)は、図2(a)のB−B断面図である。
本実施形態に係る光ファイバ伝送系は、第1の実施形態に係る光ファイバ伝送系における内側チューブ2を省略したものであり、温度調節器6で温度調節された水等からなる流体5を、ファイバ被覆1bと外側チューブ3の間を、それらの一端側から他端側に流入させ、他端側から流出させて再び温度調節器6に循環させる。なお、その他の構成は、図1に示した同符号の構成に対応するので、説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
2A is a cross-sectional view showing a configuration of an optical fiber transmission system viewed from a cut surface parallel to the transmission direction according to the present embodiment, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A. FIG.
In the optical fiber transmission system according to the present embodiment, the inner tube 2 in the optical fiber transmission system according to the first embodiment is omitted, and the fluid 5 made of water or the like whose temperature is adjusted by the temperature controller 6 is used. Between the fiber coating 1b and the outer tube 3, the one end side is made to flow into the other end side, the other end side is made to flow out, and the temperature controller 6 is circulated again. The other configurations correspond to the configurations with the same reference numerals shown in FIG.
本実施形態の発明においても、外部の気温変化の影響により分光透過特性が変化する光ファイバ1の外側に温度調整された流体5を循環させることによって、光ファイバ1の分光透過特性の変動を抑える。 Also in the invention of the present embodiment, the fluctuation of the spectral transmission characteristic of the optical fiber 1 is suppressed by circulating the temperature-adjusted fluid 5 outside the optical fiber 1 whose spectral transmission characteristic changes due to the influence of an external temperature change. .
次に、本発明の第3の実施形態を図3を参照して説明する。
図3(a)は、本実施形態に係る伝送方向に平行な切断面から見た光ファイバ伝送系の構成を示す断面図、図3(b)は、図3(a)のC−C断面図である。
これらの図に示すように、この光ファイバ伝送系では、一方のチューブ受け金具8aは、光ファイバ1の外側に設けられた、往路チューブ10a、10c、10eと復路チューブ10b、10d、10fを介して他方のチューブ受金具8bに繋がっている。温度調節器6から温度調節された流体5は、一方のホース9aに流入し、一方のチューブ受金具8a内の通路を通り、往路チューブ10a、10c、10eを介して分散して他方のチューブ受金具8bに流入し、流入した流体5は他方のチューブ受金具8bの通路を通り、復路チューブ10b、10d、10fを介して分散して一方のチューブ受金具8aに流入し、流入した流体5は一方のチューブ受金具8aの通路を通り、他方のホース9bに流出し、流出した流体5は再び温度調節器6に循環される。なお、その他の構成は、図1に示した同符号の構成に対応するので、説明を省略する。
Next, a third embodiment of the present invention will be described with reference to FIG.
3A is a cross-sectional view showing the configuration of the optical fiber transmission system viewed from a cut surface parallel to the transmission direction according to the present embodiment, and FIG. 3B is a cross-sectional view taken along the line CC in FIG. 3A. FIG.
As shown in these drawings, in this optical fiber transmission system, one tube receiving bracket 8a is provided via forward tubes 10a, 10c, and 10e and return tubes 10b, 10d, and 10f provided outside the optical fiber 1. And connected to the other tube bracket 8b. The fluid 5 whose temperature is adjusted from the temperature controller 6 flows into one hose 9a, passes through a passage in one tube bracket 8a, and is dispersed via the forward tubes 10a, 10c, and 10e to receive the other tube. The fluid 5 that has flowed into the metal fitting 8b passes through the passage of the other tube bracket 8b, is dispersed through the return tubes 10b, 10d, and 10f and flows into the tube bracket 8a. The fluid 5 that flows through the passage of one tube bracket 8a and flows out to the other hose 9b is circulated to the temperature controller 6 again. The other configurations correspond to the configurations with the same reference numerals shown in FIG.
本実施形態の発明においても、外部の気温変化の影響により分光透過特性が変化する光ファイバ1の外側に設けられた往路チューブ10a、10c、10e、及び復路チューブ10b、10d、10fに温度調節された流体5を循環させることによって、光ファイバ1の分光透過特性の変動を抑える。なお、往路チューブ10a、10c、10eと復路チューブ10b、10d、10fの外側全体は、断熱材4で被覆されている。 Also in the invention of this embodiment, the temperature is adjusted to the forward tubes 10a, 10c, and 10e and the return tubes 10b, 10d, and 10f provided outside the optical fiber 1 whose spectral transmission characteristics change due to the influence of an external temperature change. The fluid 5 is circulated to suppress fluctuations in the spectral transmission characteristics of the optical fiber 1. Note that the entire outer sides of the outward tubes 10a, 10c, and 10e and the return tubes 10b, 10d, and 10f are covered with the heat insulating material 4.
次に、本発明の第4の実施形態を図4を参照して説明する。
図4(a)は、本実施形態に係る伝送方向に平行な切断面から見た光ファイバ伝送系の構成を示す断面図、図4(b)は、図4(a)のD−D断面図である。
本実施形態に係る光ファイバ伝送系は、第1の実施形態に係る光ファイバ伝送系と比べて、光ファイバ1と内側チューブ2との間に、加熱手段としてのヒータ11が設けられている点で相違する。その他の構成は、図1に示した同符号の構成に対応するので、詳細な説明は省略する。
これらの図に示すように、ヒータ11は、光ファイバ1の経路が長く、途中の温度変化が無視できない場合に設けられる。更に、光ファイバ1の経路が長い場合は、外側チューブ3の表面から熱が出入りし、光ファイバ1のファイバ温度が不安定になってしまうので外側チューブ3の外側に断熱材4で被覆する。ファイバ温度は、光ファイバ1のヒータ11の巻数によって調整すると共に、ヒータ11に流す電流を、光ファイバ1に取り付けられた複数の測温体14の測定値に基づき、不図示のヒータ電源によって調整する。長い光ファイバ1の強度維持のために、流体5を流している外側チューブ3の外表面を補強テープ12で巻き、その外側に断熱材4で被覆し、更に、その外側を外側被覆13で覆う。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
4A is a cross-sectional view showing a configuration of an optical fiber transmission system viewed from a cut surface parallel to the transmission direction according to the present embodiment, and FIG. 4B is a cross-sectional view taken along a line DD in FIG. FIG.
The optical fiber transmission system according to the present embodiment is provided with a heater 11 as a heating means between the optical fiber 1 and the inner tube 2 as compared with the optical fiber transmission system according to the first embodiment. Is different. Other configurations correspond to the configurations of the same reference numerals shown in FIG. 1, and detailed description thereof is omitted.
As shown in these figures, the heater 11 is provided when the path of the optical fiber 1 is long and a temperature change in the middle cannot be ignored. Furthermore, when the path of the optical fiber 1 is long, heat enters and exits from the surface of the outer tube 3, and the fiber temperature of the optical fiber 1 becomes unstable, so that the outer tube 3 is covered with a heat insulating material 4. The fiber temperature is adjusted by the number of turns of the heater 11 of the optical fiber 1, and the current flowing through the heater 11 is adjusted by a heater power supply (not shown) based on the measured values of the plurality of temperature measuring elements 14 attached to the optical fiber 1. To do. In order to maintain the strength of the long optical fiber 1, the outer surface of the outer tube 3 in which the fluid 5 is flowing is wound with the reinforcing tape 12, and the outer side is covered with the heat insulating material 4, and the outer side is covered with the outer coating 13. .
本実施形態の発明によれば、外部の気温変化の影響により分光透過特性が変化する光ファイバ1の外側に温度調整された流体5を循環させると共に、光ファイバ1の外側を加熱することによって、光ファイバ1の分光透過特性の変動を抑える。また、外側チューブ3の外側を断熱材4で覆うことにより温度調整機能を向上させ、より一層、光ファイバ1の分光透過特性の変動を抑えることができる。 According to the invention of the present embodiment, by circulating the fluid 5 whose temperature is adjusted to the outside of the optical fiber 1 whose spectral transmission characteristics change due to the influence of external temperature change, and heating the outside of the optical fiber 1, The fluctuation of the spectral transmission characteristics of the optical fiber 1 is suppressed. Moreover, the temperature adjustment function can be improved by covering the outside of the outer tube 3 with the heat insulating material 4, and the fluctuation of the spectral transmission characteristics of the optical fiber 1 can be further suppressed.
次に、本発明の第5の実施形態を図5を参照して説明する。
図5は、本実施形態に係る伝送方向に平行な切断面から見た光ファイバ伝送系の構成を示す断面図である。
同図に示すように、この光ファイバ伝送系では、光ファイバ1にヒータ11を巻いてファイバ温度を調節すると共に、スリーブホルダー18や光ファイバ1の適切な箇所に設けられた1個又は複数個のペルチェ素子16による冷却又は加熱作用を利用してファイバ温度を制御する。ヒータ11及びペルチェ素子16に流す電流は、光ファイバ1やスリーブホルダー18に取り付けられた複数の測温体14の測定値に基づいて、不図示のヒータ電源やペルチェ素子用電源によって調整する。なお、各ペルチェ素子16には、光ファイバ1やヒータ11やファイバホルダ18a、18bから伝熱される熱伝導体15と、空気中に放熱するための放熱器17が設けられる。
Next, a fifth embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a cross-sectional view showing a configuration of an optical fiber transmission system viewed from a cut surface parallel to the transmission direction according to the present embodiment.
As shown in the figure, in this optical fiber transmission system, a heater 11 is wound around the optical fiber 1 to adjust the fiber temperature, and one or more provided at appropriate locations on the sleeve holder 18 and the optical fiber 1. The fiber temperature is controlled using the cooling or heating action of the Peltier element 16. The currents that flow through the heater 11 and the Peltier element 16 are adjusted by a heater power supply and a Peltier element power supply (not shown) based on the measurement values of the plurality of temperature measuring elements 14 attached to the optical fiber 1 and the sleeve holder 18. Each Peltier element 16 is provided with a heat conductor 15 that is transferred from the optical fiber 1, the heater 11, and the fiber holders 18a and 18b, and a radiator 17 that radiates heat into the air.
本実施形態に係る発明によれば、光ファイバ1の外側に設けたヒータ11と共に冷却又は加熱機能を持つペルチェ素子16を用いてファイバ温度の両方向調整を行うことにより温度調整機能を向上させることができ、光ファイバ1の分光透過特性の変動をより一層確実に抑えることができる。 According to the invention according to this embodiment, the temperature adjustment function can be improved by adjusting the fiber temperature in both directions using the Peltier element 16 having a cooling or heating function together with the heater 11 provided outside the optical fiber 1. It is possible to suppress the variation of the spectral transmission characteristics of the optical fiber 1 more reliably.
図6は、光ファイバに対して、温度調整した場合としない場合を比較した分光波長に対する分光放射照度変動を示すグラフである。
同図において、横軸は分光波長を、縦軸は分光透過特性を6回測定したときのデータを、比較的温度が安定していた2回目のデータで規格化したばらつきであり、温度調整が有る場合(実線)と無い場合(1点鎖線)について示したものである。
ここで使用した光ファイバは、人工光源の分光放射照度を測定し、その性能等級を判定するために使われたものである。ただし、波長帯域ごとに取り替える光ファイバの内で、温度調整を施したのは、図中に分光応答度を記したようにシリコン太陽電池のピーク感度帯となるためその効果が顕著な700nm〜950nmの波長帯域用光ファイバ1本のみである。
問題の700nm〜950nmの波長帯域について放射照度の変動を見ると、温度調整が有る場合のデータの変動は、無い場合の1桁下程度までに、小さくなっている。つまり、問題の波長帯域においては光ファイバに温度調整を施すことによって放射照度の測定結果に現れる変動が、大きく改善されていることが解る。
FIG. 6 is a graph showing the spectral irradiance fluctuation with respect to the spectral wavelength, comparing the case where the temperature is adjusted with respect to the optical fiber.
In this figure, the horizontal axis is the spectral wavelength, and the vertical axis is the variation obtained by standardizing the data obtained by measuring the spectral transmission characteristics six times with the second data where the temperature was relatively stable. This is shown for the case where there is a solid line (solid line) and the case where there is no solid line (one-dot chain line).
The optical fiber used here was used to measure the spectral irradiance of an artificial light source and determine its performance grade. However, among the optical fibers to be replaced for each wavelength band, the temperature adjustment is performed because the peak sensitivity band of the silicon solar cell is shown as the spectral response is shown in the figure, so that the effect is remarkable 700 nm to 950 nm. There is only one optical fiber for the wavelength band.
Looking at the fluctuation of irradiance in the wavelength band of 700 nm to 950 nm in question, the fluctuation of data when there is temperature adjustment is as small as one digit lower when there is no temperature adjustment. In other words, it can be seen that the fluctuation appearing in the measurement result of the irradiance is greatly improved by adjusting the temperature of the optical fiber in the wavelength band in question.
図7は、問題の700nm〜950nmの波長帯域用波長帯域光ファイバ1本のみについて温度調整が有る場合(実線)と無い場合(1点鎖線)の2つについて、全波長帯に渡って計算した校正値の変動に与える影響をエラーバー比較したグラフで示したものである。すなわち、図7は、図6の測定結果を用いて、全波長帯において6回に渡って実測したデータから計算したシリコン太陽電池校正値の変動に対するファイバ温度調整の有無の効果をエラーバー比較したグラフである。このグラフから解るように、光ファイバに温度調整を全く施さない場合に存在していた1.7%以上の校正値誤差が、700nm〜950nmの波長帯域用光ファイバ1本に温度調整を施すだけで、3分の1以下に改善される。 FIG. 7 is calculated over the entire wavelength band for two cases where there is a temperature adjustment (solid line) and there is no temperature adjustment (one-dot chain line) for only one wavelength band optical fiber for the wavelength band of 700 nm to 950 nm in question. It is the graph which compared the error bar with respect to the influence which it has on the fluctuation | variation of a calibration value. That is, FIG. 7 is an error bar comparison of the effect of fiber temperature adjustment on the variation of the silicon solar cell calibration value calculated from the data measured six times in all wavelength bands, using the measurement result of FIG. It is a graph. As can be seen from this graph, a calibration value error of 1.7% or more that existed when no temperature adjustment was performed on the optical fiber was only performed on one optical fiber for a wavelength band of 700 nm to 950 nm. Thus, it is improved to 1/3 or less.
1 光ファイバ
1a、1b ファイババンドル
2 内側チューブ
3 外側チューブ
4 断熱材
5 流体
6 温度調節器
7a、7b ファイバスリーブ
8a、8b チューブ受け金具
9a、9b ホース
10a、10c、10e 往路チューブ
10b、10d、10f 復路チューブ
11 ヒータ
12 補強テープ
13 外側被覆
14 測温体
15 熱伝導体
16 ペルチェ素子
17 放熱器
18 スリーブホルダー
DESCRIPTION OF SYMBOLS 1 Optical fiber 1a, 1b Fiber bundle 2 Inner tube 3 Outer tube 4 Heat insulating material 5 Fluid 6 Temperature controller 7a, 7b Fiber sleeve 8a, 8b Tube catch 9a, 9b Hose 10a, 10c, 10e Outward tube 10b, 10d, 10f Return tube 11 Heater 12 Reinforcement tape 13 Outer coating 14 Resistance temperature detector 15 Thermal conductor 16 Peltier element 17 Radiator 18 Sleeve holder
Claims (8)
内部に温度調整された流体を循環させるチューブを備え、該チューブを、前記光ファイバを内包するように、又は該光ファイバの外側面に、伝送方向に沿って配置したことを特徴とする光ファイバ伝送系。 In the optical fiber transmission system that transmits the spectrum by optical fiber,
An optical fiber comprising a tube for circulating a temperature-adjusted fluid therein, the tube being disposed along the transmission direction so as to enclose the optical fiber or on the outer surface of the optical fiber Transmission system.
前記光ファイバの外側面に伝送方向に沿って加熱手段を設け、内部に温度調整された流体を循環させるチューブを備え、該チューブを、前記光ファイバ及び前記加熱手段を内包するように、又は該光ファイバ及び前記加熱手段の外側面に、伝送方向に沿って配置したことを特徴とする光ファイバ伝送系。 In the optical fiber transmission system that transmits the spectrum by optical fiber,
A heating means is provided on the outer surface of the optical fiber along the transmission direction, and a tube for circulating a temperature-adjusted fluid is provided inside the optical fiber so as to contain the optical fiber and the heating means, or the tube An optical fiber transmission system comprising an optical fiber and an outer surface of the heating means arranged along a transmission direction.
前記光ファイバの外側面に伝送方向に沿って加熱手段を設けると共に1個又は複数個の冷却又は加熱機能を有するペルチェ素子を設けたことを特徴とする光ファイバ伝送系。 In the optical fiber transmission system that transmits the spectrum by optical fiber,
An optical fiber transmission system, wherein a heating means is provided on the outer surface of the optical fiber along a transmission direction, and one or a plurality of Peltier elements having a cooling or heating function are provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009188012A JP5424316B2 (en) | 2009-08-14 | 2009-08-14 | Optical fiber transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009188012A JP5424316B2 (en) | 2009-08-14 | 2009-08-14 | Optical fiber transmission system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011039354A true JP2011039354A (en) | 2011-02-24 |
JP5424316B2 JP5424316B2 (en) | 2014-02-26 |
Family
ID=43767180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009188012A Active JP5424316B2 (en) | 2009-08-14 | 2009-08-14 | Optical fiber transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5424316B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062484A1 (en) * | 2016-09-29 | 2018-04-05 | 古河電気工業株式会社 | Optical connection structure and optical module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713052A (en) * | 1993-06-21 | 1995-01-17 | Sumitomo Electric Ind Ltd | Temperature control type cable |
JPH09309742A (en) * | 1996-05-23 | 1997-12-02 | Heraeus Quarzglas Gmbh | Optical fiber for ultraviolet transmission, its production and transmission line using the same |
JP2002147660A (en) * | 2000-11-09 | 2002-05-22 | Daicel Chem Ind Ltd | Double-layer protective pipe |
JP2002267536A (en) * | 2001-03-08 | 2002-09-18 | Ando Electric Co Ltd | Wavelength measuring device |
-
2009
- 2009-08-14 JP JP2009188012A patent/JP5424316B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0713052A (en) * | 1993-06-21 | 1995-01-17 | Sumitomo Electric Ind Ltd | Temperature control type cable |
JPH09309742A (en) * | 1996-05-23 | 1997-12-02 | Heraeus Quarzglas Gmbh | Optical fiber for ultraviolet transmission, its production and transmission line using the same |
JP2002147660A (en) * | 2000-11-09 | 2002-05-22 | Daicel Chem Ind Ltd | Double-layer protective pipe |
JP2002267536A (en) * | 2001-03-08 | 2002-09-18 | Ando Electric Co Ltd | Wavelength measuring device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018062484A1 (en) * | 2016-09-29 | 2018-04-05 | 古河電気工業株式会社 | Optical connection structure and optical module |
JPWO2018062484A1 (en) * | 2016-09-29 | 2019-07-11 | 古河電気工業株式会社 | Optical connection structure, optical module |
Also Published As
Publication number | Publication date |
---|---|
JP5424316B2 (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2824463A1 (en) | Optical fiber for sensor and power device monitoring system | |
CN103674863A (en) | Spectrophotometer | |
US9448119B2 (en) | Radiation thermometer using off-focus telecentric optics | |
RU2698484C1 (en) | Device for measuring radiation power of fiber lasers | |
JP5424316B2 (en) | Optical fiber transmission system | |
US20140092383A1 (en) | Spectroscopic device | |
Yamaguchi et al. | Supercontinuum-source-based facility for absolute calibration of radiation thermometers | |
US20210181547A1 (en) | Methods and systems for thermal control of an optical source or optical filter in a light detection and ranging (lidar) apparatus | |
US5949935A (en) | Infrared optical fiber coupler | |
JP2008294262A (en) | Optical element module and its manufacturing method | |
Lowe | A pyrometer for calibration traceable to a future thermodynamic temperature scale | |
KR102262511B1 (en) | Temperature tunable lens zig and lens measurement apparatus having the same | |
US12019230B2 (en) | System and method for a precision variable focus telescope | |
Zur et al. | Fiber optic distributed thermal sensor | |
Pandya et al. | Improved signal to noise ratio and sensitivity of an infrared imaging video bolometer on large helical device by using an infrared periscope | |
US6122041A (en) | Liquid cooled light pipe assembly for pyrometric temperature measurement | |
JPS6266130A (en) | Minute cavity radiator device | |
US7190889B2 (en) | Non-contact heater and method for non-contact heating of a substrate for material deposition | |
Guerin et al. | Optical fibres for astronomical applications | |
Salim et al. | Calibration of a photodiode array spectrometer against the copper point | |
US8254789B2 (en) | Device and method for adjusting chromatic dispersion | |
US6545259B2 (en) | Optical wavelength monitor for a passive optical component | |
KR102600767B1 (en) | Apparatus for measuring concentration of metal ion and method thereof | |
JP2012177556A (en) | Heat equilibrium structure for radiation pyrometer sensor element | |
Yamaguchi et al. | Supercontinuum source-based system for pre-launch calibration of the hyperspectral sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120615 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5424316 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |