[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011038166A - Energizing member for fuel cell and method for producing the same - Google Patents

Energizing member for fuel cell and method for producing the same Download PDF

Info

Publication number
JP2011038166A
JP2011038166A JP2009187764A JP2009187764A JP2011038166A JP 2011038166 A JP2011038166 A JP 2011038166A JP 2009187764 A JP2009187764 A JP 2009187764A JP 2009187764 A JP2009187764 A JP 2009187764A JP 2011038166 A JP2011038166 A JP 2011038166A
Authority
JP
Japan
Prior art keywords
less
acid
roughened surface
mass
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009187764A
Other languages
Japanese (ja)
Inventor
Yoshikazu Morita
芳和 守田
Shinichi Kamoshita
真一 鴨志田
Takahiro Fujii
孝浩 藤井
Wakahiro Harada
和加大 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009187764A priority Critical patent/JP2011038166A/en
Publication of JP2011038166A publication Critical patent/JP2011038166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • ing And Chemical Polishing (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energizing member made of stainless steel for a fuel cell which has excellent reduction effect of contact resistance and also excellent elution suppression effect of metal ions in an acidic environment. <P>SOLUTION: The energizing member for a fuel cell of a low temperature working type is composed of a steel sheet having a composition comprising, by mass, ≤0.1% C, ≤1% Si, ≤2% Mn, 15 to 35% Cr and 0.5 to 3% Mo, if required, further comprising one or more kinds selected from ≤2% Ni, ≤1% Cu, ≤3% Al, ≤0.8% Nb and ≤0.8% Ti, and the balance Fe with inevitable impurities, and has a roughened surface with the average surface roughness SPa of 0.1 to 2.0 μm, and in which the surface layer part of the roughened surface is composed of a modified layer in which the concentration of Fe is reduced in such a manner that atomic ratio of Fe/(Cr+Fe) reaches ≤0.25 by the contact with an organic acid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体高分子型燃料電池、リン酸型燃料電池など、作動温度が250℃以下である低温作動タイプの燃料電池に使用される通電部材であって、特にセパレータなどの集電体として好適な通電部材、およびその製造方法に関するものである。   The present invention is an energization member used for a low temperature operation type fuel cell having an operation temperature of 250 ° C. or less, such as a solid polymer fuel cell and a phosphoric acid fuel cell, and particularly as a current collector such as a separator. The present invention relates to a suitable energizing member and a manufacturing method thereof.

低温作動タイプの燃料電池の中でも固体高分子型の燃料電池は、100℃以下での低温作動が可能であること、短時間で起動すること、各部材が固体からなる構造であるためメンテナンスが容易であること、振動や衝撃に強いこと、燃料効率が高く騒音が小さいことなど、数々の長所を備えており、既に一部では実用化が始まっている。   Among the low-temperature operating fuel cells, solid polymer fuel cells can operate at low temperatures below 100 ° C, start up in a short time, and each member is made of a solid structure, making maintenance easy. It has many advantages such as being strong against vibrations and shocks, high fuel efficiency and low noise, and some have already been put into practical use.

燃料電池は一般的に、各セルを直列につなぐことによって実用的な電力を取り出す構造になっている。例えば固体高分子型燃料電池の場合、イオン交換膜(固体高分子膜)の両面にカーボンペーパーなどからなる電極を配置し、一方の電極が水素等の燃料に、他方の電極が空気等の酸化性ガスにそれぞれ曝されるようにして、両電極をセパレータで挟むことにより1セルが構成され、このようなセルを積層することによって1つの燃料電池が構築される。最近では燃料のメタノールを電極上で直接反応させるタイプの「ダイレクトメタノール型燃料電池」も開発されている。   In general, a fuel cell has a structure in which practical power is taken out by connecting cells in series. For example, in the case of a polymer electrolyte fuel cell, electrodes made of carbon paper or the like are arranged on both sides of an ion exchange membrane (solid polymer membrane), one electrode is used for fuel such as hydrogen, and the other electrode is used for oxidation such as air. One cell is formed by sandwiching both electrodes between separators so as to be exposed to the respective gases, and one fuel cell is constructed by stacking such cells. Recently, a “direct methanol fuel cell” of a type in which fuel methanol directly reacts on an electrode has been developed.

セパレータは各セルを分離するとともに、電極と接触してセル間の通電を担う部材である。最近ではセパレータとしてステンレス鋼を使用し、電極としてカーボンペーパーを使用するタイプの固体高分子型燃料電池の実用化が盛んに検討されている。このようなタイプの固体高分子型燃料電池では、ステンレス鋼とカーボンペーパーとの間の接触抵抗を低減させることが大きな課題となっている。ステンレス鋼は導電性の低い不動態皮膜で覆われていることから、単にステンレス鋼表面とカーボンペーパー表面とを押圧した状態で接触させても、良好な導電性を確保することは難しい。そこで、従来から、ステンレス鋼表面を不動態皮膜のない貴金属でコーティングする手法や、粗面化する手法などにより、異種材料との間の接触抵抗を低減させることが各種試みられている(例えば特許文献1〜3)。しかし、貴金属をコーティングする手法はコストが増大し、固体高分子型燃料電池を広く普及させる上では採用し難い。また、一般的な粗面化手法ではカーボンペーパーとの間の接触抵抗を満足できるレベルに低減させることは必ずしも容易ではない。   The separator is a member that separates the cells and is in contact with the electrodes to carry electricity between the cells. Recently, a solid polymer fuel cell of the type using stainless steel as a separator and carbon paper as an electrode has been actively studied. In such a type of polymer electrolyte fuel cell, reducing the contact resistance between stainless steel and carbon paper has become a major issue. Since stainless steel is covered with a passive film having low electrical conductivity, it is difficult to ensure good electrical conductivity even if the stainless steel surface and the carbon paper surface are simply brought into contact with each other in a pressed state. Therefore, various attempts have been made to reduce the contact resistance between different materials by a technique of coating the surface of stainless steel with a noble metal having no passive film or a technique of roughening (for example, patents). Literatures 1-3). However, the method of coating the noble metal increases the cost, and is difficult to adopt for widely spreading the polymer electrolyte fuel cell. Moreover, it is not always easy to reduce the contact resistance with the carbon paper to a satisfactory level with a general roughening method.

また、イオン交換膜としてフッ素樹脂を用いた一般的な固体高分子型燃料電池の場合、稼働条件によってはイオン交換膜の分解が生じて酸性物質が発生し、セパレータが酸性環境に曝されることが想定される。その場合、セパレータのステンレス鋼表面から金属イオンが溶出しやすくなる。溶出した金属イオンがイオン交換膜に侵入するとイオン伝導性の低下につながり、さらには、イオン交換膜の分解を促進させる要因となる。したがって、燃料電池用の通電部材としては、酸性環境に曝された場合に、できるだけ金属イオンの溶出が防止される性質を備えたステンレス鋼を適用することが望まれる。   In addition, in the case of a general polymer electrolyte fuel cell using a fluororesin as an ion exchange membrane, depending on operating conditions, the ion exchange membrane may be decomposed to generate an acidic substance, and the separator is exposed to an acidic environment. Is assumed. In that case, metal ions are likely to elute from the stainless steel surface of the separator. When the eluted metal ions enter the ion exchange membrane, it leads to a decrease in ionic conductivity, and further promotes the decomposition of the ion exchange membrane. Therefore, it is desirable to apply stainless steel having the property of preventing the elution of metal ions as much as possible when exposed to an acidic environment as a current-carrying member for a fuel cell.

特開平11−297338号公報Japanese Patent Laid-Open No. 11-297338 特開2003−223904号公報JP 2003-223904 A 特開2001−6713JP2001-6713 特開2008−91225号公報JP 2008-91225 A 特開2000−345363号公報JP 2000-345363 A

ステンレス鋼とカーボンペーパーとの間の接触抵抗を低減させる手法として、本出願人は特許文献4において、マイクロピットを形成させる粗面化処理と、Cr濃度を高める不動態化処理を組み合わせる手法を開示した。この手法は、ステンレス鋼表面に、カーボンペーパーを構成する炭素繊維の表面凹凸にマッチングするような微細な粗面化表面を形成することにより、ステンレス鋼とカーボンペーパーの馴染みが改善される効果(特許文献4の段落0017、図1(C)参照)、および不動態皮膜中のCr濃度を増大させることにより接触抵抗の増大が抑制される効果(同段落0019参照)を利用したものである。この粗面化処理には塩酸等の非酸化性酸に浸漬する方法が採用され、不動態化処理には硝酸に浸漬する手法が採用される。   As a technique for reducing the contact resistance between stainless steel and carbon paper, the present applicant discloses, in Patent Document 4, a technique that combines a roughening process for forming micropits and a passivation process for increasing the Cr concentration. did. This technique has the effect of improving the familiarity of stainless steel and carbon paper by forming a fine rough surface on the stainless steel surface that matches the surface irregularities of the carbon fibers that make up the carbon paper (patented) This is the use of the effect of suppressing the increase in contact resistance by increasing the Cr concentration in the passive film (see paragraph 0017 in reference 4 and FIG. 1 (C)). A method of immersing in a non-oxidizing acid such as hydrochloric acid is employed for the roughening treatment, and a method of immersing in nitric acid is employed for the passivation treatment.

しかし、特許文献4の技術は、接触抵抗を減少させる手法として「表面凹凸のマッチング」を利用していることから、特定のカーボンペーパーに対しては良好な接触抵抗低減効果が得られるが、それ以外の電極材に対しては十分な効果が期待できないことがあり、汎用性に劣る。また、粗面化処理には、塩酸等の非酸化性酸の水溶液に例えば3分(180秒)以上浸漬する必要があり(特許文献4の表1参照)、必ずしも生産性が良好であるとは言えない。不動態化処理には硝酸を必要とし、作業面、環境面、コスト面での負荷が大きい。さらに、固体高分子型燃料電池の酸性環境において金属イオンの溶出を抑制することについても、特段の配慮はなされていない。したがって、特許文献4の技術には更なる改善が望まれる。   However, since the technique of Patent Document 4 uses “surface unevenness matching” as a method of reducing contact resistance, a good effect of reducing contact resistance can be obtained for specific carbon paper. For electrode materials other than those, sufficient effects may not be expected, and the versatility is poor. Further, in the roughening treatment, it is necessary to immerse in an aqueous solution of non-oxidizing acid such as hydrochloric acid for 3 minutes (180 seconds) or longer (see Table 1 of Patent Document 4), and the productivity is always good. I can't say that. Passivation requires nitric acid, which is heavy on the work, environment, and costs. Furthermore, no particular consideration has been given to suppressing the elution of metal ions in the acidic environment of the polymer electrolyte fuel cell. Therefore, further improvement is desired in the technique of Patent Document 4.

本発明は、接触抵抗の低減効果に優れ、かつ酸性環境での金属イオンの溶出抑制効果に優れる燃料電池用のステンレス鋼製通電部材であって、接触相手材(例えば電極材)の凹凸形態に対する汎用性を向上させたものを提供すること、およびそのような通電部材を比較的簡便な手法で製造する技術を提供することを目的とする。   The present invention is a stainless steel current-carrying member for a fuel cell that has an excellent effect of reducing contact resistance and an excellent metal ion elution suppressing effect in an acidic environment, and is provided for the uneven form of a contact partner material (for example, electrode material). It aims at providing the thing which improved the versatility, and providing the technique which manufactures such an electricity supply member by a comparatively simple method.

上記目的は、質量%で、C:0.1%以下、Si:1%以下、Mn:2%以下、Cr:15〜35%、Mo:0.5〜3%、必要に応じてさらにNi:2%以下、Cu:1%以下、Al:3%以下、Nb:0.8%以下、Ti:0.8%以下の1種以上を含有し、残部Feおよび不可避的不純物の組成を有する鋼板からなり、平均面粗さSPaが0.1〜2.0μmである粗面化表面を有し、当該粗面化表面の表層部は有機酸との接触によりFe濃度をFe/(Cr+Fe)原子比が0.25以下となるように減じてなる改質層で構成されている低温作動タイプの燃料電池用通電部材によって達成される。   The purpose is mass%, C: 0.1% or less, Si: 1% or less, Mn: 2% or less, Cr: 15 to 35%, Mo: 0.5 to 3%, and if necessary, Ni : 2% or less, Cu: 1% or less, Al: 3% or less, Nb: 0.8% or less, Ti: 0.8% or less, containing Fe and unavoidable impurities It is made of a steel plate and has a roughened surface with an average surface roughness SPa of 0.1 to 2.0 μm. The surface layer portion of the roughened surface has an Fe concentration of Fe / (Cr + Fe) by contact with an organic acid. This is achieved by a low temperature operation type fuel cell energization member composed of a reforming layer reduced so that the atomic ratio is 0.25 or less.

ここで、「面粗さSPa」は、JIS B0601−2001に規定される断面曲線の算術平均高さPaを一定面積の表面領域について測定し、その平均値をとったものである。具体的には、SPaは走査型共焦点レーザー顕微鏡により測定される三次元表面プロファイルのデータを解析することにより求まる面粗さパラメータの1つであり、断面曲面の平均面に対する断面曲面の標高の絶対値の平均値を意味する。三次元表面プロファイルを測定する表面領域は、一辺が20〜120μmの矩形の表面領域とすればよい。走査型共焦点レーザー顕微鏡の深さ方向分解能は0.01μm以下とすることが望ましい。   Here, “surface roughness SPa” is obtained by measuring the arithmetic average height Pa of a cross-sectional curve defined in JIS B0601-2001 for a surface area of a certain area and taking the average value. Specifically, SPa is one of the surface roughness parameters obtained by analyzing the data of the three-dimensional surface profile measured by the scanning confocal laser microscope, and the elevation of the cross-sectional curved surface relative to the average surface of the cross-sectional curved surface. Means the average of absolute values. The surface region for measuring the three-dimensional surface profile may be a rectangular surface region having a side of 20 to 120 μm. It is desirable that the resolution in the depth direction of the scanning confocal laser microscope is 0.01 μm or less.

粗面化表面の表層部に形成されている改質層のFe/(Cr+Fe)原子比は、XPS(X線光電子分光分析)による最表面からの分析で求まる化合物状態のFeおよびCrの原子%に基づいて算出することができる。   The Fe / (Cr + Fe) atomic ratio of the modified layer formed on the surface portion of the roughened surface is the atomic% of Fe and Cr in the compound state determined by analysis from the outermost surface by XPS (X-ray photoelectron spectroscopy) Can be calculated based on

前記粗面化表面は、隣り合う凹部同士が接している部分にエッジ状境界を有するものであることが極めて効果的である。そのような粗面化表面は、非酸化性の無機酸と塩化第二鉄の混合水溶液中でのエッチングにより形成することができる。   It is extremely effective that the roughened surface has an edge-like boundary at a portion where adjacent concave portions are in contact with each other. Such a roughened surface can be formed by etching in a mixed aqueous solution of a non-oxidizing inorganic acid and ferric chloride.

本発明の燃料電池用通電部材の具体的な製造方法として、上記化学組成を有する鋼板を、FeCl3(塩化第二鉄)濃度:5〜30質量%、HCl濃度:2〜20質量%、HCl/FeCl3モル比:0.3〜20、温度:35〜70℃の塩酸+塩化第二鉄水溶液に、3〜120秒の範囲内の条件で浸漬することにより、平均面粗さSPaが0.1〜2.0μmである粗面化表面を形成する工程、
前記粗面化表面を有機酸の水溶液に接触させることにより表層部のFeを優先的に溶解させ、粗面化表面の表層部にFe/(Cr+Fe)原子比が0.25以下である改質層を形成する工程、
を有する製造方法を挙げることができる。
前記有機酸としては、たとえばクエン酸、マレイン酸、酒石酸、乳酸、リンゴ酸、コハク酸の1種または2種以上を使用することが好適である。
As a specific method for producing the current-carrying member for a fuel cell of the present invention, a steel plate having the above chemical composition is prepared by using FeCl 3 (ferric chloride) concentration: 5 to 30% by mass, HCl concentration: 2 to 20% by mass, HCl. / FeCl 3 molar ratio: 0.3-20, temperature: 35-70 ° C. Hydrochloric acid + ferric chloride aqueous solution soaked in conditions within the range of 3-120 seconds, the average surface roughness SPa is 0 Forming a roughened surface that is .1 to 2.0 μm;
The surface of the roughened surface is contacted with an aqueous solution of an organic acid to preferentially dissolve Fe in the surface layer, and the surface layer of the roughened surface has a Fe / (Cr + Fe) atomic ratio of 0.25 or less. Forming a layer;
The manufacturing method which has can be mentioned.
As the organic acid, for example, one or more of citric acid, maleic acid, tartaric acid, lactic acid, malic acid, and succinic acid are preferably used.

本発明によれば、後述のように粗面化表面の塑性変形を利用して接触相手材との接触抵抗が低減され、かつ酸性環境での金属イオンの抑制効果にも優れる燃料電池用のステンレス鋼製通電部材が実現できる。この材料は相手材(例えば電極材)の凹凸形態に対する汎用性が高いので、ダイレクトメタノール型燃料電池をはじめとする各種固体高分子型燃料電池の集電材料として好適である。   According to the present invention, as will be described later, the stainless steel for a fuel cell, in which the contact resistance with the contact partner material is reduced by utilizing plastic deformation of the roughened surface and the metal ion suppression effect in an acidic environment is excellent. A steel energizing member can be realized. Since this material is highly versatile with respect to the uneven form of the counterpart material (for example, electrode material), it is suitable as a current collecting material for various polymer electrolyte fuel cells such as direct methanol fuel cells.

マイクロピットを形成した従来の燃料電池セパレータ用ステンレス鋼板における表面付近の断面形態を模式的に示した図。The figure which showed typically the cross-sectional form of the surface vicinity in the conventional stainless steel plate for fuel cell separators which formed the micropit. 本発明の通電部材における表面付近の断面形態を模式的に示した図。The figure which showed typically the cross-sectional form of the surface vicinity in the electricity supply member of this invention.

図1に、例えば特許文献4に開示されるようなマイクロピットを形成した従来の燃料電池セパレータ用ステンレス鋼板における表面付近の断面形態を模式的に示す。ステンレス鋼素地1の表面には、非酸化性酸(塩酸、硫酸など)によるエッチングと、酸化性酸(硝酸)による不動態化処理によって凹部2が多数形成されている。隣接する凹部2の境界部分もエッチング作用を受け、比較的なだらかな断面形態の凹部境界3が形成される。特許文献4の手法によれば、このような凹凸のピッチが、カーボンペーパー繊維表面の凹凸形態と良好なマッチングを呈し(特許文献4の図1(c)参照)、それによって接触抵抗が効果的に低減されるという。ただし、この場合は不動態化処理も接触抵抗を低減させる上で重要な役割を担っている。すなわち、単にマッチングの良い凹凸ピッチを得るだけでは不十分であり、不動態化処理を施すことによってはじめて、カーボンペーパーとの接触抵抗は顕著に低減する(引用文献4の表5における比較例と実施例の対比を参照)。   FIG. 1 schematically shows a cross-sectional form in the vicinity of the surface of a conventional stainless steel plate for a fuel cell separator in which micropits as disclosed in, for example, Patent Document 4 are formed. A large number of recesses 2 are formed on the surface of the stainless steel substrate 1 by etching with a non-oxidizing acid (hydrochloric acid, sulfuric acid, etc.) and a passivation treatment with an oxidizing acid (nitric acid). A boundary portion between adjacent recesses 2 is also subjected to an etching action, and a recess boundary 3 having a relatively gentle cross-sectional shape is formed. According to the method of Patent Document 4, such uneven pitch exhibits good matching with the uneven shape of the carbon paper fiber surface (see FIG. 1 (c) of Patent Document 4), thereby making contact resistance effective. It is said that it is reduced. However, in this case, the passivation treatment also plays an important role in reducing the contact resistance. That is, it is not sufficient to simply obtain an uneven pitch with good matching, and the contact resistance with the carbon paper is not significantly reduced only after the passivation treatment (Comparative Example and Implementation in Table 5 of Reference 4). See example contrast).

図2に、本発明の平均面粗さSPaが0.1〜2.0μmに調整された通電部材における表面付近の断面形態を模式的に示す。ステンレス鋼素地1の表面には、例えば塩化第二鉄を添加した無機酸の水溶液でエッチングすることにより形成される凹部2が多数存在している。そのような水溶液を用いると、鋼板表面に生じたピットの内壁がエッチングされていき、開口径のわりには深さの深い凹部2が形成される。ピットの成長に伴って隣り合うピットの壁面同士がぶつかり、その結果、凹部境界3はエッジ状となる。また、有機酸による表面改質においては凹凸形態を大きく変えるようなエッチングが生じないので、改質層を形成する工程を経た後もエッジ状境界が存在する。   In FIG. 2, the cross-sectional form of the surface vicinity in the electricity supply member by which average surface roughness SPa of this invention was adjusted to 0.1-2.0 micrometers is typically shown. On the surface of the stainless steel substrate 1, there are a large number of recesses 2 formed by etching with an aqueous solution of an inorganic acid to which ferric chloride is added, for example. When such an aqueous solution is used, the inner wall of the pit generated on the surface of the steel sheet is etched, and a deep recess 2 is formed instead of the opening diameter. As the pits grow, the wall surfaces of the adjacent pits collide with each other, and as a result, the recess boundary 3 has an edge shape. Further, in the surface modification with an organic acid, etching that greatly changes the concavo-convex shape does not occur, so that an edge boundary exists even after the step of forming the modified layer.

このような粗面化ステンレス鋼板からなる通電部材と接触相手材との間に面圧を付与した状態で燃料電池スタックを構築した際、粗面化ステンレス鋼板のエッジ状境界は、接触相手材から受ける応力によって塑性変形し、接触相手材との接触面積が増大する。また、塑性変形によってステンレス鋼素地の不動態皮膜には亀裂等の欠陥が導入される。これらの作用が相俟って顕著な接触抵抗低減効果がもたらされるのである。その接触抵抗低減効果は、接触相手材のミクロ構造とのマッチングに依存したものではないので、相手材に対する汎用性も高い。
以下、本発明を特定する事項について説明する。
When a fuel cell stack is constructed with a surface pressure applied between a current-carrying member made of such a roughened stainless steel plate and a contact partner material, the edge boundary of the roughened stainless steel plate is separated from the contact partner material. The plastic deformation is caused by the received stress, and the contact area with the contact partner increases. Moreover, defects such as cracks are introduced into the passive film of the stainless steel substrate due to plastic deformation. Together, these actions bring about a significant contact resistance reduction effect. The contact resistance reduction effect is not dependent on matching with the microstructure of the contact partner material, and is therefore highly versatile.
Hereinafter, the matter which specifies this invention is demonstrated.

〔ステンレス鋼板の化学組成〕
本発明では、オーステナイト系鋼種に比べて熱膨張係数が小さいフェライト系ステンレス鋼種を採用する。以下、鋼組成における「%」は特に断らない限り「質量%」を意味する。
Cは、多量に含有するとステンレス鋼の加工性、低温脆性に悪影響を及ぼす場合があるが、本発明では0.1%までのC含有が許容される。0.05%以下とすることがより好ましい。
[Chemical composition of stainless steel sheet]
In the present invention, a ferritic stainless steel type having a smaller thermal expansion coefficient than that of the austenitic steel type is employed. Hereinafter, “%” in the steel composition means “% by mass” unless otherwise specified.
When C is contained in a large amount, it may adversely affect the workability and low temperature brittleness of stainless steel, but in the present invention, C content up to 0.1% is allowed. More preferably, it is 0.05% or less.

Siは、多量に含有すると鋼を硬質化して加工性を阻害するので、1%以下に制限され0.5%以下とすることがより好ましい。   If Si is contained in a large amount, it hardens the steel and impairs workability, so it is limited to 1% or less, and more preferably 0.5% or less.

Mnは、多量に含有すると加工性低下、耐食性低下、接触抵抗の増大を招くので、2%以下に制限され、1.5%以下とすることがより好ましい。   When Mn is contained in a large amount, workability, corrosion resistance, and contact resistance are increased. Therefore, Mn is limited to 2% or less, and more preferably 1.5% or less.

Crは、ステンレス鋼の耐食性を確保するために重要な元素である。固体高分子型燃料電池のセル内環境を考慮すると15%以上のCr含有量を確保する必要がある。ただし、多量のCr含有は加工性の低下を招くので、Cr含有量は35%以下に制限され、30%以下とすることがより好ましい。25%以下に管理しても構わない。   Cr is an important element for ensuring the corrosion resistance of stainless steel. Considering the in-cell environment of the polymer electrolyte fuel cell, it is necessary to ensure a Cr content of 15% or more. However, since a large amount of Cr causes a decrease in workability, the Cr content is limited to 35% or less, and more preferably 30% or less. You may manage to 25% or less.

Moは、Crとの共存によりステンレス鋼の耐食性を向上させる元素である。本発明ではセル内環境に曝されたときに優れた耐久性を呈するように、Mo含有量が0.5%以上の鋼種を採用する。ただし、多量のMo含有はステンレス鋼を硬質化させ加工性劣化を招き、またコスト的にも不利となるので、Mo含有量の上限は3%に制限される。2%以下に管理しても構わない。   Mo is an element that improves the corrosion resistance of stainless steel by coexistence with Cr. In the present invention, a steel type having a Mo content of 0.5% or more is employed so as to exhibit excellent durability when exposed to the in-cell environment. However, since a large amount of Mo content hardens stainless steel and causes deterioration of workability, and is also disadvantageous in terms of cost, the upper limit of the Mo content is limited to 3%. You may manage to 2% or less.

Ni、Cuは、酸性雰囲気での耐全面腐食性を改善し、またフェライト系ステンレス鋼の低温靭性を改善する作用があるため、必要に応じてこれらの1種以上を添加することができる。上記作用を十分に発揮させるには、Niの場合は0.15%以上、Cuの場合は0.2%以上の含有量を確保することがより効果的である。ただし、燃料電池使用中にこれらの元素が溶出すると電池性能の低下を招く場合がある。種々検討の結果、Ni、Cuの1種以上を添加する場合は、Niは2%以下、Cuは1%以下の範囲で行う。   Since Ni and Cu have the effect of improving the general corrosion resistance in an acidic atmosphere and improving the low temperature toughness of the ferritic stainless steel, one or more of these can be added as necessary. In order to sufficiently exhibit the above action, it is more effective to secure a content of 0.15% or more in the case of Ni and 0.2% or more in the case of Cu. However, elution of these elements during use of the fuel cell may lead to a decrease in cell performance. As a result of various studies, when one or more of Ni and Cu are added, Ni is 2% or less, and Cu is 1% or less.

Alは、鋼の脱酸剤として機能するとともに、Nの固定にも有用であることから、必要に応じて添加することができる。この場合、0.04%以上の含有量を確保することがより効果的である。ただし、Alを添加する場合は3%以下とすることが望ましく、1.5%以下がより好ましい。   Al functions as a deoxidizer for steel and is also useful for fixing N. Therefore, Al can be added as necessary. In this case, it is more effective to secure a content of 0.04% or more. However, in the case of adding Al, it is preferably 3% or less, and more preferably 1.5% or less.

Ti、Nbは、C、Nを固定し加工性を改善する作用があり、必要に応じて添加される。そのためにはTi:0.03%以上、Nb:0.03%以上の1種以上を添加することがより効果的である。ただし、Ti、Nbの1種以上を添加する場合は、Ti、Nbとも0.8%以下の含有量とする必要があり、0.5%以下がより好ましい。   Ti and Nb have the effect of fixing C and N and improving workability, and are added as necessary. For that purpose, it is more effective to add one or more of Ti: 0.03% or more and Nb: 0.03% or more. However, when adding 1 or more types of Ti and Nb, it is necessary to make content of both Ti and Nb into 0.8% or less, and 0.5% or less is more preferable.

〔平均面粗さSPa〕
発明者らは詳細な検討の結果、後述の粗面化手法により平均面粗さSPaが0.1μm以上となる粗面化表面を形成したとき、隣り合う凹部同士が接している部分に塑性変形が容易なエッジ状境界を有する粗面化形態を実現させることができ、接触相手材に押圧されたときの塑性変形に起因する顕著な接触抵抗低減効果を得ることができる。SPaが0.1μm未満の場合はピットの成長が不十分であり、鋭い角度のエッジ状境界が形成されにくいので顕著な接触抵抗低減効果を安定して得ることが難しくなる。一方、SPaが2.0μmを超えるような粗面化表面では、ピットが過剰に成長し、ピット同士の「食い合い」によって鋭い角度のエッジ状境界の量が減少している状態となっている場合が多い。そうなると接触抵抗の低減効果は小さくなってしまう。したがって、本発明では平均面粗さSPaが0.1〜2.0μmに調整されたステンレス鋼板を対象とする。特に好ましいSPaの範囲は0.1〜1.0μmである。
[Average surface roughness SPa]
As a result of detailed studies, the inventors have formed a roughened surface having an average surface roughness SPa of 0.1 μm or more by a roughening method described later, and plastic deformation is caused in a portion where adjacent concave portions are in contact with each other. It is possible to realize a roughened form having an edge boundary that is easy to achieve, and to obtain a significant contact resistance reduction effect due to plastic deformation when pressed against a contact partner material. When SPa is less than 0.1 μm, the growth of pits is insufficient, and an edge boundary with a sharp angle is difficult to be formed, so that it becomes difficult to stably obtain a remarkable contact resistance reduction effect. On the other hand, on the roughened surface where SPa exceeds 2.0 μm, the pits grow excessively, and the amount of edge-like boundaries with sharp angles is reduced due to the “biting” between the pits. There are many cases. If it becomes so, the reduction effect of contact resistance will become small. Therefore, the present invention is directed to a stainless steel plate whose average surface roughness SPa is adjusted to 0.1 to 2.0 μm. A particularly preferable range of SPa is 0.1 to 1.0 μm.

〔改質層〕
本発明では、低温作動タイプの燃料電池のセル内環境で金属イオンの溶出を抑止するための手段として、上記の粗面化表面の表層部に、有機酸との接触により、化合物として存在するFeおよびCrの濃度において、Fe濃度をFe/(Cr+Fe)原子比が0.25以下となるように低減させた改質層を形成させる。発明者らの検討によれば、セル内環境でステンレス鋼からの溶出量が最も多くなる金属元素は、ステンレス鋼素地の構成元素として最も多く含有されるFeである。表層部のFe濃度を予め減少させておくことにより、セル内の酸性環境におけるFeの溶出量を大幅に低減できることがわかった。一方、耐食性を確保し、Fe以外の鋼成分元素(特に不動態皮膜中に濃化しやすいMo)を含めたトータル的な金属元素の溶出量を低減させる上で、表層部に存在する不動態皮膜中のCr濃度を高めることが極めて有効である。詳細な検討の結果、XPSによる最表面からの分析により化合物状態でのFe/(Cr+Fe)原子比が0.25以下となるような改質層を形成させたとき、酸性環境での金属イオン溶出量が大幅に減少することがわかった。鋼種により基本的な耐食性レベルは相違するが、同一鋼種で対比した場合、本発明で規定する組成範囲のフェライト系ステンレス鋼であれば、いずれの鋼種においても化合物状態でのFe/(Cr+Fe)原子比を0.25以下とすることにより、金属イオンの溶出量の顕著な低減効果が認められる。このFe/(Cr+Fe)原子比が0.20以下に調整されているものが特に好適である。
[Modified layer]
In the present invention, as a means for suppressing elution of metal ions in the in-cell environment of a low temperature operation type fuel cell, Fe that exists as a compound on the surface layer of the roughened surface by contact with an organic acid. Then, a modified layer is formed in which the Fe concentration is reduced so that the Fe / (Cr + Fe) atomic ratio is 0.25 or less. According to the study by the inventors, the metal element with the largest amount of elution from stainless steel in the cell environment is Fe that is contained most as a constituent element of the stainless steel substrate. It was found that the amount of Fe elution in the acidic environment in the cell can be greatly reduced by reducing the Fe concentration in the surface layer portion in advance. On the other hand, in order to ensure corrosion resistance and reduce the total amount of elution of metal elements including steel component elements other than Fe (especially Mo which tends to be concentrated in the passive film), the passive film exists on the surface layer. It is extremely effective to increase the Cr concentration in the medium. As a result of detailed examination, metal ions were eluted in an acidic environment when a modified layer was formed such that the Fe / (Cr + Fe) atomic ratio in the compound state was 0.25 or less by analysis from the outermost surface by XPS. The amount was found to be significantly reduced. Although the basic corrosion resistance level differs depending on the steel type, when compared with the same steel type, any ferritic stainless steel having the composition range defined in the present invention can be obtained by combining Fe / (Cr + Fe) atoms in a compound state in any steel type. By setting the ratio to 0.25 or less, a remarkable reduction effect of the elution amount of metal ions is recognized. It is particularly preferable that the Fe / (Cr + Fe) atomic ratio is adjusted to 0.20 or less.

〔粗面化処理〕
上述の粗面化表面を形成させる手法として、ステンレス鋼板を「非酸化性の無機酸(例えば塩酸)」と「塩化第二鉄」の混合水溶液中でエッチングする方法が極めて有効である。具体的には、FeCl3(塩化第二鉄)濃度:5〜30質量%、HCl濃度:2〜20質量%、HCl/FeCl3モル比:0.3〜20、温度:35〜70℃、浸漬時間:3〜120秒という条件範囲内において、平均面粗さSPaが0.1〜2.0μmである粗面化表面が得られる条件を見出すことができる。このとき、隣り合う凹部同士が接している部分にエッジ状境界を有する粗面化形態(図2参照)が得られる。鋼種により、上記条件範囲内における最適条件は多少変動する。
(Roughening treatment)
As a method for forming the roughened surface, a method of etching a stainless steel plate in a mixed aqueous solution of “non-oxidizing inorganic acid (for example, hydrochloric acid)” and “ferric chloride” is extremely effective. Specifically, FeCl 3 (ferric chloride) concentration: 5-30% by mass, HCl concentration: 2-20% by mass, HCl / FeCl 3 molar ratio: 0.3-20, temperature: 35-70 ° C., Immersion time: Within the condition range of 3 to 120 seconds, it is possible to find a condition for obtaining a roughened surface having an average surface roughness SPa of 0.1 to 2.0 μm. At this time, the roughening form (refer FIG. 2) which has an edge-like boundary in the part which adjacent recessed parts contact | connect is obtained. Depending on the steel type, the optimum conditions within the above condition range will vary somewhat.

塩化第二鉄はステンレス鋼表面に孔食を発生させる作用を有し、塩酸はステンレス鋼表面を全面的に溶解させる作用を有する。これら2種類の物質を混合した水溶液中にフェライト系ステンレス鋼を浸漬する手法は、エッジ状境界を有する粗面化形態を得るうえで特に好適である。   Ferric chloride has the action of generating pitting corrosion on the stainless steel surface, and hydrochloric acid has the action of completely dissolving the stainless steel surface. The technique of immersing ferritic stainless steel in an aqueous solution in which these two types of substances are mixed is particularly suitable for obtaining a roughened form having an edge-like boundary.

〔有機酸処理〕
上記の粗面化処理を施したのち、その粗面化表面を有機酸と接触させることによりFe/(Cr+Fe)原子比が0.25以下である改質層を形成することができる。前記有機酸としては、たとえばクエン酸、マレイン酸、酒石酸、乳酸、リンゴ酸、コハク酸の1種または2種以上を使用することが好適である。有機酸を用いたステンレス鋼表面の改質技術は例えば特許文献5に開示されている。有機酸はステンレス鋼表層部のFeをキレート化して奪い取る作用を有するものと考えられる。不動態皮膜の主要構成元素の一つであるCrはキレート化しないことから、有機酸との接触により表層部のFeが優先的に除去される。これによって、セル内環境に曝されたときには、溶出しやすいFeが既に表層付近に少なくなっているために、Feの新たな溶出が顕著に軽減される。また、表層部にはCrが濃化することから、耐食性向上により、Fe以外の金属イオンの溶出防止効果も向上する。さらに、有機酸による処理によれば、無機酸(塩酸、硫酸、硝酸等)を用いた処理とは異なり、既に形成されている粗面化形態を維持することが可能であることがわかった。したがって、上述の塩化第二鉄を用いた粗面化処理との組み合わせにより、エッジ状境界を有する粗面化表面において、Fe濃度を減じた改質層を形成させることが可能となる。
[Organic acid treatment]
After performing the roughening treatment, a modified layer having an Fe / (Cr + Fe) atomic ratio of 0.25 or less can be formed by bringing the roughened surface into contact with an organic acid. As the organic acid, for example, one or more of citric acid, maleic acid, tartaric acid, lactic acid, malic acid, and succinic acid are preferably used. For example, Patent Document 5 discloses a technique for modifying a stainless steel surface using an organic acid. The organic acid is considered to have an action of chelating and removing Fe from the surface layer portion of the stainless steel. Since Cr, which is one of the main constituent elements of the passive film, is not chelated, Fe in the surface layer is preferentially removed by contact with an organic acid. As a result, when exposed to the in-cell environment, Fe that easily elutes has already decreased in the vicinity of the surface layer, so that new elution of Fe is remarkably reduced. Further, since Cr is concentrated in the surface layer portion, the effect of preventing the elution of metal ions other than Fe is improved by improving the corrosion resistance. Furthermore, it has been found that the treatment with an organic acid can maintain the roughened form already formed, unlike the treatment using an inorganic acid (hydrochloric acid, sulfuric acid, nitric acid, etc.). Therefore, it becomes possible to form a modified layer in which the Fe concentration is reduced on the roughened surface having an edge boundary by combination with the roughening treatment using ferric chloride.

表1に示す組成を有する板厚0.2mmのステンレス鋼板(No.2D仕上げ材)を用意した。   A stainless steel plate (No. 2D finishing material) having a thickness of 0.2 mm having the composition shown in Table 1 was prepared.

Figure 2011038166
Figure 2011038166

各ステンレス鋼板から試験片を切り出し、粗面化処理を施し、次いで有機酸処理を施すことにより供試材とした。一部、粗面化処理、有機酸処理の一方または双方を施していない供試材も用意した。   A test piece was cut out from each stainless steel plate, subjected to a roughening treatment, and then subjected to an organic acid treatment to obtain a test material. A part of the test material that was not subjected to one or both of roughening treatment and organic acid treatment was also prepared.

粗面化処理は、処理液として下記濃度の塩酸+塩化第二鉄水溶液を用い、各ステンレス鋼板をこの液に浸漬する方法で行った。処理温度および浸漬時間は表2−1、表2−2に記載の条件とした。
(粗面化処理液)
FeCl3(塩化第二鉄)濃度:19質量%、HCl濃度:5質量%、HCl/FeCl3モル比:1.17
The roughening treatment was performed by using a hydrochloric acid + ferric chloride aqueous solution having the following concentration as a treatment solution and immersing each stainless steel plate in this solution. The treatment temperature and the immersion time were the conditions described in Table 2-1 and Table 2-2.
(Roughening solution)
FeCl 3 (ferric chloride) concentration: 19% by mass, HCl concentration: 5% by mass, HCl / FeCl 3 molar ratio: 1.17

有機酸処理は、処理液として200ppmクエン酸水溶液を用い、処理温度60℃、浸漬時間1hの共通条件とした。   In the organic acid treatment, a 200 ppm citric acid aqueous solution was used as a treatment solution, and the treatment conditions were 60 ° C. and the immersion conditions were 1 h.

上記処理後の各供試材の表面について、以下の試験を行った。なお、各供試材は両面とも同様の表面状態となるように調製したものである。
〔平均面粗さSPaの測定〕
走査型共焦点レーザー顕微鏡(オリンパス社製;OLS1200)により倍率5000倍で粗面化表面を観察し、50μm×50μmの矩形領域の表面プロファイルを深さ方向の分解能0.01μmで取り込み、画像処理として孤立点除去1回および画像輝度平均化1回を行った後、平均面粗さSPaを算出させた。
The following test was done about the surface of each test material after the said process. In addition, each test material was prepared so that it might become the same surface state on both surfaces.
[Measurement of average surface roughness SPa]
The roughened surface was observed at a magnification of 5000 times with a scanning confocal laser microscope (Olympus; OLS1200), and the surface profile of a rectangular region of 50 μm × 50 μm was captured with a resolution of 0.01 μm in the depth direction. After performing isolated point removal once and image luminance averaging once, the average surface roughness SPa was calculated.

〔表層部のFe/(Cr+Fe)原子比の測定〕
XPS(AXIS−NOVA)を用いて供試材の表面分析を行った。測定面積は0.3mm×0.7mmとし、AlKα(単色化)の励起線を使用し、光電子取り出し角を90°に設定し、供試材表面をスパッタなしで分析した。この分析では表面から約5nm深さまでの情報が得られる。FeとCrの定量値から化合物状態のFe/(Cr+Fe)原子比を算出した。
[Measurement of Fe / (Cr + Fe) atomic ratio of surface layer]
The surface analysis of the test material was conducted using XPS (AXIS-NOVA). The measurement area was set to 0.3 mm × 0.7 mm, the excitation line of AlKα (single color) was used, the photoelectron extraction angle was set to 90 °, and the surface of the test material was analyzed without sputtering. This analysis provides information from the surface to a depth of about 5 nm. The Fe / (Cr + Fe) atomic ratio in the compound state was calculated from the quantitative values of Fe and Cr.

〔接触抵抗の測定〕
供試材から採取した試料の両面にそれぞれ直径15mmのカーボンペーパー(東レ社製;TGP−H−120)を面圧1MPaの均等な圧力で接触させ、接触面での電流密度Iが1A/cm2(電流値1.77A)となるように両面のカーボンペーパー間に直流電圧Eを印加し、電圧Eを四端子法にて測定して、接触抵抗R(mΩ・cm2)=E/Iを求めた。
[Measurement of contact resistance]
A carbon paper having a diameter of 15 mm (manufactured by Toray Industries Inc .; TGP-H-120) is brought into contact with both surfaces of the sample collected from the test material at an equal pressure of 1 MPa, and the current density I at the contact surface is 1 A / cm. 2 A DC voltage E is applied between the carbon papers on both sides so that the current value is 1.77 A, the voltage E is measured by the four-terminal method, and contact resistance R (mΩ · cm 2 ) = E / I Asked.

〔金属イオン溶出量の測定〕
pH=2.0に調整した希硫酸水溶液300mL中に、供試材から切り出した80mm×40mmの試験片を浸漬し、80℃で168h保持した後、試験片を取り出し、試験液中に溶出した金属イオン量をICP−AESを用いて測定した。金属イオンの定量は、Fe、Cr、Moで行い、これらの和を溶出量とした。
試験結果を表2−1、表2−2に示す。なお、別途表面観察により、本発明例の粗面化表面には隣り合う凹部同士が接している部分にエッジ状境界が形成されていることを確認している。
[Measurement of metal ion elution amount]
A test piece of 80 mm × 40 mm cut out from a test material was immersed in 300 mL of dilute sulfuric acid aqueous solution adjusted to pH = 2.0, and held at 168 h at 80 ° C., then the test piece was taken out and eluted into the test solution. The amount of metal ions was measured using ICP-AES. Metal ions were quantified with Fe, Cr, and Mo, and the sum of these was used as the elution amount.
The test results are shown in Tables 2-1 and 2-2. In addition, it was confirmed by the surface observation separately that the edge-like boundary was formed in the part where the adjacent recessed parts contact | abutted on the roughening surface of the example of this invention.

Figure 2011038166
Figure 2011038166

Figure 2011038166
Figure 2011038166

表2−1、表2−2に見られるように、各鋼種とも、平均面粗さSPaを1.0μm以上に調整したものは、それよりSPaが小さいものと比べ、接触抵抗が顕著に低減されていることがわかる。また、有機酸処理を行うことにより表層部のFe/(Cr+Fe)原子比を大幅に低減させることが可能である。各鋼種とも、有機酸処理を施した本発明例のものは、粗面化処理により表面積が増大しているにもかかわらず、粗面化処理および有機酸処理を施していないもの(元のステンレス鋼板)と比べ、金属イオンの溶出量が顕著に低減されていることがわかる。鋼種GはMo無添加であるため基本的な耐食性が不足し、金属イオン溶出量が非常に多い。   As can be seen in Tables 2-1 and 2-2, the contact resistance of each steel type is significantly reduced when the average surface roughness SPa is adjusted to 1.0 μm or more as compared with the steel having a smaller SPa. You can see that Moreover, it is possible to significantly reduce the Fe / (Cr + Fe) atomic ratio of the surface layer portion by performing the organic acid treatment. In each steel type, the examples of the present invention subjected to the organic acid treatment were not subjected to the roughening treatment and the organic acid treatment even though the surface area was increased by the roughening treatment (original stainless steel). It can be seen that the elution amount of metal ions is remarkably reduced as compared with (steel plate). Since steel type G does not contain Mo, basic corrosion resistance is insufficient, and the amount of metal ions eluted is very large.

表2−1、表2−2に示した供試材のいくつかをセパレータ材に使用して、以下の2種類の電池試験を行った。   Some of the test materials shown in Table 2-1 and Table 2-2 were used as separator materials, and the following two types of battery tests were performed.

〔電池試験1〕
フッ素系固体高分子膜の両面にそれぞれ、白金微粒子を担持したカーボンブラックをコーティングしたのちカーボンペーパー(東レ社製;TGP−H−120)を加熱圧着し、膜−電極接合体(MEA)を作製した。一方、表2−1、表2−2に示した供試材のステンレス鋼板をプレス成形することにより、アノード側およびカソード側のセパレータ(集電体)を作製した。MEAとセパレータを組み合わせて、単セルからなる燃料電池を作製した。各燃料電池とも、両側のセパレータには同種の供試材を適用した。単セルのアノード側に純水素、カソード側に空気を流して、MEAを通過する電流の電流密度を0.3A/cm2、温度を70℃に維持した状態とし、連続100hの放電試験を行った。そして、100h経過時点のセル電圧を測定した。結果を表2−1、表2−2中に示す。
[Battery test 1]
After coating carbon black carrying platinum fine particles on both sides of the fluorine-based solid polymer membrane, carbon paper (Toray Industries, Inc .; TGP-H-120) is thermocompression bonded to produce a membrane-electrode assembly (MEA). did. On the other hand, the separators (current collectors) on the anode side and the cathode side were produced by press-molding the stainless steel plates of the test materials shown in Tables 2-1 and 2-2. A fuel cell composed of a single cell was fabricated by combining the MEA and the separator. In each fuel cell, the same type of test material was applied to the separators on both sides. Purified hydrogen was flowed on the anode side of the single cell, air was flowed on the cathode side, the current density of the current passing through the MEA was maintained at 0.3 A / cm 2 , and the temperature was maintained at 70 ° C., and a continuous 100 h discharge test was conducted. It was. And the cell voltage at the time of 100-hour progress was measured. The results are shown in Tables 2-1 and 2-2.

〔電池試験2〕
電池試験1と同様に単セルからなる燃料電池を作製した。ここでは、単セルのアノード側に3Mメタノールを注入し、カソード側に空気を流して、ダイレクトメタノール型燃料電池を稼働させた。MEAを通過する電流の電流密度を0.1A/cm2、温度を30℃に維持した状態とし、連続100hの放電試験を行った。そして、100h経過時点のセル電圧を測定した。結果を表2−1、表2−2中に示す。
[Battery test 2]
A fuel cell composed of a single cell was produced in the same manner as in battery test 1. Here, a direct methanol fuel cell was operated by injecting 3M methanol on the anode side of the single cell and flowing air on the cathode side. A discharge test was conducted continuously for 100 hours with the current density of the current passing through the MEA maintained at 0.1 A / cm 2 and the temperature maintained at 30 ° C. And the cell voltage at the time of 100-hour progress was measured. The results are shown in Tables 2-1 and 2-2.

電池試験1、2とも、粗面化処理と有機酸処理を施した本発明例の供試材を適用した燃料電池においては、粗面化処理、有機酸処理の少なくとも一方を施していない比較例の供試材を適用したものと比べ、100h後のセル電圧は高い値を示した。   In both the battery tests 1 and 2, in the fuel cell to which the sample material of the present invention which was subjected to roughening treatment and organic acid treatment was applied, a comparative example in which at least one of roughening treatment and organic acid treatment was not performed The cell voltage after 100 hours showed a higher value than that using the test material.

1 ステンレス鋼素地
2 凹部
3 凹部境界
1 Stainless steel substrate 2 Recess 3 Recess boundary

Claims (7)

質量%で、C:0.1%以下、Si:1%以下、Mn:2%以下、Cr:15〜35%、Mo:0.5〜3%、残部Feおよび不可避的不純物の組成を有する鋼板からなり、平均面粗さSPaが0.1〜2.0μmである粗面化表面を有し、当該粗面化表面の表層部は有機酸との接触によりFe濃度をFe/(Cr+Fe)原子比が0.25以下となるように減じてなる改質層で構成されている低温作動タイプの燃料電池用通電部材。   In mass%, C: 0.1% or less, Si: 1% or less, Mn: 2% or less, Cr: 15 to 35%, Mo: 0.5 to 3%, balance Fe and inevitable impurities It is made of a steel plate and has a roughened surface with an average surface roughness SPa of 0.1 to 2.0 μm. The surface layer portion of the roughened surface has an Fe concentration of Fe / (Cr + Fe) by contact with an organic acid. A current-carrying member for a low-temperature operation type fuel cell, which is composed of a reformed layer that is reduced so that the atomic ratio is 0.25 or less. 鋼板の組成が、質量%で、C:0.1%以下、Si:1%以下、Mn:2%以下、Cr:15〜35%、Mo:0.5〜3%であり、さらにNi:2%以下、Cu:1%以下、Al:3%以下、Nb:0.8%以下、Ti:0.8%以下の1種以上を含有し、残部Feおよび不可避的不純物である請求項1に記載の通電部材。   The composition of the steel sheet is% by mass: C: 0.1% or less, Si: 1% or less, Mn: 2% or less, Cr: 15 to 35%, Mo: 0.5 to 3%, and Ni: 2. One or more of 2% or less, Cu: 1% or less, Al: 3% or less, Nb: 0.8% or less, Ti: 0.8% or less, and the balance is Fe and inevitable impurities. The current-carrying member described in 1. 前記粗面化表面は、隣り合う凹部同士が接している部分にエッジ状境界を有するものである請求項1または2に記載の通電部材。   The current-carrying member according to claim 1, wherein the roughened surface has an edge boundary at a portion where adjacent concave portions are in contact with each other. 前記粗面化表面は、非酸化性の無機酸と塩化第二鉄の混合水溶液中でのエッチングにより形成されるものである請求項1〜3のいずれかに記載の通電部材。   The current-carrying member according to claim 1, wherein the roughened surface is formed by etching in a mixed aqueous solution of a non-oxidizing inorganic acid and ferric chloride. 質量%で、C:0.1%以下、Si:1%以下、Mn:2%以下、Cr:15〜35%、Mo:0.5〜3%、残部Feおよび不可避的不純の組成を有する鋼板を、FeCl3(塩化第二鉄)濃度:5〜30質量%、HCl濃度:2〜20質量%、HCl/FeCl3モル比:0.3〜20、温度:35〜70℃の塩酸+塩化第二鉄水溶液に、3〜120秒の範囲内の条件で浸漬することにより、平均面粗さSPaが0.1〜2.0μmである粗面化表面を形成する工程、
前記粗面化表面を有機酸の水溶液に接触させることにより、粗面化表面の表層部にFe/(Cr+Fe)原子比が0.25以下である改質層を形成する工程、
を有する低温作動タイプの燃料電池用通電部材の製造方法。
In mass%, C: 0.1% or less, Si: 1% or less, Mn: 2% or less, Cr: 15 to 35%, Mo: 0.5 to 3%, balance Fe and inevitable impurities The steel sheet is made of hydrochloric acid with FeCl 3 (ferric chloride) concentration: 5-30% by mass, HCl concentration: 2-20% by mass, HCl / FeCl 3 molar ratio: 0.3-20, temperature: 35-70 ° C. + A step of forming a roughened surface having an average surface roughness SPa of 0.1 to 2.0 μm by immersing in a ferric chloride aqueous solution under conditions within a range of 3 to 120 seconds;
Forming a modified layer having an Fe / (Cr + Fe) atomic ratio of 0.25 or less on a surface layer portion of the roughened surface by contacting the roughened surface with an aqueous solution of an organic acid;
The manufacturing method of the electricity supply member for fuel cells of a low-temperature operation type which has this.
鋼板の組成が、質量%で、C:0.1%以下、Si:1%以下、Mn:2%以下、Cr:15〜35%、Mo:0.5〜3%であり、さらにNi:2%以下、Cu:1%以下、Al:3%以下、Nb:0.8%以下、Ti:0.8%以下の1種以上を含有し、残部Feおよび不可避的不純物である請求項5に記載の通電部材の製造方法。   The composition of the steel sheet is% by mass: C: 0.1% or less, Si: 1% or less, Mn: 2% or less, Cr: 15 to 35%, Mo: 0.5 to 3%, and Ni: 6. One or more of 2% or less, Cu: 1% or less, Al: 3% or less, Nb: 0.8% or less, Ti: 0.8% or less, and the balance is Fe and inevitable impurities. The manufacturing method of the electricity supply member as described in any one of. 前記有機酸として、クエン酸、マレイン酸、酒石酸、乳酸、リンゴ酸、コハク酸の1種または2種以上を使用する請求項5または6に記載の通電部材の製造方法。   The method for producing a current-carrying member according to claim 5 or 6, wherein one or more of citric acid, maleic acid, tartaric acid, lactic acid, malic acid, and succinic acid is used as the organic acid.
JP2009187764A 2009-08-13 2009-08-13 Energizing member for fuel cell and method for producing the same Pending JP2011038166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187764A JP2011038166A (en) 2009-08-13 2009-08-13 Energizing member for fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187764A JP2011038166A (en) 2009-08-13 2009-08-13 Energizing member for fuel cell and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011038166A true JP2011038166A (en) 2011-02-24

Family

ID=43766212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187764A Pending JP2011038166A (en) 2009-08-13 2009-08-13 Energizing member for fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011038166A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117039A (en) * 2011-12-01 2013-06-13 Japan Steel Works Ltd:The Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JP2017071219A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
JP2017071218A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
DE102019110896A9 (en) 2018-05-28 2020-01-16 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a fuel cell separator
JPWO2022131204A1 (en) * 2020-12-15 2022-06-23
EP4245877A4 (en) * 2020-12-15 2024-04-17 JFE Steel Corporation Chromium-containing steel sheet for current collectors for nonaqueous electrolyte secondary batteries
EP4265822A4 (en) * 2020-12-15 2024-07-03 Mitsubishi Gas Chemical Co Roughening treatment method for stainless steel surface, method for manufacturing roughened stainless steel, and aqueous composition used in said methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345363A (en) * 1999-06-07 2000-12-12 Nisshin Steel Co Ltd ACID PICKLING FINISHED STAINLESS STEEL MATERIAL HAVING STRENGTHENED INHIBITING ACTION OF Fe ION ELUTION AND ITS MANUFACTURE
JP2001214286A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Method for producing stainless steel for conductive part
JP2003132904A (en) * 2001-10-23 2003-05-09 Nisshin Steel Co Ltd Separator for fuel cell and method of manufacturing the same
JP2007026694A (en) * 2005-07-12 2007-02-01 Nisshin Steel Co Ltd Separator for solid polymer type fuel cell, and solid polymer type fuel cell
WO2008020602A1 (en) * 2006-08-14 2008-02-21 Toyo Seikan Kaisha, Ltd. Stainless steel member for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345363A (en) * 1999-06-07 2000-12-12 Nisshin Steel Co Ltd ACID PICKLING FINISHED STAINLESS STEEL MATERIAL HAVING STRENGTHENED INHIBITING ACTION OF Fe ION ELUTION AND ITS MANUFACTURE
JP2001214286A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd Method for producing stainless steel for conductive part
JP2003132904A (en) * 2001-10-23 2003-05-09 Nisshin Steel Co Ltd Separator for fuel cell and method of manufacturing the same
JP2007026694A (en) * 2005-07-12 2007-02-01 Nisshin Steel Co Ltd Separator for solid polymer type fuel cell, and solid polymer type fuel cell
WO2008020602A1 (en) * 2006-08-14 2008-02-21 Toyo Seikan Kaisha, Ltd. Stainless steel member for fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117039A (en) * 2011-12-01 2013-06-13 Japan Steel Works Ltd:The Stainless steel for polymer electrolyte fuel cell separator and method for producing the same
JP2017071219A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
JP2017071218A (en) * 2015-10-05 2017-04-13 新日鉄住金マテリアルズ株式会社 Stainless steel sheet-carbon composite material and method for producing the same
WO2018117469A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Stainless steel for polymer fuel cell separation plate, having excellent contact resistance, and manufacturing method therefor
KR101903180B1 (en) 2016-12-22 2018-10-01 주식회사 포스코 Stainless steel having excellent contact resistance for pemfc separator and method of manufacturing the same
US11637294B2 (en) 2018-05-28 2023-04-25 Toyota Jidosha Kabushiki Kaisha Method for producing fuel cell separator
DE102019110896A9 (en) 2018-05-28 2020-01-16 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a fuel cell separator
JPWO2022131204A1 (en) * 2020-12-15 2022-06-23
WO2022131204A1 (en) * 2020-12-15 2022-06-23 Jfeスチール株式会社 Stainless steel sheet for separator of fuel cell
JP7226648B2 (en) 2020-12-15 2023-02-21 Jfeスチール株式会社 Stainless steel plates for fuel cell separators
EP4245877A4 (en) * 2020-12-15 2024-04-17 JFE Steel Corporation Chromium-containing steel sheet for current collectors for nonaqueous electrolyte secondary batteries
EP4265761A4 (en) * 2020-12-15 2024-05-29 JFE Steel Corporation Stainless steel sheet for separator of fuel cell
EP4265822A4 (en) * 2020-12-15 2024-07-03 Mitsubishi Gas Chemical Co Roughening treatment method for stainless steel surface, method for manufacturing roughened stainless steel, and aqueous composition used in said methods

Similar Documents

Publication Publication Date Title
Asri et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review
JP2011038166A (en) Energizing member for fuel cell and method for producing the same
JP5396487B2 (en) Stainless steel for polymer fuel cell separator and its manufacturing method
TWI489679B (en) Separator for fuel cell and method for manufacturing the same
US11085120B2 (en) Stainless steel sheet for fuel cell separators and production method therefor
JP5529839B2 (en) Stainless steel member, method for producing the same, separator for use in polymer electrolyte fuel cell, and method for producing the same
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
JP5831670B1 (en) Titanium material or titanium alloy material having surface conductivity, manufacturing method thereof, and fuel cell separator and fuel cell using the same
WO2020153117A1 (en) Austenitic stainless steel sheet for fuel cell separator, and method for producing same
KR102102608B1 (en) Method of manufacturing stainless steel for proton exchange membrane fuel cell separator
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
JP5972877B2 (en) Method for producing stainless steel for fuel cell separator
JPWO2015111652A1 (en) Titanium material or titanium alloy material having surface conductivity, fuel cell separator and fuel cell using the same
JPWO2015194356A1 (en) Titanium material for separator of polymer electrolyte fuel cell, separator using the same, and polymer electrolyte fuel cell provided with the same
KR20060048575A (en) Titanium material and method for manufacturing the same
JP2019502816A (en) Stainless steel for separator plate of polymer fuel cell with improved hydrophilicity and contact resistance and method for producing the same
JP2009231150A (en) Ferrite system roughened surface stainless steel plate for separator, and separator as well as polymer electrolyte fuel cell
KR101356954B1 (en) Stainless steel for polymer electrolyte membrane fuel cell separator and the method of manufacturing the same
JP2009203502A (en) Surface-roughened stainless steel sheet for separator, manufacturing method therefor, and separator
JP7226648B2 (en) Stainless steel plates for fuel cell separators
JP2009231149A (en) Ferrite system roughened surface stainless steel plate for separator, and separator
JP3991701B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP2023122178A (en) Manufacturing method of fuel cell separator
JP7339525B2 (en) Composites, fuel cell separators, fuel cells and fuel cell stacks, and methods of manufacturing composites
KR20180087384A (en) Stainless steel sheet for separator of fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603