[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011034784A - Secondary battery device - Google Patents

Secondary battery device Download PDF

Info

Publication number
JP2011034784A
JP2011034784A JP2009179336A JP2009179336A JP2011034784A JP 2011034784 A JP2011034784 A JP 2011034784A JP 2009179336 A JP2009179336 A JP 2009179336A JP 2009179336 A JP2009179336 A JP 2009179336A JP 2011034784 A JP2011034784 A JP 2011034784A
Authority
JP
Japan
Prior art keywords
secondary battery
tab
terminal voltage
battery group
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009179336A
Other languages
Japanese (ja)
Other versions
JP5474438B2 (en
Inventor
Atsushi Kawakado
篤史 川角
Toru Nishikawa
透 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009179336A priority Critical patent/JP5474438B2/en
Publication of JP2011034784A publication Critical patent/JP2011034784A/en
Application granted granted Critical
Publication of JP5474438B2 publication Critical patent/JP5474438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent misdetection of tab disconnection of parallel units, in a pack battery which includes a secondary battery group formed, by serially connecting a plurality of the parallel units having a plurality of parallel-connected secondary battery cells. <P>SOLUTION: The secondary battery device includes the secondary battery group, formed by serially connecting the plurality of the parallel units having the plurality of the parallel-connected secondary battery cells; an abnormality detecting means to detect tab disconnection of each parallel unit in the secondary battery group; and an abnormality detection control means to stop the detection of the tab disconnection by the abnormality detecting means, until reaching a fixed period of time, after starting or stopping charge of the secondary battery group, and until the frequency of charge cycles for the secondary battery group reaches a prescribed frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群における上記並列ユニットのタブ外れを正確に検出し得るタブ外れ判定手段を備えた二次電池装置に関する。   The present invention provides a secondary battery comprising tab detachment determining means capable of accurately detecting tab detachment of the parallel unit in a group of secondary batteries in which a plurality of parallel units in which a plurality of secondary battery cells are connected in parallel are connected in series. Relates to the device.

各種電子機器に装着されて該電子機器の電源として用いられる二次電池装置は、一般的には複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群と、この二次電池群の充放電を制御する制御・演算部とを備えた、いわゆるパック電池として構成される。ちなみに前記制御・演算部は、前記二次電池群の充放電電流を検出する電流検出手段および前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段を備える。そして制御・演算部は、検出した電流・電圧に基づいて前記二次電池群の充電および放電をそれぞれ制御し、また二次電池群の過充電防止や過放電防止等の保護、更には二次電池群のタブ外れや内部短絡等の異常検出処理を実行する。   Secondary battery devices that are mounted on various electronic devices and used as a power source for the electronic devices are generally secondary battery groups in which a plurality of parallel units in which a plurality of secondary battery cells are connected in parallel are connected in series, The battery pack is configured as a so-called pack battery including a control / arithmetic unit that controls charging / discharging of the secondary battery group. Incidentally, the control / calculation unit includes a current detection unit that detects a charge / discharge current of the secondary battery group and a voltage detection unit that detects a terminal voltage of each parallel unit in the secondary battery group. The control / arithmetic unit controls the charging and discharging of the secondary battery group based on the detected current / voltage, and protects the secondary battery group from overcharge and overdischarge. Abnormality detection processing such as tab detachment or internal short circuit of the battery group is executed.

尚、二次電池装置(パック電池)における前記二次電池群のタブ外れや内部短絡等の異常検出処理については、例えば二次電池群における各並列ユニットの端子電圧をそれぞれ求め、その最大電圧と最小電圧との差または最大電圧と最小電圧との比を判定する等して行われる(例えば特許文献1を参照)。また異常が検出された二次電池群に対しては、例えば二次電池群の充放電路に直列に介挿された温度ヒューズを溶断し、これによってパック電池自体の使用を禁止する等の措置が講じられる(例えば特許文献2を参照)。   As for abnormality detection processing such as tab detachment or internal short circuit of the secondary battery group in the secondary battery device (pack battery), for example, the terminal voltage of each parallel unit in the secondary battery group is obtained, and the maximum voltage and This is performed by determining a difference from the minimum voltage or a ratio between the maximum voltage and the minimum voltage (see, for example, Patent Document 1). In addition, for secondary battery groups in which an abnormality has been detected, measures such as fusing a thermal fuse inserted in series in the charge / discharge path of the secondary battery group, thereby prohibiting use of the battery pack itself, etc. (See, for example, Patent Document 2).

特開2007−240234号公報JP 2007-240234 A 特開2009−76280号公報JP 2009-76280 A

ところで二次電池セルとしてリチウムイオン電池を用いた二次電池装置(パック電池)の場合、特許文献1に開示される従来の一般的なタブ外れの検出法においては、希にタブ外れが発生していないにも拘わらず、タブ外れが生じたと誤検出してしまうことがある。また二次電池セルの温度特性のバラツキに起因して各並列ユニットの端子電圧が大きく変化した場合にも、タブ外れが生じたとして誤検出することもある。このようなタブ外れの誤検出は、タブ外れ異常のないパック電池を不本意に廃棄処分する要因となる。   By the way, in the case of a secondary battery device (pack battery) using a lithium ion battery as a secondary battery cell, in the conventional general tab deviation detection method disclosed in Patent Document 1, tab deviation rarely occurs. In spite of this, it may be erroneously detected that tab removal has occurred. In addition, even when the terminal voltage of each parallel unit changes greatly due to variations in the temperature characteristics of the secondary battery cells, it may be erroneously detected that the tab is detached. Such erroneous detection of tab detachment is a factor involuntarily disposing of a battery pack with no tab detachment abnormality.

このようなタブ外れの誤検出は、特に電極材や電解液を改良して高性能化を図った、いわゆる高電圧タイプのリチウムイオン電池(二次電池セル)を用いたパック電池において生じ易い。ちなみに従来一般的な最大充電電圧が4.2Vのリチウムイオン電池は、例えばその正極材としてコバルト酸リチウム、負極材として炭素材料、そして電解液としてエチレンカーボネートを用いて構成される。これに対して電池性能を高めた高電圧タイプのリチウムイオン電池は、例えば正極材としてコバルト酸リチウムとリチウムコバルトニッケルマンガン酸複合酸化物との混合材を用い、また電解液としてフルオロエチレンカーボネートを用いて構成され、その最大充電電圧を4.3Vに高めたものである。   Such erroneous detection of tab detachment tends to occur particularly in a battery pack using a so-called high voltage type lithium ion battery (secondary battery cell) in which the electrode material and the electrolytic solution are improved to improve performance. Incidentally, a conventional lithium ion battery having a maximum charging voltage of 4.2 V is configured using, for example, lithium cobaltate as a positive electrode material, a carbon material as a negative electrode material, and ethylene carbonate as an electrolytic solution. In contrast, high voltage type lithium ion batteries with improved battery performance use, for example, a mixture of lithium cobaltate and lithium cobalt nickel manganate composite oxide as the positive electrode material, and fluoroethylene carbonate as the electrolyte. The maximum charging voltage is increased to 4.3V.

本発明は前述したタブ外れの誤検出の問題を解消するべくなされたもので、その目的は、直列に接続された複数の並列ユニットにおけるタブ外れを確実に、しかも正確に検出することができ、タブ外れの生じていないパック電池の不本意な廃棄処分を防ぐことのできる二次電池装置を提供することにある。   The present invention was made to solve the above-described problem of erroneous detection of tab detachment, and the object thereof is to reliably and accurately detect tab detachment in a plurality of parallel units connected in series, It is an object of the present invention to provide a secondary battery device capable of preventing unintentional disposal of a battery pack in which tab separation does not occur.

本発明は種々の実験に基づき、前述したタブ外れが生じているとの誤検出が、専ら、パック電池(二次電池群)を充放電する初期時において生じ易いこと、またタブ外れが生じていなくても二次電池セルの温度特性のバラツキに起因して、その充放電時における複数の並列ユニットの各端子電圧に大きな差が生じることがあるとの検証の結果に着目してなされている。   The present invention is based on various experiments, and the above-described erroneous detection that tab removal has occurred is likely to occur exclusively at the initial stage of charging / discharging the battery pack (secondary battery group), and tab removal has occurred. Even if not, due to the variation in the temperature characteristics of the secondary battery cells, it has been made paying attention to the result of verification that a large difference may occur in the terminal voltages of the plurality of parallel units at the time of charging / discharging. .

例えば前述した高電圧タイプのリチウムイオン電池においては、一般的に負極材の表面状態が不安定であり、該負極材の表面に固体電解質被膜が形成されていない場合には、その充放電に伴って電解液が負極材の表面で反応して該負極材の表面にリチウム金属含有化合物が形成され易い。そしてこのリチウム金属含有化合物が該リチウムイオン電池の充放電に影響を与えると考えられる。具体的には充放電に伴う二次電池セル(リチウムイオン電池)の電圧変化が、前述したリチウム金属含有化合物の存在によって一時的に不規則となり、これに起因して複数の並列ユニットの各端子電圧に大きなバラツキが生じると考えられる。   For example, in the above-described high voltage type lithium ion battery, in general, the surface state of the negative electrode material is unstable, and when the solid electrolyte film is not formed on the surface of the negative electrode material, the charge / discharge is accompanied. Thus, the electrolytic solution reacts on the surface of the negative electrode material and a lithium metal-containing compound is easily formed on the surface of the negative electrode material. And it is thought that this lithium metal containing compound affects the charging / discharging of this lithium ion battery. Specifically, the voltage change of the secondary battery cell (lithium ion battery) due to charging / discharging becomes temporarily irregular due to the presence of the above-described lithium metal-containing compound, resulting in each terminal of a plurality of parallel units. It is considered that the voltage varies greatly.

特に上述した充放電に伴う各並列ユニットの端子電圧のバラツキは、電池パックの通常使用温度範囲(20℃〜50℃)を外れた低温環境下(例えば5℃)で充電した場合に顕著に生じる。また充電停止後に或る程度の時間に亘って放置したとき、或いは充放電を繰り返したときにも上述した端子電圧のバラツキが殆どなくなることも見出した。これは負極材の表面に固体電解質被膜が十分に形成されて該負極材の表面状態が安定し、前述したリチウム金属含有化合物が形成され難くなる為であると考えられる。   In particular, the variation in the terminal voltage of each parallel unit due to the above-described charging / discharging is noticeably generated when the battery pack is charged in a low temperature environment (eg, 5 ° C.) outside the normal operating temperature range (20 ° C. to 50 ° C.). . It has also been found that the above-described terminal voltage variation is almost eliminated even when the battery is left for a certain period of time after charging is stopped or when charging and discharging are repeated. This is considered to be because the solid electrolyte film is sufficiently formed on the surface of the negative electrode material, the surface state of the negative electrode material is stabilized, and the aforementioned lithium metal-containing compound is hardly formed.

また上述した充放電に伴う各並列ユニットの端子電圧のバラツキは、二次電池セルの温度特性のバラツキによっても発生し、従って負極材の表面に固体電解質被膜が十分に形成されたとしても、タブ外れの誤検出が生じる虞がある。しかし充放電停止後に二次電池の温度が略一定に安定化した場合には、タブ外れが生じていない限り各並列ユニットの端子電圧のバラツキは殆ど生じない。即ち、従って充放電停止後においては、基本的には各二次電池セルの端子電圧、いわゆる開放端子電圧は殆ど差が生じない。   In addition, the variation in the terminal voltage of each parallel unit due to the above-described charging / discharging also occurs due to the variation in the temperature characteristics of the secondary battery cells. Therefore, even if the solid electrolyte film is sufficiently formed on the surface of the negative electrode material, the tab There is a risk of erroneous detection of detachment. However, when the temperature of the secondary battery stabilizes to a substantially constant level after the charge / discharge is stopped, there is almost no variation in the terminal voltage of each parallel unit unless tab disconnection occurs. That is, after charging / discharging is stopped, there is basically no difference in the terminal voltage of each secondary battery cell, so-called open terminal voltage.

本発明はこのような検証結果に基づいて前述した課題を解決するべくなされている。
即ち、本発明に係る二次電池装置は、複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群と、この二次電池群の充放電電流を検出する電流検出手段と、前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段と、前記電流検出手段による検出結果と前記電圧検出手段による検出結果とに基づいて前記二次電池群における各並列ユニットでのタブ外れを検出する異常検出手段とを具備し、
特に前記二次電池群の充電開始または充電停止後、予め定めた一定時間に亘って前記異常検出手段による前記タブ外れの検出処理を中止する異常検出制御手段を備えたことを特徴としている。
The present invention is made to solve the above-mentioned problems based on such verification results.
That is, the secondary battery device according to the present invention includes a secondary battery group in which a plurality of parallel units each having a plurality of secondary battery cells connected in parallel are connected in series, and a current for detecting a charge / discharge current of the secondary battery group. Based on the detection means, the voltage detection means for detecting the terminal voltage of each parallel unit in the secondary battery group, the detection result by the current detection means and the detection result by the voltage detection means, An anomaly detecting means for detecting tab disengagement in each parallel unit;
In particular, the present invention is characterized by comprising an abnormality detection control means for stopping the detection of tab detachment by the abnormality detection means for a predetermined time after starting or stopping charging of the secondary battery group.

ちなみに前記異常検出制御手段が前記タブ外れの検出処理を中止する上での、前記二次電池群の充電開始または充電停止後の予め定めた一定時間は、前記二次電池群の充電に伴って前記二次電池セルを構成する負極の表面が電解液と反応して安定化するに要する時間として設定される。具体的には上記一定時間は、二次電池群(二次電池セル)の仕様にもよるが、例えば充電開始または充電停止後の10時間として設定される。   Incidentally, when the abnormality detection control means stops the detection process of tab detachment, a predetermined time after starting charging or stopping charging of the secondary battery group is accompanied by charging of the secondary battery group. It is set as the time required for the surface of the negative electrode constituting the secondary battery cell to react with the electrolyte and stabilize. Specifically, the predetermined time is set as, for example, 10 hours after the start or stop of charging, although it depends on the specifications of the secondary battery group (secondary battery cell).

また本発明に係る別の二次電池装置は、複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群と、この二次電池群の充放電電流を検出する電流検出手段と、前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段と、前記電流検出手段による検出結果と前記電圧検出手段による検出結果とに基づいて前記二次電池群における各並列ユニットでのタブ外れを検出する異常検出手段とを具備し、
特に前記二次記電池群に対する充放電サイクル回数が、予め定めた一定回数に達するまで前記異常検出手段による前記タブ外れの検出処理を中止する異常検出制御手段を備えたことを特徴としている。
Further, another secondary battery device according to the present invention detects a secondary battery group in which a plurality of parallel units each having a plurality of secondary battery cells connected in parallel are connected in series, and a charge / discharge current of the secondary battery group. Based on the current detection means, the voltage detection means for detecting the terminal voltage of each parallel unit in the secondary battery group, the detection result by the current detection means and the detection result by the voltage detection means, the secondary battery group An abnormality detecting means for detecting a tab disengagement in each parallel unit in
In particular, the present invention is characterized by comprising an abnormality detection control means for stopping the detection process of tab detachment by the abnormality detection means until the number of charge / discharge cycles for the secondary battery group reaches a predetermined fixed number of times.

ちなみに前記異常検出制御手段が前記タブ外れの検出処理を中止する上での、前記予め定めた一定の充放電サイクル回数は、前記二次電池群の充放電の繰り返しに伴って前記二次電池セルを構成する負極の表面が電解液と反応して安定化する充放電サイクル回数として設定される。具体的には上記一定の充放電サイクル回数は、二次電池群(二次電池セル)の仕様にもよるが、例えば20サイクル程度として設定される。   Incidentally, the predetermined number of charge / discharge cycles when the abnormality detection control means stops the detection of tab detachment is determined by repeating the charge / discharge of the secondary battery group. Is set as the number of charge / discharge cycles in which the surface of the negative electrode constituting the material reacts and stabilizes with the electrolytic solution. Specifically, the fixed number of charge / discharge cycles is set to, for example, about 20 cycles although it depends on the specifications of the secondary battery group (secondary battery cells).

尚、前記異常検出手段は、好ましくは前記二次電池群の充放電時における前記各並列ユニットの端子電圧をそれぞれ求め、その最大端子電圧と最小端子電圧との差または比、若しくは前記各並列ユニットの端子電圧の単位時間当たりの変動幅の最大値と最小値との差または比を判定してタブ外れの有無を検出する第1のタブ外れ判定手段と、
この第1のタブ外れ判定手段にてタブ外れが検出されたとき、前記二次電池群の充放電停止後における前記各並列ユニットの端子電圧(開放端子電圧)をそれぞれ求め、その最大開放端子電圧と最小開放端子電圧との差または比、若しくは前記各並列ユニットの端子電圧の単位時間当たりの変動幅の最大値と最小値との差または比を判定して前記タブ外れの発生を確認する第2のタブ外れ判定手段とを備える。
The abnormality detection means preferably obtains the terminal voltage of each parallel unit at the time of charging / discharging of the secondary battery group, and the difference or ratio between the maximum terminal voltage and the minimum terminal voltage, or each parallel unit. First tab detachment determining means for detecting the presence or absence of tab detachment by determining a difference or ratio between a maximum value and a minimum value of a fluctuation range per unit time of the terminal voltage of
When the tab detachment is detected by the first tab detachment determining means, the terminal voltage (open terminal voltage) of each parallel unit after stopping the charging / discharging of the secondary battery group is obtained, and the maximum open terminal voltage is obtained. The difference or ratio between the terminal voltage and the minimum open terminal voltage, or the difference or ratio between the maximum value and the minimum value of the fluctuation range per unit time of the terminal voltage of each parallel unit is checked to confirm the occurrence of the tab deviation. 2 tab disengagement judging means.

本発明に係る二次電池装置によれば、前記二次電池群の充電開始または充電停止後、予め定めた一定時間(例えば10時間)に亘って、或いは充放電サイクル回数が、予め定めた一定回数(例えば20回)に達するまで、前記異常検出手段による前記タブ外れの検出処理を中止するので、負極材の表面状態に起因して並列ユニットの端子電圧にバラツキが生じる可能性のある期間でのタブ外れの誤検出を未然に防ぐことができる。従ってタブ外れの生じていない二次電池装置(パック電池)を不良品として廃棄することがなくなる。   According to the secondary battery device of the present invention, after the start or stop of the charging of the secondary battery group, a predetermined constant time (for example, 10 hours) or a predetermined number of charge / discharge cycles is constant. Until the number of times (for example, 20 times) is reached, the detection of tab detachment by the abnormality detection unit is stopped, so that the terminal voltage of the parallel unit may vary due to the surface state of the negative electrode material. It is possible to prevent erroneous detection of tab deviation. Therefore, the secondary battery device (pack battery) in which tab separation does not occur is not discarded as a defective product.

またタブ外れの検出処理においては、充放電時におけるに各並列ユニットの端子電圧をそれぞれ監視してタブ外れ検出を行うことのみならず、二次電池群の充放電停止後における前記各並列ユニットの端子電圧、つまり開放端子電圧を求めてタブ外れの発生を確認するので、二次電池セルの温度分布や温度特性のバラツキに左右されることなく、並列ユニットにおけるタブ外れを正確に、しかも確実に検出することができる。   In the tab removal detection process, not only the terminal voltage of each parallel unit is monitored during charging / discharging to detect tab removal, but also each parallel unit after the secondary battery group has stopped charging / discharging. The terminal voltage, that is, the open terminal voltage, is obtained to check the occurrence of tab detachment, so that the tab detachment in the parallel unit can be accurately and reliably performed without being affected by the temperature distribution and temperature characteristics of the secondary battery cells. Can be detected.

従って本発明によれば、二次電池装置の使用初期時であって負極材の表面に固体電解質被膜が十分に形成されていない不安定状態でのタブ外れの誤検出を防ぐことができる。また二次電池セルの温度特性のバラツキに起因するタブ外れの誤検出を防ぐことができるので、二次電池セルの特性に起因する並列ユニットの端子電圧のバラツキを、タブ外れとして誤検出することがなくなる。   Therefore, according to the present invention, it is possible to prevent erroneous detection of tab disengagement in an unstable state when the secondary battery device is in an initial stage of use and a solid electrolyte film is not sufficiently formed on the surface of the negative electrode material. In addition, it is possible to prevent erroneous detection of tab detachment due to variations in temperature characteristics of secondary battery cells, so erroneous detection of variations in terminal voltage of parallel units due to characteristics of secondary battery cells as detachment of tabs. Disappears.

本発明の一実施形態に係る二次電池装置(パック電池)の概略構成図。The schematic block diagram of the secondary battery apparatus (pack battery) which concerns on one Embodiment of this invention. 本発明に係るタブ外れ検出処理手順の一例を示す図。The figure which shows an example of the tab deviation detection processing procedure which concerns on this invention. リチウムイオン電池の使用初期時における放電時の端子電圧の変化特性を示す図。The figure which shows the change characteristic of the terminal voltage at the time of discharge in the use initial stage of a lithium ion battery. 図3に示す端子電圧の変化特性におけるイレギュラー・シェイプ部分を拡大して示す図。The figure which expands and shows the irregular shape part in the change characteristic of the terminal voltage shown in FIG. 充電したリチウムイオン電池の放置時間によって変化する放電時の端子電圧変化特性を示す図。The figure which shows the terminal voltage change characteristic at the time of the discharge changed with the leaving time of the charged lithium ion battery. リチウムイオン電池の充放電の繰り返しによって変化する放電時の端子電圧変化特性を示す図。The figure which shows the terminal voltage change characteristic at the time of the discharge changed by repetition of charging / discharging of a lithium ion battery. 本発明に係る二次電池装置(パック電池)の変形例を示す図。The figure which shows the modification of the secondary battery apparatus (pack battery) which concerns on this invention.

以下、本発明の一実施形態に係る二次電池装置(パック電池)について説明する。
図1は本発明に係る二次電池装置(パック電池)10の要部概略構成図である。このパック電池10は、基本的には例えば携帯電話端末やノート型パーソナルコンピュータ等の電子機器30に装着され、該電子機器30が内蔵する制御・電源部(充電器)31に接続されて充電される二次電池1を備える。
Hereinafter, a secondary battery device (pack battery) according to an embodiment of the present invention will be described.
FIG. 1 is a schematic configuration diagram of a main part of a secondary battery device (pack battery) 10 according to the present invention. The battery pack 10 is basically mounted on an electronic device 30 such as a mobile phone terminal or a notebook personal computer, and is connected to and charged by a control / power supply unit (charger) 31 built in the electronic device 30. The secondary battery 1 is provided.

尚、電子機器30の制御・電源部(充電器)31には商用電源が供給されており、前記二次電池1は商用電源から得たエネルギにより充電される。そしてパック電池10は前記電子機器30が商用電源を使用しないとき、該電子機器30の電源として用いられる。つまりパック電池10は、充電により上記二次電池1に蓄積した電力エネルギを、前記電子機器30の本体部であるCPUやメモリ等の負荷32に対して前記制御・電源部31を介して供給するように構成される。   A commercial power supply is supplied to the control / power supply unit (charger) 31 of the electronic device 30, and the secondary battery 1 is charged with energy obtained from the commercial power supply. The battery pack 10 is used as a power source for the electronic device 30 when the electronic device 30 does not use a commercial power source. That is, the battery pack 10 supplies the power energy accumulated in the secondary battery 1 by charging to the load 32 such as a CPU or a memory that is the main body of the electronic device 30 via the control / power supply unit 31. Configured as follows.

またパック電池は、基本的には複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群(二次電池1)と、この二次電池群の充放電電流を検出する電流検出手段および前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段と、検出した電流・電圧に基づいて前記二次電池群に対する充放電を制御すると共に、二次電池群を過充電および過放電から防止し(保護機能)、更には二次電池群のタブ外れや内部短絡等の異常検出処理を実行する制御・演算部を備える。   The battery pack basically has a secondary battery group (secondary battery 1) in which a plurality of parallel units each having a plurality of secondary battery cells connected in parallel are connected in series, and the charge / discharge current of the secondary battery group. A current detecting means for detecting, a voltage detecting means for detecting a terminal voltage of each parallel unit in the secondary battery group, and charging / discharging to the secondary battery group based on the detected current / voltage, and a secondary A control / arithmetic unit is provided that prevents the battery group from being overcharged and overdischarged (protection function), and further performs an abnormality detection process such as tab removal or internal short circuit of the secondary battery group.

ちなみに前記二次電池1はリチウムイオン電池やニッケル水素電池等からなり、例えば複数の電池セル2を直並列に接続して所定の電池電圧と電池容量とを確保した電池群として実現される。具体的には前記二次電池1は、例えば前述した高電圧タイプのリチウムイオン電池のように満充電状態で4.3Vとなる電池セル2を用いる場合には、電池セル2を3段直列に接続することで、全体として満充電状態で12.9Vとなる電池電圧を有するものとして実現される。また各段の電池セル2を、それぞれ3個の電池セル2を並列接続して並列ユニット化することで必要な電気容量(電流量)が、例えば8400mAhとして確保される。   Incidentally, the secondary battery 1 is composed of a lithium ion battery, a nickel hydrogen battery, or the like, and is realized as a battery group in which a plurality of battery cells 2 are connected in series and parallel to ensure a predetermined battery voltage and battery capacity. Specifically, when the secondary battery 1 uses a battery cell 2 that is 4.3 V in a fully charged state, such as the high voltage type lithium ion battery described above, the battery cell 2 is arranged in three stages in series. By connecting, it is realized as having a battery voltage of 12.9 V in a fully charged state as a whole. Further, the battery cells 2 at each stage are connected in parallel by three battery cells 2 to form a parallel unit, so that a necessary electric capacity (amount of current) is secured as 8400 mAh, for example.

これらの複数の電池セル2の並列接続および直列接続は、例えば金属板やリード線からなる接続タブを用いて行われる。そして二次電池1は複数の電池セル2をそれぞれ並列接続した複数の並列ユニット3を直列に接続してパッケージ化したものとして実現される。尚、並列ユニット3を構成する電池セル2の並列接続数や、直列接続する並列ユニット3の段数については、負荷32に応じて二次電池1に要求される仕様(電池電圧・電池容量)に従って定められるものであり、図1に例示する3並列・3段直列構成の二次電池1に限定されないことは言うまでもない。またこのような二次電池1には、例えばその電池温度Tを検出する為のサーミスタ等の温度センサ4が一体に組み込まれる。   The parallel connection and series connection of the plurality of battery cells 2 are performed using connection tabs made of, for example, a metal plate or lead wires. The secondary battery 1 is realized as a package in which a plurality of parallel units 3 each having a plurality of battery cells 2 connected in parallel are connected in series. In addition, about the parallel connection number of the battery cell 2 which comprises the parallel unit 3, and the stage number of the parallel unit 3 connected in series, according to the specification (battery voltage and battery capacity) requested | required of the secondary battery 1 according to the load 32. Needless to say, the battery is not limited to the secondary battery 1 having a three-parallel / three-stage series configuration illustrated in FIG. Also, in such a secondary battery 1, a temperature sensor 4 such as a thermistor for detecting the battery temperature T is integrally incorporated.

一方、パック電池10は、二次電池1の充放電路に設けられて該二次電池1の充放電電流Iを検出するための電流検出部(電流検出手段)5を備えている。この電流検出部5は、例えば上記充放電路に直列に介挿されたシャント抵抗と、このシャント抵抗の両端間に生じた電圧から前記二次電池1の充放電電流Iを検出するセンシングアンプとにより構成される。尚、二次電池1の充放電路に流れる電流が充電電流であるか、或いは放電電流であるかは、電流の向きに応じて上記シャント抵抗の両端間に生じる電圧の極性から判定されることは言うまでもない。   On the other hand, the battery pack 10 includes a current detection unit (current detection means) 5 that is provided in the charge / discharge path of the secondary battery 1 and detects the charge / discharge current I of the secondary battery 1. The current detection unit 5 includes, for example, a shunt resistor inserted in series in the charge / discharge path, and a sensing amplifier that detects the charge / discharge current I of the secondary battery 1 from the voltage generated between both ends of the shunt resistor. Consists of. Whether the current flowing in the charge / discharge path of the secondary battery 1 is a charge current or a discharge current is determined from the polarity of the voltage generated across the shunt resistor depending on the direction of the current. Needless to say.

また前記二次電池1の充放電路には、前記二次電池1の過充電を阻止する為の充電制御スイッチ(充電禁止手段)6と、二次電池1の過放電を阻止する為の放電制御スイッチ(放電禁止手段)7とがそれぞれ設けられる。これらの制御スイッチ6,7は、例えば前記充放電路にそれぞれ直列に介挿された2つのPチャネル型のMOS−FETからなる。これらの制御スイッチ(FET)6,7は、後述する制御・演算部20によりその動作が制御されるものであって、例えばそのゲートにハイレベル(H)の制御信号が印加されたときに遮断(オフ)動作して、前記二次電池1に対する充電電流または放電電流をそれぞれ遮断する。つまり前記制御スイッチ(FET)6,7は、二次電池1の充電および放電をそれぞれ禁止する充放電禁止手段としての役割を担う。尚、制御スイッチ6,7としてNチャネル型のMOS−FETを用いることも勿論可能である。   The charging / discharging path of the secondary battery 1 includes a charge control switch (charge prohibiting means) 6 for preventing overcharge of the secondary battery 1 and a discharge for preventing overdischarge of the secondary battery 1. A control switch (discharge prohibiting means) 7 is provided. These control switches 6, 7 are composed of, for example, two P-channel MOS-FETs inserted in series in the charge / discharge path. The operation of these control switches (FETs) 6 and 7 is controlled by a control / arithmetic unit 20 which will be described later. For example, the control switches (FET) 6 and 7 are cut off when a high level (H) control signal is applied to their gates. (Off) Operates to cut off the charging current or discharging current for the secondary battery 1 respectively. That is, the control switches (FETs) 6 and 7 serve as charge / discharge prohibiting means for prohibiting charging and discharging of the secondary battery 1. Of course, N-channel type MOS-FETs can be used as the control switches 6 and 7.

さて前述した制御・演算部20は、例えばマイクロプロセッサにより実現される。この制御・演算部20は、基本的には前記二次電池1の端子電圧Vbat、および二次電池1を構成する前記各電池セル2(並列ユニット3)の端子電圧Vcellをそれぞれ検出する電圧検出手段を備える。この電圧検出手段は、マイクロプロセッサが備える電圧検出機能として実現される。そして制御・演算部20は、前記温度センサ4を用いて温度検出部(温度検出手段)8が検出する電池温度Tを入力すると共に、前記電流検出部5にて検出される二次電池1の充放電電流Iおよび前記電圧検出手段にて検出される前記二次電池1の端子電圧Vbatや各電池セル2(並列ユニット3)の端子電圧Vcellをそれぞれ入力して前記二次電池1に対する充電および放電をそれぞれ制御する。   The control / calculation unit 20 described above is realized by a microprocessor, for example. The control / arithmetic unit 20 basically detects the terminal voltage Vbat of the secondary battery 1 and the terminal voltage Vcell of each battery cell 2 (parallel unit 3) constituting the secondary battery 1. Means. This voltage detection means is realized as a voltage detection function provided in the microprocessor. The control / calculation unit 20 inputs the battery temperature T detected by the temperature detection unit (temperature detection means) 8 using the temperature sensor 4, and the secondary battery 1 detected by the current detection unit 5. Charging and discharging the secondary battery 1 by inputting the charge / discharge current I and the terminal voltage Vbat of the secondary battery 1 detected by the voltage detection means and the terminal voltage Vcell of each battery cell 2 (parallel unit 3), respectively. Control each discharge.

ちなみに図1に例示する前記制御・演算部20は、3段に直列接続された複数の電池セル2(並列ユニット3)における各正極側の電圧V1,V2,V3と負極電圧V0、および前記温度検出部8にて検出された電池温度Tを示す電圧Vtをマルチプレクサ21を介して選択的に入力し、これをA/Dコンバータ22を介してデジタル変換して取り込む。また前記制御・演算部20は、前記電流検出部4にて検出された充放電電流Iを、A/Dコンバータ23を介してデジタル変換して取り込んでいる。尚、上記各電圧V1,V2,V3,V0および温度情報Tの入力は、マルチプレクサ21およびA/Dコンバータ22のサンプリング周期に同期して所定の周期で巡回的に行われる。そして前記制御・演算部20は、上記複数の電池セル2の各正極電圧V1,V2,V3と負極電圧V0とから、前述した二次電池1の端子電圧Vbat(=V1−V0)、および前記各電池セル2(並列ユニット3)の端子電圧Vcell1(=V1−V2),Vcell2(=V2−V3),Vcell3(=V3−V0)をそれぞれ検出するものとなっている。   Incidentally, the control / arithmetic unit 20 illustrated in FIG. 1 includes voltages V1, V2, V3 and a negative voltage V0 on the positive side in a plurality of battery cells 2 (parallel units 3) connected in series in three stages, and the temperature. The voltage Vt indicating the battery temperature T detected by the detection unit 8 is selectively input via the multiplexer 21 and is digitally converted via the A / D converter 22 and captured. In addition, the control / calculation unit 20 takes in the charge / discharge current I detected by the current detection unit 4 through digital conversion via the A / D converter 23. The voltages V1, V2, V3, V0 and the temperature information T are input cyclically in a predetermined cycle in synchronization with the sampling cycle of the multiplexer 21 and the A / D converter 22. The control / calculation unit 20 calculates the terminal voltage Vbat (= V1-V0) of the secondary battery 1 described above from the positive voltages V1, V2, V3 and the negative voltage V0 of the plurality of battery cells 2, and The terminal voltages Vcell1 (= V1-V2), Vcell2 (= V2-V3), and Vcell3 (= V3-V0) of each battery cell 2 (parallel unit 3) are detected.

このようにして前記二次電池1の端子電圧Vbat,Vcellおよび充放電電流Iを検出する制御・演算部20は、基本的には通信処理部24を介して前述した電子機器30に設けられた前記制御・電源部30の作動を制御して前記二次電池1の充電を制御すると共に(満充電制御)、前述した充電制御スイッチ6をオフ制御して前記二次電池1の過充電を阻止し(過充電保護)、更には前記放電制御スイッチ7をオフ制御して前記二次電池1の過放電を阻止する役割(過放電保護)を担っている。また制御・演算部20は、後述するように二次電池1の充放電に伴う充電残容量を監視したり、性能劣化の程度(寿命)を判定し、性能劣化が検出された場合にはその旨を出力する。更には前記制御・演算部20は、二次電池1の内部短絡やタブ外れ等の異常を検出してパック電池10が装着された電子機器30の使用者に対してその交換を促したり、当該パック電池10の使用を禁止する機能を備えている。   The control / calculation unit 20 for detecting the terminal voltages Vbat, Vcell and the charge / discharge current I of the secondary battery 1 in this way is basically provided in the electronic device 30 described above via the communication processing unit 24. The operation of the control / power supply unit 30 is controlled to control the charging of the secondary battery 1 (full charge control), and the above-described charging control switch 6 is turned off to prevent the secondary battery 1 from being overcharged. (Overcharge protection) and further, the discharge control switch 7 is controlled to be turned off to prevent overcharge of the secondary battery 1 (overdischarge protection). Further, the control / calculation unit 20 monitors the remaining charge capacity associated with charging / discharging of the secondary battery 1 as described later, determines the degree of performance degradation (life), and if performance degradation is detected, Outputs the effect. Furthermore, the control / calculation unit 20 detects an abnormality such as an internal short circuit or tab disconnection of the secondary battery 1 and prompts the user of the electronic device 30 to which the battery pack 10 is attached to replace the A function for prohibiting use of the battery pack 10 is provided.

尚、前述した二次電池1に対する満充電制御は、ニッケル水素電池等においては、例えば二次電池1の充電時に該二次電池1の端子電圧Vbatが徐々に上昇し、満充電状態において上記端子電圧Vbatがピークに達した後、一定電圧(ΔV)だけ低下する現象を利用して満充電(100%充電)状態を判定し(−ΔV方式)、二次電池1に対する充電を停止することによって行われる。またリチウムイオン電池を充電するときのように電流値を所定値以下、電圧値を所定値以下に制限して充電する定電流・定電圧充電においては、定電流充電の後の定電圧充電時において、その充電電流値が所定値以下になった場合に、これを満充電と判定することによって行われる。その他、電池温度Tの変化や充電電流Iの変化から満充電状態を検出する等、従来より種々提唱されている充電制御方式を適宜採用可能なことは言うまでもない。また本発明は二次電池1の満充電制御自体に直接関与するものではないので、満充電制御についてのこれ以上の説明は省略する。   In the above-described full charge control for the secondary battery 1, in a nickel metal hydride battery or the like, for example, when the secondary battery 1 is charged, the terminal voltage Vbat of the secondary battery 1 gradually increases, and the terminal is fully charged. After the voltage Vbat reaches the peak, the state of full charge (100% charge) is determined using the phenomenon that the voltage Vbat decreases by a constant voltage (ΔV) (−ΔV method), and the charging of the secondary battery 1 is stopped. Done. Also, in constant current / constant voltage charging where the current value is limited to a predetermined value or less and the voltage value is limited to a predetermined value or less as in charging a lithium ion battery, during constant voltage charging after constant current charging When the charging current value becomes a predetermined value or less, it is determined by determining that this is a full charge. In addition, it goes without saying that various charge control methods conventionally proposed, such as detecting a fully charged state from a change in the battery temperature T and a change in the charging current I, can be adopted as appropriate. Further, since the present invention is not directly related to the full charge control itself of the secondary battery 1, further description of the full charge control is omitted.

また前述した過充電保護は、例えば二次電池1の端子電圧Vbatが予め設定した二次電池1としての過充電保護電圧を超えたとき、或いは二次電池1を構成する複数段の電池セル2(並列ユニット3)の個々の端子電圧Vcellが各電池セル2に固有な過充電保護電圧を超えたとき、前述した充電制御スイッチ6を作動させてその充電路を強制的に遮断することで、それ以上の充電(過充電)を阻止する役割を担う。尚、二次電池1の端子電圧(充電電圧)Vbatについては、この実施形態においては前述した充電制御における満充電電圧により管理されるので、前記充電制御スイッチ6の作動による過充電防止は、専ら、個々の電池セル2(並列ユニット3)の端子電圧Vcellが、その過充電保護電圧を超えたときに作動する。   Further, the overcharge protection described above is performed when, for example, the terminal voltage Vbat of the secondary battery 1 exceeds a preset overcharge protection voltage as the secondary battery 1 or a plurality of battery cells 2 constituting the secondary battery 1. When the individual terminal voltage Vcell of the (parallel unit 3) exceeds the overcharge protection voltage specific to each battery cell 2, the charge control switch 6 described above is operated to forcibly cut off the charging path, It plays a role to prevent further charging (overcharge). Note that the terminal voltage (charge voltage) Vbat of the secondary battery 1 is managed by the full charge voltage in the above-described charge control in this embodiment, so that overcharge prevention by the operation of the charge control switch 6 is exclusively performed. When the terminal voltage Vcell of each battery cell 2 (parallel unit 3) exceeds its overcharge protection voltage, the battery cell 2 (parallel unit 3) operates.

更に過放電保護は、例えば二次電池1の端子電圧Vbatが予め設定した二次電池1としての過放電保護電圧に近付いたとき、或いは複数段の電池セル2(並列ユニット3)の個々の端子電圧Vcellが、各電池セル2(並列ユニット3)に固有な過放電保護電圧に近付いたとき、或いは過放電保護電圧に至ったとき、前述した放電制御スイッチ7を作動させてその充電路を強制的に遮断して該二次電池1の深放電(過放電)を防止する役割を担う。このような保護機能の他にも前記制御・演算部20は、例えば前記充放電電流Iから二次電池1に対する異常(過大)な充放電電流が検出されたときや、前記温度検出部8により検出された電池温度が60℃を越える等、異常に高くなった場合等に前記充電制御スイッチ6および/または放電制御スイッチ7を作動させてその充放電路を遮断して、二次電池1のみならず負荷32等を保護する機能等を備える。   Further, overdischarge protection is performed, for example, when the terminal voltage Vbat of the secondary battery 1 approaches a preset overdischarge protection voltage as the secondary battery 1 or individual terminals of the battery cells 2 (parallel units 3) in a plurality of stages. When the voltage Vcell approaches the overdischarge protection voltage unique to each battery cell 2 (parallel unit 3) or reaches the overdischarge protection voltage, the discharge control switch 7 described above is activated to force the charging path. It plays a role of preventing the secondary battery 1 from being deeply discharged (overdischarge). In addition to such a protection function, the control / calculation unit 20 may be used when, for example, an abnormal (excessive) charge / discharge current for the secondary battery 1 is detected from the charge / discharge current I, or by the temperature detection unit 8. When the detected battery temperature is abnormally high, such as exceeding 60 ° C., the charge control switch 6 and / or the discharge control switch 7 is operated to cut off the charge / discharge path, and only the secondary battery 1 In addition, a function for protecting the load 32 and the like is provided.

基本的には上述した如く構成される二次電池装置(パック電池)において本発明が特徴とするところは、前記制御・演算部20が備える異常判定機能として、前述した複数の並列ユニット3におけるタブ外れを正確に検出する手段(機能)を備えている点にある。このタブ外れを検出する異常判定機能は、基本的には前記二次電池(二次電池群)1の充放電時における前記各並列ユニット3の端子電圧Vcellをそれぞれ求め、その最大端子電圧Vmaxと最小端子電圧Vminとの差(Vmax−Vmin)、または最大端子電圧Vmaxと最小端子電圧Vminとの比(Vmax/Vmin)を判定してタブ外れの有無を検出する第1のタブ外れ判定手段20aを備える。   Basically, in the secondary battery device (pack battery) configured as described above, the present invention is characterized by the tabs in the plurality of parallel units 3 described above as an abnormality determination function provided in the control / calculation unit 20. It has a means (function) for accurately detecting a deviation. The abnormality determination function for detecting the tab detachment basically obtains the terminal voltage Vcell of each parallel unit 3 at the time of charging / discharging of the secondary battery (secondary battery group) 1 and calculates the maximum terminal voltage Vmax. First tab detachment determining means 20a for detecting the presence or absence of tab detachment by determining the difference (Vmax−Vmin) from the minimum terminal voltage Vmin or the ratio (Vmax / Vmin) between the maximum terminal voltage Vmax and the minimum terminal voltage Vmin. Is provided.

尚、この第1のタブ外れ判定手段20aにおいて、前記各並列ユニット3の端子電圧Vcellの単位時間当たりの変動幅ΔVcellをそれぞれ検出し、その最大変動幅ΔVmaxと最小変動幅ΔVminとの差(ΔVmax−ΔVmin)、または最大変動幅ΔVmaxと最小変動幅ΔVminとの比(ΔVmax/ΔVmin)を判定してタブ外れの有無を検出するようにしても良い。   The first tab deviation determining means 20a detects the fluctuation width ΔVcell per unit time of the terminal voltage Vcell of each parallel unit 3, and the difference (ΔVmax) between the maximum fluctuation width ΔVmax and the minimum fluctuation width ΔVmin. -ΔVmin), or the ratio (ΔVmax / ΔVmin) between the maximum fluctuation range ΔVmax and the minimum fluctuation range ΔVmin may be determined to detect the presence or absence of tab deviation.

更に前記タブ外れを検出する異常判定機能は、上記第1のタブ外れ判定手段20aにてタブ外れが検出されたとき、前記二次電池(二次電池群)1の充放電停止後における前記各並列ユニット3の開放端子電圧OCVcellをそれぞれ求め、その最大開放端子電圧OCVmaxと最小開放端子電圧OCVminとの差(OCVmax−OCVmin)、または最大開放端子電圧OCVmaxと最小開放端子電圧OCVminとの比(OCVmax/OCVmin)を判定して前記タブ外れの発生を確認する第2のタブ外れ判定手段20bを備える。   Further, the abnormality determining function for detecting the tab detachment is configured so that each of the secondary batteries (secondary battery group) 1 after the charge / discharge stop when the detachment of the tab is detected by the first tab detachment determination unit 20a. The open terminal voltage OCVcell of the parallel unit 3 is obtained, and the difference between the maximum open terminal voltage OCVmax and the minimum open terminal voltage OCVmin (OCVmax−OCVmin), or the ratio (OCVmax) between the maximum open terminal voltage OCVmax and the minimum open terminal voltage OCVmin. / OCVmin) and second tab disengagement determining means 20b for confirming the occurrence of tab disengagement.

尚、この第2のタブ外れ判定手段20bにおいて、前記各並列ユニット3の開放端子電圧OCVcellの単位時間当たりの変動幅ΔVcellをそれぞれ検出し、その最大変動幅ΔVmaxと最小変動幅ΔVminとの差(ΔVmax−ΔVmin)、または最大変動幅ΔVmaxと最小変動幅ΔVminとの比(ΔVmax/ΔVmin)を判定してタブ外れの有無を検出するようにしても良い。これらの第1および第2のタブ外れ判定手段20a,20bの具体的なタブ外れ判定処理とその役割については後述する。   The second tab deviation determining means 20b detects the variation width ΔVcell per unit time of the open terminal voltage OCVcell of each parallel unit 3, and the difference between the maximum variation width ΔVmax and the minimum variation width ΔVmin ( ΔVmax−ΔVmin) or a ratio (ΔVmax / ΔVmin) between the maximum fluctuation width ΔVmax and the minimum fluctuation width ΔVmin may be determined to detect the presence or absence of the tab deviation. The specific tab detachment determination processing and the role of these first and second tab detachment determination means 20a and 20b will be described later.

このようなタブ外れの異常検出手段である第1および第2のタブ外れの判定手段20a,20bに加えて、前記異常判定機能は更に前記二次電池(二次電池群)1の充電開始または充電停止後、予め定めた一定時間に亘って前記異常検出手段による前記タブ外れの検出処理を中止する第1の異常検出制御手段20cと、前記二次電池(二次電池群)1に対する充放電サイクル回数が、予め定めた一定回数に達するまで前記異常検出手段による前記タブ外れの検出処理を中止する第2の異常検出制御手段20dとを備える。これらの第1および第2の異常検出制御手段20c,20dについては、その一方だけを備えるようにしても良く、或いはその一方だけを選択的に用いるようにしても良い。   In addition to the first and second tab detachment determination means 20a and 20b, which are such a tab detachment abnormality detection means, the abnormality determination function further includes the start of charging of the secondary battery (secondary battery group) 1 or After the charging is stopped, the first abnormality detection control means 20c that stops the detection of tab detachment by the abnormality detection means for a predetermined time, and charging / discharging of the secondary battery (secondary battery group) 1 And a second abnormality detection control unit 20d for stopping the detection of tab detachment by the abnormality detection unit until the number of cycles reaches a predetermined number of times. About these 1st and 2nd abnormality detection control means 20c, 20d, you may make it provide only one of them, or you may make it selectively use only one of them.

尚、上述した充放電サイクルは、例えば二次電池1の充電に着目して、該二次電池1を使用開始時の初期状態から、或いは二次電池1が再充電容量まで放電した状態から満充電状態まで充電するまで過程を1サイクルとして定義される。尚、充電電流値とその充電時間との乗算値として二次電池1の充電容量を求め、その充電容量が該二次電池1の満充電容量値に達する都度、これを1サイクルとして求めることも可能である。また二次電池1の放電に着目した場合には、例えば満充電まで充電した二次電池1が、その放電に伴って予め設定した容量以上放電したとき、或いは完全放電したとき、これを1サイクルとして求めるようにすれば良い。1サイクルの放電が行われた二次電池1は、再度充電に供せられることになるので、この放電サイクルも前述した充電サイクルと同様な意味を持つ。従って充電サイクルまたは放電サイクルとして求められる充放電サイクル回数(サイクルカウント数)は、二次電池1の繰り返し再充電回数としての意味を持つことになる。このような充放電サイクル数の管理は、前述した制御・演算部20における充放電管理プログラム(管理手段)の下で実行される。   Note that the charge / discharge cycle described above, for example, pays attention to the charging of the secondary battery 1 from the initial state when the secondary battery 1 starts to be used or from the state where the secondary battery 1 is discharged to the recharge capacity. The process is defined as one cycle until charging to a charged state. The charging capacity of the secondary battery 1 is obtained as a multiplication value of the charging current value and the charging time, and this is obtained as one cycle every time the charging capacity reaches the full charging capacity value of the secondary battery 1. Is possible. When attention is paid to the discharge of the secondary battery 1, for example, when the secondary battery 1 charged to full charge discharges more than a preset capacity along with the discharge or complete discharge, this is one cycle. As long as you ask. Since the secondary battery 1 that has been discharged for one cycle is again charged, this discharge cycle has the same meaning as the above-described charging cycle. Therefore, the number of charge / discharge cycles (number of cycle counts) required as the charge cycle or the discharge cycle has a meaning as the number of recharges of the secondary battery 1 repeatedly. Such management of the number of charge / discharge cycles is executed under the charge / discharge management program (management means) in the control / arithmetic unit 20 described above.

図2は上述したタブ外れの異常検出手段(第1および第2のタブ外れの判定手段20a,20b)とその制御手段(第1および第2の異常検出制御手段20c,20d)とを備えた前記制御・演算部20により実行されるタブ外れの異常判定処理手順の一例を示している。このタブ外れの異常判定処理は、先ず前記二次電池(二次電池群)1の充電開始または充電停止後、予め定めた一定時間、例えば10時間が経過したか否かを判定することから開始される<ステップS1>。   FIG. 2 includes the above-described tab detachment abnormality detection means (first and second tab detachment determination means 20a, 20b) and its control means (first and second abnormality detection control means 20c, 20d). 6 shows an example of an abnormality determination processing procedure for tab deviation that is executed by the control / calculation unit 20. The abnormality determination process for detachment from the tab is started by first determining whether or not a predetermined time, for example, 10 hours has elapsed after the start or stop of charging of the secondary battery (secondary battery group) 1. <Step S1>.

尚、この一定時間の経過判定に代えて、その充放電サイクル回数が、予め定めた一定回数、例えば20回に達したか否かを判定するようにしても良い<ステップS1>。そして二次電池(二次電池群)1の充電開始または充電停止から10時間が経過していない場合、或いは充放電サイクル回数が20回に達していない場合には、以下に説明するタブ外れの判定処理を中止する。換言すれば二次電池(二次電池群)1の充電開始または充電停止から10時間が経過している場合、或いは充放電サイクル回数が20回に達している場合にだけ、以下に説明するタブ外れの判定処理を実行する。   Note that, instead of determining whether the predetermined time has elapsed, it may be determined whether or not the number of charge / discharge cycles has reached a predetermined fixed number, for example, 20 times (step S1). When 10 hours have not elapsed since the start or stop of charging of the secondary battery (secondary battery group) 1 or when the number of charge / discharge cycles has not reached 20, the tab removal described below will occur. Cancels the judgment process. In other words, the tab described below only when 10 hours have elapsed since the start or stop of charging of the secondary battery (secondary battery group) 1 or when the number of charge / discharge cycles has reached 20 times. A judgment process of detachment is executed.

即ち、高電圧タイプのリチウムイオン電池の場合、その初期状態において該リチウムイオン電池を充電した後に放電させたときの端子電圧は、例えば図3に例示するように2段階のカーブを描いて不安定に変化する。特に図3において破線で囲んで示すように端子電圧Vcellが略4.0Vから略3.7Vまで低下する際における電圧低下が不安定であり、個々のリチウムイオン電池におけるバラツキも大きい。このような電圧降下の不安定部分、いわゆるイレギュラー・シェープ部分での端子電圧のバラツキは、図4に拡大して示すように最大で略80mVにも達し、このような端子電圧の違いがタブ外れが生じたと誤判定する要因となる。特にこのようなイレギュラー・シェープは、高電圧タイプのリチウムイオン電池を、その通常使用温度範囲(10℃〜45℃)を外れた、例えば5℃の低温で充電した場合に顕著に生じる。   That is, in the case of a high voltage type lithium ion battery, the terminal voltage when the lithium ion battery is charged and discharged in the initial state is unstable with a two-stage curve as illustrated in FIG. To change. In particular, as shown in FIG. 3 surrounded by a broken line, the voltage drop when the terminal voltage Vcell drops from about 4.0 V to about 3.7 V is unstable, and variations among individual lithium ion batteries are large. The variation of the terminal voltage in the unstable portion of the voltage drop, the so-called irregular shape portion, reaches about 80 mV at the maximum as shown in FIG. This is a factor that erroneously determines that a detachment has occurred. In particular, such irregular shapes remarkably occur when a high voltage type lithium ion battery is charged at a low temperature of 5 ° C., for example, outside its normal use temperature range (10 ° C. to 45 ° C.).

しかし上述したイレギュラー・シェープは、最初の充電から所定時間が経過した後に放電した場合、放電までの放置時間が長くなるに伴って次第に小さくなる。また充放電を一定サイクル回数に亘って繰り返した場合にもイレギュラー・シェープが次第に小さくなる。そして上述した充電後の放電までの経過時間が長い場合、或いは充放電を繰り返した場合には、後述するようにリチウムイオン電池の負極材の表面に固体電解質被膜が形成されて負極材の表面状態が安定し、この結果、イレギュラー・シェープがなくなると考えられる。   However, when the irregular shape described above is discharged after a predetermined time has elapsed since the first charge, the irregular shape gradually decreases as the standing time until the discharge becomes longer. In addition, when charging / discharging is repeated for a certain number of cycles, the irregular shape gradually decreases. And when the elapsed time until the discharge after the charging described above is long, or when charging and discharging are repeated, a solid electrolyte film is formed on the surface of the negative electrode material of the lithium ion battery as described later, and the surface state of the negative electrode material As a result, it is considered that there is no irregular shape.

即ち、前述した高電圧タイプのリチウムイオン電池の場合には、例えばその正極材としてコバルト酸リチウムとリチウムコバルトニッケルマンガン酸複合酸化物との混合材を用い、また電解液としてフルオロエチレンカーボネートを用いている。この為、リチウムイオン電池の充放電に伴って、その負極材である炭素材料と前記電解液とが反応して該負極材の表面にリチウム金属含有化合物が形成され、このリチウム金属含有化合物が該リチウムイオン電池の充放電に影響を与えていると考えられる。しかし充放電の繰り返しによって、或いは充電から所定の時間が経過して前述したリチウム金属含有化合物が安定化し、該負極材の表面に固体電解質被膜が形成されると、前述した充放電に伴う炭素材料と電解液との反応がなくなるので、これに伴って前述したイレギュラー・シェープもなくなるものと考えられる。   That is, in the case of the above-described high voltage type lithium ion battery, for example, a mixed material of lithium cobaltate and lithium cobalt nickel manganate composite oxide is used as the positive electrode material, and fluoroethylene carbonate is used as the electrolyte. Yes. For this reason, as the lithium ion battery is charged and discharged, the carbon material, which is the negative electrode material, reacts with the electrolytic solution to form a lithium metal-containing compound on the surface of the negative electrode material. This is thought to affect the charge / discharge of the lithium ion battery. However, when the above-described lithium metal-containing compound is stabilized by repeated charging or discharging or after a predetermined time has elapsed since charging, and the solid electrolyte film is formed on the surface of the negative electrode material, the carbon material associated with charging and discharging described above It is considered that the irregular shape described above is eliminated along with this.

ちなみに本発明者等の実験によれば、前述した高電圧タイプのリチウムイオン電池の場合、最初の充電状態をそのまま放置した後、放電させたときの端子電圧の変化を調べたところ、図5に示すように充電後の放置時間が長くなる程、イレギュラー・シェープが小さくなり、略10時間の放置でイレギュラー・シェープが殆ど見られなくなった。また充放電を繰り返した場合、図6に示すように充放電サイクルの繰り返しに伴ってイレギュラー・シャープが徐々に小さくなり、20回程度の繰り返した場合にはイレギュラー・シェープが殆ど現れなくなることが確認された。   Incidentally, according to the experiments by the present inventors, in the case of the above-described high voltage type lithium ion battery, the change in the terminal voltage when discharged after leaving the first charged state as it is is shown in FIG. As shown, the longer the standing time after charging, the smaller the irregular shape, and almost no irregular shape was seen after standing for about 10 hours. In addition, when charging / discharging is repeated, as shown in FIG. 6, the irregular sharpness gradually decreases as the charging / discharging cycle repeats, and when it is repeated about 20 times, irregular shapes hardly appear. Was confirmed.

このような実験結果に基づいて本発明に係る二次電池装置においては、前述したようにイレギュラー・シェープが生じていると看做し得る初期期間を判定し<ステップS1>、この初期期間におけるタブ外れの検出処理を中止することで、イレギュラー・シェープに起因する端子電圧のバラツキを、タブ外れが生じたとして誤検出しないようにしている。そして上述した初期期間を経た後、端子電圧のバラツキを判定してタブ外れ異常を検出するものとなっている。   Based on the experimental results, in the secondary battery device according to the present invention, as described above, an initial period in which it can be considered that an irregular shape has occurred is determined <Step S1>. By discontinuing the tab removal detection process, variations in terminal voltage due to irregular shapes are prevented from being erroneously detected as tab removal has occurred. Then, after the above-described initial period, the terminal voltage variation is determined to detect a tab detachment abnormality.

さて前述した如く二次電池(二次電池群)1を充放電する初期期間が経過したならば、図2に示すようにタブ外れの検出処理を開始する。このタブ外れの検出処理は、先ず前述した第1のタブ外れの判定手段20aにおいて、先ず二次電池(二次電池群)1における各並列ユニット32の充放電時における端子電圧Vcellを検出することから開始される<ステップS2>。そしてこの場合には、例えば前記端子電圧の最大値Vmaxと最小値Vminとの比から、例えば
Vmax > 1.4×Vmin
なるとき、タブ外れに起因して複数の並列ユニット3の端子電圧Vcellのバラツキが大きくなっていると判定する<ステップS3>。
Now, as described above, when the initial period for charging / discharging the secondary battery (secondary battery group) 1 has elapsed, the tab removal detection process is started as shown in FIG. In this tab detachment detection process, first, in the first tab detachment determination means 20a, first, the terminal voltage Vcell at the time of charging / discharging of each parallel unit 32 in the secondary battery (secondary battery group) 1 is detected. <Step S2>. In this case, for example, from the ratio between the maximum value Vmax and the minimum value Vmin of the terminal voltage, for example, Vmax> 1.4 × Vmin.
Then, it is determined that the variation in the terminal voltage Vcell of the plurality of parallel units 3 is increased due to tab disengagement <step S3>.

尚、各並列ユニット32の充放電時における端子電圧Vcellの変動に着目し、各並列ユニット32の単位時間当たりの端子電圧Vcellの最大変動幅ΔVmaxと最小変動幅ΔVminの比から、例えば
ΔVmax > 1.4×ΔVmin
なるとき、タブ外れに起因して複数の並列ユニット3の端子電圧Vcellのバラツキが大きくなっていると判定しても良い<ステップS3>。そしてタブ外れが検出された場合には、制御フラグFを[1]とし<ステップS4>、一方、タブ外れが検出されない場合には前記制御フラグFを[0]とする<ステップS5>。つまりタブ外れを検出しても、この段階ではタブ外れが生じているとして確定しない。
Focusing on the fluctuation of the terminal voltage Vcell during charging / discharging of each parallel unit 32, from the ratio of the maximum fluctuation width ΔVmax and the minimum fluctuation width ΔVmin of the terminal voltage Vcell per unit time of each parallel unit 32, for example, ΔVmax> 1 .4 x ΔVmin
In this case, it may be determined that the variation in the terminal voltages Vcell of the plurality of parallel units 3 is increased due to tab disengagement <step S3>. If a tab removal is detected, the control flag F is set to [1] <step S4>. On the other hand, if a tab removal is not detected, the control flag F is set to [0] <step S5>. In other words, even if tab removal is detected, it is not determined at this stage that tab removal has occurred.

しかる後、前記制御フラグFが[1]である場合<ステップS6>、前述した第2のタブ外れ判定手段20bを起動して真にタブ外れが生じているか否かを検証する。この確認処理は、先ず充放電電流が零[0]であるか否かを判定することで、二次電池1の充放電が完了していることを確認する<ステップS7>。そして二次電池1の充放電が完了している場合には、例えば充放電完了から30分が経過し、二次電池1の内部状態が安定化しているか否かを判定する<ステップS8>。尚、これらの条件が満たされない場合には、その条件が満たされるまでタブ外れの検証処理を待つ。   Thereafter, when the control flag F is [1] <step S6>, the second tab detachment determination unit 20b described above is activated to verify whether or not a tab detachment has really occurred. In this confirmation process, it is first confirmed whether charging / discharging of the secondary battery 1 is completed by determining whether the charging / discharging current is zero [0] <step S7>. If the charging / discharging of the secondary battery 1 is completed, for example, it is determined whether or not 30 minutes have elapsed from the completion of charging / discharging and the internal state of the secondary battery 1 is stabilized <step S8>. If these conditions are not satisfied, a tab off verification process is awaited until the conditions are satisfied.

そして上記条件が整った場合には、前述した各並列ユニット3の端子電圧、つまりその開放端子電圧OCVcellをそれぞれ検出する<ステップS9>。そして開放端子電圧OCVcellの最大値OCVmaxと、その最小値OCVminとの差が、例えば
OCVmax−OCVmin ≧ 100mV
であるか否かを判定し<ステップS10>、100mV以上の電圧差がある場合には、これを真にタブ外れが生じたとして判定する<ステップS11>。しかし100mV以上の電圧差が認められない場合には、前述した電圧比に基づくタブ外れの検出結果を導いた端子電圧のバラツキは、専ら、二次電池セル2の温度分布や温度特性のバラツキに起因したものであり、タブ外れに起因するものではないとして前記制御フラグを[0]とする<ステップS12>。
When the above conditions are satisfied, the terminal voltage of each parallel unit 3, that is, the open terminal voltage OCVcell is detected <step S9>. The difference between the maximum value OCVmax of the open terminal voltage OCVcell and the minimum value OCVmin is, for example, OCVmax−OCVmin ≧ 100 mV.
<Step S10>, and if there is a voltage difference of 100 mV or more, it is determined that a true tab deviation has occurred <Step S11>. However, in the case where a voltage difference of 100 mV or more is not recognized, the variation in the terminal voltage that led to the detection result of the tab deviation based on the voltage ratio described above is mainly due to the variation in the temperature distribution and temperature characteristics of the secondary battery cell 2. The control flag is set to [0] because it is attributed and not attributed to tab removal <step S12>.

ちなみにパック電池内での二次電池1に温度分布があり、複数の二次電池セル2間に温度差があるときには、その温度差に起因して各二次電池セル2の内部抵抗に差が生じる。すると電流が流れる状態での端子電圧測定においては各電池セル2の端子電圧の差が大きくなる。しかし上述したステップでは各電池セル2の開放端子電圧を測定しているので、内部抵抗に起因する電圧差が生じることがなく、従って正確にタブ外れを検出することができる。   Incidentally, when the secondary battery 1 in the battery pack has a temperature distribution and there is a temperature difference between the plurality of secondary battery cells 2, there is a difference in the internal resistance of each secondary battery cell 2 due to the temperature difference. Arise. Then, in the terminal voltage measurement in a state where current flows, the difference in the terminal voltage of each battery cell 2 becomes large. However, since the open terminal voltage of each battery cell 2 is measured in the above-described step, a voltage difference due to the internal resistance does not occur, and therefore it is possible to accurately detect tab disengagement.

かくして上述した如くして並列ユニット(電池セル)2のタブ外れを検出し、検証する本装置によれば、その使用初期時に発生するイレギュラー・シェープに起因する電圧のバラツキや、電池セル2自体の温度特性のバラツキに起因する電圧のバラツキを、タブ外れとして誤検出することがなくなる。しかも簡易にして効果的にタブ外れの誤検出を防ぐことができる。従ってタブ外れのない正常な二次電池装置(パック電池)を不本意に廃棄処分することがなくなり、エネルギ資源の有効活用を図ることが可能となる。   Thus, according to the present apparatus for detecting and verifying the tab detachment of the parallel unit (battery cell) 2 as described above, voltage variations caused by irregular shapes occurring at the initial use time, and the battery cell 2 itself The variation in the voltage due to the variation in the temperature characteristic is not erroneously detected as a tab deviation. Moreover, it is possible to simply and effectively prevent erroneous detection of tab disengagement. Therefore, a normal secondary battery device (pack battery) without tab disconnection is not unnecessarily discarded, and it is possible to effectively use energy resources.

尚、タブ外れが検出された二次電池装置(パック電池)については、使用上の安全基準を満たさないので、使用できなくすることが好ましい。この場合、前述した放電制御スイッチ7を強制的にオフ制御しても良いが、例えば図7に示すように二次電池1の充放電路に抵抗加熱型ヒューズ26を直列に介挿しておき、該抵抗加熱型ヒューズ26を溶断することで二次電池1自体を回路的に切り離し、これによってパック電池を永久的に使用禁止に設定することが有用である。ちなみにこのような抵抗加熱型ヒューズ26を溶断や、前記放電制御スイッチ7のオフ制御によるパック電池の使用禁止処理については、二次電池1が放電していないことを条件として行うことが望ましい。   In addition, about the secondary battery apparatus (pack battery) by which tab removal was detected, since the safety standard on use is not satisfy | filled, it is preferable to make it unusable. In this case, the above-described discharge control switch 7 may be forcibly turned off. For example, as shown in FIG. 7, a resistance heating type fuse 26 is inserted in series in the charge / discharge path of the secondary battery 1, It is useful to disconnect the secondary battery 1 itself in a circuit by fusing the resistance heating type fuse 26 and thereby set the battery pack to be permanently disabled. Incidentally, it is desirable to perform the process of prohibiting use of the battery pack by fusing the resistance heating type fuse 26 or controlling the discharge control switch 7 to be turned off on the condition that the secondary battery 1 is not discharged.

尚、本発明は上述した実施形態に限定されるものではない。ここでは高電圧タイプのリチウムイオン電池を用いた場合を例に説明したが、従来一般的な4.2Vタイプのリチウムイオン電池を用いる場合や、更に高性能化を図ったリチウムイオン電池を用いる場合にも本発明を同様に適用可能である。また使用初期時におけるタブ外れ検出を中止する磁化や充放電サイクル回数については、使用する電池セルの特性に合わせて定めれば良いことは言うまでもない。またタブ外れの検出条件を規定する電圧差や電圧比についても、使用する電池セルの特性に合わせて設定すれば十分である。要は本発明は、その要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. Here, a case where a high voltage type lithium ion battery is used has been described as an example. However, when a conventional general 4.2 V type lithium ion battery is used or when a lithium ion battery with further improved performance is used. In addition, the present invention can be similarly applied. Needless to say, the magnetization at which the detection of tab detachment at the initial stage of use and the number of charge / discharge cycles are stopped may be determined in accordance with the characteristics of the battery cell to be used. Moreover, it is sufficient to set the voltage difference and the voltage ratio that define the detection condition of the tab detachment according to the characteristics of the battery cell to be used. In short, the present invention can be implemented with various modifications without departing from the spirit of the present invention.

1 二次電池(二次電池群)
2 電池セル
3 並列ユニット
5 電流検出部
6 充電制御スイッチ(充電禁止手段)
7 放電制御スイッチ(放電禁止手段)
8 温度検出部
20 制御・演算部(マイクロプロセッサ)
20a 第1のタブ外れ判定手段
20b 第2のタブ外れ判定手段
20c 第1の異常検出制御手段
20d 第2の異常検出制御手段
21 マルチプレクサ(電圧検出部)
26 抵抗加熱型ヒューズ
1 Secondary battery (secondary battery group)
2 battery cell 3 parallel unit 5 current detector 6 charge control switch (charge prohibition means)
7 Discharge control switch (Discharge prohibition means)
8 Temperature detector 20 Control / calculation unit (microprocessor)
20a 1st tab detachment determination means 20b 2nd tab detachment determination means 20c 1st abnormality detection control means 20d 2nd abnormality detection control means 21 Multiplexer (voltage detection part)
26 Resistance heating type fuse

Claims (6)

複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群と、
この二次電池群の充放電電流を検出する電流検出手段と、
前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段と、
前記電流検出手段による検出結果と前記電圧検出手段による検出結果とに基づいて前記二次電池群における各並列ユニットでのタブ外れを検出する異常検出手段と、
前記二次電池群の充電開始または充電停止後、予め定めた一定時間に亘って前記異常検出手段による前記タブ外れの検出処理を中止する異常検出制御手段と
を具備したことを特徴とする二次電池装置。
A secondary battery group in which a plurality of parallel units each having a plurality of secondary battery cells connected in parallel are connected in series;
Current detection means for detecting the charge / discharge current of the secondary battery group;
Voltage detection means for detecting the terminal voltage of each parallel unit in the secondary battery group;
An anomaly detection means for detecting tab disengagement in each parallel unit in the secondary battery group based on the detection result by the current detection means and the detection result by the voltage detection means;
An abnormality detection control means for stopping detection of tab detachment by the abnormality detection means for a predetermined time after starting or stopping charging of the secondary battery group. Battery device.
前記予め定めた一定時間は、前記二次電池群の充電に伴って前記二次電池セルを構成する負極の表面が電解液と反応して安定化するに要する時間として設定されるものである請求項1に記載の二次電池装置。   The predetermined period of time is set as a time required for the surface of the negative electrode constituting the secondary battery cell to react with the electrolyte and stabilize as the secondary battery group is charged. Item 2. The secondary battery device according to Item 1. 複数の二次電池セルを並列接続した並列ユニットを複数個直列に接続した二次電池群と、
この二次電池群の充放電電流を検出する電流検出手段と、
前記二次電池群における各並列ユニットの端子電圧をそれぞれ検出する電圧検出手段と、
前記電流検出手段による検出結果と前記電圧検出手段による検出結果とに基づいて前記二次電池群における各並列ユニットでのタブ外れを検出する異常検出手段と、
前記二次記電池群に対する充放電サイクル回数が、予め定めた一定回数に達するまで前記異常検出手段による前記タブ外れの検出処理を中止する異常検出制御手段と
を具備したことを特徴とする二次電池装置。
A secondary battery group in which a plurality of parallel units each having a plurality of secondary battery cells connected in parallel are connected in series;
Current detection means for detecting the charge / discharge current of the secondary battery group;
Voltage detection means for detecting the terminal voltage of each parallel unit in the secondary battery group;
Abnormality detecting means for detecting tab detachment in each parallel unit in the secondary battery group based on the detection result by the current detection means and the detection result by the voltage detection means;
An abnormality detection control means for stopping the detection of tab detachment by the abnormality detection means until the number of charge / discharge cycles for the secondary battery group reaches a predetermined fixed number of times. Battery device.
前記予め定めた一定回数は、前記二次電池群の充放電の繰り返しに伴って前記二次電池セルを構成する負極の表面が電解液と反応して安定化する回数として設定されるものである請求項3に記載の二次電池装置。   The predetermined number of times is set as the number of times that the surface of the negative electrode constituting the secondary battery cell reacts with the electrolyte and stabilizes as the secondary battery group is repeatedly charged and discharged. The secondary battery device according to claim 3. 前記異常検出手段は、前記二次電池群の充放電時における前記各並列ユニットの端子電圧をそれぞれ求め、その最大端子電圧と最小端子電圧との差または比、若しくは前記各並列ユニットの端子電圧の単位時間当たりの変動幅の最大値と最小値との差または比を判定してタブ外れの有無を検出する第1のタブ外れ判定手段と、この第1のタブ外れ判定手段にてタブ外れが検出されたとき、前記二次電池群の充放電停止後における前記各並列ユニットの端子電圧をそれぞれ求め、その最大端子電圧と最小端子電圧との差または比、若しくは前記各並列ユニットの端子電圧の単位時間当たりの変動幅の最大値と最小値との差または比を判定して前記タブ外れの発生を確認する第2のタブ外れ判定手段とを備える請求項1または3に記載の二次電池装置。   The abnormality detection means obtains the terminal voltage of each parallel unit at the time of charging / discharging of the secondary battery group, and the difference or ratio between the maximum terminal voltage and the minimum terminal voltage or the terminal voltage of each parallel unit. A first tab detachment determining means for detecting the presence or absence of tab detachment by determining a difference or ratio between the maximum value and the minimum value of the fluctuation range per unit time, and tab detachment by the first tab detachment determining means. When detected, the terminal voltage of each parallel unit after stopping the charge and discharge of the secondary battery group, respectively, the difference or ratio between the maximum terminal voltage and the minimum terminal voltage, or the terminal voltage of each parallel unit 4. The secondary battery according to claim 1, further comprising: a second tab detachment determining unit that determines a difference or ratio between a maximum value and a minimum value of a fluctuation range per unit time and confirms the occurrence of the tab detachment. 5. Location. 前記複数の二次電池セルは、高電圧タイプのリチウムイオン電池である請求項1または3に記載の二次電池装置。   The secondary battery device according to claim 1, wherein the plurality of secondary battery cells are high-voltage type lithium ion batteries.
JP2009179336A 2009-07-31 2009-07-31 Secondary battery device Active JP5474438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179336A JP5474438B2 (en) 2009-07-31 2009-07-31 Secondary battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179336A JP5474438B2 (en) 2009-07-31 2009-07-31 Secondary battery device

Publications (2)

Publication Number Publication Date
JP2011034784A true JP2011034784A (en) 2011-02-17
JP5474438B2 JP5474438B2 (en) 2014-04-16

Family

ID=43763672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179336A Active JP5474438B2 (en) 2009-07-31 2009-07-31 Secondary battery device

Country Status (1)

Country Link
JP (1) JP5474438B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099092A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
EP3079220A4 (en) * 2013-12-31 2017-02-08 Nanjing Chervon Industry Co., Ltd. Battery pack, charging combination, electric tool and disconnection detection method
JP2020060562A (en) * 2018-10-12 2020-04-16 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Sensor and method for checking sensor
CN112363069A (en) * 2020-09-18 2021-02-12 万向一二三股份公司 Lithium ion battery tab fracture detection method
WO2023008044A1 (en) * 2021-07-27 2023-02-02 株式会社デンソー Battery monitoring device and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219656A (en) * 1992-02-03 1993-08-27 Nippon Densan Corp Batter charger
JPH07212981A (en) * 1994-01-24 1995-08-11 Sharp Corp Battery charger
JP2002371879A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Power feeder
JP2005166362A (en) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd Detection method of characteristics fluctuation of packed battery
JP2007120960A (en) * 2005-10-25 2007-05-17 Honda Motor Co Ltd Failure diagnosis device of sub-power supply
JP2008021619A (en) * 2006-06-14 2008-01-31 Sanyo Electric Co Ltd Battery pack
JP2009076280A (en) * 2007-09-19 2009-04-09 Sanyo Electric Co Ltd Method for controling battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219656A (en) * 1992-02-03 1993-08-27 Nippon Densan Corp Batter charger
JPH07212981A (en) * 1994-01-24 1995-08-11 Sharp Corp Battery charger
JP2002371879A (en) * 2001-06-15 2002-12-26 Toyota Motor Corp Power feeder
JP2005166362A (en) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd Detection method of characteristics fluctuation of packed battery
JP2007120960A (en) * 2005-10-25 2007-05-17 Honda Motor Co Ltd Failure diagnosis device of sub-power supply
JP2008021619A (en) * 2006-06-14 2008-01-31 Sanyo Electric Co Ltd Battery pack
JP2009076280A (en) * 2007-09-19 2009-04-09 Sanyo Electric Co Ltd Method for controling battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099092A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
EP3079220A4 (en) * 2013-12-31 2017-02-08 Nanjing Chervon Industry Co., Ltd. Battery pack, charging combination, electric tool and disconnection detection method
AU2014375491B2 (en) * 2013-12-31 2018-04-26 Nanjing Chervon Industry Co., Ltd. Battery pack, charging combination, electric tool and disconnection detection method
GB2524363B (en) * 2013-12-31 2020-12-30 Chervon Hk Ltd Battery pack, method for detecting battery pack, charging assembly and electric tool
JP2020060562A (en) * 2018-10-12 2020-04-16 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Sensor and method for checking sensor
CN111123106A (en) * 2018-10-12 2020-05-08 大陆汽车有限责任公司 Sensor and method for checking a sensor
CN111123106B (en) * 2018-10-12 2022-07-08 大陆汽车有限责任公司 Sensor and method for checking a sensor
CN112363069A (en) * 2020-09-18 2021-02-12 万向一二三股份公司 Lithium ion battery tab fracture detection method
CN112363069B (en) * 2020-09-18 2023-07-07 万向一二三股份公司 Method for detecting breakage of tab of lithium ion battery
WO2023008044A1 (en) * 2021-07-27 2023-02-02 株式会社デンソー Battery monitoring device and program

Also Published As

Publication number Publication date
JP5474438B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5289083B2 (en) Secondary battery abnormality detection device and secondary battery device
US8350531B2 (en) Secondary battery charge control method and charge control circuit
US6819083B1 (en) Dual use thermistor for battery cell thermal protection and battery pack overcharge/undercharge protection
CN101504996B (en) Charging apparatus and charging method
JP5618986B2 (en) Charger
JP4499164B2 (en) Charging apparatus and charging method
US6850041B2 (en) Battery pack used as power source for portable device
WO2009107335A1 (en) Recharging device and recharging method
JP3327790B2 (en) Battery protection device
EP2385575A1 (en) Battery power supply device, and battery power supply system
US20090184685A1 (en) Battery pack and method of charging the same
CN109075401B (en) Battery pack and method of charging battery pack
US20090295335A1 (en) Battery pack and charging method for the same
KR101442188B1 (en) Apparatus and Method for warning against overheat of battery pack
US20110025272A1 (en) Charging method, charging device, and battery pack
EP2731165A1 (en) Method for manufacturing battery pack and battery pack
JP2011115012A (en) Battery pack and control method
KR20120010061A (en) Battery pack and method for controlling of charging and dischraging of the same
JP2010233358A (en) Battery protection circuit, battery protection method, power supply unit, and program
JP2008005693A (en) Battery device
JP5474438B2 (en) Secondary battery device
EP2654167A1 (en) Battery pack
JP2012034425A (en) Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
JP2004127532A (en) Battery pack
EP3499678B1 (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5474438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350