[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011028188A - Method of resetting long-gap pdp - Google Patents

Method of resetting long-gap pdp Download PDF

Info

Publication number
JP2011028188A
JP2011028188A JP2009186870A JP2009186870A JP2011028188A JP 2011028188 A JP2011028188 A JP 2011028188A JP 2009186870 A JP2009186870 A JP 2009186870A JP 2009186870 A JP2009186870 A JP 2009186870A JP 2011028188 A JP2011028188 A JP 2011028188A
Authority
JP
Japan
Prior art keywords
electrode
discharge
pdp
reset
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186870A
Other languages
Japanese (ja)
Inventor
Yoshifumi Amano
芳文 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TTT KK
Original Assignee
TTT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TTT KK filed Critical TTT KK
Priority to JP2009186870A priority Critical patent/JP2011028188A/en
Publication of JP2011028188A publication Critical patent/JP2011028188A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Gas Discharge Display Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein when an interval between display discharge electrodes which is commonly known as scanning electrode and sustaining electrode of an AC-type PDP which are parallel to each other and form a pair is formed as pixels having a comparatively long gap, for example, 200 microns, it is difficult to perform charging which is effective and does not cause contrast degradation, that is, the so-called reset discharging, due to the high discharge voltage due to the long gap. <P>SOLUTION: In this PDP, reset discharging is performed not between the scanning electrode and the sustaining electrode, but between the scanning electrode and the address electrode, and the sustaining electrode and the address electrode independently with a continuous timing. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズマディスプレイパネル所謂PDPの駆動方法に関する。The present invention relates to a plasma display panel so-called PDP driving method.

PDPはガス放電を利用した表示装置であり、XY状に配された放電電極とこれを被覆する誘電層から構成されている。 基本的な構造としては図5に示すように背面側基板1には画面縦方向に伸張するアドレス電極と称される複数の電極8があり、それと対向して前面側基板5には上記アドレス電極8と直交する横方向に伸張するスキャン電極と称される複数の電極6があり、これら両電極の交叉する複数の点を画素として画像信号に応じて放電することで誘電層上に電荷を蓄積する。 これをアドレス放電と称している。A PDP is a display device using gas discharge, and is composed of discharge electrodes arranged in an XY shape and a dielectric layer covering the discharge electrodes. As a basic structure, as shown in FIG. 5, the back side substrate 1 has a plurality of electrodes 8 called address electrodes extending in the vertical direction of the screen. There are a plurality of electrodes 6 called scan electrodes extending in the lateral direction perpendicular to 8 and charges are accumulated on the dielectric layer by discharging according to the image signal using a plurality of points where these electrodes intersect as pixels. To do. This is called address discharge.

一般的なPDPでは蛍光体をアドレス電極8が形成されている背面側基板に形成する必要があるため、図5では示されていないが同じアドレス電極8を被覆する背面側の誘電層2の上に形成される蛍光体への表示放電によるダメージを避けるため、アドレス放電用と表示放電用の電極を分離することが望ましい。 そこで一般的なPDPでは、前面側のスキャン電極6に並行してサステイン電極と称する第三の電極7を配し、表示放電は上記アドレス放電で形成された電荷を元にして画像に応じた表示放電をスキャン電極6及びサステイン電極7の間で行う。 この表示放電は上記電極間にサステインパルスと称するパルスを印加することでパルスごとに極性の異なる電荷が交互に形成されることから放電を継続的に維持できるのでメモリー放電と呼ばれることもある。 また一般的にスキャン電極6をX電極、サステイン電極7をY電極、アドレス電極をA電極と呼ぶ場合がある。In a general PDP, it is necessary to form a phosphor on the back side substrate on which the address electrode 8 is formed. Therefore, although not shown in FIG. It is desirable to separate the address discharge electrodes and the display discharge electrodes in order to avoid damage to the phosphors formed by the display discharge. Therefore, in a general PDP, a third electrode 7 called a sustain electrode is arranged in parallel with the scan electrode 6 on the front side, and the display discharge is displayed in accordance with the image based on the charges formed by the address discharge. Discharging is performed between the scan electrode 6 and the sustain electrode 7. This display discharge is sometimes referred to as a memory discharge because a discharge called a sustain pulse is applied between the electrodes, and charges having different polarities are alternately formed for each pulse, so that the discharge can be continuously maintained. In general, the scan electrode 6 may be referred to as an X electrode, the sustain electrode 7 as a Y electrode, and the address electrode as an A electrode.

ところで上記放電の形態において、表示放電を画素ごとに個別にすなわち点灯非点灯を画素ごとに区別するためのアドレス放電を行うためには、アドレス放電を行う前に、いったん以前の画面で各画素に形成された電荷をキャンセルしてから行う所謂リセット放電が必要である。 このリセット放電は上記のように電荷を個別に形成することで表示を行うPDPにおいては、上記3電極型でも4電極型でもきわめて重要な作用であり、完全に行われる必要がある。By the way, in the above-described discharge mode, in order to perform display discharge separately for each pixel, that is, to perform address discharge for distinguishing lighting non-lighting for each pixel, before performing address discharge, each pixel is once displayed on the previous screen. A so-called reset discharge is required after canceling the formed charge. This reset discharge is an extremely important action in the PDP that performs display by forming charges individually as described above, and it needs to be completely performed regardless of whether it is the three-electrode type or the four-electrode type.

図4に一般的なリセット放電のための各電極に印加するパルスの電圧波形を示す。 図4(a)は実際のPDPで用いられる駆動波形の一例が図示されているが、リセットパルスの基本的な動作の説明には、同図(b)に図示される単純化した波形を用いる。 また図5にはPDPの電極構成を示す模式的断面図が示されている。PDPの電極構成は前述のように、Y電極すなわちサステイン電極7、それと並行して同じ前面側基板5に配されたX電極すなわちスキャン電極6、さらに対向する背面側基板1にあるA電極すなわちアドレス電極8、これら3電極で構成されている。 またPDP動作で基本的な要素である各電極に電圧を重畳して動作させるための電荷を蓄積する誘電層が前面側誘電層4及び背面側誘電層3として各電極を被覆している。 この3組の異なる電極で構成されるPDPを3電極型PDPと称するが、上記アドレス放電とサステイン放電を完全に分離した電極群で行うため4電極型にする方法も提案されている。 3電極型でも4電極型でもリセット放電は、以前の画面で各電極に蓄積されている電荷に無関係に全画素に均一に行う必要がある。FIG. 4 shows a voltage waveform of a pulse applied to each electrode for a general reset discharge. FIG. 4A shows an example of a driving waveform used in an actual PDP, but the simplified waveform shown in FIG. 4B is used to explain the basic operation of the reset pulse. . FIG. 5 is a schematic cross-sectional view showing the electrode configuration of the PDP. As described above, the electrode configuration of the PDP is the Y electrode, ie, the sustain electrode 7, the X electrode, ie, the scan electrode 6 disposed on the same front side substrate 5 in parallel therewith, and the A electrode, ie, address, on the opposite back side substrate 1. The electrode 8 is composed of these three electrodes. In addition, a dielectric layer that accumulates electric charges for operating by superimposing a voltage on each electrode, which is a basic element in PDP operation, covers each electrode as a front-side dielectric layer 4 and a back-side dielectric layer 3. The PDP composed of these three different electrodes is called a three-electrode type PDP. However, a method of using a four-electrode type has been proposed in order to perform the address discharge and the sustain discharge with a completely separated electrode group. In both the three-electrode type and the four-electrode type, the reset discharge needs to be uniformly performed on all the pixels regardless of the electric charge accumulated in each electrode in the previous screen.

リセットパルスはまずY電極すなわちサステイン電極7に加えられ、並行して配されたX電極すなわちスキャン電極6との間でリセット放電を行う。 なお図5に示す一般的なPDPの構造はいわゆる短ギャップ構造と言われ、X及びY電極間の先端どうしの距離は約80ミクロン、Y電極とA電極の距離は約100ミクロンである。 ここに図4の従来のリセットパルスを印加すると、放電はXY電極間放電21とXA電極間放電20とがほぼ同時に起きる。 この場合リセットパルスは、各電極表面にある背面側誘電層3及び前面側誘電層4に蓄積されている電荷いわゆる壁電荷に無関係に全ての画素に放電を起こす必要から十分に高い電圧に設定される。 図4ではこの壁電荷による電圧を壁電圧11として点線で表している。 また通常のPDPの電極構造では、XY間とAY間の放電開始電圧に大きな差はなく、放電はほぼ同時に起きるが、背面側の誘電層上には蛍光体があるために主な放電はXY電極間で起きる。 なお図4(a)に示すリセット波形はリセット放電時の発光を弱めてコントラストの低下を防ぎ、またいったんできた壁電荷を電極上に確実に形成する目的から、パルスの立ち上がりと立ち下がりを傾斜させた所謂ランプ波形とすることが一般的であるが、本発明には無関係であるために、本発明を含め今後の説明は図4(b)に示すような基本的なスクエア型パルスで説明する。The reset pulse is first applied to the Y electrode, ie, the sustain electrode 7, and reset discharge is performed between the X electrode, ie, the scan electrode 6 arranged in parallel. The general PDP structure shown in FIG. 5 is called a so-called short gap structure, and the distance between the tips of the X and Y electrodes is about 80 microns, and the distance between the Y electrode and the A electrode is about 100 microns. When the conventional reset pulse shown in FIG. 4 is applied here, the discharge occurs between the XY interelectrode discharge 21 and the XA interelectrode discharge 20 almost simultaneously. In this case, the reset pulse is set to a sufficiently high voltage because it is necessary to cause discharge in all the pixels regardless of the charges accumulated in the back side dielectric layer 3 and the front side dielectric layer 4 on the surface of each electrode, so-called wall charges. The In FIG. 4, the voltage due to the wall charges is represented by a dotted line as the wall voltage 11. Also, in the normal PDP electrode structure, there is no significant difference in the discharge start voltage between XY and AY, and the discharge occurs almost simultaneously, but the main discharge is XY because there is a phosphor on the dielectric layer on the back side. Occurs between electrodes. Note that the reset waveform shown in Fig. 4 (a) slopes the rise and fall of the pulse for the purpose of weakening the light emission during reset discharge and preventing the decrease in contrast, and for surely forming the wall charge once formed on the electrode. The so-called ramp waveform is generally used, but since it is irrelevant to the present invention, the following description including the present invention will be made with a basic square type pulse as shown in FIG. To do.

さて図4のパルスによるリセット動作は、まずY電極7に対して全ての画素に一様に放電が発生するような比較的大きなパルスが印加される。 X,Y,及びA電極の表面にはリセットする前の表示による壁電荷がそれぞれ蓄積されており一様ではない為、それら電荷の存在または極性の正負にかかわらず放電するように十分高い電圧が印加される。 XY電極間及びAY電極間の距離はほとんど差が無いので、Y電極7に加えられた正の高い電圧によりXY間及びAY間にほぼ同時に放電が起こり、Y電極7に負の壁電荷、X電極6及びA電極8には正の電荷が蓄積される。 一般的にA電極の表面には蛍光体があり、またA電極8側即ち背面側誘電層3の誘電率は前面側誘電層4に比べて小さいために、A電極に形成される壁電荷はX電極側に比べて小さい。 Y電極に大きなパルスを早い立ち上がりで印加すると大きな放電電流が瞬時に流れるために強い発光が観測され表示コントラストの低下原因になるため立ち上がりをゆっくりと立ち上げるのが一般的である。In the reset operation by the pulse of FIG. 4, a relatively large pulse is first applied to the Y electrode 7 so that discharge is uniformly generated in all pixels. Since the wall charges due to the display before resetting are accumulated on the surfaces of the X, Y, and A electrodes, respectively, the voltage is sufficiently high so that the discharge is performed regardless of the presence of the charges or the polarity. Applied. Since there is almost no difference in the distance between the XY electrodes and between the AY electrodes, a positive high voltage applied to the Y electrode 7 causes a discharge between XY and AY almost simultaneously, and negative wall charges, X Positive charges are accumulated in the electrode 6 and the A electrode 8. In general, there is a phosphor on the surface of the A electrode, and since the dielectric constant of the A electrode 8 side, that is, the back side dielectric layer 3 is smaller than that of the front side dielectric layer 4, the wall charges formed on the A electrode are Smaller than the X electrode side. When a large pulse is applied to the Y electrode at an early rise, a large discharge current flows instantaneously, so that strong light emission is observed and this causes a decrease in display contrast. Therefore, the rise is generally raised slowly.

次に、はじめにY電極7に加えたパルスの立ち下げのタイミングでは最初の放電で各画素に形成された壁電荷をさらに均一にするためにY電極7を負側にするとともにX電極6側には正のパルスを印加し、はじめの放電とは逆極性の放電を行う。 これによってリセット動作の終了時にはY電極側に正の壁電荷、X側には負の壁電荷が形成される。 なおA電極8にも若干の正の電荷が残るが、前述の理由でX及びY電極の電荷量より少ない。 このように、通常のPDPのリセット放電は前面側のY電極7及びX電極6間で行われる。Next, at the timing of the fall of the pulse applied to the Y electrode 7 first, the Y electrode 7 is set to the negative side and the X electrode 6 side is set to make the wall charges formed in each pixel more uniform by the first discharge. Applies a positive pulse and discharges in the opposite polarity to the first discharge. As a result, positive wall charges are formed on the Y electrode side and negative wall charges are formed on the X side at the end of the reset operation. Although some positive charge remains in the A electrode 8, it is less than the charge amount of the X and Y electrodes for the reason described above. Thus, the normal PDP reset discharge is performed between the Y electrode 7 and the X electrode 6 on the front side.

特開2002−22950JP2002-22950 特開2005−4213JP-A-2005-4213 特開2008−134372JP2008-134372

さて近年PDPの消費電力を削減する為の方策として、放電セルの発光効率を向上させるため、従来の負グローからの紫外線を利用して蛍光体を発光させる方式から、陽光柱を利用する方式への転換が計られている。 ところが陽光柱を各画素に発生させるためには、放電電極間すなわちサステイン電極7であるY電極とスキャン電極6であるX電極の距離がある程度以上に長く無ければならない。 例えば前述のように通常のPDPすなわち例えばNeとXeの混合ガスを約400Torr封入したPDPでは、並行するY電極とX電極の先端距離が約80ミクロンなのに対し、陽光柱を発生させるためにはこれを約200ミクロンから300ミクロン以上の間隙にする必要がある。In recent years, as a measure to reduce the power consumption of PDP, in order to improve the light emission efficiency of the discharge cell, from the conventional method of emitting phosphors using ultraviolet rays from negative glow, to the method of using a positive column. Conversion is planned. However, in order to generate a positive column in each pixel, the distance between the discharge electrodes, that is, the Y electrode that is the sustain electrode 7 and the X electrode that is the scan electrode 6 must be longer than a certain extent. For example, as described above, in a normal PDP, for example, a PDP in which a mixed gas of Ne and Xe is sealed at about 400 Torr, the tip distance between the parallel Y electrode and the X electrode is about 80 microns. Needs to have a gap of about 200 microns to 300 microns or more.

このような放電電極間距離の長い陽光柱型のPDPを駆動する場合、前述のリセット放電が大きな問題となる。 即ち通常の負グロー型のPDPの場合、Y電極とX電極の距離が約80ミクロンと比較的短いから、前述ようなリセットパルスでも十分にXY電極間でリセット放電が起きる。 しかしながら、陽光柱型PDPの場合にはY電極及びX電極間の距離が大きくなるために、この両電極間にリセット放電を起こすためには、リセット電圧をさらに大きくしなければならない。 これは駆動回路の負担になるのみならず、強いリセット放電による大きな発光が画像コントラストの低下を引き起こすため、陽光柱型PDPを実現するための大きな課題であった。When driving such a positive column type PDP having a long distance between the discharge electrodes, the above-described reset discharge becomes a serious problem. That is, in the case of a normal negative glow type PDP, since the distance between the Y electrode and the X electrode is relatively short, about 80 microns, the reset discharge sufficiently occurs between the XY electrodes even with the reset pulse as described above. However, in the case of a positive column type PDP, the distance between the Y electrode and the X electrode becomes large, and in order to cause a reset discharge between these electrodes, the reset voltage must be further increased. This is not only a burden on the driving circuit, but also a big problem for realizing a positive column type PDP because a large light emission due to a strong reset discharge causes a decrease in image contrast.

そこで本発明では、リセット放電をY電極とX電極で行うのではなく、Y電極とA電極、そしてX電極とA電極で別々の放電を連続したタイミングで行い、最終的にY電極及びX電極に極性の異なる壁電荷を画面一様に形成するPDPの駆動方法を提供するものである。 なお従来のリセット方法ではXA間放電20とXY間放電21が起きるがYA間の放電は起きない。Therefore, in the present invention, the reset discharge is not performed by the Y electrode and the X electrode, but separate discharge is performed by the Y electrode and the A electrode, and the X electrode and the A electrode at successive timings, and finally the Y electrode and the X electrode. A method for driving a PDP that uniformly forms wall charges with different polarities on a screen is provided. In the conventional reset method, the inter-XA discharge 20 and the inter-XY discharge 21 occur, but no discharge between YA occurs.

本発明によれば、特に陽光柱型PDPのリセット電圧を低下させ、尚かつリセット放電による画像コントラストの低下を防止して表示品質を向上させることができる。According to the present invention, it is possible to improve the display quality by reducing the reset voltage of the positive column type PDP and preventing the image contrast from being lowered by the reset discharge.

[第1の実施形態]
以下に本発明のリセット動作を、そのリセットパルス波形である図2と、その動作を時間を迫って説明するための画素の模式的断面図である図1をもって説明する。 まず図1の断面図では陽光柱型PDPの電極構成を模式的に示す。 基本的には通常のPDPと同じ構成であるが、X電極とY電極の間隙が例えば図4に示す通常のPDPよりも広いことを示す。 例えばAX間及びAY間の距離は通常と同じ約100ミクロンであるのに対しXY間は約2倍以上の200〜300ミクロンになっている。
[First Embodiment]
The reset operation of the present invention will be described below with reference to FIG. 2 which is a reset pulse waveform and FIG. 1 which is a schematic cross-sectional view of a pixel for explaining the operation in a timely manner. First, the cross-sectional view of FIG. 1 schematically shows the electrode configuration of a positive column type PDP. Basically, the configuration is the same as that of a normal PDP, but the gap between the X electrode and the Y electrode is wider than that of the normal PDP shown in FIG. 4, for example. For example, the distance between AX and AY is about 100 microns, which is the same as usual, whereas the distance between XY is about 200 to 300 microns, which is about twice or more.

図1で示すP1及びP2はそれぞれAX間の放電20とAY間の放電22のタイミングを表す。 P1とP2は同時にではなく、連続した異なるタイミングで行われる。 これを行わせるパルス波形が図2に示されている。 また図3には上記と同一の動作を異なるパルスのタイミングで実現している。P1 and P2 shown in FIG. 1 represent the timing of the discharge 20 between AX and the discharge 22 between AY, respectively. P1 and P2 are performed not at the same time but at successive different timings. The pulse waveform that accomplishes this is shown in FIG. In FIG. 3, the same operation as described above is realized at different pulse timings.

図2を参照して本発明の実施形態を説明する。 まずP1の放電20はA電極とX電極間で行われる。 このためにはA電極8にX電極との間で放電するに十分な電圧のパルスを印加する。 このときA電極とY電極間では放電しないように図示のごとくY電極にA電極のパルスと導極性のパルスを印加しておく。 このパルスの電圧値はA電極に加えるパルスと同じ大きさの電圧でも良いが、AY間放電を阻止出来ればこれより低い電圧でもよい。 放電により形成される壁電荷によるいわゆる壁電圧11は図の点線で示すように推移する。 すなわちA電極に印加された正のパルスによりAY電極間に放電が起きX電極側に正の壁電荷、A電極側には負の壁電荷が形成されるが、高い印加電圧のためにパルスの立ち下がり時にももう一度放電が起き、P1の放電が終了したときの各壁電荷の極性はX電極に負の電荷、A電極には若干の正の壁電荷が蓄積される。An embodiment of the present invention will be described with reference to FIG. First, the discharge 20 of P1 is performed between the A electrode and the X electrode. For this purpose, a pulse having a voltage sufficient to discharge between the A electrode 8 and the X electrode is applied. At this time, the pulse of the A electrode and the pulse of the conductive polarity are applied to the Y electrode as shown in the figure so as not to discharge between the A electrode and the Y electrode. The voltage value of this pulse may be the same voltage as the pulse applied to the A electrode, but may be a voltage lower than this as long as the AY discharge can be prevented. A so-called wall voltage 11 due to wall charges formed by discharge changes as shown by a dotted line in the figure. In other words, a positive pulse applied to the A electrode causes a discharge between the AY electrodes, and a positive wall charge is formed on the X electrode side and a negative wall charge is formed on the A electrode side. The discharge again occurs at the time of falling, and the polarity of each wall charge when the discharge of P1 is finished is a negative charge in the X electrode and a slight positive wall charge is accumulated in the A electrode.

次にP2の放電22はA電極8とY電極7間で行われる。 このためにはY電極7にA電極8との間で放電するに十分な電圧のパルスを印加する。 なおXY両電極間の距離が通常のPDPより大きい陽光柱型PDPの場合、Y電極直下のX電極上にはP1のタイミングで行われたAX間放電の影響は少なく壁電荷もわずかであるから、上記Y電極に印加したパルスでAY間放電が容易に起きる。 このときXY電極間の距離が大きいためにY電極とX電極間では放電は起きないが、さらに安定に動作させるためにはX電極に正の阻止電圧を印加する事も出来る。 こうして前と同様に立ち下がりでも放電するが、P2の放電が終了したときの各壁電荷の極性はY電極に正の電荷が蓄積される。 なおP1の放電によるX電極上の壁電荷は電極間が離れているためにP2放電の影響は受けず、負の電荷を蓄積したままであり、またA電極は構造上蓄積される壁電荷をわずかである。Next, the discharge 22 of P2 is performed between the A electrode 8 and the Y electrode 7. For this purpose, a pulse having a voltage sufficient to discharge between the Y electrode 7 and the A electrode 8 is applied. In the case of a positive column type PDP in which the distance between the XY electrodes is larger than the normal PDP, the influence of the discharge between AX performed at the timing of P1 is small on the X electrode immediately below the Y electrode, and the wall charge is also slight. AY discharge is easily caused by the pulse applied to the Y electrode. At this time, since the distance between the XY electrodes is large, no discharge occurs between the Y electrode and the X electrode, but a positive blocking voltage can also be applied to the X electrode for more stable operation. Thus, the discharge is performed at the fall as before, but the positive charges are accumulated in the Y electrode with respect to the polarity of each wall charge when the discharge of P2 is completed. The wall charge on the X electrode due to the discharge of P1 is not affected by the P2 discharge because the electrodes are separated from each other, and the negative charge remains accumulated, and the A electrode has a wall charge accumulated due to the structure. It is slight.

[第2の実施形態]
図3に示す第2の実施形態では、P1放電におけるA電極とY電極のパルスの電圧配分を変えたもので、X電極側に負極性のパルスを印加することでA電極側パルス電圧を低く出来る。 またA電極の電圧が低いことでY電極側に放電阻止パルスを印加する必要がない。 P2放電は図2と同じく行われ、リセット放電の終了時には同じくX及びY電極にそれぞれ負及び正の電荷が蓄積される。
[Second Embodiment]
In the second embodiment shown in FIG. 3, the voltage distribution of the pulses of the A electrode and the Y electrode in the P1 discharge is changed. By applying a negative pulse to the X electrode side, the A electrode side pulse voltage is lowered. I can do it. Further, since the voltage of the A electrode is low, it is not necessary to apply a discharge blocking pulse to the Y electrode side. The P2 discharge is performed in the same manner as in FIG. 2, and negative and positive charges are accumulated in the X and Y electrodes, respectively, at the end of the reset discharge.

かくして本発明は放電電極間が広い陽光柱型PDPにおいて、従来のようにXY電極間でリセット放電を行うのではなく、AX間とAY間で連続する別々のリセット放電を行う方法であるあるが、実施例1及び2が電圧配分を変えただけの同じ動作であるのと同様に、各電極のパルス電圧の配分はいくつかの組み合わせがあるが、基本動作は同じである。 また従来のリセット放電でも一般的に行われていたように、リセットパルスの立ち上がり及び立ち下がりをいわゆるランプ波形にすることも可能であることは言うまでもなく、この場合には波形及び電圧配分が異なるように見えるが、本発明のXA間放電とXY間放電をP1及びP2の連続した二つのタイミングで行うリセット方法により、表示放電電極間が広い陽光柱型PDPでも安定したリセット放電が行える。Thus, the present invention is a method of performing separate reset discharges between AX and AY, instead of performing reset discharge between XY electrodes as in the prior art, in a positive column type PDP having a wide discharge electrode. As in the first and second embodiments, the same operation is performed by changing the voltage distribution, but the pulse voltage distribution of each electrode has several combinations, but the basic operation is the same. Needless to say, the rising and falling edges of the reset pulse can be changed to a so-called ramp waveform as is generally done in the conventional reset discharge. In this case, the waveform and voltage distribution are different. As can be seen, the reset method of performing the inter-XA discharge and the XY discharge of the present invention at two consecutive timings P1 and P2 enables stable reset discharge even in a positive column type PDP having a wide gap between display discharge electrodes.

前述のように本発明のリセット方式は3電極型PDPのみならず、表示放電電極は従来の構造である図1あるいは図5のように並行した一対の電極であるが、アドレス電極をXY構成にして、表示放電電極とアドレス電極を分離した構造の4電極型のPDPへの適用も可能であることは言うまでもない。As described above, the reset method of the present invention is not limited to the three-electrode type PDP, and the display discharge electrode is a pair of electrodes parallel to each other as shown in FIG. Needless to say, the present invention can also be applied to a four-electrode PDP having a structure in which the display discharge electrode and the address electrode are separated.

本発明のリセット放電のタイミングを示すPDP画素の模式的断面図Schematic sectional view of a PDP pixel showing the timing of reset discharge of the present invention 本発明第一の実施例であるリセットパルス波形と壁電荷による壁電位の変化Wall potential change due to reset pulse waveform and wall charge in the first embodiment of the present invention 本発明第二の実施例であるリセットパルス波形と壁電荷による壁電圧の変化Changes in wall voltage due to reset pulse waveform and wall charge according to the second embodiment of the present invention 従来のリセット方法を説明するリセットパルスの波形と動作説明を簡略化するための基本的パルス波形及び壁電荷による壁電圧の変化Waveform of reset pulse explaining conventional reset method and change of wall voltage due to basic pulse waveform and wall charge to simplify operation explanation 従来のリセット方法を説明するPDP画素の模式的断面図Schematic sectional view of a PDP pixel explaining a conventional reset method

1 背面側基板
2 背面側誘電層
3 前面側誘電層
4 前面側基板
6 スキャン電極またはX電極
7 サステイン電極またはY電極
8 アドレス電極またはA電極
11 壁電荷による壁電圧
20 XA電極間放電
21 XY電極間放電
22 YA電極間放電
P1 XA間放電のタイミング
P2 YA間放電のタイミング
DESCRIPTION OF SYMBOLS 1 Back side substrate 2 Back side dielectric layer 3 Front side dielectric layer 4 Front side substrate 6 Scan electrode or X electrode 7 Sustain electrode or Y electrode 8 Address electrode or A electrode 11 Wall voltage 20 due to wall charge 20 XA interelectrode discharge 21 XY electrode Interdischarge 22 YA Interelectrode Discharge P1 XA Discharge Timing P2 YA Discharge Timing

Claims (1)

AC型PDPすなわち放電電極の表面が誘電層で被覆され、その誘電層に蓄積される電荷いわゆる壁電荷を利用し、並行して対をなす放電電極、例えば通称スキャン電極とサステイン電極、さらにこれらと空間的に交叉して配される通称アドレス電極とで構成され、尚かつ上記スキャン電極とサステイン電極間の間隙が比較的大きく例えば200ミクロン以上の構造を持つAC型PDPにおいて、各表示サイクルの以前のサイクルの放電で形成された壁電荷を全画面均一な壁電荷の状態に復帰させる所謂PDPのリセット方法につき、上記スキャン電極とサステイン電極間の放電でリセットするのではなく、スキャン電極とアドレス電極、サステイン電極とアドレス電極との間で連続したタイミングで別々の放電を行い、全画面全体に均一な壁電荷の状態を形成するAC型PDPのリセット方法。  AC type PDP, that is, the surface of the discharge electrode is covered with a dielectric layer, and the charge accumulated in the dielectric layer is used, so-called wall charges, and a parallel discharge electrode, for example, a so-called scan electrode and a sustain electrode, and these In an AC type PDP which is composed of commonly called address electrodes arranged in a spatially intersecting manner, and the gap between the scan electrode and the sustain electrode is relatively large, for example, 200 microns or more, before each display cycle In the so-called PDP resetting method in which the wall charge formed by the discharge of the cycle is restored to the state of the wall charge uniform on the entire screen, the reset is not performed by the discharge between the scan electrode and the sustain electrode, but the scan electrode and the address electrode , Separate discharges at continuous timing between the sustain electrode and address electrode, and uniform across the entire screen AC type PDP reset method of forming the state of charge.
JP2009186870A 2009-07-21 2009-07-21 Method of resetting long-gap pdp Pending JP2011028188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186870A JP2011028188A (en) 2009-07-21 2009-07-21 Method of resetting long-gap pdp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186870A JP2011028188A (en) 2009-07-21 2009-07-21 Method of resetting long-gap pdp

Publications (1)

Publication Number Publication Date
JP2011028188A true JP2011028188A (en) 2011-02-10

Family

ID=43636968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186870A Pending JP2011028188A (en) 2009-07-21 2009-07-21 Method of resetting long-gap pdp

Country Status (1)

Country Link
JP (1) JP2011028188A (en)

Similar Documents

Publication Publication Date Title
US20070126660A1 (en) Plasma display apparatus
JP2004191530A (en) Plasma display panel driving method
JPH11143425A (en) Driving method of ac type pdp
JP2005338120A (en) Driving method of plasma display panel
JP2006286250A (en) Plasma display panel and plasma display device
US20080266211A1 (en) Plasma Display Panel, Plasma Display Device, and Method for Driving Plasma Display Panel
JP3630640B2 (en) Plasma display panel and driving method thereof
JP2011028188A (en) Method of resetting long-gap pdp
US7667671B2 (en) Plasma display device and method for driving the same
KR100479515B1 (en) Method for improvement of luminance efficiency using self-erasing discharge due to auxiliary address pulse
KR100456437B1 (en) Aging method for plasma display panel
JP2004079524A (en) Plasma display panel
JP5114817B2 (en) Plasma display panel
JP2008309826A (en) Plasma display panel driving method and plasma display device
KR100373533B1 (en) Apparatus and Method of Controlling A Energy Recovery Circuit Of Plasma Display Panel
JP2000206934A (en) Narrow step pulse sustain drive method for ac type pdp
KR100432375B1 (en) Aging method for plasma display panel
KR100793109B1 (en) Plasma display device
KR100537624B1 (en) Method for operating four-electrode discharge display panel
KR100784533B1 (en) Plasma display device
Cho et al. Bipolar scan waveform for fast address in AC plasma display panel
JP5028721B2 (en) Driving method of plasma display panel
CN100495499C (en) Low-Voltage Dual-Ramp Reset Driving Method for Plasma Display
JP2004241365A (en) Aging method of plasma display panel
JP2004287470A (en) Driving method of plasma display panel