[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011027190A - Expansion joint - Google Patents

Expansion joint Download PDF

Info

Publication number
JP2011027190A
JP2011027190A JP2009174277A JP2009174277A JP2011027190A JP 2011027190 A JP2011027190 A JP 2011027190A JP 2009174277 A JP2009174277 A JP 2009174277A JP 2009174277 A JP2009174277 A JP 2009174277A JP 2011027190 A JP2011027190 A JP 2011027190A
Authority
JP
Japan
Prior art keywords
heat
expansion joint
layer
thermoelectric conversion
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009174277A
Other languages
Japanese (ja)
Inventor
Michiya Hayashi
道也 林
Takashi Naito
貴志 内藤
Akira Miyahara
昭 宮原
Hiroshi Murata
浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
A&A Material Corp
Original Assignee
Chubu Electric Power Co Inc
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, A&A Material Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2009174277A priority Critical patent/JP2011027190A/en
Publication of JP2011027190A publication Critical patent/JP2011027190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Joints Allowing Movement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To elongate a service life of an expansion joint while suppressing degradation in energy efficiency. <P>SOLUTION: A thermoelectric conversion/release part 40 insulates exhaust heat by a heat insulation part 31, and cuts off the exhaust by bellows 36 disposed outside of the heat insulation part 31. In the thermoelectric conversion/release part 40 disposed between the heat insulation part 31 and the bellows 36, the exhaust heat is converted into electricity by a thermoelectric element layer 41 according to a temperature difference between a heat insulation part 31 side and a bellows 36 side and is released to the outside through an electric resistor 43. The thermoelectric element layer 41 is constituted as a skeleton type thermoelectric element made by bonding p-type elements and n-type elements with a soft layer, and is fixed to an inner face of the bellows 36. A heat collection layer collecting the exhaust heat and a heat transfer layer releasing the heat to the outside are disposed to the thermoelectric layer 41 to make a greater temperature difference therebetween. In this way, in the thermoelectric conversion/release part 40, a rise in temperature of the bellows 36 is alleviated without the need of a driving force. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、伸縮継手に関し、より詳しくは、加熱された流体が通過するダクトとダクトとの間を接続する伸縮継手に関する。   The present invention relates to an expansion joint, and more particularly to an expansion joint that connects between a duct through which a heated fluid passes.

従来、伸縮継手としては、圧縮機により圧縮された空気と供給された燃料とを混合・燃焼した燃焼ガスによりタービンを駆動して発電を行い、排出された排気を移送する排気ダクト間を連結するものが提案されている(例えば、特許文献1参照)。この伸縮継手では、圧縮機で圧縮された空気の一部が供給されるようになっており、この空気を用いて伸縮継手を冷却することにより、伸縮継手の溶損などを抑制することができる。また、伸縮継手としては、一方の排気ダクトのフランジと他方の排気ダクトのフランジとの間に介装した伸縮継手の内側に、水冷ジャケットを形成し、この水冷ジャケット内部に冷却水を一定量流通させて伸縮継手を冷却することにより、この伸縮継手の寿命を延ばすことができるものが提案されている(例えば、特許文献2参照)。   Conventionally, as an expansion joint, a turbine is driven by combustion gas obtained by mixing and combusting air compressed by a compressor and supplied fuel, and power generation is performed, and an exhaust duct that transfers discharged exhaust gas is connected. The thing is proposed (for example, refer patent document 1). In this expansion joint, a part of the air compressed by the compressor is supplied, and by cooling the expansion joint using this air, it is possible to suppress the melt damage of the expansion joint. . In addition, as an expansion joint, a water cooling jacket is formed inside the expansion joint that is interposed between the flange of one exhaust duct and the flange of the other exhaust duct, and a certain amount of cooling water is circulated inside this water cooling jacket. It has been proposed that the life of the expansion joint can be extended by cooling the expansion joint (see, for example, Patent Document 2).

特開平11−13964号公報Japanese Patent Laid-Open No. 11-13964 特開2001−21124号公報Japanese Patent Laid-Open No. 2001-21124

ところで、一般的に、伸縮継手では、例えば、排気ダクトを流れる燃焼後の排気の温度は、その燃焼状態の変化などによって急激に上昇することがある。しかしながら、上述の特許文献1,2に記載の伸縮継手では、急激な温度上昇に十分対応しているとはいえず、このような場合には伸縮継手の温度が上昇して劣化がより促進することがあり、伸縮継手の長寿命化はまだ十分でなかった。また、上述した伸縮継手では、冷媒としての空気や冷却水をポンプ等の駆動により流通させて常時冷却することから、エネルギーロスが大きかった。   By the way, in general, in an expansion joint, for example, the temperature of exhaust gas after combustion flowing through an exhaust duct may suddenly rise due to a change in the combustion state thereof. However, the expansion joints described in Patent Documents 1 and 2 do not sufficiently cope with a rapid temperature rise. In such a case, the temperature of the expansion joint rises and deterioration is further promoted. In some cases, the life of expansion joints has not been extended. Moreover, in the expansion joint mentioned above, since the air and cooling water as a refrigerant | coolant were distribute | circulated by drive of a pump etc. and always cooled, the energy loss was large.

本発明は、このような課題に鑑みなされたものであり、エネルギー効率の低下を抑制しつつ長寿命化をより図ることができる伸縮継手を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the expansion joint which can aim at the lifetime improvement more, suppressing the fall of energy efficiency.

本発明は、上述の主目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the main object described above.

本発明の伸縮継手は、
加熱された流体が通過する第1のダクトと第2のダクトとの間に該流体が通過可能に配設され該第1及び第2のダクトを通過する流体の熱を断熱する断熱部と、
前記断熱部の外部側に配設され柔軟性を有し前記流体を遮断する遮断部と、
前記断熱部と前記遮断部との間に配設され該断熱部側と該遮断部側との温度差に応じて前記流体の熱を電気へ変換して外部へ放出する熱電変換放出部と、
を備えたものである。
The expansion joint of the present invention is
A heat insulating part disposed between the first duct and the second duct through which the heated fluid passes so that the fluid can pass therethrough to insulate the heat of the fluid passing through the first and second ducts;
A blocking portion that is disposed outside the heat insulating portion and has flexibility and blocks the fluid;
A thermoelectric conversion / discharging unit disposed between the heat insulating unit and the blocking unit and converting the heat of the fluid into electricity according to a temperature difference between the heat insulating unit side and the blocking unit side;
It is equipped with.

この伸縮継手では、断熱部により流体の熱を断熱し、断熱部の外部側に配置された柔軟性を有する遮断部により流体を遮断する。そして、断熱部と遮断部との間に配設されている熱電変換放出部によって、断熱部側と遮断部側との温度差に応じて流体の熱を電気へ変換して外部へ放出する。このように、断熱部側と遮断部側との温度差に応じて流体からの熱を電気へ変換して外部に放出するから、定常状態での流体の温度では勿論のこと、急激な温度上昇がある場合においても、遮断部の温度が上昇するのをより緩和することができる。また、例えば冷却媒体を循環させて遮断部を冷却するものに比してエネルギー消費をより抑制することができる。したがって、エネルギー効率の低下を抑制しつつ伸縮継手の長寿命化をより図ることができる。ここで、「流体」としては、例えば、排気や吸気などの気体、溶液などの液体、粉体などの固体などが挙げられる。   In this expansion joint, the heat of the fluid is insulated by the heat insulating portion, and the fluid is blocked by the flexible blocking portion disposed on the outside of the heat insulating portion. And by the thermoelectric conversion discharge | release part arrange | positioned between the heat insulation part and the interruption | blocking part, according to the temperature difference of the heat insulation part side and the interruption | blocking part side, the heat | fever of a fluid is converted into electricity and discharge | released outside. In this way, heat from the fluid is converted into electricity and released to the outside according to the temperature difference between the heat insulation portion side and the shut-off portion side. Even when there is, it is possible to further alleviate the increase in the temperature of the blocking portion. In addition, for example, energy consumption can be further suppressed as compared with a cooling medium that is circulated to cool the blocking portion. Therefore, it is possible to further extend the life of the expansion joint while suppressing a decrease in energy efficiency. Here, examples of the “fluid” include gases such as exhaust and intake air, liquids such as solutions, and solids such as powders.

本発明の伸縮継手において、前記熱電変換放出部は、p型素子とn型素子とにより構成される熱電素子層と、該熱電素子層に通電可能に接続された抵抗器と、を備えているものとしてもよい。こうすれば、熱電素子層によりp型素子とn型素子とにより熱を電気へ変換し、変換された電気を抵抗器で消費することによって、遮断部の温度が急激に上昇するのをより緩和することができる。   In the expansion joint according to the present invention, the thermoelectric conversion and emission part includes a thermoelectric element layer including a p-type element and an n-type element, and a resistor connected to the thermoelectric element layer so as to allow current to flow. It may be a thing. By doing so, the thermoelectric element layer converts the heat into electricity by the p-type element and the n-type element, and consumes the converted electricity by the resistor, thereby further mitigating the sudden rise in the temperature of the interrupting portion. can do.

本発明の伸縮継手において、前記熱電変換放出部は、前記断熱部側に前記流体の熱を収集する熱収集層、を備えているものとしてもよい。こうすれば、熱収集層を利用して断熱部側の熱を収集し、断熱部側と遮断部側とでより大きな温度差とすることが可能であるため、遮断部の温度の急激な上昇を一層緩和することができる。   In the expansion joint according to the present invention, the thermoelectric conversion / release part may include a heat collection layer that collects heat of the fluid on the heat insulation part side. In this way, the heat collecting layer is used to collect heat on the heat insulating part side, and a larger temperature difference can be made between the heat insulating part side and the heat insulating part side. Can be further relaxed.

本発明の伸縮継手において、前記熱電変換放出部は、前記p型素子及び前記n型素子が柔軟層に配設されたスケルトン型の熱電素子層を備えているものとしてもよい。こうすれば、熱電素子層を柔軟なものとして遮断部へより近接させることが可能なため、より十分に遮断部の温度上昇を抑制することができ、ひいては伸縮継手の長寿命化を一層図ることができる。   In the expansion joint according to the present invention, the thermoelectric conversion emission part may include a skeleton type thermoelectric element layer in which the p-type element and the n-type element are arranged in a flexible layer. In this way, since the thermoelectric element layer can be made flexible and closer to the blocking portion, the temperature rise of the blocking portion can be suppressed more sufficiently, and the life of the expansion joint can be further extended. Can do.

本発明の伸縮継手において、前記熱電変換放出部は、前記遮断部側に外部へ熱を伝導する伝熱層を備えているものとしてもよい。こうすれば、伝熱層を利用して遮断部側の熱を外部へ伝熱し断熱部側と遮断部側とでより大きな温度差とし熱から電気への変換を促すことが可能であるため、遮断部の温度の急激な上昇をより緩和することができる。このとき、前記熱電変換放出部は、放熱板を有する放熱部が前記伝熱層に伝熱可能となるように接続されているものとしてもよい。こうすれば、放熱部によって伝熱層からの熱を外部へ放熱するため、断熱部側と遮断部側とで更に大きな温度差とし、遮断部の温度の急激な上昇を一層緩和することができる。   In the expansion joint according to the present invention, the thermoelectric conversion / release part may include a heat transfer layer that conducts heat to the outside on the blocking part side. By doing this, it is possible to transfer the heat on the blocking part side to the outside using the heat transfer layer and to promote conversion from heat to electricity with a larger temperature difference between the heat insulating part side and the blocking part side, A sudden rise in the temperature of the blocking portion can be further mitigated. At this time, the thermoelectric conversion emission part may be connected so that a heat dissipation part having a heat dissipation plate can transfer heat to the heat transfer layer. In this way, since the heat from the heat transfer layer is radiated to the outside by the heat radiating portion, a larger temperature difference can be made between the heat insulating portion side and the blocking portion side, and the rapid rise in the temperature of the blocking portion can be further alleviated. .

前記熱電変換放出部は、断熱部側に固定されているものとしてもよいし、遮断部側に固定されているものとしてもよいが、遮断部に固定されていることが好ましい。こうすれば、より十分に遮断部の温度上昇を抑制することができるため、伸縮継手の長寿命化を図りやすい。   Although the said thermoelectric conversion discharge | release part is good also as what is being fixed to the heat insulation part side, and good also as what is being fixed to the interruption | blocking part side, it is preferable that it is being fixed to the interruption | blocking part. By doing so, the temperature rise of the blocking portion can be suppressed more sufficiently, and it is easy to extend the life of the expansion joint.

抵抗器を備えた態様の本発明の伸縮継手において、前記熱電変換放出部は、放熱板を有する放熱部が前記抵抗器に伝熱可能となるように接続されているものとしてもよい。こうすれば、より効率よく抵抗器で電気を消費することが可能であり、遮断部の温度の急激な上昇をより緩和することができる。   The expansion joint of this invention of the aspect provided with the resistor WHEREIN: The said thermoelectric conversion discharge | release part is good also as what is connected so that the thermal radiation part which has a heat sink can transfer heat to the said resistor. If it carries out like this, it will be possible to consume electricity more efficiently by a resistor, and the rapid rise of the temperature of the interruption | blocking part can be relieved more.

本発明の伸縮継手において、前記断熱部及び前記遮断部は、燃料の燃焼を行い発電機で発電されたあとの流体を流通するよう該発電機側に固定されている第1のダクトと、前記流体を放出する煙突側に固定されている第2のダクトと、に配設されるものとしてもよい。いわゆる発電施設では、伸縮継手を利用することが多いため、本発明を適用する意義が高い。   In the expansion joint of the present invention, the heat insulating part and the blocking part are fixed to the generator side so as to circulate the fluid after the fuel is burned and generated by the generator, It is good also as what is arrange | positioned by the 2nd duct fixed to the chimney side which discharge | releases a fluid. In so-called power generation facilities, expansion joints are often used, and therefore the significance of applying the present invention is high.

本発明の一実施形態である火力発電所10の構成の概略を示す構成図。The block diagram which shows the outline of a structure of the thermal power plant 10 which is one Embodiment of this invention. 伸縮継手30及び熱電変換放出部40の断面図。Sectional drawing of the expansion joint 30 and the thermoelectric conversion discharge | release part 40. FIG. 熱電変換放出部40の構成の概略を示す構成図。The block diagram which shows the outline of a structure of the thermoelectric conversion discharge | release part 40. FIG.

次に、本発明の実施の形態を図面を用いて説明する。図1は、本発明の一実施形態である火力発電所10の構成の概略を示す構成図であり、図2は、伸縮継手30及び熱電変換放出部40の断面図であり、図3は、熱電変換放出部40の構成の概略を示す構成図である。本実施形態の火力発電所10は、図1に示すように、空気導入管11が接続され空気を圧縮する圧縮機12と、燃料導入管14を介して供給された燃料を圧縮機12に接続され供給された圧縮空気により燃焼する燃焼器16と、燃焼ガスによって回転駆動されるタービン17が回転軸に接続されこの回転駆動力によって発電する発電機18と、が配設されている。また、火力発電所10は、燃焼器16の下流側に固定され燃焼ガスにより発電したあとの高温の流体としての排気が通過する筒状体である第1ダクト22と、排気を外部へ放出する煙突26側に接続され排気が通過する筒状体である第2ダクト24と、第1ダクト22と第2ダクト24との間に配設され排気の外部への排出を遮断すると共に各ダクトの膨張・収縮を緩和する非金属製の伸縮継手30と、が配設されている。また、火力発電所10は、図示しないが、熱回収ボイラ及び冷却水の流通経路が燃焼器16の下流側に設けられ、熱回収ボイラにより生成した蒸気で蒸気タービンを駆動して発電するいわゆるコンバインドサイクル方式の発電を行う施設として構成されている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing an outline of a configuration of a thermal power plant 10 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of an expansion joint 30 and a thermoelectric conversion discharge portion 40, and FIG. FIG. 3 is a configuration diagram showing an outline of a configuration of a thermoelectric conversion / release part 40. As shown in FIG. 1, the thermal power plant 10 of the present embodiment connects a compressor 12 to which an air introduction pipe 11 is connected and compresses air, and fuel supplied via the fuel introduction pipe 14 to the compressor 12. A combustor 16 that combusts by the supplied compressed air, and a generator 18 that is connected to a rotating shaft of a turbine 17 that is rotationally driven by the combustion gas and generates electric power by the rotational driving force are disposed. The thermal power plant 10 is fixed to the downstream side of the combustor 16 and discharges the exhaust to the outside, and a first duct 22 that is a cylindrical body through which exhaust as a high-temperature fluid passes after power is generated by the combustion gas. The second duct 24, which is a cylindrical body connected to the chimney 26 side and through which the exhaust passes, is disposed between the first duct 22 and the second duct 24 and blocks the exhaust from being discharged to the outside. A non-metallic expansion joint 30 that relaxes expansion and contraction is disposed. Although not shown in the figure, the thermal power plant 10 has a heat recovery boiler and a cooling water flow path provided downstream of the combustor 16, and generates power by driving a steam turbine with steam generated by the heat recovery boiler. It is configured as a facility that performs cycle-type power generation.

次に、本発明の主たる構成である伸縮継手30について説明する。図2に示すように、伸縮継手30は、筒状体に形成されており、排気が通過する第1ダクト22と第2ダクト24との間に排気が通過可能に配設されている。ここで、第1ダクト22の下流側には、先端が第2ダクト24の内径より小さな筒状体として形成されたバッフル板23が配設されている。このバッフル板23は、例えばステンレスなどにより構成することができる。ここで、第2ダクト24の上流側の開口にバッフル板23を挿入した状態で第1ダクト22が発電機18側に固定されると共に、第2ダクト24が煙突26側に固定されている。また、伸縮継手30は、バッフル板23の外周を取り巻くように、第1ダクト22の外周に設けられた固定用台座22aにその一端が固定され、第2ダクト24の外周に設けられた固定用台座24aにその他端が固定されている。このように、伸縮継手30は、バッフル板23の存在により、第1ダクト22を通過した排気に直接曝されないよう配設されている。   Next, the expansion joint 30 which is the main structure of this invention is demonstrated. As shown in FIG. 2, the expansion joint 30 is formed in a cylindrical body, and is disposed between the first duct 22 and the second duct 24 through which the exhaust passes so that the exhaust can pass through. Here, on the downstream side of the first duct 22, a baffle plate 23 formed as a cylindrical body whose tip is smaller than the inner diameter of the second duct 24 is disposed. The baffle plate 23 can be made of, for example, stainless steel. Here, the first duct 22 is fixed to the generator 18 side with the baffle plate 23 inserted into the opening on the upstream side of the second duct 24, and the second duct 24 is fixed to the chimney 26 side. In addition, the expansion joint 30 has one end fixed to a fixing base 22 a provided on the outer periphery of the first duct 22 so as to surround the outer periphery of the baffle plate 23, and the fixing joint provided on the outer periphery of the second duct 24. The other end is fixed to the base 24a. As described above, the expansion joint 30 is disposed so as not to be directly exposed to the exhaust gas that has passed through the first duct 22 due to the presence of the baffle plate 23.

この伸縮継手30は、排気の熱を断熱する断熱部31と、断熱部31の外部側に配設され柔軟性を有し排気を遮断する遮断部としてのベローズ36と、断熱部31とベローズ36との間に配設された熱電変換放出部40と、を備えている。断熱部31は、ベローズ36の保護を図る部材であり、その一端が固定用台座22aの内壁に当接すると共に、その他端が固定用台座24aの内壁に当接した状態で、拘束具によって固定されている。この断熱部31は、内側から順に、耐熱性がより高い第1断熱材32及び第2断熱材33と、耐熱性が比較的高い第3断熱材34及び第4断熱材35との4層により構成されているものとした。第1断熱材32及び第2断熱材33は、例えば、セラミックス繊維製フェルトなどにより構成することができる。また、第3断熱材34及び第4断熱材35は、ガラス繊維製フェルトなどにより構成することができる。なお、断熱材の層数は、排気の温度や流量などに合わせて適宜選択すればよい。また、断熱部31の材質は、セラミックス繊維製フェルト、ガラス繊維製フェルト及びこれらの組み合わせなどより適宜選択すればよい。   The expansion joint 30 includes a heat insulating portion 31 that insulates the heat of the exhaust, a bellows 36 that is disposed outside the heat insulating portion 31 and has flexibility and blocks the exhaust, and the heat insulating portion 31 and the bellows 36. And a thermoelectric conversion emission part 40 disposed between the two. The heat insulating part 31 is a member that protects the bellows 36, and is fixed by a restraining tool in a state in which one end thereof is in contact with the inner wall of the fixing base 22a and the other end is in contact with the inner wall of the fixing base 24a. ing. The heat insulating portion 31 is composed of four layers of a first heat insulating material 32 and a second heat insulating material 33 having higher heat resistance and a third heat insulating material 34 and a fourth heat insulating material 35 having relatively high heat resistance in order from the inside. It was supposed to be configured. The first heat insulating material 32 and the second heat insulating material 33 can be made of, for example, ceramic fiber felt. Moreover, the 3rd heat insulating material 34 and the 4th heat insulating material 35 can be comprised with felt made from glass fiber. Note that the number of layers of the heat insulating material may be appropriately selected according to the exhaust gas temperature, flow rate, and the like. The material of the heat insulating portion 31 may be appropriately selected from ceramic fiber felt, glass fiber felt, and combinations thereof.

ベローズ36は、その一端が固定用台座22aの外面と押さえ板37とに挟持されて拘束具により固定されると共に、その他端が固定用台座24aの外面と押さえ板38とに挟持されて固定されている。このベローズ36は、例えば、図3に示すように、内側から順に、フッ素樹脂層シートとガラス繊維製クロスとの複合材である排気側層36a,36bと、ガラス繊維製クロスである中間層36cと、ステンレス線入りガラス繊維製クロスである外部層36dとの4層構造となっており、より内側は耐食層とし、より外側は機械的強度を付与する層により構成されている。このように、断熱部31及びベローズ36は、燃料の燃焼を行い発電機18で発電されたあとの排気を流通するよう発電機18側に固定されている第1ダクト22と、排気を放出する煙突26側に固定されている第2ダクト24と、に配設されている。なお、このベローズ36が排気の圧力の有無によって張った状態と張っていない状態となることから、このベローズ36と断熱部31との間にベローズ36の移動用の空間が設けられた状態で、ベローズ36及び断熱部31がそれぞれ第1ダクト22及び第2ダクト24の間に固定されている。   One end of the bellows 36 is clamped between the outer surface of the fixing base 22a and the pressing plate 37 and fixed by a restraining tool, and the other end is clamped and fixed between the outer surface of the fixing base 24a and the pressing plate 38. ing. For example, as shown in FIG. 3, the bellows 36 includes, in order from the inside, exhaust side layers 36a and 36b, which are a composite material of a fluororesin layer sheet and a glass fiber cloth, and an intermediate layer 36c, which is a glass fiber cloth. And an outer layer 36d, which is a glass fiber cloth containing stainless steel wire, the inner side being a corrosion-resistant layer and the outer side being constituted by a layer imparting mechanical strength. Thus, the heat insulation part 31 and the bellows 36 release the exhaust, and the first duct 22 fixed to the generator 18 side so as to distribute the exhaust after the fuel is burned and generated by the generator 18. The second duct 24 is fixed to the chimney 26 side. In addition, since the bellows 36 is in a tensioned state or not in a tensioned state depending on the presence or absence of exhaust pressure, a space for moving the bellows 36 is provided between the bellows 36 and the heat insulating portion 31. The bellows 36 and the heat insulating portion 31 are fixed between the first duct 22 and the second duct 24, respectively.

熱電変換放出部40は、断熱部31側とベローズ36側との温度差に応じて排気の熱を電気へ変換して外部へ放出するものであり、ベローズ36の内側の面に固定されている。この熱電変換放出部40は、図3に示すように、熱電変換素子を有する熱電素子層41と、熱電素子層41と伝熱可能に接続された第1放熱部42と、熱電素子層41と通電可能に接続された電気抵抗器43と、熱電素子層41の断熱部31側の面に配設され排気の熱を収集する熱収集層48と、熱電素子層41のベローズ36側の面に配設され外部へ熱を伝導する伝熱層49と、を備えている。熱電素子層41は、複数の柱状のp型素子45の軸方向の中央部分と、複数の柱状のn型素子46の軸方向の中央部分とが、柔軟性を有する樹脂層である柔軟層47に結束された構造を有するスケルトン型の熱電素子として構成されている。また、熱電素子層41では、p型素子45とn型素子46とが交互に配列されており、このp型素子45とn型素子46とが図示しない電極により直列となるよう交互に電気的に接続されている。この熱電素子層41は、断熱部31側の面が高温面となり、ベローズ36側の面が低温面となると電気抵抗器43へ電流が流れるようにそれぞれのp型素子45とn型素子46とが通電可能に接続されている。また、熱電素子層41は、柱状のp型素子45の軸方向の中央部及び柱状のn型素子46の軸方向の中央部が柔軟性を有する樹脂層の柔軟層47で結束された構造を有しており、ベローズ36の湾曲に合わせて湾曲可能となっている。このため、熱電素子層41とベローズ36とが剥離しにくい。p型素子45としては、例えば、BiSbTe系(テルル化物系)、MnSi系(シリサイド系)及びNaCo24(酸化物系)などから選ばれる1以上を用いることができる。また、n型素子46としては、BiTe系(テルル化物系)及びMgSi系(シリサイド系)などから選ばれる1以上を用いることができる。 The thermoelectric conversion / release part 40 converts the heat of the exhaust into electricity according to the temperature difference between the heat insulation part 31 side and the bellows 36 side and discharges it to the outside, and is fixed to the inner surface of the bellows 36. . As shown in FIG. 3, the thermoelectric conversion emission part 40 includes a thermoelectric element layer 41 having a thermoelectric conversion element, a first heat radiating part 42 connected to the thermoelectric element layer 41 so as to be able to conduct heat, a thermoelectric element layer 41, and On the surface of the thermoelectric element layer 41 on the bellows 36 side, the electric resistor 43 connected to be energized, the heat collecting layer 48 that is disposed on the surface of the thermoelectric element layer 41 on the heat insulating portion 31 side, and collects the heat of the exhaust. And a heat transfer layer 49 that conducts heat to the outside. The thermoelectric element layer 41 includes a flexible layer 47 in which a central portion in the axial direction of the plurality of columnar p-type elements 45 and a central portion in the axial direction of the plurality of columnar n-type elements 46 are flexible resin layers. It is configured as a skeleton type thermoelectric element having a structure bound to each other. In the thermoelectric element layer 41, p-type elements 45 and n-type elements 46 are alternately arranged. The p-type elements 45 and the n-type elements 46 are alternately electrically connected in series by electrodes (not shown). It is connected to the. The thermoelectric element layer 41 includes a p-type element 45 and an n-type element 46 so that current flows to the electric resistor 43 when the surface on the heat insulating portion 31 side becomes a high-temperature surface and the surface on the bellows 36 side becomes a low-temperature surface. Are connected so that they can be energized. Further, the thermoelectric element layer 41 has a structure in which a central portion in the axial direction of the columnar p-type element 45 and a central portion in the axial direction of the columnar n-type element 46 are bundled by a flexible layer 47 of a resin layer having flexibility. It can be bent according to the curve of the bellows 36. For this reason, the thermoelectric element layer 41 and the bellows 36 are difficult to peel off. As the p-type element 45, for example, one or more selected from BiSbTe-based (telluride-based), MnSi-based (silicide-based), NaCo 2 O 4 (oxide-based), and the like can be used. As the n-type element 46, one or more selected from BiTe (telluride) and MgSi (silicide) can be used.

熱電素子層41の高温面に配設されている熱収集層48は、排気の熱を収集する層であり、熱伝導性の高い材質、例えば、アルミニウム、白金、銀、ステンレス、銅などから選ばれる1以上の箔として形成されているのが好ましい。この熱収集層48は、熱伝導性の高い材料とするのが好ましく、アルミニウムが好ましい。また、熱電素子層41の低温面に配設されている伝熱層49は、外部へ熱を伝導する層であり、熱伝導性の高い材質、例えば、アルミニウム、白金、銀、ステンレス、銅などから選ばれる1以上の箔により形成されているのが好ましい。この伝熱層49は、耐食性も高い材料とするのが好ましく、アルミニウムが好ましい。伝熱層49には放熱板を有する第1放熱部42が伝熱可能に接続されており、この第1放熱部42が外部へ熱を放出することにより熱電素子層41の低温面をより冷却する。この熱収集層48や伝熱層49は、耐熱性を有する半田、例えばSnSb(融点232℃)やAuSn(融点280℃)などによって熱電素子層41の高温面及び低温面に固定されている。電気抵抗器43は、p型素子45の端子とn型素子46の端子とに接続され熱電素子層41で生じた電流を再び熱へ変換するものであり、放熱板を有する第2放熱部44が伝熱可能となるように接続されている。   The heat collection layer 48 disposed on the high temperature surface of the thermoelectric element layer 41 is a layer that collects the heat of the exhaust, and is selected from materials having high thermal conductivity, such as aluminum, platinum, silver, stainless steel, copper, and the like. Preferably, it is formed as one or more foils. The heat collection layer 48 is preferably made of a material having high thermal conductivity, and aluminum is preferred. The heat transfer layer 49 disposed on the low-temperature surface of the thermoelectric element layer 41 is a layer that conducts heat to the outside, and has a high thermal conductivity, such as aluminum, platinum, silver, stainless steel, copper, and the like. It is preferably formed of one or more foils selected from. The heat transfer layer 49 is preferably made of a material having high corrosion resistance, and preferably aluminum. A first heat radiating portion 42 having a heat radiating plate is connected to the heat transfer layer 49 so as to be able to transfer heat, and the first heat radiating portion 42 releases heat to the outside to further cool the low temperature surface of the thermoelectric element layer 41. To do. The heat collection layer 48 and the heat transfer layer 49 are fixed to the high-temperature surface and the low-temperature surface of the thermoelectric element layer 41 with heat-resistant solder such as SnSb (melting point 232 ° C.) or AuSn (melting point 280 ° C.). The electrical resistor 43 is connected to the terminal of the p-type element 45 and the terminal of the n-type element 46 and converts the current generated in the thermoelectric element layer 41 into heat again, and has a second heat radiating portion 44 having a heat radiating plate. Are connected so that heat can be transferred.

次に、高温の排気が第1ダクト22及び第2ダクト24を流通する際の伸縮継手30及び熱電変換放出部40の状態の変化について図1〜3を用いて説明する。火力発電所10の燃焼器16で燃料を燃焼してタービン17を駆動し発電機18で発電を行うと、高温の排気が第1ダクト22及び第2ダクト24を流通する(図1,2参照)。このとき、流通する排気はバッフル板23により伸縮継手30には直接吹き付けられず、断熱部31などの急激な温度上昇は抑えられている。また、断熱部31の各層や熱電変換放出部40によって温度が低減された排気によりベローズ36が外側方向に押圧され膨らんだ状態となる。このとき、熱収集層48が排気の熱を収集すると共に、伝熱層49が第1放熱部42やベローズ36を介して放熱することから、熱電素子層41の断熱部31側の面(高温面)とベローズ36側の面(低温面)とに温度差が生じる。そして、熱電素子層41がその温度差に応じて排気の熱を電流へ変換し、この変換された電流が電気抵抗器43に流れる。電気抵抗器43では、この電流を更に熱へ変換して第2放熱部44を介して放熱する。このようにして、熱電変換放出部40により排気の熱を電気へ変換し外部へ放出することにより、ベローズ36への伝熱を緩和する。特に、燃焼器16での燃焼状態によっては排気温度が急激に上昇しベローズ36の熱劣化が促進されてしまうことが考えられるが、熱電素子層41の高温面と低温面との温度差が大きくなり、熱電素子層41での電流への変換が大きくなるから、ベローズ36への伝熱の高い緩和効果が得られる。ここで、熱電変換放出部40を備えない一般的な伸縮継手について説明する。一般的に、伸縮継手を継続使用する場合、例えば、断熱材は、経年の熱履歴により繊維等が硬化し、燃焼器の定期的な起動・停止の繰り返しによる伸縮により損傷し、火力発電所の運転時の排気の流通などにより断熱材の飛散などが生じることがある。このような損傷により発生した隙間に高温の排気が入り込み、最終的にはベローズへ到達し、ベローズの劣化が生じるものと考えられる。特に、燃焼器からの排気温度が急激に上昇する場合などにベローズの熱劣化が大きく促進されると考えられる。本実施形態の伸縮継手30では、熱電変換放出部40によって、断熱部31側の面とベローズ36側の面との温度差に応じて熱を電気へ変換して外部へ放出するため、特別な駆動力を必要とせずにベローズ36の熱劣化をより抑制することができる。   Next, the change of the state of the expansion joint 30 and the thermoelectric conversion discharge | release part 40 when high temperature exhaust_gas | exhaustion distribute | circulates the 1st duct 22 and the 2nd duct 24 is demonstrated using FIGS. When fuel is burned in the combustor 16 of the thermal power plant 10 to drive the turbine 17 and generate power with the generator 18, high-temperature exhaust flows through the first duct 22 and the second duct 24 (see FIGS. 1 and 2). ). At this time, the circulating exhaust gas is not directly blown onto the expansion joint 30 by the baffle plate 23, and a rapid temperature rise in the heat insulating portion 31 and the like is suppressed. In addition, the bellows 36 is pressed outward and swelled by the exhaust gas whose temperature is reduced by each layer of the heat insulating part 31 and the thermoelectric conversion emitting part 40. At this time, the heat collection layer 48 collects the heat of the exhaust, and the heat transfer layer 49 radiates heat through the first heat radiating portion 42 and the bellows 36, so that the surface of the thermoelectric element layer 41 on the heat insulating portion 31 side (high temperature Temperature) and a surface on the bellows 36 side (low temperature surface). The thermoelectric element layer 41 converts the heat of the exhaust gas into a current according to the temperature difference, and the converted current flows through the electric resistor 43. In the electrical resistor 43, this current is further converted into heat and radiated through the second heat radiating portion 44. In this way, the heat transfer to the bellows 36 is mitigated by converting the heat of the exhaust gas into electricity by the thermoelectric conversion and emission part 40 and releasing it to the outside. In particular, depending on the combustion state in the combustor 16, it is considered that the exhaust temperature rapidly rises and the thermal degradation of the bellows 36 is promoted, but the temperature difference between the high temperature surface and the low temperature surface of the thermoelectric element layer 41 is large. Thus, since the conversion to the current in the thermoelectric element layer 41 is increased, a high relaxation effect of heat transfer to the bellows 36 is obtained. Here, the general expansion joint which does not have the thermoelectric conversion discharge | release part 40 is demonstrated. In general, when the expansion joint is used continuously, for example, the heat insulation material is hardened due to the thermal history of the aged, and is damaged due to the expansion and contraction due to the periodic start / stop of the combustor. Insulation material may scatter due to the flow of exhaust during operation. It is considered that high-temperature exhaust gas enters the gap generated by such damage, eventually reaches the bellows, and the bellows deteriorates. In particular, it is considered that the thermal deterioration of the bellows is greatly promoted when the temperature of the exhaust gas from the combustor increases rapidly. In the expansion joint 30 of the present embodiment, the thermoelectric conversion / release part 40 converts heat into electricity according to the temperature difference between the surface on the heat insulating part 31 side and the surface on the bellows 36 side, and releases it to the outside. The thermal degradation of the bellows 36 can be further suppressed without requiring a driving force.

以上詳述した本実施形態の熱電変換放出部40によれば、断熱部31により排気の熱を断熱し、断熱部31の外部側に配置された柔軟性を有するベローズ36により排気を遮断する。そして、断熱部31とベローズ36との間に配設されている熱電変換放出部40によって、断熱部31側とベローズ36側との温度差に応じて排気の熱を電気へ変換して外部へ放出する。このように、断熱部31側とベローズ36側との温度差に応じて排気からの熱を電気へ変換して外部に放出するから、定常状態での排気の温度では勿論のこと、急激な温度上昇がある場合においても、ベローズ36の温度が上昇するのをより緩和することができる。また、例えば冷却媒体を循環させてベローズ36を冷却するものに比してエネルギー消費をより抑制することができる。したがって、エネルギー効率の低下を抑制しつつ伸縮継手30の長寿命化をより図ることができる。   According to the thermoelectric conversion emission part 40 of this embodiment explained in full detail above, the heat | fever of exhaust_gas | exhaustion is thermally insulated by the heat insulation part 31, and exhaust_gas | exhaustion is interrupted | blocked by the bellows 36 which has the softness | flexibility arrange | positioned on the outer side of the heat insulation part 31. And by the thermoelectric conversion discharge | release part 40 arrange | positioned between the heat insulation part 31 and the bellows 36, according to the temperature difference of the heat insulation part 31 side and the bellows 36 side, the heat | fever of exhaust_gas | exhaustion is converted into electricity, and it is outside. discharge. Thus, since the heat from the exhaust is converted into electricity and released to the outside in accordance with the temperature difference between the heat insulating portion 31 side and the bellows 36 side, not only the exhaust temperature in the steady state but also the rapid temperature Even when there is an increase, the temperature of the bellows 36 can be further reduced. Further, for example, energy consumption can be further suppressed as compared with the cooling of the bellows 36 by circulating the cooling medium. Therefore, it is possible to further extend the life of the expansion joint 30 while suppressing a decrease in energy efficiency.

また、熱電素子層41によりp型素子45とn型素子46とにより熱を電気へ変換し、変換された電気を電気抵抗器43で消費することによって、ベローズ36の温度が急激に上昇するのをより緩和することができる。更に、熱収集層48を利用して断熱部31側の熱を収集し、断熱部31側とベローズ36側とでより大きな温度差とすることが可能であるため、ベローズ36の温度の急激な上昇を一層緩和することができる。更にまた、p型素子45及びn型素子46が柔軟層47に配設されたスケルトン型の熱電素子層41を備えているため、熱電素子層41を柔軟なものとしてベローズ36へより近接させることが可能であり、より十分にベローズ36の温度上昇を抑制することができ、ひいては伸縮継手30の長寿命化を一層図ることができる。そして、伝熱層49を利用してベローズ36側の熱を外部へ伝熱し断熱部31側とベローズ36側とでより大きな温度差とし熱から電気への変換を促すことが可能であるため、ベローズ36の温度の急激な上昇をより緩和することができる。そしてまた、第1放熱部42によって伝熱層49からの熱を外部へ放熱するため、断熱部31側とベローズ36側とで更に大きな温度差とし、ベローズ36の温度の急激な上昇を一層緩和することができる。そして更に、熱電変換放出部40は、ベローズ36に固定されているため、より十分にベローズ36の温度上昇を抑制することができ、伸縮継手30の長寿命化を図りやすい。そして更にまた、第2放熱部44が電気抵抗器43に伝熱可能となるように接続されているため、より効率よく電気抵抗器43で電気を消費することが可能であり、ベローズ36の温度の急激な上昇をより緩和することができる。また、火力発電所10では、伸縮継手30を利用することが多いため、本発明を適用する意義が高い。   Further, the p-type element 45 and the n-type element 46 convert heat to electricity by the thermoelectric element layer 41, and the converted electricity is consumed by the electric resistor 43, so that the temperature of the bellows 36 rapidly increases. Can be more relaxed. Furthermore, since the heat collection layer 48 is used to collect heat on the heat insulating portion 31 side and a larger temperature difference can be obtained between the heat insulating portion 31 side and the bellows 36 side, the temperature of the bellows 36 is rapidly increased. The rise can be further mitigated. Furthermore, since the p-type element 45 and the n-type element 46 include the skeleton-type thermoelectric element layer 41 disposed on the flexible layer 47, the thermoelectric element layer 41 is made closer to the bellows 36 as being flexible. The temperature rise of the bellows 36 can be suppressed more sufficiently, and the life of the expansion joint 30 can be further extended. And since it is possible to transfer the heat on the bellows 36 side to the outside by using the heat transfer layer 49 to make a larger temperature difference between the heat insulating portion 31 side and the bellows 36 side, it is possible to promote conversion from heat to electricity. The rapid increase in the temperature of the bellows 36 can be further mitigated. In addition, since the heat from the heat transfer layer 49 is radiated to the outside by the first heat radiating portion 42, the temperature difference between the heat insulating portion 31 side and the bellows 36 side is further increased, and the rapid rise in the temperature of the bellows 36 is further alleviated. can do. Furthermore, since the thermoelectric conversion / release part 40 is fixed to the bellows 36, the temperature rise of the bellows 36 can be more sufficiently suppressed, and the life of the expansion joint 30 can be easily extended. Furthermore, since the second heat radiating portion 44 is connected to the electric resistor 43 so as to be able to transfer heat, the electric resistor 43 can consume electricity more efficiently, and the temperature of the bellows 36 can be reduced. Can be alleviated more rapidly. Moreover, in the thermal power plant 10, since the expansion joint 30 is often used, the significance of applying the present invention is high.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、熱電素子層41に熱収集層48が配設されているものとしたが、これを省略してもよい。こうしても、熱電素子層41の高温面及び低温面で温度差は生じうるから、熱電素子層41によりエネルギー効率の低下を抑制しつつ伸縮継手30の長寿命化をより図ることができる。また、熱電素子層41に伝熱層49が配設されているものとしたが、これを省略してもよい。こうしても、熱電素子層41の高温面及び低温面で温度差は生じうるから、エネルギー効率の低下を抑制しつつ伸縮継手30の長寿命化をより図ることができる。また、第1放熱部42が伝熱層49に接続されているものとしたが、これを省略してもよい。こうしても、熱電素子層41の高温面及び低温面で温度差は生じうるから、エネルギー効率の低下を抑制しつつ伸縮継手30の長寿命化をより図ることができる。また、第2放熱部44が電気抵抗器43に接続されているものとしたが、これを省略してもよい。こうしても、電気抵抗器43で電流から熱へ変換可能であるから、エネルギー効率の低下を抑制しつつ伸縮継手30の長寿命化をより図ることができる。   For example, in the embodiment described above, the heat collection layer 48 is disposed on the thermoelectric element layer 41, but this may be omitted. Even in this case, since a temperature difference can occur between the high temperature surface and the low temperature surface of the thermoelectric element layer 41, it is possible to further extend the life of the expansion joint 30 while suppressing a decrease in energy efficiency by the thermoelectric element layer 41. In addition, although the heat transfer layer 49 is disposed on the thermoelectric element layer 41, this may be omitted. Even in this case, since a temperature difference can occur between the high temperature surface and the low temperature surface of the thermoelectric element layer 41, the life of the expansion joint 30 can be further extended while suppressing a decrease in energy efficiency. Moreover, although the 1st thermal radiation part 42 shall be connected to the heat-transfer layer 49, this may be abbreviate | omitted. Even in this case, since a temperature difference can occur between the high temperature surface and the low temperature surface of the thermoelectric element layer 41, the life of the expansion joint 30 can be further extended while suppressing a decrease in energy efficiency. Moreover, although the 2nd thermal radiation part 44 shall be connected to the electrical resistor 43, you may abbreviate | omit this. Even in this case, since the electric resistor 43 can convert the current into heat, the life of the expansion joint 30 can be further extended while suppressing the decrease in energy efficiency.

上述した実施形態では、熱電素子層41は、柔軟層47によりp型素子45及びn型素子46の中央で結束するものとしたが、特にこれに限定されず、これに加え、又はこれに代えてp型素子45及びn型素子46の高温面へ耐熱性の柔軟層を固定することにより湾曲可能なものとしてもよいし、p型素子45及びn型素子46の低温面へ柔軟層を固定することにより湾曲可能なものとしてもよい。   In the embodiment described above, the thermoelectric element layer 41 is bound at the center of the p-type element 45 and the n-type element 46 by the flexible layer 47, but is not particularly limited thereto, and in addition to or in place of this. The p-type element 45 and the n-type element 46 may be bent by fixing the heat-resistant flexible layer to the high-temperature surface, or the p-type element 45 and the n-type element 46 may be fixed to the low-temperature surface. It is good also as what can be bent by doing.

上述した実施形態では、熱電素子層41は、スケルトン型の構成としたが、断熱部31側とベローズ36側との温度差に応じて排気の熱を電気へ変換して外部へ放出するものとすれば特にこれに限定されず、高温面及び低温面のうち少なくとも一方の面に例えばセラミックスの基板などを固定したものを利用するものとしてもよい。こうすれば、柔軟性には劣るがベローズ36側への排熱の伝達を抑制することはできるため、伸縮継手30の長寿命化をより図ることができる。なお、基板を有する熱電素子層を用いる際には、できるだけ小さなユニットとし、このユニットを柔軟層で連結させるなどすることにより、できるだけ湾曲可能なものとすることが好ましい。   In the embodiment described above, the thermoelectric element layer 41 has a skeleton type configuration, but converts the heat of the exhaust gas into electricity according to the temperature difference between the heat insulating portion 31 side and the bellows 36 side and releases it to the outside. However, the present invention is not particularly limited to this, and a ceramic substrate fixed on at least one of the high temperature surface and the low temperature surface may be used. In this case, although it is inferior in flexibility, it is possible to suppress the transfer of exhaust heat to the bellows 36 side, so that the life of the expansion joint 30 can be further increased. In addition, when using the thermoelectric element layer which has a board | substrate, it is preferable to make it possible to bend as much as possible by making it a unit as small as possible and connecting this unit with a flexible layer.

上述した実施形態では、熱電変換放出部40は、ベローズ36へ固定されているものとしたが、断熱部31とベローズ36との間に配設するものとすれば、特にこれに限定されず、断熱部31へ固定するものとしてもよい。こうしてもベローズ36側への排熱の伝達を抑制することができるため、伸縮継手30の長寿命化をより図ることができる。   In the above-described embodiment, the thermoelectric conversion / release portion 40 is fixed to the bellows 36. However, if the thermoelectric conversion / release portion 40 is disposed between the heat insulating portion 31 and the bellows 36, the embodiment is not particularly limited thereto. It is good also as what fixes to the heat insulation part 31. FIG. Even in this case, since the transmission of exhaust heat to the bellows 36 side can be suppressed, the life of the expansion joint 30 can be further extended.

上述した実施形態では、第1ダクト22が発電機18側に固定され、第2ダクト24が煙突26側に固定されているものとして説明したが、燃焼器16から煙突26までの間の構造物に固定されているダクトであれば特に限定されず、また、複数の伸縮継手30を配設するものとしてもかまわない。   In the above-described embodiment, the first duct 22 is fixed to the generator 18 side and the second duct 24 is fixed to the chimney 26 side. However, the structure between the combustor 16 and the chimney 26 is described. The duct is not particularly limited as long as it is fixed to the pipe, and a plurality of expansion joints 30 may be provided.

上述した実施形態では、第1ダクト22、第2ダクト24及び伸縮継手30は筒状体であるものとしたが、排気が流通可能であれば特にこれに限られず、角柱状であってもよいし、楕円柱状であってもよい。   In the above-described embodiment, the first duct 22, the second duct 24, and the expansion joint 30 are tubular bodies. However, the present invention is not particularly limited as long as the exhaust gas can flow, and may be prismatic. However, it may be elliptical.

上述した実施形態では、伸縮継手30及び熱電変換放出部40は、火力発電所10の排気を流通するダクトに用いるものとしたが、加熱された流体を流通するダクトに用いるものとすれば特にこれに限定されず、例えば、ゴミ処理場、化学プラント工場などにおいて、加熱された排気や吸気などの気体を流通するダクトや、加熱された溶液などの液体を流通するダクト、加熱された粉体などの固体を流通するダクトなどに適用するものとしてもよい。   In the above-described embodiment, the expansion joint 30 and the thermoelectric conversion / release part 40 are used for the duct through which the exhaust gas of the thermal power plant 10 is circulated. For example, in a garbage disposal plant, chemical plant factory, etc., a duct that circulates a gas such as heated exhaust or intake air, a duct that circulates a liquid such as a heated solution, a heated powder, etc. It is good also as what is applied to the duct etc. which distribute | circulate this solid.

10 火力発電所、11 空気導入管、12 圧縮機、14 燃料導入管、16 燃焼器、17 タービン、18 発電機、22 第1ダクト、22a 固定用台座、23 バッフル板、24 第2ダクト、24a 固定用台座、26 煙突、30 伸縮継手、31 断熱部、32 第1断熱材、33 第2断熱材、34 第3断熱材、35 第4断熱材、36 ベローズ、36a,36b 排気側層、36c 中間層、36d 外部層、37,38 押さえ板、40 熱電変換放出部、41 熱電素子層、42 第1放熱部、43 電気抵抗器、44 第2放熱部、45 p型素子、46 n型素子、47 柔軟層、48 熱収集層、49 伝熱層。   DESCRIPTION OF SYMBOLS 10 Thermal power plant, 11 Air introduction pipe, 12 Compressor, 14 Fuel introduction pipe, 16 Combustor, 17 Turbine, 18 Generator, 22 1st duct, 22a Fixing base, 23 Baffle plate, 24 2nd duct, 24a Pedestal for fixing, 26 chimney, 30 expansion joint, 31 heat insulating part, 32 first heat insulating material, 33 second heat insulating material, 34 third heat insulating material, 35 fourth heat insulating material, 36 bellows, 36a, 36b exhaust side layer, 36c Intermediate layer, 36d outer layer, 37, 38 holding plate, 40 thermoelectric conversion emission part, 41 thermoelectric element layer, 42 first heat radiation part, 43 electric resistor, 44 second heat radiation part, 45 p-type element, 46 n-type element 47 flexible layers, 48 heat collection layers, 49 heat transfer layers.

Claims (9)

加熱された流体が通過する第1のダクトと第2のダクトとの間に該流体が通過可能に配設され該第1及び第2のダクトを通過する流体の熱を断熱する断熱部と、
前記断熱部の外部側に配設され柔軟性を有し前記流体を遮断する遮断部と、
前記断熱部と前記遮断部との間に配設され該断熱部側と該遮断部側との温度差に応じて前記流体の熱を電気へ変換して外部へ放出する熱電変換放出部と、
を備えた伸縮継手。
A heat insulating part disposed between the first duct and the second duct through which the heated fluid passes so that the fluid can pass therethrough to insulate the heat of the fluid passing through the first and second ducts;
A blocking portion that is disposed outside the heat insulating portion and has flexibility and blocks the fluid;
A thermoelectric conversion / discharging unit disposed between the heat insulating unit and the blocking unit and converting the heat of the fluid into electricity according to a temperature difference between the heat insulating unit side and the blocking unit side;
Expansion joint with
前記熱電変換放出部は、p型素子とn型素子とにより構成される熱電素子層と、該熱電素子層に通電可能に接続された抵抗器と、を備えている、請求項1に記載の伸縮継手。   The thermoelectric conversion emission part is provided with the thermoelectric element layer comprised by the p-type element and the n-type element, and the resistor connected so that electricity could be supplied to this thermoelectric element layer. Expansion joints. 前記熱電変換放出部は、前記断熱部側に前記流体の熱を収集する熱収集層、を備えている、請求項1又は2に記載の伸縮継手。   The expansion joint according to claim 1, wherein the thermoelectric conversion discharge part includes a heat collection layer that collects heat of the fluid on the heat insulation part side. 前記熱電変換放出部は、前記p型素子及び前記n型素子が柔軟層に配設されたスケルトン型の熱電素子層を備えている、請求項1〜3のいずれか1項に記載の伸縮継手。   The expansion joint according to any one of claims 1 to 3, wherein the thermoelectric conversion emission part includes a skeleton-type thermoelectric element layer in which the p-type element and the n-type element are arranged in a flexible layer. . 前記熱電変換放出部は、前記遮断部側に外部へ熱を伝導する伝熱層を備えている、請求項1〜4のいずれか1項に記載の伸縮継手。   The expansion joint according to any one of claims 1 to 4, wherein the thermoelectric conversion / release part includes a heat transfer layer that conducts heat to the outside on the blocking part side. 前記熱電変換放出部は、放熱板を有する放熱部が前記伝熱層に伝熱可能となるように接続されている、請求項5に記載の伸縮継手。   The expansion joint according to claim 5, wherein the thermoelectric conversion / release part is connected such that a heat radiating part having a heat radiating plate can transfer heat to the heat transfer layer. 前記熱電変換放出部は、前記遮断部に固定されている、請求項1〜6のいずれか1項に記載の伸縮継手。   The expansion joint according to any one of claims 1 to 6, wherein the thermoelectric conversion / release part is fixed to the blocking part. 前記熱電変換放出部は、放熱板を有する放熱部が前記抵抗器に伝熱可能となるように接続されている、請求項2に記載の伸縮継手。   The expansion joint according to claim 2, wherein the thermoelectric conversion and emission part is connected so that a heat dissipation part having a heat dissipation plate can transfer heat to the resistor. 前記断熱部及び前記遮断部は、燃料の燃焼を行い発電機で発電されたあとの流体を流通するよう該発電機側に固定されている第1のダクトと、前記流体を放出する煙突側に固定されている第2のダクトと、に配設される、請求項1〜8のいずれか1項に記載の伸縮継手。   The heat insulating portion and the shut-off portion are provided on the first duct fixed to the generator side so as to circulate the fluid after the fuel is burned and generated by the generator, and on the chimney side that discharges the fluid. The expansion joint according to any one of claims 1 to 8, wherein the expansion joint is disposed on a second duct that is fixed.
JP2009174277A 2009-07-27 2009-07-27 Expansion joint Pending JP2011027190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009174277A JP2011027190A (en) 2009-07-27 2009-07-27 Expansion joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009174277A JP2011027190A (en) 2009-07-27 2009-07-27 Expansion joint

Publications (1)

Publication Number Publication Date
JP2011027190A true JP2011027190A (en) 2011-02-10

Family

ID=43636168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009174277A Pending JP2011027190A (en) 2009-07-27 2009-07-27 Expansion joint

Country Status (1)

Country Link
JP (1) JP2011027190A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130215A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Expansion joint, and method for detecting broken hole therein using the same
JP2018132171A (en) * 2017-02-17 2018-08-23 株式会社エーアンドエーマテリアル Bellows material for telescopic joint

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719778A (en) * 1993-06-30 1995-01-20 Showa Alum Corp Manufacture of tube with radial fin
JP2002310465A (en) * 2001-04-16 2002-10-23 Daikin Ind Ltd Air conditioner
JP2003065005A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Non-metal expansion joint for high temperature duct
JP2003114080A (en) * 2001-07-30 2003-04-18 Tekkusu Iijii:Kk Thermoelectric conversion device and manufacturing method therefor
JP2005279466A (en) * 2004-03-30 2005-10-13 Sumitomo Heavy Ind Ltd Treating method for high temperature waste gas and cooling device used in treating process for high temperature waste gas
JP2008043015A (en) * 2006-08-03 2008-02-21 Ihi Corp Thermoelectric transducer and control method of thermoelectric module
JP2009040407A (en) * 2007-07-20 2009-02-26 Visteon Global Technologies Inc Air conditioning unit for motor vehicles and method for its operation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719778A (en) * 1993-06-30 1995-01-20 Showa Alum Corp Manufacture of tube with radial fin
JP2002310465A (en) * 2001-04-16 2002-10-23 Daikin Ind Ltd Air conditioner
JP2003114080A (en) * 2001-07-30 2003-04-18 Tekkusu Iijii:Kk Thermoelectric conversion device and manufacturing method therefor
JP2003065005A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Non-metal expansion joint for high temperature duct
JP2005279466A (en) * 2004-03-30 2005-10-13 Sumitomo Heavy Ind Ltd Treating method for high temperature waste gas and cooling device used in treating process for high temperature waste gas
JP2008043015A (en) * 2006-08-03 2008-02-21 Ihi Corp Thermoelectric transducer and control method of thermoelectric module
JP2009040407A (en) * 2007-07-20 2009-02-26 Visteon Global Technologies Inc Air conditioning unit for motor vehicles and method for its operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130215A (en) * 2011-12-20 2013-07-04 Nippon Steel & Sumitomo Metal Corp Expansion joint, and method for detecting broken hole therein using the same
JP2018132171A (en) * 2017-02-17 2018-08-23 株式会社エーアンドエーマテリアル Bellows material for telescopic joint

Similar Documents

Publication Publication Date Title
JP6008966B2 (en) Gas turbine device, power plant and method of operating the power plant
JP2005223131A (en) Thermoelectric generator of internal combustion engine
JP6953365B2 (en) Temperature difference power generation device and measurement system
CN101882898A (en) Low temperature smoke temperature difference generator
JP2009081287A (en) Thermoelectric conversion module and heat exchanger using the same, thermoelectric temperature controller, and thermoelectric generator
JP6601317B2 (en) Thermoelectric generator
JP2008072775A (en) Exhaust heat energy recovery system
KR101703955B1 (en) Thermoelectric generation system and hybrid boiler using the same
KR20160008858A (en) Thermoelectric generation apparatus with multi stage for waste heat
JP2007214523A (en) Tpv combined power generating apparatus
JP5444787B2 (en) Thermoelectric generator
JP2011027190A (en) Expansion joint
JP2014225509A (en) Waste heat power generator
JP2011192759A (en) Thermoelectric generation system
KR100735617B1 (en) Thermoelectric generator using for waste heat
JP2015164391A (en) Thermoelectric power generator
JP4905877B2 (en) Cogeneration system and operation method thereof
JP4928182B2 (en) Thermoelectric conversion system and its construction method
JP3442862B2 (en) Thermoelectric generation unit
KR101260609B1 (en) Thermoelectric generator installed in the flue tube of domestic boiler
JPH0898569A (en) Power generation apparatus for enhancement of efficiency of thermal power generation
JPH10190073A (en) Thermoelectric converter for furnace wall
JP2996305B2 (en) High thermal resistance thermoelectric generator
JP2009272327A (en) Thermoelectric conversion system
JP2007019260A (en) Thermoelectric conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224