[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011027168A - Mending method for heat insulation structure and heat insulation structure - Google Patents

Mending method for heat insulation structure and heat insulation structure Download PDF

Info

Publication number
JP2011027168A
JP2011027168A JP2009173107A JP2009173107A JP2011027168A JP 2011027168 A JP2011027168 A JP 2011027168A JP 2009173107 A JP2009173107 A JP 2009173107A JP 2009173107 A JP2009173107 A JP 2009173107A JP 2011027168 A JP2011027168 A JP 2011027168A
Authority
JP
Japan
Prior art keywords
heat insulating
heat
repair
exterior
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173107A
Other languages
Japanese (ja)
Other versions
JP4897858B2 (en
JP2011027168A5 (en
Inventor
Konosuke Kato
孝之介 加藤
Tomohiko Hara
智彦 原
Toru Tsukamoto
徹 塚本
Mamoru Yagi
衛 八木
Kazuya Kurosaka
和弥 黒坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2009173107A priority Critical patent/JP4897858B2/en
Priority to PCT/JP2010/061830 priority patent/WO2011010577A1/en
Priority to TW99123763A priority patent/TWI422769B/en
Publication of JP2011027168A publication Critical patent/JP2011027168A/en
Publication of JP2011027168A5 publication Critical patent/JP2011027168A5/ja
Application granted granted Critical
Publication of JP4897858B2 publication Critical patent/JP4897858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/10Bandages or covers for the protection of the insulation, e.g. against the influence of the environment or against mechanical damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mending method for a heat insulation structure, which constitutes a new heat insulation structure having effectively enhanced a heat insulation property as compared with an existing heat insulation structure, and a heat insulation structure constituted thereby. <P>SOLUTION: A mending method for a heat insulation structure is used to mend an existing heat insulation structure comprising a heat insulated body (10) and a heat insulating material (20) for covering the heat insulated body so as to constitute a new heat insulation structure (2) having the heat insulated body (10), the heat insulating material (20), a mending material (50) having heat insulation, vapor permeability and water impermeability to cover the heat insulating material and a metal outer material (60) covering the mending material and having a water drain hole (70) at a lower side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、保温構造の補修方法及び保温構造に関し、特に、既設の保温構造の補修に関する。   The present invention relates to a heat insulation structure repair method and a heat insulation structure, and more particularly to repair of an existing heat insulation structure.

従来、例えば、特許文献1には、配管の外周を保温材で覆い、さらに当該保温材の外周を金属板からなる保護カバーで覆うことが記載されている。   Conventionally, for example, Patent Document 1 describes that an outer periphery of a pipe is covered with a heat insulating material, and further, an outer periphery of the heat insulating material is covered with a protective cover made of a metal plate.

特開平8−19830号公報JP-A-8-19830

しかしながら、上記従来技術においては、例えば、雨によって保護カバーの継ぎ目から水が浸入した場合には、保温材が水を含み、その結果、当該保温材の断熱性が低下することがあった。そして、この場合、水を含んだ保温材を、乾燥した新たな保温材と交換する必要があった。   However, in the above prior art, for example, when water enters from the joint of the protective cover due to rain, the heat insulating material contains water, and as a result, the heat insulating property of the heat insulating material may be lowered. In this case, it is necessary to replace the heat insulating material containing water with a new dry heat insulating material.

しかしながら、単に保温材を交換し、補修前と同一の保温構造を再構築するのみでは、その後、再び同様に当該保温構造に水が浸入すること、及びその結果として断熱性が低下することを防止することはできなかった。   However, simply replacing the heat insulating material and reconstructing the same heat retaining structure as before the repair prevents the water from entering the heat retaining structure and preventing the heat insulation from degrading as a result. I couldn't.

本発明は、上記課題に鑑みて為されたものであって、既設の保温構造に比べて断熱性が効果的に向上した新たな保温構造を構築することのできる保温構造の補修方法及びこれにより構築される保温構造を提供することをその目的の一つとする。   This invention was made in view of the said subject, Comprising: By the repair method of the thermal insulation structure which can construct | assemble the new thermal insulation structure where the heat insulation property improved effectively compared with the existing thermal insulation structure, and this One of the purposes is to provide a heat insulation structure to be constructed.

上記課題を解決するための本発明の一実施形態に係る保温構造の補修方法は、被保温体と、前記被保温体を覆う保温材と、を有する既設の保温構造を補修する方法であって、前記被保温体と、前記保温材と、前記保温材を覆う断熱性、水蒸気透過性及び非透水性を備えた補修材と、前記補修材を覆い下方側部分に排水穴が形成された金属製の外装材と、を有する新たな保温構造を構築することを特徴とする。本発明によれば、既設の保温構造に比べて断熱性が効果的に向上した新たな保温構造を構築することのできる保温構造の補修方法を提供することができる。   A method for repairing a heat retaining structure according to an embodiment of the present invention for solving the above problems is a method for repairing an existing heat retaining structure having a heat retaining body and a heat retaining material that covers the heat retaining body. The heat-retaining body, the heat-retaining material, a heat-insulating material that covers the heat-retaining material, a water-permeable repair material and a water-impermeable repair material, and a metal that covers the repair material and has a drain hole formed in a lower portion thereof And a new heat insulation structure having an exterior material made of metal. ADVANTAGE OF THE INVENTION According to this invention, the repair method of the heat retention structure which can construct | assemble the new heat retention structure where the heat insulation property improved effectively compared with the existing heat retention structure can be provided.

また、前記既設の保温構造は、内部に流体が流通する配管である前記被保温体と、前記配管の外周を覆う前記保温材と、を有する既設の配管保温構造であって、前記新たな保温構造は、前記配管と、前記保温材と、前記保温材の外周を覆う前記補修材と、前記補修材の外周を覆う前記外装材と、を有する新たな配管保温構造であることとしてもよい。   Further, the existing heat insulation structure is an existing pipe heat insulation structure including the heat retaining body that is a pipe through which a fluid flows, and the heat insulation material that covers an outer periphery of the pipe, and the new heat insulation structure. The structure may be a new pipe heat insulation structure including the pipe, the heat insulating material, the repair material covering the outer periphery of the heat insulating material, and the exterior material covering the outer periphery of the repair material.

また、この場合、前記新たな配管保温構造は、前記配管と、前記保温材と、前記保温材の外周を覆う第一外装材と、前記第一外装材の外周を覆う前記補修材と、前記補修材の外周を覆う第二外装材である前記外装材と、を有し、その下方側部分に、前記第一外装材、前記補修材及び前記第二外装材を貫通する排水穴が形成されていることとしてもよい。さらに、この場合、前記既設の配管保温構造は、前記保温材の外周を覆う金属製の既設外装材をさらに有し、前記新たな配管保温構造において、前記第一外装材は、前記既設外装材であることとしてもよい。   Further, in this case, the new pipe heat insulating structure includes the pipe, the heat insulating material, a first exterior material that covers an outer periphery of the heat insulating material, the repair material that covers an outer periphery of the first exterior material, The exterior material that is the second exterior material that covers the outer periphery of the repair material, and a drain hole penetrating the first exterior material, the repair material, and the second exterior material is formed in a lower portion thereof. It is good to be. Further, in this case, the existing pipe heat insulating structure further includes a metal existing outer covering material that covers an outer periphery of the heat insulating material, and in the new pipe heat insulating structure, the first outer covering material is the existing outer covering material. It is good also as being.

また、これらの場合、前記第一外装材の外周を前記補修材で覆うとともに前記補修材の外周を前記第二外装材で覆うことによって、前記第一外装材、前記補修材及び前記第二外装材を積層し、次いで、積層された前記第一外装材、前記補修材及び前記第二外装材を貫通する前記排水穴を形成することとしてもよい。   In these cases, the first exterior material, the repair material, and the second exterior are covered by covering the outer periphery of the first exterior material with the repair material and covering the outer periphery of the repair material with the second exterior material. It is good also as laminating | stacking material and then forming the said drain hole which penetrates said laminated | stacked said 1st exterior material, the said repair material, and said 2nd exterior material.

また、前記既設の配管保温構造は、前記保温材の外周を覆う金属製の既設外装材をさらに有し、前記既設の配管保温構造から前記既設外装材を除去し、次いで前記保温材の外周を前記補修材で覆うとともに、前記補修材の外周を前記外装材で覆うことによって、前記新たな配管保温構造を構築することとしてもよい。また、前記いずれかの補修方法において、前記補修材は、エアロゲルが充填された繊維体であることとしてもよい。   The existing pipe heat insulating structure further includes a metal existing outer covering material that covers the outer periphery of the heat insulating material, and the existing outer heat insulating material is removed from the existing pipe heat insulating structure, and then the outer periphery of the heat insulating material is removed. It is good also as constructing the said new piping heat insulation structure by covering with the said repair material and covering the outer periphery of the said repair material with the said exterior material. In any one of the repair methods, the repair material may be a fibrous body filled with airgel.

上記課題を解決するための本発明の一実施形態に係る保温構造は、前記いずれかの補修方法により構築されたことを特徴とする。本発明によれば、既設の保温構造に比べて断熱性が効果的に向上した新たな保温構造を提供することができる。   In order to solve the above problems, a heat retaining structure according to an embodiment of the present invention is constructed by any one of the above repair methods. ADVANTAGE OF THE INVENTION According to this invention, the new heat retention structure where the heat insulation property improved effectively compared with the existing heat retention structure can be provided.

本発明によれば、既設の保温構造に比べて断熱性が効果的に向上した新たな保温構造を構築することのできる保温構造の補修方法及びこれにより構築される保温構造を提供することができる。   According to the present invention, it is possible to provide a heat insulation structure repair method capable of constructing a new heat insulation structure in which the heat insulation performance is effectively improved as compared with the existing heat insulation structure, and a heat insulation structure constructed thereby. .

本発明の一実施形態に係る補修方法の一例において補修される既設の配管保温構造の斜視図である。It is a perspective view of the existing piping heat retention structure repaired in an example of the repair method which concerns on one Embodiment of this invention. 図1に示す既設の配管保温構造の断面図である。It is sectional drawing of the existing piping heat retention structure shown in FIG. 本発明の一実施形態に係る補修方法の一例により構築される配管保温構造の斜視図である。It is a perspective view of the piping heat insulation structure constructed | assembled by an example of the repair method which concerns on one Embodiment of this invention. 図3に示す配管保温構造の断面図である。It is sectional drawing of the piping heat retention structure shown in FIG. 本発明の一実施形態に係る補修方法の他の例により構築される配管保温構造の斜視図である。It is a perspective view of the piping heat retention structure constructed | assembled by the other example of the repair method which concerns on one Embodiment of this invention. 図5に示す配管保温構造の断面図である。It is sectional drawing of the piping heat retention structure shown in FIG. 本発明の一実施形態に係る補修方法により構築された配管保温構造の一例について、その含水率の経時的変化を評価した結果を示す説明図である。It is explanatory drawing which shows the result of having evaluated the time-dependent change of the moisture content about an example of the piping heat retention structure constructed | assembled by the repair method which concerns on one Embodiment of this invention.

以下に、本発明の一実施形態に係る保温構造の補修方法(以下、「本方法」という。)及びこれにより構築される保温構造(以下、「本構造」という。)について説明する。   Hereinafter, a method for repairing a heat retaining structure according to an embodiment of the present invention (hereinafter referred to as “the present method”) and a heat retaining structure constructed thereby (hereinafter referred to as “the present structure”) will be described.

本方法は、保温の対象となる構造体である被保温体と、当該被保温体を保温するために設けられた当該被保温体を覆う保温材と、を有する既設の保温構造を補修する方法である。本実施形態においては、この既設の保温構造が、内部に流体が流通する配管である被保温体と、当該配管の外周を覆う保温材と、を有する既設の配管保温構造である例について主に説明するが、本発明は本実施形態に限られるものではない。   This method is a method of repairing an existing heat retaining structure having a heat retaining body that is a structure to be heat retained, and a heat insulating material that covers the heat retaining body provided to heat the heat retaining body. It is. In this embodiment, the existing heat retaining structure is mainly an example of an existing pipe heat retaining structure having a heat retaining body that is a pipe through which a fluid flows and a heat insulating material that covers an outer periphery of the pipe. Although described, the present invention is not limited to this embodiment.

図1は、本方法の一例において補修される既設の配管保温構造(以下、「配管構造1」という。)の斜視図であり、図2は、当該配管構造1の断面図である。図1及び図2に示す例において、配管構造1は、内部に流体が流通する配管10と、当該配管10の外周を覆う保温材20と、当該保温材20の外周を覆う金属製の外装材(以下、「既設外装材30」という。)と、を有している。なお、図1においては、説明の便宜のために、配管10の外周を覆う保温材20及び既設外装材30の一部を省略して、当該配管10、保温材20及び既設外装材30をそれぞれ露出させて図示している。また、以下の説明で参照する他の斜視図においても同様に図示する。   FIG. 1 is a perspective view of an existing pipe heat insulation structure (hereinafter referred to as “pipe structure 1”) to be repaired in an example of this method, and FIG. 2 is a cross-sectional view of the pipe structure 1. In the example shown in FIGS. 1 and 2, the pipe structure 1 includes a pipe 10 through which a fluid flows, a heat insulating material 20 that covers the outer periphery of the pipe 10, and a metal exterior material that covers the outer periphery of the heat insulating material 20. (Hereinafter referred to as “existing exterior material 30”). In FIG. 1, for convenience of explanation, a part of the heat insulating material 20 and the existing exterior material 30 covering the outer periphery of the pipe 10 is omitted, and the pipe 10, the heat insulating material 20 and the existing exterior material 30 are respectively shown. It is shown exposed. The same is true for other perspective views referred to in the following description.

配管10は、配管構造1が配置される環境の外気温度より高い温度の液体又は気体を輸送するために設置されている。配管10の温度は、例えば、40℃以上であり、より具体的には、例えば、40〜500℃の範囲である。この配管10は、例えば、炭素鋼やステンレス等の金属製である。配管10の内部に形成された中空部11には、輸送すべき液体又は気体が流通する。   The pipe 10 is installed to transport a liquid or gas having a temperature higher than the outside air temperature of the environment where the pipe structure 1 is arranged. The temperature of the piping 10 is 40 degreeC or more, for example, More specifically, it is the range of 40-500 degreeC, for example. The pipe 10 is made of a metal such as carbon steel or stainless steel, for example. In the hollow portion 11 formed in the pipe 10, a liquid or gas to be transported flows.

保温材20は、配管10の外気による冷却を抑制するために設けられた断熱材である。保温材20として用いることのできる断熱材は、目的に応じた適切な断熱性を有する部材であれば特に限られないが、例えば、けい酸カルシウム(ゾノライト系けい酸カルシウム等)、パーライト等の断熱性無機多孔質成形体や、グラスウール、ロックウール等の断熱性無機繊維体を好ましく用いることができる。   The heat insulating material 20 is a heat insulating material provided to suppress cooling of the pipe 10 by the outside air. The heat insulating material that can be used as the heat insulating material 20 is not particularly limited as long as it is a member having an appropriate heat insulating property according to the purpose. For example, heat insulating materials such as calcium silicate (zonolite-based calcium silicate), perlite, and the like. Insulating inorganic porous bodies such as glass wool and rock wool can be preferably used.

保温材20としては、円周方向において複数に分割可能な円筒成形体として形成されたものを用いることができる。すなわち、図1及び図2に示す例において、保温材20は、2つの部分に分割可能な円筒成形体として形成されている。具体的に、この保温材20は、配管10の上方側部分の外周を覆う半円筒形状の上側保温材20aと、当該配管10の下方側部分の外周を覆う半円筒形状の下側保温材20bと、から構成されている。なお、保温材20は、3つ以上(例えば、4つ)の部分に分割可能に形成することもできる。また、保温材20は、分割可能に形成されたものに限られない。また、配管構造1の長手方向においては、所定長さの複数の保温材20が繋ぎ合わされて設けられている(不図示)。   As the heat insulating material 20, a material formed as a cylindrical molded body that can be divided into a plurality of pieces in the circumferential direction can be used. That is, in the example shown in FIGS. 1 and 2, the heat insulating material 20 is formed as a cylindrical molded body that can be divided into two parts. Specifically, the heat insulating material 20 includes a semi-cylindrical upper heat insulating material 20a covering the outer periphery of the upper portion of the pipe 10, and a semi-cylindrical lower heat insulating material 20b covering the outer periphery of the lower portion of the pipe 10. And is composed of. The heat insulating material 20 can also be formed so as to be divided into three or more (for example, four) portions. Moreover, the heat insulating material 20 is not restricted to what was formed so that division | segmentation was possible. In the longitudinal direction of the piping structure 1, a plurality of heat insulating materials 20 having a predetermined length are connected and provided (not shown).

保温材20としては、その撥水性を高める処理が施された断熱性無機多孔質成形体又は無機繊維体を用いることもできる。ただし、このような撥水化処理によって保温材20に十分な非透水性を付与することはできず、当該保温材20は少なからず透水性を有するものとなる。   As the heat insulating material 20, a heat insulating inorganic porous molded body or an inorganic fiber body that has been subjected to a treatment for enhancing its water repellency can also be used. However, such a water repellent treatment cannot impart sufficient water impermeability to the heat insulating material 20, and the heat insulating material 20 has a certain amount of water permeability.

既設外装材30は、保温材20を保護するために設けられる金属製のカバー部材である。既設外装材30としては、例えば、着色メッキ鋼板やステンレス板等の金属板を好ましく用いることができる。   The existing exterior material 30 is a metal cover member provided to protect the heat insulating material 20. As the existing exterior material 30, for example, a metal plate such as a colored plated steel plate or a stainless steel plate can be preferably used.

図1及び図2に示す例において、既設外装材30は、金属板を保温材20の外周に巻き付け、当該金属板の円周方向の一方端と他方端とをかしめることにより形成されている。このため、既設外装材30は、長手方向に延びるかしめ部分31を有している。   In the example shown in FIGS. 1 and 2, the existing exterior member 30 is formed by winding a metal plate around the outer periphery of the heat insulating material 20 and caulking one end and the other end in the circumferential direction of the metal plate. . For this reason, the existing exterior member 30 has a caulking portion 31 extending in the longitudinal direction.

また、配管構造1の長手方向においては、所定長さの複数の既設外装材30が繋ぎ合わされて設けられている(不図示)。複数の既設外装材30は、その繋ぎ目の位置が、上述の複数の保温材20の繋ぎ目の位置とずれるように設けられることが好ましい。   In the longitudinal direction of the piping structure 1, a plurality of existing exterior materials 30 having a predetermined length are connected and provided (not shown). The plurality of existing exterior materials 30 are preferably provided such that the positions of the joints are shifted from the positions of the joints of the plurality of heat insulating materials 20 described above.

本実施形態において、配管構造1は、屋外に設置される。すなわち、この配管構造1は、例えば、雨や雪に晒され得る環境下に設置される。   In this embodiment, the piping structure 1 is installed outdoors. That is, the piping structure 1 is installed in an environment that can be exposed to rain or snow, for example.

ここで、配管構造1においては、既設外装材30が最外層として保温材20の外周の全体を覆っているため、雨や雪によって保温材20に水が浸入することは、ある程度防止することができている。   Here, in the piping structure 1, since the existing exterior material 30 covers the entire outer periphery of the heat insulating material 20 as the outermost layer, it is possible to prevent water from entering the heat insulating material 20 due to rain or snow to some extent. is made of.

しかしながら、例えば、既設外装材30は、金属製の板材を保温材20の外周に巻き付け、端部をかしめて施工されるため、当該既設外装材30には継ぎ目(かしめ部分31)が形成される。したがって、配管構造1に対して雨や雪が強く吹き付けられた場合には、既設外装材30の継ぎ目の隙間から、当該既設外装材30と保温材20との間に水が浸入することがある。   However, for example, since the existing exterior material 30 is constructed by winding a metal plate around the outer periphery of the heat insulating material 20 and caulking the end portion, a seam (caulking portion 31) is formed in the existing exterior material 30. . Therefore, when rain or snow is strongly blown against the piping structure 1, water may infiltrate between the existing exterior material 30 and the heat insulating material 20 from the gap between the seams of the existing exterior material 30.

この場合、浸入した水は、保温材20のうち、既設外装材30の継ぎ目に対応する部分から、それ以外の外周部分へも浸透し、さらに、当該保温材20の内部にまで浸透する。この結果、断熱性無機多孔質成形体や無機繊維体からなる保温材20の内部の空隙には、熱伝導率が空気よりも高い水が保持されることとなり、当該保温材20の断熱性が低下してしまう。   In this case, the infiltrated water penetrates from the portion corresponding to the joint of the existing exterior material 30 in the heat insulating material 20 to the other outer peripheral portion, and further penetrates into the heat insulating material 20. As a result, water having a thermal conductivity higher than that of air is retained in the space inside the heat insulating material 20 made of the heat insulating inorganic porous molded body or the inorganic fiber body. It will decline.

保温材20の断熱性が低下すると、当該保温材20の既設外装材30側の表面(図2に示す、配管10の径方向外側の外面22)の温度が低下し、当該外面22の温度と、当該保温材20の配管10側の表面(図2に示す、配管10の径方向内側の内面21)の温度と、の差が大きくなる。   When the heat insulating property of the heat insulating material 20 decreases, the temperature of the surface of the heat insulating material 20 on the existing exterior material 30 side (the outer surface 22 on the radially outer side of the pipe 10 shown in FIG. 2) decreases, and the temperature of the outer surface 22 The difference between the temperature of the surface of the heat insulating material 20 on the pipe 10 side (the inner surface 21 on the radially inner side of the pipe 10 shown in FIG. 2) becomes large.

したがって、例えば、保温材20の内面21の温度が、配管10の温度に近い比較的高い温度であることにより、当該内面21の近傍において当該保温材20に含まれる水が蒸発したとしても、当該保温材20の外面22の温度が低いために、発生した水蒸気は、当該外面22付近で凝縮してしまう。このため、既設の配管構造1において、いったん保温材20に浸透した水を排出して当該保温材20の断熱性を回復させることは容易でない。   Therefore, for example, even if water contained in the heat insulating material 20 evaporates in the vicinity of the inner surface 21 because the temperature of the inner surface 21 of the heat insulating material 20 is a relatively high temperature close to the temperature of the pipe 10, Since the temperature of the outer surface 22 of the heat insulating material 20 is low, the generated water vapor is condensed near the outer surface 22. For this reason, in the existing piping structure 1, it is not easy to drain the water that has permeated the heat insulating material 20 and restore the heat insulating property of the heat insulating material 20.

また、保温材20に水分が浸入することにより、配管10の腐食が生じやすくなる。すなわち、例えば、配管10の表面に水分が存在し、且つ当該配管10の温度が腐食反応に適した温度(例えば、60〜80℃付近)となることにより、当該配管10の腐食が新たに発生し又は発生した腐食が進行しやすくなる。また、保温材20への水分の浸入により、当該保温材20に含有されていた腐食に関与する成分や、当該水分に含有されている塩類が配管10の近傍に溶出し蓄積することもまた、当該配管10の腐食を促進し得る。配管10の防錆塗装に劣化がある場合も、腐食が進行しやすくなる。   Further, when moisture enters the heat insulating material 20, the pipe 10 is easily corroded. That is, for example, when water exists on the surface of the pipe 10 and the temperature of the pipe 10 becomes a temperature suitable for the corrosion reaction (for example, around 60 to 80 ° C.), the pipe 10 is newly corroded. Or the generated corrosion is likely to proceed. In addition, due to the intrusion of moisture into the heat insulating material 20, the components involved in the corrosion contained in the heat insulating material 20 and the salts contained in the water are eluted and accumulated in the vicinity of the pipe 10, Corrosion of the pipe 10 can be promoted. Corrosion tends to proceed even when the rust-proof coating of the pipe 10 is deteriorated.

そこで、本方法においては、このような配管構造1を補修し、新たな配管保温構造として、例えば、図3及び図4に示すような本構造2を構築する。図3は、本方法の一例により構築される本構造2の斜視図であり、図4は、当該本構造2の断面図である。   Therefore, in this method, such a pipe structure 1 is repaired, and a new structure 2 as shown in FIGS. 3 and 4 is constructed as a new pipe heat insulation structure, for example. FIG. 3 is a perspective view of the structure 2 constructed by an example of the method, and FIG. 4 is a cross-sectional view of the structure 2.

図3及び図4に示す例において、本構造2は、既設の配管構造1(図1及び図2参照)の配管10及び保温材20に加えて、当該保温材20の外周を覆う金属製の第一外装材40と、当該第一外装材40の外周を覆う補修材50と、当該補修材50の外周を覆う金属製の第二外装材60と、を有している。   In the example shown in FIGS. 3 and 4, this structure 2 is made of a metal that covers the outer periphery of the heat insulating material 20 in addition to the pipe 10 and the heat insulating material 20 of the existing piping structure 1 (see FIGS. 1 and 2). It has the 1st exterior material 40, the repair material 50 which covers the outer periphery of the said 1st exterior material 40, and the metal 2nd exterior material 60 which covers the outer periphery of the said repair material 50.

第一外装材40は、保温材20を保護するために設けられる金属製のカバー部材である。第一外装材40としては、例えば、着色メッキ鋼板やステンレス板等の金属板を好ましく用いることができる。   The first exterior member 40 is a metal cover member provided to protect the heat insulating material 20. As the 1st exterior material 40, metal plates, such as a coloring plating steel plate and a stainless plate, can be used preferably, for example.

図3及び図4に示す例において、第一外装材40は、金属板を保温材20の外周に巻き付け、当該金属板の円周方向の一方端と他方端とをかしめることにより形成されている。このため、第一外装材40は、長手方向に延びるかしめ部分41を有している。なお、図4に示す例では、本構造2の下方側部分において、保温材20と第一外装材40との間に隙間が形成されている。   3 and 4, the first exterior member 40 is formed by winding a metal plate around the outer periphery of the heat insulating material 20 and caulking one end and the other end in the circumferential direction of the metal plate. Yes. For this reason, the first exterior member 40 has a caulking portion 41 extending in the longitudinal direction. In the example shown in FIG. 4, a gap is formed between the heat insulating material 20 and the first exterior material 40 in the lower portion of the structure 2.

また、本構造2の長手方向においては、所定長さの複数の第一外装材40が繋ぎ合わされて設けられている(不図示)。複数の第一外装材40は、その繋ぎ目の位置が、上述の複数の保温材20の繋ぎ目の位置とずれるように設けられることが好ましい。   Moreover, in the longitudinal direction of the present structure 2, a plurality of first exterior members 40 having a predetermined length are connected and provided (not shown). The plurality of first exterior members 40 are preferably provided such that the positions of the joints are shifted from the positions of the joints of the plurality of heat insulating materials 20 described above.

第一外装材40は、既設の配管構造1の既設外装材30(図1及び図2参照)とすることができる。すなわち、既設外装材30を再利用して、第一外装材40を形成することができる。第一外装材40として既設外装材30を使用する場合には、本方法における補修作業に要する時間やコストを効果的に低減することができる。なお、第一外装材40は、既設外装材30に代えて設けられた、未使用の新設のカバー材とすることもできる。   The first exterior material 40 can be the existing exterior material 30 (see FIGS. 1 and 2) of the existing piping structure 1. That is, the first exterior material 40 can be formed by reusing the existing exterior material 30. When the existing exterior material 30 is used as the first exterior material 40, the time and cost required for repair work in this method can be effectively reduced. The first exterior material 40 may be an unused new cover material provided in place of the existing exterior material 30.

補修材50は、断熱性、水蒸気透過性及び非透水性を備えている。すなわち、補修材50は、当該補修材50を設けない場合に比べて、保温材20の外面22の温度を上昇させることのできる断熱性を有している。また、補修材50は、保温材20で発生した水蒸気(すなわち、気体状態の水)が透過することのできる水蒸気透過性も有している。さらに、補修材50は、強い雨や風に晒された場合であっても液体状の水が透過することのできない非透水性をも有している。   The repair material 50 is provided with heat insulation, water vapor permeability, and non-water permeability. That is, the repair material 50 has a heat insulating property capable of increasing the temperature of the outer surface 22 of the heat insulating material 20 as compared with the case where the repair material 50 is not provided. The repair material 50 also has water vapor permeability that allows water vapor generated in the heat insulating material 20 (that is, water in a gaseous state) to pass therethrough. Furthermore, the repair material 50 also has non-permeability that liquid water cannot permeate even when exposed to strong rain or wind.

補修材50としては、水蒸気透過性と非透水性とを兼ね備えた断熱材を用いることができる。すなわち、補修材50としては、例えば、エアロゲルが充填された繊維体(以下、「エアロゲル繊維体」という。)を好ましく用いることができる。   As the repair material 50, a heat insulating material having both water vapor permeability and non-water permeability can be used. That is, as the repair material 50, for example, a fiber body filled with airgel (hereinafter referred to as “airgel fiber body”) can be preferably used.

このエアロゲル繊維体は、繊維基材にエアロゲルを充填することにより製造することのできる断熱性の構造体である。具体的に、エアロゲル繊維体は、例えば、繊維基材の繊維間にエアロゲルの原料を含浸し、次いで、当該エアロゲル原料が含浸された繊維基材を超臨界乾燥することにより製造することができる。   This airgel fiber body is a heat insulating structure that can be manufactured by filling a fiber substrate with airgel. Specifically, the airgel fiber body can be produced, for example, by impregnating the airgel raw material between the fibers of the fiber base material, and then supercritically drying the fiber base material impregnated with the airgel raw material.

エアロゲル繊維体を構成する繊維基材としては、無機繊維又は有機繊維の織布又は不織布を用いることができる。繊維基材として、繊維が不規則に絡み合った不織布を用いることにより、繊維間にエアロゲルをより効果的に保持することができる。   As a fiber base material which comprises an airgel fiber body, the woven fabric or nonwoven fabric of an inorganic fiber or an organic fiber can be used. By using a nonwoven fabric in which fibers are entangled irregularly as a fiber base material, the airgel can be more effectively held between the fibers.

また、繊維基材を構成する繊維としては、例えば、ポリエチレンテレフタレート(PET)繊維等の樹脂繊維、炭素繊維、ガラス繊維、アルミナ繊維等のセラミックス繊維を用いることができる。   Moreover, as a fiber which comprises a fiber base material, ceramic fibers, such as resin fibers, such as a polyethylene terephthalate (PET) fiber, carbon fiber, glass fiber, an alumina fiber, can be used, for example.

繊維基材に充填されるエアロゲルとしては、無機材料からなるエアロゲル(無機エアロゲル)又は有機材料からなるエアロゲル(有機エアロゲル)を用いることができる。無機エアロゲルを用いることにより、エアロゲル繊維体の耐熱性を効果的に高めることができる。   As an airgel with which a fiber base material is filled, an airgel (inorganic airgel) made of an inorganic material or an airgel (organic airgel) made of an organic material can be used. By using the inorganic airgel, the heat resistance of the airgel fiber can be effectively increased.

無機エアロゲルとしては、例えば、シリカエアロゲルやアルミナエアロゲルを用いることができる。中でも、シリカエアロゲルを用いることにより、エアロゲル繊維体の断熱性を効果的に高めることができる。   As the inorganic airgel, for example, silica airgel or alumina airgel can be used. Especially, the heat insulation of an airgel fiber body can be effectively improved by using a silica airgel.

また、補修材50としては、既設の配管構造1の保温材20よりも断熱性が高いものを好ましく用いることができる。すなわち、例えば、その熱伝導率が、保温材20の熱伝導率よりも低い補修材50を好ましく用いることができる。   Moreover, as the repair material 50, what has higher heat insulation than the heat insulating material 20 of the existing piping structure 1 can be used preferably. That is, for example, the repair material 50 whose thermal conductivity is lower than the thermal conductivity of the heat insulating material 20 can be preferably used.

具体的に、ASTM C177に準拠した方法で測定される補修材50の25℃における熱伝導率は、例えば、0.05W/(m・K)以下であることが好ましく、0.02W/(m・K)以下であることがより好ましい。   Specifically, the thermal conductivity at 25 ° C. of the repair material 50 measured by a method based on ASTM C177 is preferably 0.05 W / (m · K) or less, for example, 0.02 W / (m -K) More preferably, it is below.

すなわち、例えば、その熱伝導率が上記の範囲であるエアロゲル繊維体を補修材50として好ましく用いることができる。なお、エアロゲル繊維体の繊維間の空隙を埋めるエアロゲルは、当該エアロゲル内の微細孔により、当該エアロゲル繊維体の内部における空気の対流を効果的に防止することができる。このため、エアロゲル繊維体は、優れた断熱性を有することができる。   That is, for example, an airgel fiber body whose thermal conductivity is in the above range can be preferably used as the repair material 50. In addition, the airgel which fills the space | gap between the fibers of an airgel fiber body can prevent effectively the convection of the air in the inside of the said airgel fiber body by the micropore in the said airgel. For this reason, an airgel fiber body can have the outstanding heat insulation.

また、ASTM E96(Procedure B)に準拠した方法で測定される補修材50の水蒸気透過性は、例えば、600ng/(Pa・S・m)以上であることが好ましく、1500ng/(Pa・S・m)以上であることがより好ましい。 Further, the water vapor permeability of the repair material 50 measured by a method based on ASTM E96 (Procedure B) is preferably 600 ng / (Pa · S · m 2 ) or more, for example, 1500 ng / (Pa · S). · m 2) or more is more preferably.

また、ASTM C1104に準拠した方法で測定される補修材50の水中浸漬後の吸水率は、例えば、10重量%以下であることが好ましく、4重量%以下であることがより好ましい。また、ASTM C1511に準拠した方法で測定される補修材50の撥水性は、例えば、5g重量減以下であることが好ましく、3g重量減以下であることがより好ましい。   Moreover, the water absorption after immersion in water of the repair material 50 measured by a method based on ASTM C1104 is, for example, preferably 10% by weight or less, and more preferably 4% by weight or less. In addition, the water repellency of the repair material 50 measured by a method based on ASTM C1511 is, for example, preferably 5 g weight loss or less, and more preferably 3 g weight loss or less.

すなわち、補修材50としては、例えば、上記の範囲の水蒸気透過性に加えて、上記の範囲の吸水率又は撥水性の両方または一方をさらに備えたエアロゲル繊維体を好ましく用いることができる。なお、エアロゲル繊維体は、上述したようなエアロゲル内の微細孔により、優れた断熱性に加えて、上記のような水蒸気透過性と非透水性とを兼ね備えることができる。   That is, as the repair material 50, for example, an airgel fiber body that further includes one or both of the water absorption rate and the water repellency in the above range in addition to the water vapor permeability in the above range can be preferably used. In addition, the airgel fiber body can have the above water vapor permeability and water impermeability in addition to the excellent heat insulating property due to the fine pores in the airgel as described above.

また、補修材50としてエアロゲル繊維体を用いる場合、当該エアロゲル繊維体の嵩密度は、例えば、100〜300kg/mの範囲とすることが好ましく、150〜200kg/mの範囲とすることがより好ましい。嵩密度が上記の範囲であるエアロゲル繊維体を用いることで、本構造2の軽量化を図ることができる。 Moreover, when using an airgel fiber body as the repair material 50, it is preferable to make the bulk density of the said airgel fiber body into the range of 100-300 kg / m < 3 >, for example, and let it be the range of 150-200 kg / m < 3 >. More preferred. By using an airgel fiber body having a bulk density in the above range, the structure 2 can be reduced in weight.

また、補修材50は、適度な可撓性を有することが好ましい。すなわち、補修材50としては、配管構造1の保温材20及び第一外装材40の外周に沿って巻き付けることのできる柔軟性を備えたシート状体を用いることができる。   Moreover, it is preferable that the repair material 50 has moderate flexibility. That is, as the repair material 50, a sheet-like body having flexibility that can be wound around the outer periphery of the heat insulating material 20 and the first exterior material 40 of the pipe structure 1 can be used.

具体的に、例えば、不織布である繊維基材にエアロゲルが充填されてなるエアロゲル繊維体のシートを好ましく用いることができる。この場合、エアロゲル繊維体の厚さは、例えば、2〜20mmの範囲であることが好ましく、3〜10mmの範囲であることがより好ましい。   Specifically, for example, an airgel fiber sheet obtained by filling a fiber base material, which is a nonwoven fabric, with airgel can be preferably used. In this case, the thickness of the airgel fiber body is, for example, preferably in the range of 2 to 20 mm, and more preferably in the range of 3 to 10 mm.

配管構造1の長手方向においては、所定長さの複数の補修材50が繋ぎ合わされて設けられている。すなわち、図3に示す例では、配管10の長手方向において、一方側(例えば、配管10の上流側)に設けられた第一補修材50aと、他方側(例えば、配管10の下流側)に設けられた第二補修材50bと、が繋ぎ合わされている。   In the longitudinal direction of the piping structure 1, a plurality of repair materials 50 having a predetermined length are connected and provided. That is, in the example illustrated in FIG. 3, in the longitudinal direction of the pipe 10, the first repair material 50 a provided on one side (for example, the upstream side of the pipe 10) and the other side (for example, the downstream side of the pipe 10). The provided second repair material 50b is connected.

そして、図3に示す例では、配管10の長手方向において、第一補修材50aの一部と第二補修材50bの一部とが重ね合わされることにより、重複部分51が形成されている。すなわち、この重複部分51は、第一外装材40の外周において、第一補修材50aの下流側の端部51aの上に、第二補修材50bの上流側の端部51bが重ね合わされることにより形成されている。なお、複数の補修材50は、その繋ぎ目である重複部分51の位置が、上述の複数の第一外装材40の繋ぎ目の位置とずれるように設けられることが好ましい。   In the example illustrated in FIG. 3, the overlapping portion 51 is formed by overlapping a part of the first repair material 50 a and a part of the second repair material 50 b in the longitudinal direction of the pipe 10. That is, in the outer periphery of the first exterior material 40, the overlapping portion 51 is such that the upstream end 51b of the second repair material 50b is superimposed on the downstream end 51a of the first repair material 50a. It is formed by. In addition, it is preferable that the plurality of repair materials 50 are provided so that the positions of the overlapping portions 51 that are the joints are shifted from the positions of the joints of the plurality of first exterior materials 40 described above.

また、図3及び図4に示す例において、補修材50は、所定長さのシート状体(例えば、エアロゲル繊維体)を第一外装材40の外周に巻き付け、当該シート状体の円周方向の一方端と他方端とを重ね合わせることにより形成されている。なお、図3に示す例では、各補修材50の外周に複数の番線Wを巻き付けることにより、当該補修材50を緊縛している。   In the example shown in FIGS. 3 and 4, the repair material 50 is formed by winding a sheet-like body (for example, an airgel fiber body) having a predetermined length around the outer periphery of the first exterior member 40, and in the circumferential direction of the sheet-like body. Are formed by superimposing one end and the other end. In the example illustrated in FIG. 3, the repair material 50 is bound by winding a plurality of wire W around the outer periphery of each repair material 50.

第二外装材60は、主に補修材50を保護するために設けられる金属製のカバー部材である。第二外装材60としては、例えば、着色メッキ鋼板やステンレス板等の金属板を好ましく用いることができる。   The second exterior material 60 is a metal cover member provided mainly to protect the repair material 50. As the 2nd exterior material 60, metal plates, such as a coloring plating steel plate and a stainless plate, can be used preferably, for example.

図3及び図4に示す例において、第二外装材60は、金属板を補修材50の外周に巻き付け、当該金属板の円周方向の一方端と他方端とをかしめることにより形成されている。このため、第二外装材60は、長手方向に延びるかしめ部分61を有している。   3 and 4, the second exterior member 60 is formed by winding a metal plate around the outer periphery of the repair material 50 and caulking one end and the other end in the circumferential direction of the metal plate. Yes. For this reason, the second exterior member 60 has a caulking portion 61 extending in the longitudinal direction.

また、本構造2の長手方向においては、所定長さの複数の第二外装材60が繋ぎ合わされて設けられている(不図示)。複数の第二外装材60は、その繋ぎ目の位置が、上述の複数の補修材50の繋ぎ目(重複部分51)の位置とずれるように設けられることが好ましい。   Further, in the longitudinal direction of the present structure 2, a plurality of second exterior materials 60 having a predetermined length are connected and provided (not shown). The plurality of second exterior members 60 are preferably provided so that the positions of the joints are shifted from the positions of the joints (overlapping portions 51) of the plurality of repair materials 50 described above.

そして、図4に示すように、本構造2においては、その下方側部分に、第一外装材40、補修材50及び第二外装材60を貫通する排水穴70が形成されている。すなわち、図4に示す例では、第一外装材40の下方側部分に形成された貫通穴42、補修材50の下方側部分に形成された貫通穴52及び第二外装材60の下方側部分に形成された貫通穴62が、配管10の径方向に連なるよう配置されることにより排水穴70が形成されている。なお、本構造2の下方側部分とは、例えば、図4に示す例において、本構造2のうち、配管10の径方向中心を通る水平線Hよりも、鉛直方向における下方(図4に示す矢印Lの指す方向)側の部分である。   And in this structure 2, as shown in FIG. 4, the drain hole 70 which penetrates the 1st exterior material 40, the repair material 50, and the 2nd exterior material 60 is formed in the downward part. That is, in the example shown in FIG. 4, the through hole 42 formed in the lower portion of the first exterior member 40, the through hole 52 formed in the lower portion of the repair material 50, and the lower portion of the second exterior member 60. The drain holes 70 are formed by arranging the through holes 62 formed in the above so as to be continuous in the radial direction of the pipe 10. Note that the lower side portion of the structure 2 is, for example, in the example shown in FIG. 4, in the structure 2 below the horizontal line H passing through the center of the pipe 10 in the radial direction (arrow shown in FIG. 4). This is a portion on the side in the direction indicated by L.

図4に示す例において、排水穴70は、本構造2のうち、鉛直方向における下方側の頂点部分に1つ形成されているが、当該排水穴70の態様はこれに限られない。すなわち、排水穴70は、例えば、保温材20と第一外装材40との間や、補修材50と第二外装材60との間に侵入し主に重力の作用により下方側に流れ落ちた水を当該排水穴70から排出されるよう、適切な位置に、適切な数だけ形成される。   In the example shown in FIG. 4, one drain hole 70 is formed at the apex portion on the lower side in the vertical direction in the structure 2, but the mode of the drain hole 70 is not limited to this. That is, the drain hole 70 is, for example, water that has entered between the heat insulating material 20 and the first exterior material 40 or between the repair material 50 and the second exterior material 60 and has flowed downward due to the action of gravity. A proper number is formed at a suitable position so as to be discharged from the drain hole 70.

例えば、本構造2の下方側部分においては、長手方向の複数の位置に排水穴70を形成することができ、周方向の複数の位置に排水穴70を形成することもできる。具体的に、例えば、本構造2が長手方向に繋ぎ合わされた複数の第二外装材60を有する場合には、各第二外装材60に1つ以上の排水穴70が開口するよう、当該排水穴70を設けることができる。   For example, in the lower side portion of the present structure 2, the drain holes 70 can be formed at a plurality of positions in the longitudinal direction, and the drain holes 70 can be formed at a plurality of positions in the circumferential direction. Specifically, for example, when the present structure 2 includes a plurality of second exterior members 60 joined in the longitudinal direction, the drainage is performed so that one or more drain holes 70 are opened in each second exterior member 60. A hole 70 can be provided.

なお、図3及び図4に示す例では、第一外装材40のかしめ部分41、補修材50の周方向の重複部分及び第二外装材60のかしめ部分61は、いずれも本構造2の上方側部分(図4に示す例において、本構造2のうち、配管10の径方向中心を通る水平線Hよりも、鉛直方向における上方(図4に示す矢印Uの指す方向)側の部分)に形成されている。   In the example shown in FIGS. 3 and 4, the caulking portion 41 of the first exterior material 40, the overlapping portion in the circumferential direction of the repair material 50, and the caulking portion 61 of the second exterior material 60 are all above the structure 2. Formed on the side portion (in the example shown in FIG. 4, in the structure 2 above the horizontal line H passing through the center in the radial direction of the pipe 10 in the vertical direction (the direction indicated by the arrow U shown in FIG. 4)). Has been.

本方法により図3及び図4に示す本構造2を構築する場合、例えば、第一外装材40の外周を補修材50で覆うとともに当該補修材50の外周を第二外装材60で覆うことによって、当該第一外装材40、当該補修材50及び当該第二外装材60を積層し、次いで、積層された当該第一外装材40、当該補修材50及び当該第二外装材60を貫通する排水穴70を形成することができる。   When constructing this structure 2 shown in FIGS. 3 and 4 by this method, for example, by covering the outer periphery of the first exterior material 40 with the repair material 50 and covering the outer periphery of the repair material 50 with the second exterior material 60. The first exterior material 40, the repair material 50, and the second exterior material 60 are stacked, and then the drainage that penetrates the stacked first exterior material 40, the repair material 50, and the second exterior material 60. A hole 70 can be formed.

すなわち、例えば、第一外装材40として、既設の配管構造1の既設外装材30(図1及び図2参照)を利用する場合には、まず、当該既設外装材30(第一外装材40)の外周に補修材50を巻き付け、次いで、当該補修材50の外周に新たな第二外装材60を巻き付ける。なお、配管構造1の長手方向に複数の補修材50を施工する場合には、上述のとおり、当該複数の補修材50を、長手方向において互いに一部が重なるように(隣接する一対の補修材50a,50bの継ぎ目部分に重複部分51が形成されるように)配置することが好ましい。   That is, for example, when the existing exterior material 30 (see FIGS. 1 and 2) of the existing piping structure 1 is used as the first exterior material 40, first, the existing exterior material 30 (first exterior material 40). The repair material 50 is wound around the outer periphery of the repair material 50, and then a new second exterior material 60 is wound around the outer periphery of the repair material 50. In addition, when constructing a plurality of repair materials 50 in the longitudinal direction of the piping structure 1, as described above, the plurality of repair materials 50 are partially overlapped with each other in the longitudinal direction (a pair of adjacent repair materials 50a and 50b are preferably arranged so that an overlapping portion 51 is formed at the joint portion.

また、第一外装材40として、新たな外装材を使用する場合には、まず、既設の配管構造1の既設外装材30を除去し、当該既設外装材30に代えて、保温材20の外周に当該第一外装材40を巻き付け、次いで、当該第一外装材40の外周に補修材50を巻き付け、さらに、当該補修材50の外周に新たな第二外装材60を巻き付ける。   When a new exterior material is used as the first exterior material 40, first, the existing exterior material 30 of the existing piping structure 1 is removed, and the outer periphery of the heat insulating material 20 is replaced with the existing exterior material 30. The first exterior material 40 is wound around, the repair material 50 is then wound around the outer periphery of the first exterior material 40, and the new second exterior material 60 is wound around the outer periphery of the repair material 50.

そして、このように第一外装材40、補修材50及び第二外装材60を積層した後、ドリル等の穴あけ用工具を使用して、径方向の外側から内側に向けて、当該第二外装材60の貫通穴62、当該補修材50の貫通穴52及び当該第一外装材40の貫通穴42を順次形成することにより、図4に示すような排水穴70を形成する。   And after laminating | stacking the 1st exterior material 40, the repair material 50, and the 2nd exterior material 60 in this way, using the drilling tools, such as a drill, the said 2nd exterior is carried out toward inner side from the radial direction outer side. A drain hole 70 as shown in FIG. 4 is formed by sequentially forming a through hole 62 of the material 60, a through hole 52 of the repair material 50, and a through hole 42 of the first exterior material 40.

なお、第一外装材40、補修材50及び第二外装材60のそれぞれに、予め貫通穴42,52,62を形成しておき、これらの部材を施工する際に、当該貫通穴42,52,62を位置合わせすることにより、排水穴70を形成することもできる。また、第一外装材40、補修材50及び第二外装材60の貫通穴42,52,62のうち、一部を施工前に形成しておき、他の一部を施工後に形成することもできる。   Note that through holes 42, 52, 62 are formed in advance in each of the first exterior material 40, the repair material 50, and the second exterior material 60, and when these members are constructed, the through holes 42, 52 are formed. , 62 can be aligned to form a drain hole 70. Moreover, among the through holes 42, 52, and 62 of the first exterior material 40, the repair material 50, and the second exterior material 60, a part may be formed before construction, and the other part may be formed after construction. it can.

このように、本方法においては、既設の配管構造1の保温材20を上述したような特性を備えた補修材50及び第二外装材60で覆い、排水穴70を形成することによって、当該既設の配管構造1に比べて断熱性が効果的に向上した本構造2を構築することができる。   As described above, in this method, the heat insulating material 20 of the existing piping structure 1 is covered with the repair material 50 and the second exterior material 60 having the above-described characteristics, and the drain hole 70 is formed. The present structure 2 in which the heat insulating property is effectively improved as compared with the pipe structure 1 of FIG.

まず、本構造2においては、保温材20の断熱性を効果的に回復させることができる。すなわち、既設の配管構造1において、保温材20が外部から浸入した水を含むことにより、当該保温材20の断熱性が低下している場合には、本方法により、当該保温材20から水を効果的に排出させることができる。   First, in the present structure 2, the heat insulating property of the heat insulating material 20 can be effectively recovered. That is, in the existing piping structure 1, when the heat insulating material 20 includes water that has entered from the outside, and the heat insulating property of the heat insulating material 20 is deteriorated, water is discharged from the heat insulating material 20 by this method. It can be discharged effectively.

具体的に、断熱性の補修材50で保温材20の外周(すなわち外面22)を覆うことにより、当該保温材20の外面22の温度を上昇させ、当該保温材20の外面22の温度と内面21の温度との差を低減することができる。この結果、保温材20の内面21から外面22にわたる内部の全範囲において、当該保温材20に含まれる水を蒸発させることが可能となる。   Specifically, by covering the outer periphery (that is, the outer surface 22) of the heat insulating material 20 with the heat-insulating repair material 50, the temperature of the outer surface 22 of the heat insulating material 20 is increased, and the temperature and inner surface of the outer surface 22 of the heat insulating material 20 are increased. The difference from the temperature of 21 can be reduced. As a result, it becomes possible to evaporate the water contained in the heat insulating material 20 in the entire range from the inner surface 21 to the outer surface 22 of the heat insulating material 20.

そして、保温材20を覆う補修材50は、気化した水が透過できる水蒸気透過性を有しているため、保温材20に含まれていた水の蒸発により発生した水蒸気は、当該補修材50を透過して、本構造2の外部に効果的に排出される。すなわち、保温材20の内部で発生した水蒸気は、補修材50の当該保温材20側の表面(図4に示す内面53)から、当該補修材50の第二外装材60側の表面(図4に示す外面54)まで、当該補修材50の内部を通過して排出される。   And since the repair material 50 which covers the heat insulating material 20 has the water vapor permeability which the vaporized water can permeate | transmit, the water vapor | steam which generate | occur | produced by evaporation of the water contained in the heat insulating material 20 uses the said repair material 50. It permeates and is effectively discharged outside the structure 2. That is, the water vapor generated inside the heat insulating material 20 is transferred from the surface of the repair material 50 on the heat insulating material 20 side (the inner surface 53 shown in FIG. 4) to the surface of the repair material 50 on the second exterior material 60 side (FIG. 4). To the outer surface 54) shown in FIG.

したがって、本方法によれば、既設の保温材20を補修材50で覆うという簡単な作業により、いったん水を含んだ当該保温材20を効果的に乾燥させ、その断熱性を回復させることができる。   Therefore, according to this method, the heat insulating material 20 containing water can be effectively dried once and the heat insulating property can be recovered by a simple operation of covering the existing heat insulating material 20 with the repair material 50. .

次に、本構造2においては、その内部に浸入した水を、排出穴70から効果的に排出することができる。すなわち、上述のように、補修材50を設けることによって、保温材20に含まれていた水を効果的に蒸発させることができるが、例えば、第一外装材40及び第二外装材60の温度が当該保温材20の外面22の温度より低い場合には、当該保温材20と当該第一外装材40との間や、当該補修材50と当該第二外装材60との間で、当該水蒸気が凝縮して、再び水滴が生成され得る。   Next, in the present structure 2, the water that has entered the inside can be effectively discharged from the discharge hole 70. That is, by providing the repair material 50 as described above, the water contained in the heat insulating material 20 can be effectively evaporated. For example, the temperature of the first exterior material 40 and the second exterior material 60 Is lower than the temperature of the outer surface 22 of the heat insulating material 20, the water vapor between the heat insulating material 20 and the first exterior material 40 or between the repair material 50 and the second exterior material 60. Can condense and produce water droplets again.

そして、本構造2の内部において、水は、主に重力の作用によって、その下方側部分に流れ落ち、蓄積されやすい。すなわち、例えば、水蒸気の凝縮により生成された水や、新たに浸入した水は、保温材20のうち下方側部分、当該保温材20と第一外装材40との境界部分のうち下方側部分、及び補修材50と第二外装材60との境界部分のうち下方側部分に溜まりやすい。   And in this structure 2, water flows down to the lower side part mainly by the effect | action of gravity, and is easy to accumulate | store. That is, for example, water generated by condensation of water vapor or newly infiltrated water is a lower side portion of the heat insulating material 20, a lower side portion of the boundary portion between the heat insulating material 20 and the first exterior material 40, And it tends to accumulate in the lower part of the boundary part between the repair material 50 and the second exterior material 60.

この点、本構造2においては、上述のように、その下方側部分に、第一外装材40、補修材50及び第二外装材60を貫通する排水穴70が形成されているため、当該本構造2の下方側部分に溜まった水を、当該排水穴70から効率よく排出することができる。   In this regard, in the present structure 2, as described above, the drainage hole 70 penetrating the first exterior material 40, the repair material 50, and the second exterior material 60 is formed in the lower portion thereof. Water accumulated in the lower part of the structure 2 can be efficiently discharged from the drain hole 70.

また、本方法により構築される本構造2は、保温材20に加えて断熱性の補修材50をも有するため、補修前の配管構造1に比べて、より高い断熱性を有することができる。特に、補修材50として、薄いシート状で高い断熱性を有するエアロゲル繊維体を使用する場合には、補修に伴う径方向のサイズの増加を抑えつつ、断熱性が顕著に向上した本構造2を簡便且つ確実に構築することができる。   Moreover, since this structure 2 constructed | assembled by this method also has the heat insulation repair material 50 in addition to the heat insulating material 20, it can have higher heat insulation compared with the piping structure 1 before repair. In particular, when an airgel fiber body having a high heat insulating property in a thin sheet shape is used as the repair material 50, the present structure 2 in which the heat insulating property is remarkably improved while suppressing an increase in the radial size accompanying the repair. Simple and reliable construction is possible.

さらに、保温材20を覆う補修材50は非透水性を有しているため、例えば、本構造2が雨や雪に晒された場合においても、当該保温材20に新たに水が浸入することを効果的に防止することができる。   Furthermore, since the repair material 50 that covers the heat insulating material 20 is impermeable to water, for example, even when the present structure 2 is exposed to rain or snow, water may newly enter the heat insulating material 20. Can be effectively prevented.

また、本構造2においては、万が一、外部から新たに水が浸入した場合であっても、当該浸入した水を効果的に排出することができる。すなわち、この場合、本構造2においては、上述のように保温材20に新たに含まれた水を蒸発させ補修材50を介して排出するとともに、新たに浸入した水や水蒸気が凝縮して生成された水滴を排水穴70から排出することにより、当該保温材20を再び乾燥させることができる。すなわち、本構造2は、断熱性の自己回復能力を備えている。したがって、本構造2においては、その高い断熱性を安定して維持することができる。   Moreover, in this structure 2, even if it is a case where water newly invades from the outside, the infiltrated water can be effectively discharged. That is, in this case, in the present structure 2, the water newly contained in the heat insulating material 20 is evaporated and discharged through the repair material 50 as described above, and the newly entered water and water vapor are condensed and generated. By discharging the water droplets from the drain hole 70, the heat insulating material 20 can be dried again. That is, the present structure 2 has a heat-insulating self-healing ability. Therefore, in this structure 2, the high heat insulation can be stably maintained.

また、本構造2においては、既設の配管構造1に比べて、配管10の腐食を効果的に回避することができる。すなわち、本構造2においては、上述のように、いったん保温材20に含有された水分や、水蒸気が凝縮して生成された水滴等、当該本構造2の内部に侵入した水を、補修材50及び排水穴70を介して速やかに排出することができる。したがって、本構造2においては、例えば、浸入した水分、当該水分に含有される塩類、保温材20から溶出した成分等、腐食の原因となり得る物質が配管10の表面付近に存在することを効果的に回避することができる。この結果、本構造2においては、配管10の腐食の発生及び進行を効果的に防止することができる。   Further, in the present structure 2, corrosion of the pipe 10 can be effectively avoided as compared with the existing pipe structure 1. That is, in the present structure 2, as described above, the water that has once entered the interior of the present structure 2 such as water contained in the heat insulating material 20 or water droplets generated by condensation of water vapor is used as the repair material 50. And can be quickly discharged through the drain hole 70. Therefore, in this structure 2, it is effective that substances that can cause corrosion, such as infiltrated moisture, salts contained in the moisture, and components eluted from the heat insulating material 20, are present near the surface of the pipe 10. Can be avoided. As a result, in the present structure 2, the occurrence and progression of corrosion of the pipe 10 can be effectively prevented.

また、最外層として金属製の第二外装材60を設けることによって、本構造2の力学的強度を向上させることができる。このため、例えば、作業者が本構造2の上(すなわち、第二外装材60の上)に乗って所定の作業を行うこともできる。   Moreover, the mechanical strength of this structure 2 can be improved by providing the metal second exterior member 60 as the outermost layer. For this reason, for example, an operator can get on the structure 2 (that is, on the second exterior material 60) and perform a predetermined work.

図5は、本方法の他の例により構築される本構造2の斜視図であり、図6は、当該本構造2の断面図である。図5及び図6に示す例において、本構造2は、既設の配管構造1(図1及び図2参照)の配管10及び保温材20に加えて、当該保温材20の外周を覆う補修材50と、当該補修材50の外周を覆う金属製の外装材80と、を有している。   FIG. 5 is a perspective view of the structure 2 constructed by another example of the method, and FIG. 6 is a cross-sectional view of the structure 2. In the example shown in FIGS. 5 and 6, the structure 2 includes a repair material 50 that covers the outer periphery of the heat insulating material 20 in addition to the pipe 10 and the heat insulating material 20 of the existing piping structure 1 (see FIGS. 1 and 2). And a metal exterior material 80 that covers the outer periphery of the repair material 50.

補修材50としては、上述の例と同様に、エアロゲル繊維体等、水蒸気透過性と非透水性とを兼ね備えた断熱材を用いることができる。補修材50の施工もまた、上述の例と同様にして行うことができる。   As the repair material 50, a heat insulating material having both water vapor permeability and non-water permeability, such as an airgel fiber body, can be used as in the above example. The repair material 50 can also be applied in the same manner as in the above example.

外装材80は、主に保温材20及び補修材50を保護するために設けられる金属製のカバー部材である。外装材80としては、例えば、着色メッキ鋼板やステンレス板等の金属板を好ましく用いることができる。   The exterior material 80 is a metal cover member provided mainly to protect the heat insulating material 20 and the repair material 50. As the exterior material 80, for example, a metal plate such as a colored plated steel plate or a stainless steel plate can be preferably used.

図5及び図6に示す例において、外装材80は、金属板を補修材50の外周に巻き付け、当該金属板の円周方向の一方端と他方端とをかしめることにより形成されている。このため、外装材80は、長手方向に延びるかしめ部分81を有している。   In the example shown in FIGS. 5 and 6, the exterior member 80 is formed by winding a metal plate around the repair material 50 and caulking one end and the other end of the metal plate in the circumferential direction. For this reason, the exterior material 80 has a caulking portion 81 extending in the longitudinal direction.

また、本構造2の長手方向においては、所定長さの複数の外装材80が繋ぎ合わされて設けられている(不図示)。複数の外装材80は、その繋ぎ目の位置が、上述の複数の補修材50の繋ぎ目(重複部分51)の位置とずれるように設けられることが好ましい。   Further, in the longitudinal direction of the structure 2, a plurality of exterior members 80 having a predetermined length are connected and provided (not shown). The plurality of exterior members 80 are preferably provided so that the positions of the joints are shifted from the positions of the joints (overlapping portions 51) of the plurality of repair materials 50 described above.

この外装材80は、既設外装材30に代えて設けられた、未使用の新設のカバー材とすることができる。また、外装材80は、既設の配管構造1の既設外装材30(図1及び図2参照)とすることもできる。すなわち、既設外装材30を再利用して、外装材80を形成することもできる。   The exterior material 80 can be an unused new cover material provided in place of the existing exterior material 30. Moreover, the exterior material 80 can also be the existing exterior material 30 (see FIGS. 1 and 2) of the existing piping structure 1. That is, the exterior material 80 can be formed by reusing the existing exterior material 30.

そして、図6に示すように、本構造2においては、その下方側部分に、外装材80を貫通する排水穴90が形成されている。すなわち、この排水穴90は、外装材80の下方側部分に形成された貫通穴である。   And in this structure 2, the drain hole 90 which penetrates the exterior | packing material 80 is formed in this structure 2 as shown in FIG. That is, the drainage hole 90 is a through hole formed in the lower portion of the exterior material 80.

図6に示す例において、排水穴90は、本構造2のうち、鉛直方向における下方(図6に示す矢印Lの指す方向)側の頂点部分に1つ形成されているが、当該排水穴90の態様はこれに限られない。すなわち、排水穴90は、例えば、補修材50と外装材80との間に侵入し主に重力の作用により下方側に流れ落ちた水を当該排水穴90から排出されるよう、適切な位置に、適切な数だけ形成される。   In the example shown in FIG. 6, one drain hole 90 is formed at the apex portion of the present structure 2 on the lower side in the vertical direction (direction indicated by the arrow L shown in FIG. 6). The aspect of is not limited to this. That is, the drainage hole 90 is, for example, in an appropriate position so that water that has entered between the repair material 50 and the exterior material 80 and has flowed downward due to the action of gravity is discharged from the drainage hole 90. Appropriate numbers are formed.

例えば、外装材80の下方側部分においては、長手方向の複数の位置に排水穴90を形成することができ、周方向の複数の位置に排水穴90を形成することもできる。具体的に、例えば、本構造2が長手方向に繋ぎ合わされた複数の外装材80を有する場合には、各外装材80に1つ以上の排水穴90が開口するよう、当該排水穴90を設けることができる。   For example, in the lower portion of the exterior member 80, the drain holes 90 can be formed at a plurality of positions in the longitudinal direction, and the drain holes 90 can be formed at a plurality of positions in the circumferential direction. Specifically, for example, when the present structure 2 has a plurality of exterior members 80 connected in the longitudinal direction, the drain holes 90 are provided so that one or more drain holes 90 are opened in each exterior member 80. be able to.

本方法により図5及び図6に示す本構造2を構築する場合、まず、既設の配管構造1から既設外装材30を除去し、次いで、当該配管構造1の保温材20の外周を補修材50で覆い、さらに当該補修材50の外周を外装材80で覆う。なお、配管1の長手方向に複数の補修材50を施工する場合には、上述のとおり、当該複数の補修材50を、長手方向において互いに一部が重なるように(隣接する一対の補修材50a,50bの継ぎ目部分に重複部分51が形成されるように)配置することが好ましい。   When the main structure 2 shown in FIGS. 5 and 6 is constructed by this method, first, the existing exterior material 30 is removed from the existing piping structure 1, and then the outer periphery of the heat insulating material 20 of the piping structure 1 is repaired 50. Further, the outer periphery of the repair material 50 is covered with an exterior material 80. In addition, when constructing a plurality of repair materials 50 in the longitudinal direction of the pipe 1, as described above, the plurality of repair materials 50 are partially overlapped with each other in the longitudinal direction (a pair of adjacent repair materials 50a). , 50b so that an overlapping portion 51 is formed).

排水穴90は、外装材80を補修材50の外周に施工した後に、ドリル等の穴あけ用工具を使用して形成することができる。また、予め外装材80に排水穴90を形成しておき、当該排水穴90が形成された外装材80を補修材50の外周に施工することもできる。   The drain hole 90 can be formed by using a drilling tool such as a drill after the exterior material 80 is applied to the outer periphery of the repair material 50. Alternatively, the drainage hole 90 may be formed in the exterior material 80 in advance, and the exterior material 80 with the drainage hole 90 formed may be applied to the outer periphery of the repair material 50.

このような本構造2もまた、補修材50と、排水穴90が形成された外装材80と、を有するため、上述した例と同様の効果を奏する。すなわち、本構造2は、既設の配管構造1に比べて効果的に向上した断熱性を備えることができる。また、本構造2は、断熱性の自己回復能力を備え、その高い断熱性を安定して維持することができる。   Since this structure 2 also includes the repair material 50 and the exterior material 80 in which the drain holes 90 are formed, the same effect as the above-described example is achieved. That is, the present structure 2 can be provided with a heat insulating property that is effectively improved as compared with the existing piping structure 1. Moreover, this structure 2 is equipped with the heat insulation self-recovery capability, and can maintain the high heat insulation stably.

次に、本実施形態の具体的な実施例について説明する。   Next, specific examples of the present embodiment will be described.

本構造2として、図3及び図4に示すような配管保温構造を構築した。配管10は、外径が114mmである炭素鋼製の円筒状構造体であり、水平に延びるよう配置された。保温材20としては、けい酸カルシウムを主成分とする円筒状の断熱性多孔質成形体を用いた。この保温材20は、厚さ(図2に示す内面21から外面22までの長さ)が40mmであり、円周方向において上下に分割可能な2つの半円筒体である上側保温材20a及び下側保温材20bから構成された。第一外装材40としては、厚さが0.3mmである着色亜鉛メッキ鋼板製の円筒状カバー材を用いた。   As this structure 2, a pipe heat insulation structure as shown in FIGS. 3 and 4 was constructed. The pipe 10 is a cylindrical structure made of carbon steel having an outer diameter of 114 mm, and is arranged to extend horizontally. As the heat insulating material 20, a cylindrical heat-insulating porous molded body mainly composed of calcium silicate was used. The heat insulating material 20 has a thickness (length from the inner surface 21 to the outer surface 22 shown in FIG. 2) of 40 mm, and the upper heat insulating material 20a and the lower heat insulating material 20a, which are two semicylindrical bodies that can be divided vertically in the circumferential direction It comprised from the side heat insulating material 20b. As the first exterior material 40, a cylindrical cover material made of a colored galvanized steel sheet having a thickness of 0.3 mm was used.

補修材50としては、炭素繊維とガラス繊維とを含む混合繊維の不織布である繊維基材に、シリカ系エアロゲルを充填したエアロゲル繊維体(Pyrogel XT、Aspen Aerogels Inc.)を用いた。このエアロゲル繊維体は、厚さが5mmであって適度な可撓性を有するシート状成形体であった。第二外装材60としては、厚さが0.3mmである着色亜鉛メッキ鋼板製の円筒状カバー材を用いた。   As the repair material 50, an airgel fiber body (Pyrogel XT, Aspen Aerogels Inc.) in which a fiber base material that is a nonwoven fabric of mixed fibers containing carbon fibers and glass fibers is filled with silica-based airgel is used. This airgel fiber body was a sheet-like molded body having a thickness of 5 mm and having appropriate flexibility. As the second exterior material 60, a cylindrical cover material made of a colored galvanized steel sheet having a thickness of 0.3 mm was used.

そして、これらの部材を施工した後、ドリルを用いて、図4に示すように、本構造2の鉛直方向下方側の頂点部分に排水穴70を形成した。排水穴70は、本構造2の長手方向において120mmおきに5つ形成した。排水穴70の直径は10〜30mmの範囲とした。   And after constructing these members, the drainage hole 70 was formed in the vertex part of the vertical direction lower side of this structure 2 using the drill, as shown in FIG. Five drain holes 70 were formed every 120 mm in the longitudinal direction of the structure 2. The diameter of the drain hole 70 was in the range of 10 to 30 mm.

また、第一外装材40及び第二外装材60のうち、長手方向の中央部分であって鉛直方向上方側の頂点部分に、後述のように試験中に本構造2内に水を侵入させるための給水穴を1つずつ形成した。   Moreover, in order to make water penetrate | invade into this structure 2 during a test so that it may mention in the center part of a longitudinal direction among the 1st exterior materials 40 and the 2nd exterior materials 60, and the vertex part of the vertical direction upper side so that it may mention later. One water supply hole was formed.

一方、比較の対照として、図1及び図2に示すような配管保温構造(以下、「比較構造」という。)を構築した。配管10、保温材20及び既設外装材30としては、それぞれ上述の本構造2の配管10、保温材20及び第一外装材40と同様のものを用いた。すなわち、既設外装材30として、未使用の外装材を使用した。ただし、この既設外装材30には排水穴70は形成せず、給水穴のみ形成した。   On the other hand, as a control for comparison, a pipe insulation structure (hereinafter referred to as “comparison structure”) as shown in FIGS. 1 and 2 was constructed. As the pipe 10, the heat insulating material 20, and the existing exterior material 30, those similar to the pipe 10, the heat insulating material 20, and the first exterior material 40 of the above-described Structure 2 were used, respectively. That is, an unused exterior material was used as the existing exterior material 30. However, the drainage hole 70 was not formed in the existing exterior material 30, but only the water supply hole was formed.

図7には、実施した試験のスケジュールと、当該試験にて測定された保温材20の含水率の経時的変化と、を示す。図7において、横軸は、試験の開始から経過した時間(時間)を示し、縦軸は、各経過時間において測定された保温材20の含水率(体積%)を示す。また、図7において、太い破線及び太い実線は、本構造2の上側保温材20a及び下側保温材20bの含水率をそれぞれ示し、細い破線及び細い実線は、比較構造の上側保温材20a及び下側保温材20bの含水率をそれぞれ示す。なお、含水率は、保温材20に含有される水分量を中性子水分計(MCM−2型、CPN社製)により測定した結果に基づいて算出した。   In FIG. 7, the schedule of the implemented test and the time-dependent change of the moisture content of the heat insulating material 20 measured in the test are shown. In FIG. 7, the horizontal axis indicates the time (hours) elapsed from the start of the test, and the vertical axis indicates the moisture content (volume%) of the heat insulating material 20 measured at each elapsed time. In FIG. 7, a thick broken line and a thick solid line indicate the moisture content of the upper heat insulating material 20a and the lower heat insulating material 20b of the structure 2, respectively, and a thin broken line and a thin solid line indicate the upper heat insulating material 20a and the lower heat insulating material 20a of the comparative structure, respectively. The moisture content of the side heat insulating material 20b is shown respectively. In addition, the moisture content was computed based on the result of having measured the moisture content contained in the heat insulating material 20 with the neutron moisture meter (MCM-2 type, CPN company make).

試験においては、まず、水中に所定時間浸漬することにより十分に水を含有させた半円筒形状の保温材20a,20bを配管10の外周に施工し、本構造2及び比較構造をそれぞれ構築した。すなわち、図7に示すように、経過時間がゼロ時間の時点では、本構造2及び比較構造の保温材20a,20の含水率は、いずれも約70体積%であった。   In the test, first, the semi-cylindrical heat insulating materials 20a and 20b sufficiently containing water by being immersed in water for a predetermined time were applied to the outer periphery of the pipe 10, and the present structure 2 and the comparative structure were respectively constructed. That is, as shown in FIG. 7, when the elapsed time was zero time, the moisture content of the heat insulating materials 20a and 20 of the present structure 2 and the comparative structure were both about 70% by volume.

次いで、配管10に設置されたヒータの通電を開始することにより、当該配管10の加熱を開始した。すなわち、図7に示すように、配管保温構造の運転状態を模して、配管10の温度を800時間にわたって100℃に維持した。   Next, heating of the pipe 10 was started by starting energization of the heater installed in the pipe 10. That is, as shown in FIG. 7, the temperature of the pipe 10 was maintained at 100 ° C. for 800 hours, imitating the operation state of the pipe heat retaining structure.

その結果、図7に示すように、本構造2の保温材20a,20bの含水率は、加熱の開始後、速やかに低下し、加熱期間を通じて低値に維持された。一方、比較構造においては、上側保温材20aの含水率の低下は、本構造2に比べて極めて緩やかであり、800時間が経過した時点でも30体積%を超えていた。   As a result, as shown in FIG. 7, the moisture content of the heat insulating materials 20a and 20b of the present structure 2 rapidly decreased after the start of heating, and was maintained at a low value throughout the heating period. On the other hand, in the comparative structure, the decrease in the moisture content of the upper heat insulating material 20a was very gradual compared to the present structure 2, and exceeded 30% by volume even after 800 hours had passed.

その後、配管保温構造の運転停止状態を模して、ヒータによる配管10の加熱を停止した。すなわち、図7に示すように、加熱期間の経過後、経過時間が約1800時間となるまでの間、本構造2及び比較構造を常温にて放置した。なお、この常温放置期間のうち、経過時間が1000時間となった付近で、比較構造の上側保温材20aの含水率が上昇したため、配管10の加熱を短時間行い、当該保温材20aの含水率を低下させた。   Thereafter, the heating of the pipe 10 by the heater was stopped, imitating the operation stop state of the pipe heat retaining structure. That is, as shown in FIG. 7, after the elapse of the heating period, the present structure 2 and the comparative structure were left at room temperature until the elapsed time reached about 1800 hours. In addition, since the moisture content of the upper heat insulating material 20a of the comparative structure has increased near the elapsed time of 1000 hours in the room temperature standing period, the piping 10 is heated for a short time, and the water content of the heat insulating material 20a is increased. Decreased.

また、配管保温構造が運転停止状態で雨や雪に晒された状態を模して、図7に示すように、常温放置期間のうち、経過時間が約1400時間以降、本構造2及び比較構造に水滴を滴下した。すなわち、本構造2及び比較構造の給水穴に、1日あたり約220gの水滴を、17日間供給した。   Moreover, imitating the state where the pipe heat insulation structure is exposed to rain or snow in the operation stop state, as shown in FIG. Drops of water were added. That is, about 220 g of water droplets per day were supplied to the water supply holes of Structure 2 and Comparative Structure for 17 days.

この結果、比較構造においては、図7に示すように、上側保温材20aの含水率(細い実線)が、給水の開始後、急激に増加した。また、それに続いて、下側保温材20bの含水率(細い破線)も急激に増加した。   As a result, in the comparative structure, as shown in FIG. 7, the moisture content (thin solid line) of the upper heat insulating material 20a rapidly increased after the start of water supply. Further, subsequently, the moisture content (thin broken line) of the lower heat insulating material 20b also increased rapidly.

これに対し、本構造2においては、図7に示すように、上側保温材20a及び下側保温材20bのいずれの含水率も全く増加しなかった。この結果は、本構造2において、補修材50によって保温材20a,20bに水が浸透することを効果的に防止でき、また、当該補修材50及び排水穴70によって、わずかに浸透した水を速やかに排出できたためと考えられた。   On the other hand, in this structure 2, as shown in FIG. 7, the moisture content of any of the upper heat insulating material 20a and the lower heat insulating material 20b did not increase at all. As a result, in this structure 2, it is possible to effectively prevent water from permeating into the heat insulating materials 20a and 20b by the repair material 50, and the slightly permeated water can be quickly removed by the repair material 50 and the drain hole 70. It was thought that it was able to be discharged.

最後に、水滴の滴下後、図7に示すように、配管10の加熱を再び開始し、当該配管10の温度を100℃に維持した。その結果、比較構造における上側保温材20aの含水率は急激に低下したが、下側保温材20bの含水率の低下は緩やかであり、試験終了の時点でも40体積%を超えていた。   Finally, after dripping the water droplet, as shown in FIG. 7, heating of the pipe 10 was started again, and the temperature of the pipe 10 was maintained at 100 ° C. As a result, the moisture content of the upper heat insulating material 20a in the comparative structure rapidly decreased, but the water content of the lower heat insulating material 20b gradually decreased and exceeded 40% by volume even at the end of the test.

これに対し、本構造2における保温材20a,20bの含水率は、試験開始後の配管10の加熱によって低下した後、ゼロ体積%に近い極めて低い値を維持できた。このように、本構造2は、保温材20が当初水を含んでいたとしても運転開始後速やかに当該保温材20を乾燥させることができ、且つその後、運転停止状態で雨や雪に晒されたとしても、極めて優れた断熱性を効果的に維持できることが確認された。   On the other hand, the moisture content of the heat insulating materials 20a and 20b in the present structure 2 was able to maintain an extremely low value close to zero volume% after being lowered by the heating of the pipe 10 after the start of the test. Thus, this structure 2 can dry the heat insulating material 20 promptly after the start of operation even if the heat insulating material 20 initially contains water, and is then exposed to rain or snow in a stopped state. Even so, it was confirmed that extremely excellent heat insulation can be effectively maintained.

なお、予備的検討において、上述のエアロゲル繊維体からなる複数の補修材50を配管10の長手方向に施工した配管保温構造として、図3に示すように重複部分51が形成されるように施工した第一の構造と、当該重複部分51を形成することなく一方の補修材50aと他方の補修材50bとを突き合わせて施工した第二の構造と、を構築し、これらの構造に上述のように水滴を滴下し、その後、配管10の加熱状態を維持する試験を行った。   In a preliminary study, a pipe heat insulation structure in which a plurality of repair materials 50 made of the above-described airgel fiber body were constructed in the longitudinal direction of the pipe 10 was constructed so that an overlapping portion 51 was formed as shown in FIG. The first structure and the second structure constructed by abutting one repair material 50a and the other repair material 50b without forming the overlapping portion 51 are constructed, and these structures are constructed as described above. A test was performed to drop a water drop and then maintain the heated state of the pipe 10.

その結果、重複部分51を形成しない第二の構造においては、配管10の表面に腐食の発生が認められた。これに対し、重複部分51を形成した第一の構造においては、配管10の腐食は認められなかった。したがって、長手方向において複数の補修材50を施工する場合には、図3に示すような重複部分51を形成することにより、本構造2への水の浸入を確実に防止できると考えられた。また、本構造2の規模に依存するため限定されるものではないが、例えば、本構造2が、外径が10〜1600mmの範囲である配管10を有し、補修材50として上述のエアロゲル繊維体を用いる場合には、当該補修材50の重複部分51の長手方向の長さは10mm以上(例えば、25mm前後)とすることが好ましいことが確認された。また、各補修材50a,50bの円周方向における重複部分の長さも同様に10mm以上(例えば、25mm前後)とすることが好ましいことが確認された。   As a result, in the second structure in which the overlapping portion 51 was not formed, corrosion was observed on the surface of the pipe 10. On the other hand, no corrosion of the pipe 10 was observed in the first structure in which the overlapping portion 51 was formed. Therefore, when constructing a plurality of repair materials 50 in the longitudinal direction, it was considered that the intrusion of water into the present structure 2 can be reliably prevented by forming the overlapping portion 51 as shown in FIG. Although not limited because it depends on the scale of the present structure 2, for example, the present structure 2 includes the pipe 10 having an outer diameter in the range of 10 to 1600 mm, and the above-described airgel fiber as the repair material 50 When using a body, it was confirmed that the length in the longitudinal direction of the overlapping portion 51 of the repair material 50 is preferably 10 mm or more (for example, around 25 mm). It was also confirmed that the length of the overlapping portions in the circumferential direction of the repair materials 50a and 50b is preferably 10 mm or more (for example, around 25 mm).

なお、本発明は、本実施形態に限られるものではない。すなわち、既設の配管構造1及び本構造2は、配管10が水平方向に延びる配管保温構造に限られず、例えば、傾斜して配置された配管10や、屈曲したエルボ部分を含む配管10を有することとしてもよい。そして、配管10がエルボ部分を含む場合、本構造2においては、当該エルボ部分の外周を覆う部分のうち下方側部分に排水穴70,90が形成される。また、例えば、本方法による補修の対象となる既設の保温構造は、上述したような配管構造1に限られない。例えば、保温材で覆われた、横型又は縦型の既設の機器の胴体部や鏡部もまた、本方法による補修の対象となり得る。   Note that the present invention is not limited to this embodiment. That is, the existing pipe structure 1 and the main structure 2 are not limited to the pipe heat insulation structure in which the pipe 10 extends in the horizontal direction, and include, for example, the pipe 10 arranged at an inclination and the pipe 10 including the bent elbow portion. It is good. And when the piping 10 contains an elbow part, in this structure 2, the drain holes 70 and 90 are formed in the lower part among the parts which cover the outer periphery of the said elbow part. Further, for example, the existing heat insulation structure to be repaired by this method is not limited to the piping structure 1 as described above. For example, a body part and a mirror part of existing horizontal or vertical equipment covered with a heat insulating material can also be repaired by this method.

1 既設の配管保温構造、2 本実施形態に係る配管保温構造、10 配管、11 中空部、20 保温材、20a 上側保温材、20b 下側保温材、21 保温材の内面、22 保温材の外面、30 既設外装材、31 かしめ部分、40 第一外装材、41 かしめ部分、42 貫通穴、50 補修材、50a 第一補修材、50b 第二補修材、51 重複部分、51a 第一補修材の端部、51b 第二補修材の端部、52 貫通穴、53 補修材の内面、54 補修材の外面、60 第二外装材、61 かしめ部分、62 貫通穴、70 排水穴、80 外装材、81 かしめ部分、90 排水穴。   DESCRIPTION OF SYMBOLS 1 Existing pipe heat insulation structure, 2 Pipe heat insulation structure concerning this embodiment, 10 Piping, 11 Hollow part, 20 Thermal insulation material, 20a Upper thermal insulation material, 20b Lower thermal insulation material, 21 Internal surface of thermal insulation material, 22 Outer surface of thermal insulation material , 30 Existing exterior material, 31 Caulking portion, 40 First exterior material, 41 Caulking portion, 42 Through hole, 50 Repair material, 50a First repair material, 50b Second repair material, 51 Overlapping portion, 51a First repair material End, 51b End of second repair material, 52 Through hole, 53 Inner surface of repair material, 54 Outer surface of repair material, 60 Second exterior material, 61 Caulking portion, 62 Through hole, 70 Drain hole, 80 Exterior material, 81 Caulking part, 90 drainage hole.

Claims (8)

被保温体と、
前記被保温体を覆う保温材と、
を有する既設の保温構造を補修する方法であって、
前記被保温体と、
前記保温材と、
前記保温材を覆う断熱性、水蒸気透過性及び非透水性を備えた補修材と、
前記補修材を覆い下方側部分に排水穴が形成された金属製の外装材と、
を有する新たな保温構造を構築する
ことを特徴とする保温構造の補修方法。
A body to be insulated,
A heat insulating material covering the heat insulating body;
A method for repairing an existing thermal insulation structure having
The heat retaining body;
The heat insulating material;
A heat-insulating material covering the heat insulating material, a repair material having water vapor permeability and non-water permeability;
A metal exterior material covering the repair material and having a drain hole formed in the lower side portion;
A method of repairing a thermal insulation structure, characterized by constructing a new thermal insulation structure having
前記既設の保温構造は、
内部に流体が流通する配管である前記被保温体と、
前記配管の外周を覆う前記保温材と、
を有する既設の配管保温構造であって、
前記新たな保温構造は、
前記配管と、
前記保温材と、
前記保温材の外周を覆う前記補修材と、
前記補修材の外周を覆う前記外装材と、
を有する新たな配管保温構造である
ことを特徴とする請求項1に記載された保温構造の補修方法。
The existing heat retaining structure is
The insulated body, which is a pipe through which a fluid flows,
The heat insulating material covering the outer periphery of the pipe;
An existing piping heat insulation structure having
The new heat retaining structure is
The piping;
The heat insulating material;
The repair material covering the outer periphery of the heat insulating material;
The exterior material covering the outer periphery of the repair material;
The new pipe heat insulation structure having the above-mentioned: The method for repairing a heat insulation structure according to claim 1.
前記新たな配管保温構造は、
前記配管と、
前記保温材と、
前記保温材の外周を覆う第一外装材と、
前記第一外装材の外周を覆う前記補修材と、
前記補修材の外周を覆う第二外装材である前記外装材と、
を有し、
その下方側部分に、前記第一外装材、前記補修材及び前記第二外装材を貫通する排水穴が形成されている
ことを特徴とする請求項2に記載された保温構造の補修方法。
The new pipe insulation structure is:
The piping;
The heat insulating material;
A first exterior material covering the outer periphery of the heat insulating material;
The repair material covering the outer periphery of the first exterior material;
The exterior material being a second exterior material covering the outer periphery of the repair material;
Have
The drainage hole which penetrates said 1st exterior material, said repair material, and said 2nd exterior material is formed in the lower side part. The repair method of the heat retention structure described in Claim 2 characterized by the above-mentioned.
前記既設の配管保温構造は、前記保温材の外周を覆う金属製の既設外装材をさらに有し、
前記新たな配管保温構造において、前記第一外装材は、前記既設外装材である
ことを特徴とする請求項3に記載された保温構造の補修方法。
The existing pipe heat insulation structure further includes a metal existing exterior material covering the outer periphery of the heat insulation material,
The method for repairing a heat retaining structure according to claim 3, wherein in the new pipe heat retaining structure, the first exterior material is the existing exterior material.
前記第一外装材の外周を前記補修材で覆うとともに前記補修材の外周を前記第二外装材で覆うことによって、前記第一外装材、前記補修材及び前記第二外装材を積層し、
次いで、積層された前記第一外装材、前記補修材及び前記第二外装材を貫通する前記排水穴を形成する
ことを特徴とする請求項3又は4に記載された保温構造の補修方法。
By covering the outer periphery of the first exterior material with the repair material and covering the outer periphery of the repair material with the second exterior material, the first exterior material, the repair material, and the second exterior material are laminated,
Then, the drainage hole penetrating the laminated first exterior material, the repair material, and the second exterior material is formed. The method for repairing a heat retaining structure according to claim 3 or 4.
前記既設の配管保温構造は、前記保温材の外周を覆う金属製の既設外装材をさらに有し、
前記既設の配管保温構造から前記既設外装材を除去し、次いで前記保温材の外周を前記補修材で覆うとともに、前記補修材の外周を前記外装材で覆うことによって、前記新たな配管保温構造を構築する
ことを特徴とする請求項2に記載された保温構造の補修方法。
The existing pipe heat insulation structure further includes a metal existing exterior material covering the outer periphery of the heat insulation material,
The existing pipe insulation structure is removed from the existing pipe insulation structure, and then the outer periphery of the heat insulation material is covered with the repair material, and the outer periphery of the repair material is covered with the exterior material. The method for repairing a heat retaining structure according to claim 2, wherein the heat insulation structure is repaired.
前記補修材は、エアロゲルが充填された繊維体である
ことを特徴とする請求項1乃至6のいずれかに記載された保温構造の補修方法。
The method for repairing a heat retaining structure according to any one of claims 1 to 6, wherein the repair material is a fibrous body filled with aerogel.
請求項1乃至7のいずれかに記載された補修方法により構築された
ことを特徴とする保温構造。
A heat insulation structure constructed by the repair method according to any one of claims 1 to 7.
JP2009173107A 2009-07-24 2009-07-24 Thermal insulation repair method and thermal insulation structure Active JP4897858B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009173107A JP4897858B2 (en) 2009-07-24 2009-07-24 Thermal insulation repair method and thermal insulation structure
PCT/JP2010/061830 WO2011010577A1 (en) 2009-07-24 2010-07-13 Mending method for heat insulation structure and heat insulation structure
TW99123763A TWI422769B (en) 2009-07-24 2010-07-20 Method for mending thermal insulating structures and thermal insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173107A JP4897858B2 (en) 2009-07-24 2009-07-24 Thermal insulation repair method and thermal insulation structure

Publications (3)

Publication Number Publication Date
JP2011027168A true JP2011027168A (en) 2011-02-10
JP2011027168A5 JP2011027168A5 (en) 2011-10-27
JP4897858B2 JP4897858B2 (en) 2012-03-14

Family

ID=43499050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173107A Active JP4897858B2 (en) 2009-07-24 2009-07-24 Thermal insulation repair method and thermal insulation structure

Country Status (3)

Country Link
JP (1) JP4897858B2 (en)
TW (1) TWI422769B (en)
WO (1) WO2011010577A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024341A (en) * 2011-07-22 2013-02-04 Gunze Ltd Insulation cover and manufacturing method therefor
JP2018066395A (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 Thermal insulation structure and method for installing the same on piping
JP2018179064A (en) * 2017-04-06 2018-11-15 ニチアス株式会社 Heat insulation device for pipe and construction method thereof
WO2019202635A1 (en) 2018-04-16 2019-10-24 日立化成株式会社 Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
JPWO2020044434A1 (en) * 2018-08-28 2021-05-13 三菱電機株式会社 Piping with sound absorbing member, refrigeration cycle device, and mounting method of sound absorbing member
JP7501208B2 (en) 2020-07-30 2024-06-18 株式会社ジェイテクト Distribution Pipe

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101117A2 (en) 2011-01-25 2012-08-02 Rns Technologies Bv Insulation composition and method to detect water in an insulation composition
JP2016044940A (en) * 2014-08-26 2016-04-04 株式会社豊田自動織機 Chemical heat storage device
AU2018369684A1 (en) * 2017-11-17 2020-07-02 Asahi Kohsan Corporation Heat insulating structure for cylindrical pipe
CN110425013A (en) * 2019-07-15 2019-11-08 天津国康泰节能科技有限公司 A kind of detachable energy saving coat of steam turbine
CN113063326A (en) * 2020-01-02 2021-07-02 航天特种材料及工艺技术研究所 Gap treatment method for aerogel inner insulation layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267192A (en) * 1997-03-24 1998-10-09 Nichias Corp Armoring member having heat insulating material and repairing-work executing method using the material
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2003294192A (en) * 2002-03-29 2003-10-15 Tokyo Gas Co Ltd Cold insulating structure of low-temperature fluid transportation piping
JP2008145039A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Heat insulating piping structure of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR034969A1 (en) * 2001-08-06 2004-03-24 Federal Mogul Powertrain Inc THERMALLY INSULATING SHIRT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267192A (en) * 1997-03-24 1998-10-09 Nichias Corp Armoring member having heat insulating material and repairing-work executing method using the material
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2003294192A (en) * 2002-03-29 2003-10-15 Tokyo Gas Co Ltd Cold insulating structure of low-temperature fluid transportation piping
JP2008145039A (en) * 2006-12-08 2008-06-26 Daikin Ind Ltd Heat insulating piping structure of air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024341A (en) * 2011-07-22 2013-02-04 Gunze Ltd Insulation cover and manufacturing method therefor
JP2018066395A (en) * 2016-10-17 2018-04-26 Jfeスチール株式会社 Thermal insulation structure and method for installing the same on piping
JP2018179064A (en) * 2017-04-06 2018-11-15 ニチアス株式会社 Heat insulation device for pipe and construction method thereof
WO2019202635A1 (en) 2018-04-16 2019-10-24 日立化成株式会社 Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
US12110414B2 (en) 2018-04-16 2024-10-08 Resonac Corporation Method for suppressing corrosion under heat-insulating material, and paste for suppressing corrosion under heat-insulating material
JPWO2020044434A1 (en) * 2018-08-28 2021-05-13 三菱電機株式会社 Piping with sound absorbing member, refrigeration cycle device, and mounting method of sound absorbing member
EP3845793A4 (en) * 2018-08-28 2021-07-07 Mitsubishi Electric Corporation Piping with sound-absorbing material, refrigeration cycle device, and method for mounting sound-absorbing material
JP7019055B2 (en) 2018-08-28 2022-02-14 三菱電機株式会社 Piping with sound absorbing member, refrigeration cycle device, and mounting method of sound absorbing member
JP7501208B2 (en) 2020-07-30 2024-06-18 株式会社ジェイテクト Distribution Pipe

Also Published As

Publication number Publication date
TWI422769B (en) 2014-01-11
WO2011010577A1 (en) 2011-01-27
JP4897858B2 (en) 2012-03-14
TW201111672A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
JP4897858B2 (en) Thermal insulation repair method and thermal insulation structure
US20090217999A1 (en) Multilayer heat tracing insulation device and method
JP2012506984A (en) Insulation products
CN106195464B (en) A kind of bamboo winding composite pressure pipe
US20170299275A1 (en) Systems and methods to insulate components of industrial infrastructure
CN107585261B (en) A kind of ventilative pole ice formation of LNG ship is cold-proof to use steam-heating pipe road
JP5905861B2 (en) Endothermic material using inorganic porous material
US20130186504A1 (en) Pre-insulated piping system
JP6618879B2 (en) Thermal insulation structure and method for attaching the thermal insulation structure to piping
EA008846B1 (en) Insulation system for technical installations
CN208474785U (en) A kind of prefabricated direct-buried steam insulation pipe of long heat transport net
JP4997186B2 (en) Thermal insulation structure and repair method
JP4997187B2 (en) Thermal insulation structure
CN208082200U (en) A kind of etching solution work shop appliance has the acid fog absorption tower of antifreeze function
JP4997353B2 (en) Thermal insulation structure
JP2011127624A (en) Low-temperature tank and method of manufacturing the same
CN204083668U (en) High vacuum insulated tubing heat insulating construction
JP2012031961A (en) Fire resistant two-layer pipe and manufacturing method therefor
CN103291019A (en) Heat preserving, damp proofing and vapor permeating method for metal roof
CN203857203U (en) Internal sliding guide directly-buried prefabricated compound heat insulation steam pipe with supports
US10774976B2 (en) Systems and methods for insulating a pipe with a pre-applied vapor-barrier stop
JP5972556B2 (en) Thermal insulation structure
RU144437U1 (en) HEAT-PROTECTED PIPE
CN206386572U (en) A kind of bamboo winds composite pressure pipe
Ananthan et al. Silica aerogels for energy conservation and saving

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110908

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250